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Abstract

This paper describes a methodology that enables NURBS (Non-Uniform Rational B-spline)
based Isogeometric Analysis (IGA) to be locally refined. The methodology is applied to continu-
ous Bubnov-Galerkin IGA spatial discretisations of second-order forms of the neutron transport
equation. In particular this paper focuses on the self-adjoint angular flux (SAAF) and weighted
least squares (WLS) equations. Local refinement is achieved by constraining degrees of freedom
on interfaces between NURBS patches that have different levels of spatial refinement. In order
to effectively utilise constraint based local refinement, adaptive mesh refinement (AMR) algo-
rithms driven by a heuristic error measure or forward error indicator (FEI) and a dual weighted
residual (DWR) or goal-based error measure (WEI) are derived. These utilise projection oper-
ators between different NURBS meshes to reduce the amount of computational effort required
to calculate the error indicators. In order to apply the WEI to the SAAF and WLS second-order
forms of the neutron transport equation the adjoint of these equations are required. The physical
adjoint formulations are derived and the process of selecting source terms for the adjoint neutron
transport equation in order to calculate the error in a given quantity of interest (QoI) is discussed.
Several numerical verification benchmark test cases are utilised to investigate how the constraint
based local refinement affects the numerical accuracy and the rate of convergence of the NURBS
based IGA spatial discretisation. The nuclear reactor physics verification benchmark test cases
show that both AMR algorithms are superior to uniform refinement with respect to accuracy per
degree of freedom. Furthermore, it is demonstrated that for global QoI the FEI driven AMR and
WEI driven AMR produce similar results. However, if local QoI are desired then WEI driven
AMR algorithm is more computationally efficient and accurate per degree of freedom.
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1. Introduction

Isogeometric analysis (IGA) is a numerical technique for the spatial discretisation of partial
differential equations (PDEs). The IGA method is a generalisation of traditional finite element
(FE) spatial discretisation techniques that has been shown to: produce improved numerical ac-
curacy per degree of freedom for neutron diffusion and transport problems [1, 2, 3], correctly
retrieve modes in crash simulations [4], obtain physically accurate contact stresses [5], and gen-
erate accurate frequency spectra for structural vibration problems [6]. The two main features of
IGA that lead to these advantages are the ability to exactly represent geometries generated by
commercial CAD (Computer Aided Design) software, such as conic sections (2D) and quadric
surfaces (3D), and high-order continuity of the NURBS (Non-Uniform Rational B-spline) basis
functions within a NURBS patch. FE basis functions are typically C0 over element boundaries,
whereas IGA basis functions can have any level of continuity within a NURBS patch, depending
upon the order in which refinement operations are performed [7].

There are many types of basis function that can be used to perform IGA such as THB-splines
(Truncated Hierarchical B-splines) [8], LR B-splines (Locally Refined B-splines) [9], and anal-
ysis suitable T-splines [10]. The most widely used basis functions by commercial CAD software
packages are the NURBS functions [11]. The fundamental aim of IGA is to streamline the
interface between CAD and computer aided engineering (CAE) analysis. Therefore, the vast
majority of the IGA literature utilises the NURBS basis functions that are typically used within
CAD software [12]. One disadvantage of NURBS based IGA is the inability to perform lo-
cal spatial refinement. This inability to perform local spatial refinement of the NURBS mesh
manifests itself in two ways. First, control points on the interface between NURBS patches are
typically assumed to be in one-to-one correspondence. This assumption simplifies the logic of
IGA numerical algorithms, and also minimises the computational effort required to assemble the
global stiffness matrix [11]. Second, two-dimensional (2D) and three-dimensional (3D) NURBS
basis functions are generated using a tensor product structure. Native local refinement within a
NURBS patch is not supported when basis functions are constructed in this manner.

Hierarchical splines [13] are an option for remedying the second local refinement issue.
These hierarchical splines could also be utilised in the standard multipatch NURBS based IGA
framework. In order to overcome the first local refinement issue a constraint based IGA method-
ology is investigated in this paper. The constraint based local refinement approach was first de-
veloped to overcome the issue of hanging nodes in the FE spatial discretisation methods [14, 15],
and has also been applied to IGA before [11].

Once local spatial refinement can be performed, a methodology for deciding where to apply
local spatial refinement is necessary. These methods can be divided into two categories: a pri-
ori methods, and a posteriori methods. A priori methods provide error estimates based on the
underlying PDE being solved and the spatial discretisation being used. However, these normally
only yield information about the asymptotic behaviour of the solution and often are only valid
for solutions that are sufficiently regular [16]. A posteriori methods provide error estimates for
the solution based upon the solution itself [17, 18]. Furthermore, a posteriori methods can be
tailored to estimate the error in specific quantities of interest (QoI) by using dual-weighted resid-
ual (DWR) or goal-based error measures [19]. However, a posteriori can be significantly more
computationally demanding than a priori methods. This is because they require both an exact
solution and a calculated solution, or approximations of these quantities, in order to evaluate nu-
merical errors. As a consequence the use of a posteriori can be computationally demanding. The
use of a posteriori methods enables spatial mesh refinement to performed only in those spatial
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regions that contribute most to the improvement of the numerical accuracy of prescribed local
and global QoI. Therefore, in principle a posteriori methods can lead to computationally efficient
AMR schemes. However, there is always a balance between the improvements in numerical ac-
curacy achieved using a posteriori methods and the computational effort required to apply these
methods to practical problems in nuclear reactor physics and radiation shielding.

Nuclear reactor core design, reactor shield design, and radiation protection are fields where
both global and local QoI are of great importance. For example, in criticality calculations, the
Keff of a nuclear reactor is an important global QoI. The Keff indicates whether the number
of neutrons in a system will decrease (sub-critical), increase (super-critical), or stay constant
(critical) as time progresses. However, nuclear reactor physics calculations are also concerned
with local QoI such as the power generated in specific nuclear fuel pins. This of interest in order
to make sure that burn-up/depletion within a nuclear fuel assembly is reasonably uniform and
that the power output stays relatively constant [20]. On the other hand, reactor shielding and
radiation protection calculations are often concerned with highly localised QoI and sometimes
QoI that consist of a single point. For example, the dose that an operator might receive, or
a detector response is of interest to ensure that radiation levels in a certain area are under the
recommended limit [21]. The neutron fluence (time-integrated scalar neutron flux) is important
in understanding the radiation damage, which is measured in displacement per atom (DPA), to a
reactor pressure vessel (RPV) [22].

In Section 2 the NURBS basis functions are introduced and the reasons for the lack of local
spatial refinement in standard NURBS based IGA are expanded upon. In Section 3 a constraint
based local spatial refinement methodology for NURBS based IGA is described. In Section 4, a
heuristic error indicator (FEI) and a goal-based error measure (WEI) are derived. The abbrevia-
tion FEI stands for Forward Error Indicator, due to the fact that areas are flagged for refinement
purely due to errors in the forward solution. The abbreviation WEI stands for Weighted Error
Indicator, due to the fact that the forward error is weighted by the error in the adjoint solution.
Both of these are a posteriori methods that require a projection operator between spatial meshes
of differing fidelity. In Section 5 two second-order forms of the neutron transport equation are
introduced. These are the self-adjoint angular flux (SAAF) and weighted least squares (WLS)
neutron transport equations. Section 6 derives the mathematical adjoint of both of these equa-
tions and discusses how the goal functional can be chosen in the adjoint equation to allow the
use of the WEI for a given local QoI. Finally, in Section 7, the effect of the constraint based
locally refined NURBS based IGA on the numerical accuracy, and the rate of convergence, of
the solution is investigated. Furthermore, comparisons are made between the relative numerical
accuracy of FEI driven AMR and WEI driven AMR for various QoI and for various nuclear
reactor physics and radiation shielding verification benchmark test cases.

2. NURBS based Isogeometric Analysis (IGA)

Isogeometric analysis (IGA) is a methodology for the spatial discretisation of partial differ-
ential equations (PDEs) that was first developed in 2005 [7]. Since then it has been applied to
many areas such as structural mechanics [6], nuclear reactor physics [23], optimisation prob-
lems [24], crash simulations [4], and medical modelling [25]. In this section the NURBS basis
functions will be explained in order to illustrated how issues regarding local refinement arise.
IGA is not explained in detail in this paper and if the reader is interested in more information
about refinement techniques, the generation of geometry, Galerkin IGA spatial discretisations, or
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NURBS basis functions, in general, then the following references are suggested [11, 26, 27, 28].
To define the NURBS basis functions it is first necessary to define B-splines.

2.1. B-splines

B-splines are a set of piecewise polynomials that require a knot vector in order to be gener-
ated. A knot vector Ξ = {ξ1, ξ2, . . . ξn−1, ξn} is a series of monotonically increasing real numbers.
The B-spline basis functions over Ξ are defined as follows:

Ni,0(ξ) =

1, for ξ ∈
[
ξi, ξi+1) ,

0, otherwise,

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ), (1)

where p is the order (or degree) of the B-splines. Entries in Ξ can appear multiple times consec-
utively and the number of times a knot ξi appears in Ξ is referred to as the multiplicity mi of knot
ξi. The B-spline basis functions are Cp−mi over knot ξi and C∞ at all other ξ ∈ Ξ. A B-spline
curve is defined by:

C(ξ) =

n∑
i=1

Ni,p(ξ)Pi, for ξ ∈ Ξ, (2)

where the Pi ∈ R3 are the control points of the B-spline curve. Furthermore, in a similar manner
to FEs, a function can be represented by the product of the B-spline basis functions and control
variables as follows:

f (ξ) =

n∑
i=1

Ni,p(ξ)di, for ξ ∈ Ξ, (3)

where the control variable di ∈ R is associated with control point Pi. In order to generate B-
spline objects in higher dimensions a tensor product structure is used. That is, given two knot
vectors Ξξ and Ξη, the B-spline surface is defined as:

S(ξ, η) =

N∑
i=1

M∑
j=1

Ni,p(ξ)N j,p(η)Pi, j, for ξ ∈ Ξξ and η ∈ Ξη. (4)

An expression similar to equation (3) that represents a 2D function in terms of control variables
and basis functions can be written as:

f (ξ, η) =

N∑
i=1

M∑
j=1

Ni,p(ξ)N j,p(η)di, j, for ξ ∈ Ξξ and η ∈ Ξη, (5)

where the control variable di, j is associated with control point Pi, j. The extension to higher
dimensions follows a similar tensor product structure.
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2.2. NURBS
NURBS basis functions are a set of rational piecewise polynomials that are constructed using

the B-spline basis functions. To define the NURBS basis functions a set of weights must be
defined {wi}

N
i=1. Then the NURBS basis functions of order p are given by:

Ri,p(ξ) =
Ni,p(ξ)wi∑N

j=1 N j,p(ξ)w j
, for i = 1, 2, . . . ,N. (6)

A NURBS curve is defined in a similar manner to equation (2), that is:

C(ξ) =

N∑
i=1

Ri,p(ξ)Pi, for ξ ∈ Ξ, (7)

and a NURBS surface is constructed using the same tensor product structure:

S(ξ, η) =

N∑
i=1

M∑
j=1

Ri,p(ξ)R j,p(η)Pi, j, for ξ ∈ Ξξ and η ∈ Ξη. (8)

A NURBS patch is defined as a collection of knot vectors, weights, and control points. Therefore,
each NURBS patch has its own set of NURBS basis functions. NURBS patches are topologically
equivalent to a hypercube due to the tensor product structure of the NURBS basis functions. In
2D, NURBS patches are topologically equivalent to a square. By combining NURBS patches
complex, multiply connected, heterogeneous domains can be modelled.

