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Abstract— Variational inequalities are modeling tools used
to capture a variety of decision-making problems arising in
mathematical optimization, operations research, game theory.
The scenario approach is a set of techniques developed to
tackle stochastic optimization problems, take decisions based
on historical data, and quantify their risk. The overarching
goal of this manuscript is to bridge these two areas of research,
and thus broaden the class of problems amenable to be studied
under the lens of the scenario approach. First and foremost, we
provide out-of-samples feasibility guarantees for the solution of
variational and quasi variational inequality problems. Second,
we apply these results to two classes of uncertain games. In the
first class, the uncertainty enters in the constraint sets, while
in the second class the uncertainty enters in the cost functions.
Finally, we exemplify the quality and relevance of our bounds
through numerical simulations on a demand-response model.

I. INTRODUCTION

Variational inequalities are a very rich class of decision-
making problems. They can be used, for example, to charac-
terize the solution of a convex optimization program, or to
capture the notion of saddle point in a min-max problem.
Variational inequalities can also be employed to describe
complementarity conditions, nonlinear systems of equations,
or equilibrium notions such as that of Nash or Wardrop equi-
librium [1]. With respect to the applications, variational in-
equalities have been employed in countless fields, including
transportation networks, demand-response markets, option
pricing, structural analysis, evolutionary biology [2]–[5].

Many of these settings feature a non-negligible source
of uncertainty, so that any planned action inevitably comes
with a degree of risk. While deterministic models have been
widely used as a first order approximation, the increasing
availability of raw data motivates the development of data-
driven techniques for decision-making problems, amongst
which