The tensor product formulation of the B-spline and NURBS surfaces in equations (4) and (8)
is responsible for the inability of NURBS based IGA to locally refine within a NURBS patch.
If the basis functions in one parametric dimension are refined then this refinement propagates
throughout all other parametric dimensions. This is illustrated in two dimensions in Figure 1.
The aim of this paper is not to tackle the inability of NURBS based IGA to locally refine on
this level. As mentioned before, degrees of freedom (dof) on the interfaces between NURBS
patches are typically assumed to be in one-to-one correspondence. This reduces the complexity
and the amount of computational effort required to form global stiffness matrices. However,
this assumption precludes the ability for NURBS patches to be locally refined spatially, and
also for neighbouring NURBS patches to have different polynomial orders. In order for local
spatial refinement of multipatch domains to be possible a constraint based local spatial refinement
methodology is described. The effect of spatial refinement on standard NURBS based IGA, and
the effect the constraint based local refinement will have, are illustrated in Figure 2.

3. Constraint Based Local Spatial Refinement

Constraint based local spatial refinement is a method that was originally used in FE to restore
the continuity of the FE space when hanging nodes are present [14, 15]. The methodology has
been extended to the IGA framework [11] in order to restore continuity of the NURBS basis
function space for arbitrary order basis functions between NURBS patches when hanging nodes
are present.

Two cases are considered in this section. The first case is two square NURBS patches side by
side (see Figures 3 and 4). This case will illustrate how a constraint is applied and also how the
global stiffness matrix is formed. The second case is three square NURBS patches in a corner
configuration (see Figure 5). This case details how to deal with a point being constrained multiple
times. These two cases can be combined to deal with most 2D geometries.
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Figure 1: Illustration of the inability of NURBS based IGA to be locally refined within a NURBS patch. The whole
domain represents a NURBS patch with internal lines referring to knot insertion within the NURBS patch. The aim is to
insert degrees of freedom (dof) into the lower left of the NURBS patch. On the left is the case of NURBS based IGA.
When a knot is inserted into the x direction the refinement propagates in the y direction resulting in five dof being created.
This is due to the tensor product structure of the NURBS basis functions. On the right is the case of local refinement
within a NURBS patch. When a knot is inserted only two dof are created.

3.1. The Two NURBS Patch Case

The two NURBS patch case is sufficient to deal with geometries where each dof is con-
strained at most once. The geometry for this case, with an example mesh superimposed onto it,
is presented in Figure 3. The more refined NURBS patch is referred to with the superscript F for
fine, and the less refined NURBS patch with superscript C for coarse. It is necessary that, at the
coarsest level, these two NURBS patches form a compatible discretisation meaning that on the
coarsest mesh the mappings and parameterisations between neighbouring patches are identical
[11]. Furthermore, it is assumed that the control points on the shared interface of the fine NURBS
patch are the result of knot insertion (spatial refinement) of the control points from the coarse
NURBS patch. However, this assumption is not a requirement. In the case where the NURBS
patches are not a direct refinement of one another the greatest common knot vector can be found.
The knot vectors from both NURBS patches are then constrained to match the greatest common
knot vector.

For simplicity this explanation will continue assuming that the fine NURBS patch is the
direct result of knot insertion being performed on a coarse NURBS patch with the knot vector
ΞC . Therefore, the control points for this patch before and after knot insertion can be related in
the following way:

PF = TPC , (9)

where the matrix operator T represents knot insertion, and PF and PC are the control points in
the fine and coarse patches respectively. As T represents knot insertion it is a unitary matrix. The
relationship in expression (9) can be expanded into:(

PF
n

PF
f

)
=

(
Tn 0
0 T f

) (
PC

n
PC

f

)
, (10)
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Figure 2: Illustration of the inability of standard NURBS based IGA to be locally refined over a multipatch domain. The
domain consists of six NURBS patches and spatial refinement of the parameter space within a NURBS patch is indicated
with a dashed line. The aim is to insert dof into the lower left of the domain. On the left is the case of standard NURBS
based IGA. When knots are inserted into the lower left NURBS patch the refinements propagate through neighbouring
NURBS patches resulting in eight dof being created. On the right is the case of constraint based local refinement covered
in this paper. When knots are inserted into the lower left NURBS patch only five dof are created. This is due to the fact
that dof on the interface between NURBS patches do not need to be in one-to-one correspondence.

7



Figure 3: The geometry for the two NURBS patch case. The coarse NURBS patch is on the left and its control points are
red. The fine NURBS patch is on the right and its control points are blue. If control points are in the same location then
they are coloured purple. Black lines represent refinement in the parametric domain. The linear knot vectors are given
by ΞC = {0, 0, 0.5, 1, 1} and ΞF = {0, 0, 0.25, 0.5, 0.75, 1, 1} in both parametric directions.

where the control points in the NURBS patch have been partitioned into two sets: control points
that are on an interface with another NURBS patch, denoted by a f subscript, and control points
that are not, denoted by an n subscript. In particular, from equation (10), it can be found that:

PF
f = T f PC

f , (11)

where T f represents knot insertion performed on the dof on the interface between NURBS
patches. Due to the fact that T is a unitary matrix, T f is also a unitary matrix. Following from
this it is apparent that the control variable associated with each control point on the interface
between patches must satisfy a similar relationship, that is:

dF
f = T f dC

f . (12)

where d is a vector representing the control variables used as the coefficients for the NURBS
basis functions in the finite expansion of the solution in equation (3). Control variables with a
F superscript belong to the fine patch, and control variables with a C superscript belong to the
coarse patch.

The system of linear equations that represents the problem on the fine NURBS patch can be
written in the following form:

KFdF =

(
KF

nn KF
n f

KF
f n KF

f f

) (
dF

n
dF

f

)
=

(
S F

n
S F

f

)
= S F , (13)

and on the coarse NURBS patch:

KCdC =

(
KC

nn KC
n f

KC
f n KC

f f

) (
dC

n
dC

f

)
=

(
S C

n
S C

f

)
= S C , (14)

where KF and KC are the stiffness matrices and S F and S C are the source vectors for the fine
and coarse patches respectively over the sets of control variables implied by the subscripts. So
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KF
nn is the stiffness matrix for the fine patch that relates the dof not on the interface to the dof not

on the interface. Expression (12) is then substituted into equation (13) giving:(
KF

nn KF
n f

KF
f n KF

f f

) (
dF

n
T f dC

f

)
=

(
S F

n
S F

f

)
. (15)

In order to assemble the patch-wise systems of linear equations in equations (14) and (15) into
one global system that represents the problem over the entire two NURBS patch domain, it is
necessary for both systems of equations to operate on the same set of control variables on the
shared interface. Therefore, the unknowns on the shared interface of the fine NURBS patch
system, equation (15), must be constrained to the same set as the coarse NURBS patch system,
equation (14). This is achieved by operating on the equations for the control variables in the fine
NURBS patch that are on the interface, T f dC

f , with T T
f . That is:

KF
f ndF

n + KF
f f (T f dC

f ) = S F
f → T T

f KF
f ndF

n + T T
f KF

f f T f dC
f = T T

f S F
f . (16)

Substituting this into equation (15) gives:(
KF

nn KF
n f T f

T T
f KF

f n T T
f KF

f f T f

) (
dF

n
dC

f

)
=

(
S F

n
T T

f S F
f

)
. (17)

Now there is an expression for the stiffness matrix over the fine NURBS patch that operates on
the same set of control variables on the interface as the coarse NURBS patch and that is not
over or under determined. In other words, there is now one equation for each control variable in
equation (17). Therefore, the two linear systems of equations, (14) and (17), can be assembled
into a global system of linear equations. In this particular case yielding:

KC
nn KC

n f 0
KC

f n KC
f f + T T

f KF
f f T f T T

f KF
f n

0 KF
n f T f KF

nn



dC

n
dC

f
dF

n

 =


S C

n
S C

f + T T
f S F

f
S F

n

 . (18)

In Figure 3, due to the linear basis functions along the interface, the control points that belong
to the coarse NURBS patch are a proper subset of the control points that belong on the interface.
This will not be the case for non-linear basis functions. The case of quadratic basis functions is
illustrated in Figure 4. It can be seen that there is a control point on the interface that belongs
only to the coarse NURBS patch. The constraint based methodology detailed above deals with
this case by design as all of the refinement information is contained in T f .

3.2. The Three NURBS Patch Case

In order to fully describe the constraint based local refinement methodology the case of three
NURBS patches must be considered. The reason this case is illustrative is that it now includes a
control variable that is subject to more than one constraint. A schematic of the geometry for this
case is displayed in Figure 5 and the point that will have more than one constraint applied to it is
coloured black.

The methodology begins as in the two NURBS patch case where it is noted that control
variables along interfaces can be written as a refinement of one another. The same steps can be
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Figure 4: The layout of the control points for quadratic basis functions. The coarse NURBS patch is on the left and its
control points are red. The fine NURBS patch is on the right and its control points are blue. If control points are in
the same location then they are coloured purple. Black lines represent refinement in the parametric domain. Therefore
ΞC = {0, 0, 0, 1, 1, 1} and ΞF = {0, 0, 0, 0.5, 1, 1, 1} in both parametric directions.

followed until three NURBS patch-wise stiffness matrices are formed, two for the coarse NURBS
patches which are unconstrained:KCw

nn KCw
n fw

KCw
fwn KCw

fw fw

 dCw
n

dCw
fw

 =

S Cw
n

S Cw
fw

 , (19)

KCs
nn KCs

n fs

KCs
fsn

KCs
fs fs

 dCs
n

dCs
fs

 =

S Cs
n

S Cs
fs

 , (20)

and one for the fine NURBS patch which has had two sets of constraints applied to, namely T fs

and T fw : 
KF

nn KF
n fw

T fw KF
n fs

T fs

T T
fw

KF
fwn T T

fw
KF

fw fw
T fw T T

fw
KF

fw fs
T fs

T T
fs

KF
fsn

T T
fs

KF
fs fw

T fw T T
fs

KF
fs fs

T fs




dF
n

dCw
fw

dCs
fs

 =


S F

n
T T

fw
S F

fw
T T

fs
S F

fs

 . (21)

The subscripts fw and fs refer to the interface between the central NURBS patch and west-facing
NURBS patch and the interface between the central patch and the south-facing NURBS patch
respectively.

What is important to consider here is the set dCw
fw
∪dCs

fs
. Referring to Figure 5 this is the union

of the purple and the green points. Therefore, the set dCw
fw
∪ dCs

fs
is the singular black point on the

south-west corner of the fine NURBS patch. This point is referred to as dl. Since dl has been
constrained twice it appears twice in equation (21), once in the set dCw

fw
and once in the set dCs

fs
.

It can be noted that dl is located at the corner of the parametric domain, is interpolatory, and
will always be present regardless of the amount of refinement. Therefore, the structure of T f will
always constrain dl to obey dl = dl. So when equations (19), (20), and (21) are assembled into
a global system the row that relates all of the control variables to dl will be added twice in this
case. Therefore, to get the correct answer the coefficients in the rows corresponding to dl must
be combined and divided by two.
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Figure 5: The geometry for the three NURBS patch case. The coarse NURBS patch to the west is referred to as Cw and
its control points are red. The coarse NURBS patch to the south is referred to as Cs and its control points are yellow.
The fine NURBS patch in the centre is referred to as F and its control points are blue. If control points are in the same
location then they are coloured a mixture of the relevant colours. Black lines represent refinement in the parametric
domain. Therefore, ΞCw = ΞCs = {0, 0, 0.5, 1, 1} and ΞF = {0, 0, 0.25, 0.5, 0.75, 1, 1} in both parametric directions.
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In three-dimensions (3D) this repeated assembly of the row corresponding to dl could happen
more than twice depending on the geometry. Therefore, in three dimensions the number of times
that dl is constrained must be monitored so that the rows corresponding to dl can be combined
and divided by the correct value and the correct system of linear equations can be retrieved.

There are two more points to address. First, all of the above cases only deal with B-splines as
the NURBS patches are all square with uniform weights. The extension to NURBS is accounted
for through the generation of the T f operator. In the case of NURBS, T f will be generated for
the four-dimensional B-splines in homogeneous coordinates which can be mapped back to the
NURBS basis functions. T f then represents the correct operator to be applied in the case of the
constraint based local refinement methodology applied to NURBS based IGA.

Second, the above two cases have been performed with unit square NURBS patches. This
means that the Jacobian of the geometry map is the identity matrix. As mentioned, NURBS
patches are topologically equivalent to a hypercube. Due to the requirement that the unrefined
geometry must form a compatible discretisation it is guaranteed that the geometry can be mapped
back into a collection of squares that have common interfaces between them. Therefore, the
extension of this method to non-square NURBS patches simply requires that the patch-wise
stiffness matrices (KC

f f ,K
F
n f , etc) should have the Jacobian of their geometry map included in the

integrals of the basis functions that form the stiffness matrices. This already happens within IGA
algorithms so the extension to general NURBS geometries is naturally included in IGA spatial
discretisations.

4. Adaptive Mesh Refinement (AMR) Methods

Adaptive mesh refinement (AMR) algorithms indicate specific areas of the problem domain
for refinement based upon some underlying error metric or indicator. In this paper, two a poste-
riori error indicators will be considered. The refinement that is desired could be spatial, [29, 30],
polynomial order [31], or a hybrid of the two [32, 33, 34, 35]. In this work only spatial refine-
ment strategies are investigated. There is no reason that this methodology could not be extended
to polynomial or hybrid refinement. All that is needed is an operator that represents the mapping
between control points on the interface between neighbouring NURBS patches. Hybrid (spatial
and polynomial) refinement has been shown to be the optimal refinement strategy. By spatially
refining where the solution is non-smooth and increasing the order of basis functions where the
solution is smooth, exponential convergence rates can be achieved [34, 36, 37].

The methods for indicating NURBS patches for refinement described in this section could
be applied in lieu of a local refinement algorithm. Refinement of a specific NURBS patch can
still be performed in standard NURBS based IGA. However, without the constraint based local
refinement methodology, the refinements would not be truly local, as refinement of a NURBS
patch would propagate to neighbouring NURBS patches and through subsections of the domain
as was illustrated in Figure 2. Therefore, these error indicators, and their application to AMR
algorithms, are discussed in isolation from the constraint based local refinement methodology
detailed in Section 3. However, in Section 7, these AMR algorithms will be applied to locally
refinable NURBS based IGA.

The a posteriori error measures used to indicate regions for spatial refinement can broadly be
split into two groups: heuristic and goal-based error measures or indicators. Heuristic methods
refine based on some general property of the solution. For example, the gradient of the solution,
the error in the solution compared to some reference solution, or the jump in the solution between
neighbouring elements in discontinuous Galerkin methods [38]. Heuristic error indicators can be
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applied to any type of spatial discretisation method or solution. In this regard they are “black box”
type AMR algorithms. Dual weighted residual (DWR) or goal-based error measures are tailored
towards the specific outputs or “goals” such as the degree of criticality (Keff) of a nuclear system,
or the reaction rate within certain regions. In this work this is achieved by solving the adjoint
neutron transport equation. The solution of the adjoint equation can broadly be considered to
give a measure of a neutron’s importance to the scalar neutron flux [39]. By correctly setting the
source terms of the adjoint neutron transport equation, the solution can be considered to give a
measure of a neutron’s importance to a prescribed quantity of interest (QoI).

Both a heuristic error indicator and a goal-based error indicator are derived in the following
section. Both of these a posteriori methods are based upon the error between a reference solution
on a fine NURBS mesh and an approximate solution over a coarse NURBS mesh. The approx-
imate solution can either be acquired by solving the neutron transport equation over the coarse
NURBS mesh or by projecting the reference solution from the fine mesh to the coarse NURBS
mesh.

IGA spatial discretisations enable spatial refinement within a NURBS patch to be performed
without an ancillary mesh generation algorithm. Furthermore, IGA based AMR algorithms pre-
serve the exact geometry of the spatial domain during the spatial refinement process. Indeed,
even on the coarsest spatial refinement the geometry is exact. This is unlike traditional FE AMR
algorithms, where a new FE mesh must be generated by an ancillary mesh generation algorithm
at each AMR iteration.

4.1. The Forward Error Indicator (FEI)

The forward error indicator (FEI) is based upon calculating the error in a given NURBS patch
with respect to some norm. This error is written as:

‖ψ − ψh‖N , (22)

where N is represents some functional norm, ψ is the exact solution, and ψh is the approximate
solution. Some examples of N are the L2 norm:

‖ f (r)‖L2 =

∫
V

f (r)2dr, (23)

or the H1 norm:

‖ f (r)‖H1 = ‖ f (r)‖L2 + ‖∇ f (r)‖L2 =

∫
V

f (r)2 + ∇ f (r) · ∇ f (r)dr. (24)

The H1 seminorm can also be considered:

| f (r)|H1 = ‖∇ f (r)‖L2 =

∫
V
∇ f (r) · ∇ f (r)dr, (25)

which is a seminorm due to the fact that | f (r)|H1 = 0 6=⇒ f (r) ≡ 0.
In this work the H1 norm is considered as this accounts not only for the magnitude of the

function through the ‖ f (r)‖L2 term but also how oscillatory the function is through the ‖∇ f (r)‖L2

term. Therefore, the heuristic error indicator considered here is:

eF = ‖ψ − ψh‖H1 , (26)
13



where ψ is the exact scalar neutron flux and ψh is the calculated scalar neutron flux. The FEI eF

is calculated in each NURBS patch yielding eF
p . All the eF

p ’s are then formed into an ascending
list and a method for indicating which NURBS patches need refinement is selected. Two options
are considered here.

In the first option, a NURBS patch is indicated for refinement if the error in that NURBS
patch is within a certain threshold of the maximum error:

eF
p > ε max{eF

p }
N
p=1, (27)

where 0 ≤ ε ≤ 1 and N is the number of patches. This is referred to as the threshold method.
The second option is called the list method. A NURBS patch is indicated for refinement if it is in
the top given percentile in the sorted list {eF

p }
N
p=1. For example, if there are 100 NURBS patches

and ε = 0.3 then the top 30 NURBS patches are indicated for refinement.
The second strategy will ensure that the number of NURBS patches indicated for refine-

ment in each AMR iteration will be the same. The first strategy should produce a more suitable
NURBS mesh for a given problem but could require more AMR iterations.

In practice the error indicator from expression (26) is not suited to all problems as it contains
the exact solution ψ. The exact solution for neutron transport is only available ahead of time for a
small subset of problems that can be solved analytically [40]. Therefore, in order to approximate
the exact solution, the substitution ψ = ψh+1 is made. ψh+1 represents the solution of the neutron
transport equation on a NURBS mesh where every NURBS patch has been uniformly refined
to a higher level of spatial resolution than the NURBS mesh used to calculate ψh. Any highly
refined solution could be considered, for example the solution ψh+1,p+1 where the solution has
been solved over a once spatially refined NURBS mesh with basis functions that are one order
higher [41]. A more flexible FEI is then given by:

µF = ‖ψh+1 − ψh‖H1 . (28)

The process of calculating the FEI µF now involves solving two neutron transport problems:
one over a coarse NURBS mesh to calculate ψh and one over a fine NURBS mesh to calculate
ψh+1. One more step is taken to produce a FEI that only requires one neutron transport equation
to be solved. This is achieved by letting ψh = Πh+1

h ψh+1 where Πh+1
h is a projection operator

that projects the solution ψh+1 to the coarse NURBS mesh. This choice can be justified by a
mathematical argument from Wang and Ragusa [34]. Therefore, a flexible, computationally
efficient, heuristic FEI is given by:

ηF = ‖ψh+1 − Πh+1
h ψh+1‖H1 . (29)

4.2. The Weighted Error Indicator (WEI)
The weighted error indicator (WEI) is a DWR or goal-based error measure that builds upon

the FEI ηF given in expression (29) in a manner similar to other work [29, 30, 42]. This is done
by weighting ηF with the error in the adjoint solution. This is expressed mathematically as:

eW = ηF‖ψ† − ψ†h‖H1 = ‖ψh+1 − Πh+1
h ψh+1‖H1‖ψ† − ψ†h‖H1 , (30)

where ψ† is the exact adjoint scalar neutron flux and ψ†h is the calculated adjoint scalar neutron
flux. Computing the WEI eW requires the exact solution of the adjoint neutron transport equation
as well as the numerical solution of one primal (forward) and one adjoint neutron transport
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equation. An analogous series of approximations to the ones performed in Section 4.1 can be
made to arrive at a WEI that requires the numerical solution of one primal neutron transport
equation and one adjoint neutron transport equation. A flexible, goal-based WEI is then given
by:

ηW = ηF‖ψ†h+1 − Πh+1
h ψ†h+1‖H1 = ‖ψh+1 − Πh+1

h ψh+1‖H1‖ψ†h+1 − Πh+1
h ψ†h+1‖H1 . (31)

Furthermore, the computational cost of this procedure could be halved by solving a special neu-
tron transport formulation that yields the primal scalar neutron flux as its solution which can be
differentiated to retrieve the adjoint scalar neutron flux in a manner similar to the even/odd parity
neutron flux equations [43].

5. Second-order Forms of the Neutron Transport Equation

In this paper the FEI and WEI driven AMR algorithms will be applied to nuclear reactor
physics and radiation shielding problems. In particular, two different second-order forms of
the neutron transport equation are considered which are the self-adjoint angular flux (SAAF)
equation:

−Ω · ∇
1

σt(r, E)
Ω · ∇ψ(r,Ω, E) + σt(r, E)ψ(r,Ω, E) = Q(r,Ω, E) −

(
Ω · ∇

Q(r,Ω, E)
σt(r, E)

)
, (32)

and the weighted least squares (WLS) neutron transport equation:

−Ω · ∇WΩ · ∇ψ(r,Ω, E) −Ω · ∇[Wσt(r, E)ψ(r,Ω, E)] + σt(r, E)WΩ · ∇ψ(r,Ω, E)

+Wσ2
t (r, E)ψ(r,Ω, E) = (σt(r, E) −Ω · ∇)WQ(r,Ω, E),

(33)

where r is the position of a neutron in 3D space, E is the energy of a neutron,Ω is the direction in
which a neutron is travelling in steradians, σt(r, E) is the total macroscopic neutron cross-section,
and ψ(r,Ω, E) is the angular neutron flux. W is a weighting operator defined by

W = min
(

1
σt
,wmax

)
. (34)

The weighting operator defined above allows the WLS equation to solve neutron transport prob-
lems that contain void regions due to the removal of the singularity atσt = 0. The SAAF equation
cannot model void regions explicitly due to the fact that the factor 1

σt
→ ∞ in a void region. A

void treatment for the SAAF equation does exist, but the formulation does not produce symmet-
ric positive definite (SPD) matrices in void regions [44]. Other void treatments for second-order
forms of the neutron transport equation have been proposed [45, 46] but these methods also lose
the SPD character of the global system. The source term Q(r,Ω, E) is defined as follows:

Q(r,Ω, E) = Qscatter(r,Ω, E) + Qfission(r, E) + Qext(r,Ω, E), (35)

where

Qscatter(r,Ω, E) =

∫ ∞

0

∫
4π
σs(r,Ω′ → Ω, E′ → E)ψ(r,Ω′, E′)dΩ′dE′,

Qfission(r, E) = χ(r, E)
∫ ∞

0
νσ f (r, E′)φ(r, E′)dE′,

(36)
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and Qext(r,Ω, E) represents an extraneous (fixed) source of neutrons. σs(r,Ω′ → Ω, E′ → E) is
the macroscopic differential neutron scattering cross-section, σ f (r, E) is the macroscopic neutron
fission cross-section, ν is the average number of prompt neutrons produced per fission, χ(r, E) is
the prompt fission spectrum, and φ(r, E) is the scalar neutron flux. The choice of wmax in expres-
sion (34) can have a significant effect on the quality of the WLS solution. More information on
the choice of wmax can be found in the following references [47, 48].

6. Derivation of the Physical Adjoints of the SAAF and WLS equation

The adjoint of the neutron transport equation has several uses in nuclear reactor physics
and radiation shielding simulations. The solution of the adjoint neutron transport equation can
be used as a variance reduction technique for Monte Carlo methods [49] and is also useful for
calculating the effect of local perturbations in material coefficients on the reactivity of a system
[50]. The solution of the adjoint neutron transport equation can be thought of as describing the
importance of a neutron to the primal scalar neutron flux [39]. The adjoint is derived here to
be used as part of a DWR or goal-based error measure. In particular, it will be used with the
goal-based WEI derived in Section 4.2.

The adjoint of an operator H is defined as follows:

〈Hu, v〉 = 〈u,H†v〉, (37)

where H† is the adjoint operator, 〈·, ·〉 denotes some inner product, and u, v are two functions
in the inner product space. The name self-adjoint angular flux implies that the SAAF equation
would be its own adjoint. This is only the case when the term from equation (32),Ω · ∇Q(r,Ω,E)

σt
≡

0, which is satisfied for mono-energetic, homogeneous problems with no scattering. Therefore,
in the general case, the adjoint of the SAAF equation must be formulated and solved separately.

The actions of discretising the individual dimensions of the phase space of the neutron trans-
port equation (r,Ω, E) and taking the adjoint according to expression (37) do not, in general,
commute. These adjoints are commonly referred to as the continuous-adjoint (physical adjoint)
or the discrete-adjoint (mathematical adjoint) depending on the order in which these operations
are performed [51]. However, when taking the adjoint of the second-order forms of the neutron
transport equation there are several possibilities for the continuous-adjoint. Following from the
notation used in the paper by Schunert et al. [52] a vector is used to signify the order in which
discretisation and the action of taking the adjoint are applied. For example, the vector (E,Ω, †, r)
means that first the multigroup approximation is applied, then the discrete ordinate method for
angular discretisation, then the adjoint is taken, and then IGA is used to discretise the spatial
domain. There are three main options to consider:

1. True adjoint: (†, E,Ω, r)
2. Physical adjoint: (E, †,Ω, r) ≡ (E,Ω, †, r)
3. Mathematical adjoint: (E,Ω, r, †)

In this work the physical adjoint is used for the following reasons. First, if the true adjoint is used
then adjoint flux weighted neutron cross-sections are necessary. In this work we rely heavily on
neutron cross-section data being provided from test cases or from nuclear data libraries. The
neutron cross-sections from nuclear data libraries have usually been collapsed from a fine group
structure to a coarse group structure using lattice calculations and are weighted by the primal
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scalar neutron flux [53]. Since adjoint weighted neutron cross-section data are not generally
available this rules out the true adjoint.

The comparison of the mathematical and physical adjoints is more subtle. In the case of
the first-order neutron transport equation with a linear spatial discretisation, the physical and
mathematical adjoints are the same so the comparison between the two adjoint formulations is
not often considered [52]. When the mathematical adjoint is used the discretisation errors in the
primal and adjoint calculations are the same. Therefore, the eigenvalues of the primal equation
and mathematical adjoint equation agree exactly as they both include the same discretisation
error [52]. This is not the case when the physical adjoint is used [54]. However, in the asymptotic
limit, as the discretisation error goes to zero, the eigenvalues of the primal equation, mathematical
adjoint equation, and the physical adjoint equation are identical [52].

It was mentioned earlier that the adjoint can be thought of as a measure of a neutron’s impor-
tance to the system [39] which makes the adjoint solution suited to a goal-based error measure.
This physical interpretation is the case for the physical adjoint. It is unclear what the physical
significance of the mathematical adjoint is outside of the asymptotic limit [55], but it is assumed
that, since the solutions of the physical and mathematical adjoints differ only by discretisation
error that the mathematical adjoint would also be suitable for use in goal-based error measures.
However, despite the literature suggesting that the mathematical adjoint is preferred to the phys-
ical adjoint in terms of accuracy and computational time [52, 54, 55], the physical adjoint is used
here, mainly due to the fact that it is consistent with the forward SAAF equation [52].

In order to apply the WEI derived earlier in Section 4.2, the physical adjoints of the SAAF
and WLS equations must be derived. They are derived in their multigroup form to avoid the
neutron transport cross-sections being weighted by the adjoint scalar neutron flux [52], referred
to as the true adjoint above. In order to derive the physical adjoints, the multigroup first-order
form of the neutron transport equation is given:

Ω · ∇ψg(r,Ω) + σt,g(r)ψg(r,Ω) = Qg(r,Ω), for g = 1, . . . ,G (38)

with a prescribed incoming boundary condition given by:

ψg(r,Ω) = Tg(r,Ω) for r ∈ S and Ω · n < 0, (39)

where S is the surface of the problem domain, n is the outward unit normal vector, and Tg(r,Ω) is
a function representing the prescribed incoming angular neutron flux. It can be used to represent
all relevant prescribed boundary conditions, for example:

• Tg(r,Ω) = 0 =⇒ vacuum boundary condition.

• Tg(r,Ω) = Fg(r,Ω) =⇒ incoming boundary source condition.

• Tg(r,Ω) = ψg(r,Ωr) =⇒ reflective boundary condition, whereΩr is the angle of specular
reflection of Ω.

Qg corresponds to equation (35) where the multigroup method has been used to discretise energy.
That is:

Qg(r,Ω) =

G∑
g′=1

∫
4π
σs,g′→g(r,Ω′ → Ω)ψg′ (r,Ω′)dΩ′+

χg(r)
G∑

g′=1

νσ f ,g′ (r)φg′ (r) + Qext,g(r,Ω).

(40)
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Furthermore, the adjoint of the multigroup first-order neutron transport equation, from equation
(38), is given by

−Ω · ∇ψ†g(r,Ω) + σt,g(r)ψ†g(r,Ω) = Q†g(r,Ω), for g = 1, . . . ,G (41)

with

Q†g(r,Ω) =

G∑
g′=1

∫
4π
σs,g→g′ (r,Ω→ Ω′)ψ†g(r,Ω′)dΩ′+

νσ f ,g(r)
G∑

g′=1

χg′ (r)φ†g′ (r) + Q†ext,g(r,Ω),

(42)

and the prescribed boundary conditions for equation (41) is given by:

ψ†g(r,Ω) = Tg(r,Ω) for r ∈ S and Ω · n > 0. (43)

6.1. Derivation of the Physical Adjoint of the SAAF Equation

The starting point in the derivation of the physical adjoint of the SAAF equation is the multi-
group adjoint first-order neutron transport equation. It then proceeds in the same fashion as the
algebraic derivation of the primal SAAF equation [28, 56]. Equation (41) is rearranged to form
the following expression:

ψ†g =
1
σt,g

(
Q†g +Ω · ∇ψ†g

)
, for g = 1, . . . ,G. (44)

Expression (44) is then substituted into the streaming term of equation (41) giving:

−Ω · ∇
1
σt,g
Ω · ∇ψ†g + σt,gψ

†
g = Q†g +Ω · ∇

Q†g
σt,g

, for g = 1, . . . ,G. (45)

The prescribed outgoing boundary conditions for equation (45) can be derived from equation
(43) as:

1
σt,g

(
Q†g +Ω · ∇ψ†g

)
= T †g (r,Ω), for Ω · n > 0. (46)

For the prescribed incoming boundary condition it is assumed that the adjoint angular neutron
flux should satisfy equation (41) yielding:

1
σt,g

(
Q†g +Ω · ∇ψ†g

)
= ψ†g, for Ω · n < 0. (47)

Equations (45), (46), and (47) form the physical adjoint of the SAAF equation. This derivation
is equivalent to the transform suggested by Schunert et al. [52]. The transform is repeated here
for clarity:

• The scattering matrix is transposed. This is equivalent to the substitution: σs,g′→g(r,Ω′ ·Ω)→
σs,g→g′ (r,Ω′ ·Ω).
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• The product of the average number of prompt neutron per fission and the fission macro-
scopic neutron cross-section and the prompt neutron fission spectrum are switched. This
is equivalent to: νσ f ,g′ (r)→ χg′ (r) and χg(r)→ νσ f ,g(r).

• The forward (primal) scalar and angular neutron fluxes are replaced with the adjoint (dual)
scalar and angular neutron fluxes: ψg(r,Ω)→ ψ†g(r,Ω), φg(r)→ φ†g(r).

• Solutions are reinterpreted in the opposite direction. This is equivalent to replacing every
instance of Ω with −Ω.

6.2. Derivation of the Physical Adjoint of the WLS Equation
The adjoint of the WLS equation can be derived in two different ways. The first method,

which will be detailed here, uses the adjoint first-order form of the neutron transport equation
to begin the derivation of the primal WLS equation. In the second method, mentioned at the
end of Section 6.1, the transform proposed by Schunert et al. [52] is applied to the primal WLS
formulation in equation (33).

To begin the derivation equation (41) is written in operator form:

L†gψ
†
g(r,Ω) = Q†g(r,Ω). (48)

Equation (48) is then operated on by a within group weighting operatorWg = min
(

1
σt,g(r) ,wmax

)
with wmax ∈ R, followed by the within group transport operator Lg giving:

LgWgL
†
gψ
†
g(r,Ω) = LgWgQ†g(r,Ω), (49)

where the within group transport operators are given by:

Lg = Ω · ∇ + σt,g(r),

L†g = −Ω · ∇ + σt,g(r).
(50)

Expanding the operators in equation (49) yields the strong form of the physical adjoint of the
WLS neutron transport equation:

−Ω · ∇WgΩ · ∇ψ
†
g +Ω · ∇

(
Wgσt,gψ

†
g

)
− σt,gWgΩ · ∇ψ

†
g + σ2

t,gWgψ
†
g

=
(
σt,g +Ω · ∇

)
WgQ†g.

(51)

6.2.1. Choice of the Goal Functional
In order to have an effective WEI the goal functional for the goal-based error measure must be

set. This is done by choosing an expression to represent the fixed source term, Q†ext,g in equation
(42). To set the goal as some neutron reaction rate in the system, the choice:

Q†ext,g(r) = σd,g(r)φg(r), (52)

is made. For example, the rate of neutron absorption in the system can be set as the goal
functional by choosing σd,g(r) = σa,g(r). If the Keff is desired as the QoI then the choice
σd,g(r) = νσ f ,g(r) is made. This is based upon the fact that the Keff is calculated by:

K(i)
eff

=

∫
V

∫ ∞
0 νσ f (r, E)φ(i)(r, E)dEdr∫

V

∫ ∞
0 νσ f (r, E)φ(i−1)(r, E)dEdr

K(i−1)
eff

(53)
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where φ(i) is the scalar neutron flux from the ith power iteration [57]. Having a goal-based error
measure with the fission rate as the goal functional would also mean that Keff could be considered
a goal functional.

7. Results

In this section the continuous constraint based, locally refinable NURBS based IGA algo-
rithm is applied to several nuclear reactor physics and radiation shielding verification benchmark
test cases. The aim of these verification test cases is to illustrate the effect that constraint based
local refinement has on the convergence rates of the solution. In addition, these test cases also
illustrate how errors introduced by local refinement propagate throughout the problem domain.
Furthermore, the heuristic error measure (FEI) and goal-based error measure (WEI) derived in
Section 4 are applied to several mono-energetic nuclear reactor physics verification benchmark
test cases. The results of applying both the FEI and WEI AMR algorithms are compared with
the aim of identifying cases when the extra computational effort required for WEI is appropriate
for a given QoI.

All IGA-SN solutions of the second-order forms of the neutron transport equation have been
performed using a modified version of ICARUS (Isogeometric Continuous self-Adjoint Radia-
tion Using Splines) written in Modern Fortran [58]. Where necessary, reference solutions have
been generated using the neutron transport code Inferno. Inferno is a first-order, discontinuous
IGA discrete ordinate (SN) neutron transport code with DWR or goal-based local spatial refine-
ment capabilities [3, 38, 59].

7.1. Method of Manufactured Solutions (MMS) Verification Benchmark Test Case

The method of manufactured solutions (MMS) is a standard mathematical method for the
numerical verification of numerical discretisation methods [60, 61]. It is used here to investigate
the effect that constraint based local refinement has on the rate of convergence and errors in the
constrained (fine) and unconstrained (coarse) NURBS patches.

The manufactured solution chosen to generate source terms for the SAAF equation is given
by:

ψM(x, y) = x(x − 10)y(y − 10)
(

cos
(

4πx
5

)
cos

(
4πy
5

)
+ 2

)
. (54)

The problem domain chosen for the MMS verification test case is a 10cm × 10cm square divided
into four equally sized NURBS patches. The bottom left and top right NURBS patches are one
level more refined than the bottom right and top left NURBS patches. In this case a level of
refinement means that every non-zero knot span in the knot vector has had a knot inserted at its
midpoint. The geometry for the coarsest level of refinement can be seen in Figure 6. Figure 7
presents the error between the manufactured solution and the discrete solution for locally refined
and uniformly NURBS refined geometries.

Plotted in Figure 8 are the errors in the MMS test in the fine NURBS patches, in the coarse
NURBS patches, and in the case of uniformly refined computational domain. The rate of con-
vergence of a solution is indicated by the gradient of the line joining the solution points. The
first point of note is that the rate of convergence and level of error in the solution in the coarse
NURBS patches is identical to the rate of convergence and level of error in the solution for the
uniformly refined computational domain. This is to be expected as the local constraints apply to
the dof in the fine NURBS patch not in the coarse NURBS patch. This also explains why, for
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10cm

Figure 6: Geometry for the MMS verification benchmark test case.

(a) Error in uniformly refined MMS solution (b) Error in locally refined MMS solution

Figure 7: Plot of the error in the MMS verification benchmark test case.
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Figure 8: Spatial convergence plots for the MMS verification benchmark test case. The rates of convergence and L2 error
for the coarse NURBS patches and the uniformly refined NURBS patches match exactly for all orders of basis function.

the same element size, the error in the fine NURBS patches is greater than in the coarse NURBS
patches. The dof in the fine NURBS patches are being constrained to match the dof in the coarse
NURBS patches along the shared boundary, introducing an error into the fine NURBS patch
solution.

Second, it can be observed that, whilst the error in the fine NURBS patches is greater than
in the coarse NURBS patches for the same level of refinement, the rate of convergence of the
solution in the fine NURBS patches is greater than the rate of convergence in the coarse NURBS
patches. Furthermore, the error in the fine NURBS patches is tending towards the error in the
coarse NURBS patches. It is expected that the level of error in the fine NURBS patches will
decrease toward the level of error in the coarse NURBS patches as the problem is refined. In
the fine NURBS patches, the fraction of dof being constrained is O( n

n2 ) = O( 1
n ), where n is

the number of dof on a side. As more dof are inserted into the geometry n → ∞, 1
n → 0.

Therefore, the proportion of dof being constrained, and the magnitude of the error induced by
these constraints, will decrease. Once the level of error in both sets of NURBS patches match, it
is also expected that the rates of convergence will be the same. The rates of convergence for each
order of basis function are not commensurate with the expected theoretical rate of O(hp+1), in fact
they seem to be O(hp). This is due to the strong imposition of the zero flux boundary conditions
caused by the big-spring method that is affecting the rate of convergence of the solution [62].

7.2. 5 × 1 Nuclear Fuel Pincell Lattice Reactor Physics Verification Benchmark Test Case

The aim of the next verification benchmark test case is to investigate how errors introduced by
constraints and areas of low spatial resolution propagate through the domain. The geometry for
this test case consists of a 5 × 1 array of nuclear fuel pincells with prescribed reflective boundary
conditions. All nuclear fuel pincells have the same macroscopic neutron cross-sections and are
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Figure 9: Geometry of the 5 × 1 nuclear fuel pincell row verification benchmark test case. All boundaries have prescribed
reflective boundary conditions.

Figure 10: Discretised geometry of the 5 × 1 nuclear fuel pincell row verification benchmark test case.

geometrically identical. Therefore, this verification benchmark test case is similar to an infinite
nuclear fuel pincell lattice calculation. The geometry is shown in Figure 9 and the specific
spatial refinement configuration for this verification benchmark test case is shown in Figure 10.
All nuclear fuel pincells, except the far left one, are formed of 5 bi-quadratic NURBS patches,
each consisting of 256 elements. The far left nuclear fuel pincell is formed of 5 bi-quadratic
NURBS patches, each one consisting of one element. The problem is discretised with quadratic
NURBS basis functions and angularly discretised with a S12 discrete ordinate (SN) quadrature
set.

The QoI considered for this verification benchmark test case is the disadvantage factor in
each nuclear fuel pincell. This is defined as the ratio of the average flux in the moderator to the
average flux in the fuel. For the given geometry the cell disadvantage factor is given by:

ζ =
π

16 − π

∫
moderator φ(r)dr∫

fuel φ(r)dr
. (55)

Six different sets of material properties are considered and are given in Table 1. In each set of
material properties the scattering ratio c =

σs
σt

= 0.95 is kept constant whilst σt and σs are varied.
The ratio of the neutron cross-sections between fuel and moderator is also kept constant. The
solution was converged until the residual of φ was less than 1 × 10−10. Figure 11 displays the
errors in the cell disadvantage factor for each nuclear fuel pincell. The error is calculated by
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Case
Macroscopic neutron

cross-section data
(cm−1)

Extraneous source data
(neutrons.cm−3.s−1)

σF
t σF

s σM
t σM

s S F S M

1 2 1.9 1 0.95 1 1
2 5 4.75 2.5 2.375 1 1
3 10 9.5 5 4.75 1 1
4 20 19 10 9.5 1 1
5 200 190 100 95 1 1
6 500 475 250 237.5 1 1

Table 1: Macroscopic neutron cross-section data for the 5 × 1 nuclear fuel pincell row verification benchmark test case.
A F superscript refers to the fuel and a M superscript refers to the moderator.

comparing the locally refined ICARUS solution with an uniformly refined ICARUS solution.
As σF

t and σM
t increase it can be observed that the distance the error propagates through the

domain decreases. This is because the mean free path of a neutron is given by λ = 1
σt

. In the
cases where σF

t ≥ 200 the error introduced by the low resolution of nuclear fuel pincell one and
by the constraint between nuclear fuel pincells one and two no longer effects the value of ζ in
nuclear fuel pincell three due to a small λ. In the cases where σF

t < 10 the error can be seen to
propagate throughout the whole domain due to a larger λ. This manifests as an error greater than
1 × 10−11 in ζ in nuclear fuel pincell five.

Another trend apparent from Figure 11 is that the error in ζ for nuclear fuel pincells one and
two increases with σt. This is assumed to be due to the fact that the gradient of the solution
over the boundary between the fuel and the moderator becomes steeper as σF

t increases. The low
spatial resolution of nuclear fuel pincell one will lead to greater error in ζ as this gradient gets
steeper.

7.3. KAIST Nuclear Fuel Pincell Reactor Physics Verification Benchmark Test Case

In order to investigate the interaction between the constraint based local refinement method-
ology and the impact of voids on the solution of the WLS equation the seven group KAIST
nuclear fuel pincell verification benchmark test case is considered. The geometry of the nuclear
fuel pincell is displayed in Figure 12. The macroscopic neutron cross-section data for all seven
groups can be found in the following reference [63]. This nuclear reactor physics nuclear fuel
pincell verification benchmark test case is more realistic when compared to the nuclear fuel pin-
cell problem considered in Section 7.2. A section of cladding and a small air-gap are modelled as
part of the domain. In a nuclear reactor cladding is used to contain the fuel and keep it separate
from the moderator. A small gap is left between the fuel pellets and the cladding so that when
the fuel pellets expand as they heat up the cladding does not begin to crack. The low value of
σt in the air-gap can cause the SAAF equation to fail to solve this problem, due to the problem
becoming ill-conditioned. The WLS equation is able to cope with the small values of σt and void
regions due to the weighting operatorW from equation (34).

The disadvantage factor for each energy group is considered. For this particular geometry
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Figure 11: Error in ζ for the 5 × 1 nuclear fuel pincell row verification benchmark test case.

Figure 12: Geometry of the KAIST nuclear fuel pincell nuclear reactor physics verification benchmark test case. Reflec-
tive boundary conditions are prescribed on all external boundaries. The nuclear fuel pincell consists of fuel surrounded
by a moderator with a layer of cladding between the fuel and moderator and a small air-gap between cladding and fuel.
This air-gap is included in real nuclear reactors to allow fuel pellets to swell without causing cracking of the cladding.
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Figure 13: Error in the disadvantage factor ζg for two refinement schemes for the KAIST nuclear fuel pincell verification
benchmark test case. ‘Uniform’ refines all areas uniformly, and ‘local’ refines everywhere except the air-gap (void
region). The WLS equation spatially discretised with quadratic IGA and angularly discretised with S8 LCT discrete
ordinates (SN) and with wmax = 1.0 was used to generate results.

26



Figure 14: Element boundaries of the KAIST pincell nuclear reactor physics verification benchmark test case as defined
by the knot spans. This is the refinement scheme referred to in the local refinement case. The thin void region is unrefined
whilst the neighbouring fuel pin and cladding are highly refined.

the disadvantage factor for each energy group is given by the following expression:

ζg =

∫
moderator φg(r)dr

0.878778
0.5268814∫
fuel φg(r)dr

. (56)

The error in ζg for all energy groups is plotted in Figure 13 and has been generated by solving the
WLS equation spatially discretised with quadratic NURBS based IGA and angularly discretised
with S8 Legendre-Chebyshev Triangular (LCT) discrete ordinates and with wmax = 1. Two
refinement schemes have been used: for uniform refinement all areas have been refined equally,
and in the local case everywhere but the void has been refined as is displayed in Figure 14.

From Figures 13a and 13b it can be observed that across all energy groups the error in ζg

is greater for the locally refined case. Furthermore, it is clear that there is a drop in the rate of
convergence of ζg as indicated by the smaller gradient. However, this increase in error and drop
in convergence rate does not show the entire picture.

Table 2 displays the spectral condition number (κ) of a symmetric successive over-relaxation
(SSOR) preconditioned spatial system matrix for a given angle and group in both the uniformly
and locally refined cases. The spectral condition number of a normal matrix A is given by the
following formula:

κ(A) =
|λmax(A)|
|λmin(A)|

, (57)

where λmax(A) and λmin(A) are the maximum and minimum eigenvalues of the matrix A. A
GMRES solver within PETSc with a restart of 1000 is used to estimate the eigenvalues. The
option -ksp monitor singular value must be used. More information about PETSc solution
algorithm options can be found in the PETSc manual [64]. The global stiffness matrices for this
problem were normal and so equation (57) is valid. The spectral condition number κ is not a
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Uniform refinement Local refinement

number of dof κ number of dof κ

124 8.09 × 104 100 4.61 × 102

336 1.21 × 105 240 5.72 × 102

1072 3.12 × 105 736 1.19 × 102

3792 3.73 × 105 2592 5.71 × 104

Table 2: Condition number κ for the KAIST nuclear fuel pincell. The condition number was converged to 1 × 10−9 and
the system was preconditioned with a symmetric successive over-relaxation (SSOR) scheme. If it took more than 1000
GMRES iterations then the value at the 1000th iteration is taken and is coloured red.

direct measure of how long it will take to solve a system of linear equations but is an indication
of the computational time required. A larger value of κ implies the matrix system is harder to
invert.

It can be seen in Table 2 that κ is between one and three orders of magnitude less for the
locally refined case. For example, in the second row of Table 2 the ratio κuniform

κlocal
= 211.5 whilst

the uniformly refined case only ran 2.36 times longer than the locally refined case. However,
the increase in κ and runtime versus the potential increase in error is worth considering when
determining regions for refinement.

In this case, the error introduced in ζg by not refining the gas region is quite severe. However,
ζg is a global quantity in this problem. If the QoI was a quantity that was further away from
the void region then it is reasonable to assume that the QoI would be relatively unaffected by
the error introduced by not refining the void region. This, coupled with the large increase in κ,
may make it desirable to not refine void regions in certain cases. Preconditioners could also be
designed to enable efficient solution of the resulting matrices. For example, a non-overlapping
domain decomposition solution algorithm combined with effective preconditioners for solving
the domains that result in a higher spectral condition number, the void region in this case, could
result in an efficient and parallelisable preconditioned solution algorithm [65, 66].

7.4. Adaptive Mesh Refinement (AMR) Applied to the IAEA Swimming Pool Nuclear Reactor
Physics Verification Benchmark Test Case

To illustrate how constraint based local refinement would be used in practice, an IGA AMR
algorithm has been implemented. Here it is applied to the IAEA swimming pool nuclear re-
actor physics verification benchmark test case [67]. The geometry and macroscopic neutron
cross-section data for the verification benchmark test case can be seen in Figure 15 and Table 3
respectively. The IAEA swimming pool verification benchmark test case has been chosen as a
benchmark due to the difference in the order of magnitude of the scalar neutron flux in each re-
gion. The region averaged scalar neutron fluxes vary by up to three orders of magnitude between
regions [68]. Therefore, the problem will have strong localised gradients that can be efficiently
resolved by local refinement.

The AMR algorithm uses the WEI ηW detailed in equation (31). The projection operation
Πh+1

h is performed using the energy dependent mesh interpolation methods developed by Welch
[23] and Owens [59] that minimises the error between f (r) and Πh+1

h f (r) with respect to the L2

norm. Once ηW
p has been computed for each NURBS patch, a NURBS patch is indicated for

refinement if ηW
p > ε max{ηW

p }
N
p=1 with ε = 0.3, referred to in Section 4 as the threshold method.
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Figure 15: Geometry of the IAEA swimming pool nuclear reactor physics verification benchmark test case.

This AMR step is repeated and, due to fact that in IGA knot insertion (spatial refinement) is
performed at run time, no interfacing with an ancillary mesh generator is necessary between
AMR iterations.

Region
Macroscopic neutron

cross-section data
(cm−1)

σt σs νσ f

1 0.6 0.53 0.079
2 0.48 0.20 0.0
3 0.70 0.66 0.043
4 0.65 0.50 0.0
5 0.90 0.89 0.0

Table 3: One-group macroscopic neutron cross-section data for the eigenvalue (Keff) IAEA swimming pool nuclear
reactor physics verification benchmark test case.

All results are calculated using the SAAF equation and the angular domain is discretised
using a S4 LCT discrete ordinate (SN) quadrature set for all calculations, including the generation
of the reference solution. This will eliminate the effect that the angular discretisation error will
have between results, as identical angular quadrature sets are used for all results. The QoI chosen
is the Keff and is set as the goal for the WEI as set out in Section 6.2.1. A reference value of
Keff = 1.0087598988 was generated using Inferno with fourth-order NURBS basis functions and
468,571 elements.
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Figure 16: Error in the Keff calculated from the S4-SAAF equation solved for the IAEA swimming pool nuclear reactor
physics verification benchmark test case. Vacuum boundary conditions are prescribed on all external boundaries. An
AMR scheme driven by the WEI is compared to uniform refinement.

The results of the IGA AMR algorithm applied to the IAEA swimming pool verification
benchmark test case are displayed in Figure 16. It can be seen that the error in the locally refined
geometry is about half an order of magnitude less than the error in the uniformly refined geometry
for the same number of dof. The WEI AMR algorithm is computationally more efficient and
accurate than the uniformly refined solution with respect to accuracy per dof. However, the
primal and adjoint SAAF equations have been solved for the WEI case. Consequently, for a
given number of dof, the computational effort required to calculate the WEI is roughly double
that required to calculate the uniformly refined solution. If the methodology laid out in work by
Hanus and McClarren was implemented then the WEI results could potentially be acquired at no
extra cost [43]. The effects of using the FEI driven AMR algorithm and comparing it to the WEI
driven AMR algorithm will be investigated in subsequent verification benchmark test cases.

7.5. Reed Cell Radiation Shielding Verification Benchmark Test Case

In this section comparisons between FEI and WEI will begin to be made. The Reed cell
problem is a 1D fixed source nuclear radiation shielding verification benchmark test case that
contains a void region [69]. The geometry for the problem is displayed in figure 17 and the
material properties are prescribed in Table 4. The problem is solved using the WLS equation
spatially discretised with IGA and angularly discretised with a S8 discrete ordinate (SN) method.
A value of wmax = 100 is chosen to solve the WLS equation. This choice of wmax is justified
based on the qualitative appearance of the scalar neutron flux. The scalar neutron flux profiles
for the first-order solution, analytical solution, and several values of wmax are presented in Figure
18. It can be seen that the higher the value of wmax the more qualitatively accurate the solution,
particularly at material interfaces. However, there is still a quantitative difference between the
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Figure 17: Geometry and boundary conditions for the one dimensional Reed cell 1D radiation shielding verification
benchmark test case.

Region
Macroscopic neutron

cross-section data
(cm−1)

Extraneous source data
(neutrons.cm−3.s−1)

σt σs S

I 50.0 0.0 50.0
II 5.0 0.0 0.0
III 0.0 0.0 0.0
IV 1.0 0.9 1.0
V 1.0 0.9 0.0

Table 4: Macroscopic neutron cross-section data for the Reed cell 1D radiation shielding verification benchmark test
case.

wmax = 100 and the analytical solution. The S8 analytical solution of the Reed cell problem is
available in the following reference [70].

Two AMR algorithms have been applied to the 1D Reed cell problem to illustrate the potential
of local refinement when applied to neutron transport problems that contain voids. The FEI and
the WEI have been used to determine the error indicators for the AMR algorithm in each case.
The physical adjoint of the WLS equation has been solved in order to calculate the WEI in each
patch. During each AMR iteration one NURBS patch is selected for refinement. Each patch
represents a material, so there are five NURBS patches. The L2 error in the scalar neutron flux
for the locally refined cases and uniformly refined case are displayed in Figure 19.

Figure 19a shows the L2 error in the scalar neutron flux over the entire domain for various
levels of spatial refinement. It can be seen that both of the AMR schemes are worse than the
uniformly refined solution for certain numbers of dof. This is suspected to be caused by the
interaction of the void region with the constraint based local refinement. During the AMR steps
the void region stays relatively unrefined, whilst its neighbours are highly refined. The influence
of the coarsely refined void region on the highly refined non-void regions, combined with the
constraints applied on material boundaries, may be what causes the AMR iterations to have a
higher L2 error per dof. Neither the FEI nor the WEI have been tuned to reduce the functional∫

D |φref(x) − φ(x)|2dx where D indicates integration over the whole domain [0, 8]. This integral
represents the global L2 error plotted in Figure 19a. The heuristic FEI scheme refines based on
minimising the global error in the solution with respect to the H1 norm whilst the goal for the
WEI scheme has been set to minimise the error in the quantity

∫
III φ(x)dx with respect to the H1

norm.
The values of the L2 error in the void region (

∫
III |φref(x) − φ(x)|2dx) have been plotted in

Figure 19b. It can be seen that the WEI and FEI are more accurate per dof than the uniformly
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Figure 18: Plot of the scalar neutron flux for the Reed cell 1D radiation shielding verification benchmark test case from
solving the WLS equation with a S8 discrete ordinate (SN) quadrature. All problems have been uniformly refined. A
larger value of wmax results in a more qualitatively accurate solution.

refined solution in almost all cases. As the mesh becomes highly refined the error in the FEI
solution begins to plateau. This is caused by the aforementioned fact that the FEI solution is
refining to reduce the global H1 error. This means that the L2 error in any one NURBS patch is
not necessarily minimised as the solutions in neighbouring NURBS patches affect one another.
Despite the fact that the goal for the WEI solution is the integral quantity

∫
III φ(x)dx the WEI so-

lution still performs reasonably well as the mesh becomes highly refined and does not experience
a plateau in the L2 error.

Figure 20 shows the error in the integral of the scalar neutron flux. Figure 20b shows the
error in

∫
III φ(x)2dx and it can be seen that WEI outperforms FEI and uniform refinement. This

is expected as this is precisely the goal of the WEI methodology. It can also be seen from Figure
18 that the wmax = 100 solution is very similar to the analytical solution for 3 ≤ x ≤ 5. Figure
20a shows the error in

∫
D φ(x)dx. The behaviour of the uniformly refined solution implies that

the integral quantity is not converging to the analytical value. From Figure 18 it can be seen
that the WLS solution over and under estimates the analytical solution in various regions of
the computational domain. These errors do not cancel out and result in the convergence of the
integral of the scalar neutron flux to the wrong value and a constant error level. The convergence
of the integral of the scalar neutron flux to the wrong value means that not much can be concluded
from the results of the FEI and WEI AMR algorithms in this case.

Further to the results in section 7.3, Figure 21 displays the condition number (κ) of the global
stiffness matrix. The first point of note is that in the case when region 3 (void) is unrefined κ is
at least half an order of magnitude smaller than the uniformly refined case and up to one order of
magnitude smaller than when region 2 is unrefined. Refinement causes an increase in condition
number [71] and in cases where low values of σt have been used to fill void or near void regions
an increase in solution time, and therefore condition number, can be observed [72]. Therefore,
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Figure 19: L2 error in the scalar neutron flux for several refinement algorithms for the Reed cell 1D radiation shielding
verification benchmark test case. Two AMR algorithms are used, the FEI (heuristic) AMR algorithm and the WEI (goal-
based)AMD algorithm. The goal for the WEI has been set as

∫
III φ(x)dx. The L2 error is calculated using an analytical

S8 solution.
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Figure 20: L2 error in the scalar neutron flux for several refinement algorithms for the Reed cell 1D radiation shielding
verification benchmark test case. Two AMR algorithms are used, the FEI (heuristic) AMR algorithm and the WEI
(goal-based) AMR algorithm. The goal for the WEI AMR algorithm has been set as

∫
III φ(x)dx.
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Figure 21: Condition number of the global stiffness matrix for various refinement cases for the Reed cell 1D radiation
shielding verification benchmark test case.

it seems that refinement of the void region even in the case where W = wmax causes a large
increase in condition number of the resulting global matrix system. This is further supported by
the results in section 7.3.

In the case when region 2 is unrefined, κ is larger than the uniformly refined case when the
number of dof is greater than 100. This implies that κ is affected by the difference in refinement
between neighbouring NURBS patches. That is, the more dof that have to be constrained between
NURBS patches, the greater the increase in κ. However, in the case where region 3 is unrefined,
the increase in κ by having to apply constraints between neighbouring NURBS patches is much
less than the decrease in κ by not refining the region 3. In other words, it seems that leaving void
regions unrefined leads to smaller vales of κ for this problem.

Whilst an increase in condition number may seem minor, in neutron transport problems the
global matrix system might be required to be solved with thousands of different source vectors.
This is due to the necessity of solving for different angles, within different energy groups, con-
verging scattering sources, and performing power iterations. Therefore, it is of great importance
to minimise the condition number of the linear system of equations wherever possible.

7.6. Cartesian Geometry ANL Quarter Core Nuclear Reactor Physics Verification Benchmark
Test Case

A one group 2D nuclear reactor physics verification benchmark test case has been selected
to compare the effectiveness of the FEI and WEI AMR algorithms for a mono-energetic void
problem. The geometry and macroscopic neutron cross-section data are presented in Figure 22
and Table 5 respectively. The problem is taken from a paper by D. Lathouwers [29] and is based
on the “Multi-dimensional (x-y-z) LWR Model” benchmark from Argonne National Laboratory
(ANL) [73].
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Figure 22: Geometry for the 2D ANL quarter core nuclear reactor physics verification benchmark test case. Quadrilateral
areas coloured grey correspond to region III.

Region
Macroscopic neutron

cross-section data
(cm−1)

σt σs νσ f

I 0.3 0.244 0.064
II 0.3 0.244 0.060
III 0.31 0.244 0.060
IV 1.2 1.15 0.0
V 0.0 0.0 0.0

Table 5: Macroscopic neutron cross-section data for the 2D ANL quarter core nuclear reactor physics verification bench-
mark test case.
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The WLS equation with wmax = 1 has been solved for this problem and is spatially discre-
tised with linear NURBS and angularly discretised with S8 LCT discrete ordinate (SN) angular
quadrature scheme. A reference solution has been taken from A. Owens Thesis [74]. Results
are presented for the same refinement algorithms as in Section 7.5 that is: uniform refinement,
the FEI AMR algorithm, and the WEI AMR algorithm. The goal for the WEI is the Keff. Both
AMR algorithms use the list method where 10% of the NURBS patches that make up the com-
putational domain are indicated for refinement. The error in the Keff for four cases is displayed
in Figure 23. There are two cases for uniform refinement, one solving the WLS equation over
the computational domain shown in Figure 22, and the other solving the SAAF equation over the
same domain but with region V (the void region) not modelled. This means that the effect of the
weighting operator on the solution and its convergence rate can be investigated. As wmax = 1 the
weighting operator will be active in regions I, II, III, and V.

It can be seen that the modelling of the void region and solving the WLS equation does not
affect the convergence rate of the Keff when compared against the Keff from the SAAF solution.
However, the case where the void region is not modelled and the SAAF equation is solved pro-
duces a slightly smaller error in the Keff. The disadvantage of not modelling the external void
region is that a QoI inside the external void region can not be calculated, for example, if the
radiation dose in the void regions was desired, it would be unavailable in the case where the void
is not modelled.

Figure 23 also shows that the error in Keff is almost identical in the FEI and WEI cases. This
is not unexpected as the FEI AMR algorithm is trying to reduce the error in the scalar neutron flux
in the H1 norm. Since the Keff is a global QoI that depends on the accuracy in the scalar neutron
flux between power iterations, it makes sense that the FEI AMR algorithm would accurately
calculate the Keff. The goal for the WEI AMR algorithm was set as the Keff. However, it requires
roughly twice the computational effort as the FEI AMR algorithm as it solves the forward and
adjoint WLS equation. The meshes for the third AMR iteration for the FEI AMR algorithm and
the WEI AMR algorithm are presented in Figures 24 and 25 respectively. It can be seen that the
two meshes are incredibly similar. This result implies that for global QoI, such as the Keff or
the integral of the flux over the domain, that the FEI AMR algorithm is computationally more
efficient than the WEI AMR algorithm. This is because it produces approximately the same level
of accuracy for half of the required computational effort.

7.7. Lathouwers’ Radiation Shielding Verification Benchmark Test Case I
The following verification benchmark test case is a radiation shielding problem from work

by Lathouwers [30] and is referred to as radiation shielding verification benchmark test case I.
The geometry of the computational domain is displayed in Figure 26. Region I contains a unit
isotropic extraneous (fixed) source of neutrons and the QoI is a volumetric detector response in
region III. The macroscopic neutron cross-section data for the problem is given in Table 6. Two
AMR strategies will be compared, one driven by the FEI ηF , and one driven by the WEI ηW . In
order to specify the goal for the WEI AMR scheme as the volumetric detector response in region
III σd has been specified in Table 6. This is used to defined the adjoint source in expression (52).
The SAAF equation, used for all calculations here, has been angularly discretised with an S4
discrete ordinate (SN) quadrature set to match the calculation performed by Lathouwers [30].

Figure 27 shows the error in the FEI and WEI AMR solutions for two quantities. Both
the WEI and FEI AMR algorithms had NURBS patches selected for refinement using the error
threshold method defined in expression (27). Figure 27a shows the error in the quantity

∫
D φ(r)dr,

the integral of the scalar flux over the entire domain. It can be seen that both the FEI and the WEI
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Figure 23: Error in the Keff for several refinement schemes for the 2D ANL quarter core nuclear reactor physics veri-
fication benchmark test case. The SAAF and WLS equation with wmax = 1 has been spatially discretised with linear
IGA and angularly discretised with an S8 discrete ordinate (SN) angular quadrature scheme. The goal for the WEI AMR
algorithm has been set as the Keff. When the SAAF equation has been solved the domain does not contain the void
region.

Figure 24: Computational mesh for the 2D ANL quarter core verification benchmark test case problem for the third
iteration of the FEI AMR algorithm.
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Figure 25: Computational mesh for the 2D ANL quarter core verification benchmark test case problem for the third
iteration of the WEI AMR algorithm. The goal functional has been set as the Keff.

AMR algorithms lead to an improvement in the quantity
∫

D φ(r)dr with respect to accuracy per
dof. Both AMR solutions require about five times fewer dof to reach the same error tolerance as
the uniformly refined solution. The WEI AMR error is also slightly less than the FEI AMR error
for large numbers of dof. This is to be expected as the WEI requires the solution of both a primal
and an adjoint neutron transport equation so more computational effort is required to get a more
accurate solution.

Figure 27b shows the error in the quantity
∫

III φ(r)dr. It is clear that the FEI AMR algorithm
led to a mesh that was unable to calculate the QoI accurately. The mesh generated from the WEI
strategy is adequate as the error in the QoI is one order of magnitude less than the FEI AMR error.
Indeed, the FEI AMR error is greater than the uniformly refined solution. This implies that the
FEI AMR mesh failed to sufficiently resolve area III. The FEI AMR mesh can be seen in Figure
28. It can be seen that region III is relatively unrefined. The WEI AMR mesh is shown in Figure
29. The extra computation effort of solving the adjoint equation can be seen as the interface
between region II and III has been significantly refined and this is reflected in the accuracy of the
local QoI.

In order to check that the threshold method was not biased towards the WEI AMR algorithm
the same calculation was run but this time the list method was used to select NURBS patches
for refinement. NURBS patches that were within the top 10% of the list were indicated for re-
finement and Figure 30 displays the results. Similar trends to the ones in the threshold case can
be observed. One unexpected behaviour in the FEI error is that at one refinement step the error
in

∫
D φ(r)dr increases whilst the error in

∫
III φ(r)dr decreases by roughly the same amount. This

unpredictable behaviour is undesirable in any AMR algorithm. The error of the WEI AMR al-
gorithm solution is monotonically decreasing in Figures 27 and 30, implying that the WEI AMR
algorithm is more stable than the FEI AMR algorithm for this particular verification benchmark
test case.
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Figure 26: Geometry specification for Lathouwers’ radiation shielding verification benchmark test case I.

Region
Macroscopic neutron

cross-section data
(cm−1)

Extraneous source data
(neutrons.cm−3.s−1)

σt σs σd S

I 1.0 0.5 0 1
II 0.1 0.01 0 0
III 0.3 0.1 1 0
IV 0.3 0.1 0 0

Table 6: Macroscopic neutron cross-section data for Lathouwers’ radiation shielding verification benchmark test case I.
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Figure 27: Error in the scalar neutron flux integral quantities for Lathouwers’ radiation shielding verification benchmark
test case I. The WEI ηW and the FEI ηF are used to drive the AMR. The decision to refine a NURBS patch is based on the
size of its error indicator relative to the largest error indicator. The total number of refinements is not necessarily equal
for FEI and WEI AMR algorithms.
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Figure 28: Computational mesh for Lathouwers’ radiation shielding verification benchmark test case I produced from
the FEI AMR algorithm with 8469 control points.

Figure 29: Computational mesh for Lathouwers’ radiation shielding verification benchmark test case I produced from
the WEI AMR algorithm with 7581 control points.
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Figure 30: Error in the scalar neutron flux integral quantities for Lathouwers’ radiation shielding verification benchmark
test case I. The WEI ηW and the FEI ηF are used to drive the AMR. 10% of the NURBS patches that form the compu-
tational domain are indicated for refinement in each AMR iteration. Therefore, the total number of refinements is equal
for FEI and WEI AMR algorithms. This does not imply that the number of control points is the same.
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8. Conclusions

In this paper a constraint based method for the local adaptive mesh refinement (AMR) of
NURBS based isogeometric analysis (IGA) has been described and applied to the self-adjoint
angular flux (SAAF) and weighted least squares (WLS) neutron transport equations. Two er-
ror indicators have been derived, a heuristic error indicator (FEI), and a dual-weighted residual
(DWR) or goal-based error indicator referred to as the weighted error indicator (WEI). In addi-
tion, the physical adjoint of the SAAF and WLS equations have been derived so that WEI AMR
algorithm can be applied to the SAAF and WLS equations.

The computational efficacy and accuracy of the constraint based local refinement algorithm
has been investigated using the method of manufactured solutions (MMS) and a nuclear fuel
pincell lattice reactor physics verification benchmark test case. It was shown that the errors
introduced by the constraint based local refinement algorithm affect neither the convergence
rates, nor the error in the solution significantly for the MMS verification benchmark test case.
It can be observed that as the problem is further refined the rate of convergence of the locally
refined solution approaches the rate of convergence of the uniformly refined solution. In the
nuclear fuel pincell lattice reactor physics verification benchmark test case the magnitude of the
error introduced by the constrained degrees of freedom, as well as the under resolution of certain
parts of the domain, was demonstrated. It was noted that the propagation of this error depends
upon the mean free path of neutrons within the computational domain.

The FEI AMR (heuristic) and WEI AMR (goal-based) were applied to several nuclear reactor
physics and radiation shielding verification benchmark test cases. Through these verification
benchmark test cases, it was demonstrated that both error indicators performed well for global
quantities of interest (QoI). However, if a local QoI is considered, then WEI AMR algorithm,
with a suitable goal functional, was more computationally efficient and accurate than the FEI
AMR algorithm.

Further research is required to find a way to remove the requirement that the coarsest ge-
ometric representation must form a compatible discretisation for NURBS based IGA. In other
words, that neighbouring NURBS patches have identical mappings and parameterisations when
the NURBS geometry is initially generated. This would simplify the initial generate of geome-
tries and could allow for easier processing of ‘dirty’ CAD geometries [11]. It could also allow for
fewer areas of C0 continuity between patches. High continuity of the basis functions has been
shown to increase the accuracy per degree of freedom for smooth solutions in NURBS based
IGA. Furthermore, whilst the application of the locally refinable NURBS based IGA discretisa-
tion scheme described in this paper to two-dimensional (2D) problems is of interest, the neutron
transport problems that are of real interest are three-dimensional (3D) problems. The effective
solution of fully heterogeneous multi-group 3D nuclear reactor physics problems is still an open
problem in computational neutron transport. The ability of IGA to exactly represent volume, for
fissile mass preservation, and surface area, to accurately represent neutron leakage effects, com-
bined with the ability to only refine where necessary for a given QoI, may reduce the problem
sizes enough to allow them to be tractable with more modest computing resources.

Finally, development of an error indicator that takes into account the effect of the neutron
mean free path, as well as other material properties, when deciding where the system should be
refined is desirable. It was demonstrated that refining certain regions can cause large increases in
the spectral condition number of the system. These increases lead to an increase in solution time
of the system of linear equations and could be avoided without sacrificing the accuracy if certain
local QoI are of interest.

44



Acknowledgements

Dr C. Latimer would like to acknowledge the Engineering and Physical Sciences Research
Council (EPSRC) through the Doctoral Training Partnership (DTP) PhD scheme (EPSRC Grant
No.: EP/M507878/1). Dr C. Latimer also acknowledges the industrial and financial support of
Rolls-Royce. Dr C. Latimer and Dr M.D. Eaton would like to acknowledge EPSRC for their sup-
port of the impact acceleration knowledge transfer secondment (KTS) grant “High Performance,
scalable, self-adaptive, exact geometry isogeometric methods, for radiation shielding and nuclear
reactor physics analysis of small modular reactors (SMRs) and Naval Nuclear Propulsion” (EP-
SRC Grant No.: EP/R511547/1). Dr M.D. Eaton and Dr J. Kophazi would like to acknowledge
EPSRC for their support through the following grants: Adaptive Hierarchical Radiation Trans-
port Methods to Meet Future Challenges in Reactor Physics (EPSRC Grant No.: EP/ J002011/1)
and RADIANT: A Parallel, Scalable, High Performance Radiation Transport Modelling and Sim-
ulation Framework for Reactor Physics, Nuclear Criticality Safety Assessment and Radiation
Shielding Analyses (EPSRC Grant No.: EP/K503733/1). The authors would like to thank Mr M.
Harvey, who is the research computing services (RCS) manager, and his team at Imperial College
London. Finally, the authors would like to thank the anonymous reviewers for their suggestions.

Data Statement

In accordance with EPSRC funding requirments all supporting data used to create figures in
this paper may be accessed at the following URL: https://doi.org/10.5281/zenodo.4108666.

References

[1] S. K. Hall, M. D. Eaton, and M. M. R. Williams. The Application of Isogeometric Analysis to the Neutron Diffusion
Equation for a Pincell Problem with an Analytic Benchmark. Annals of Nuclear Energy, 49:160–169, 2012.
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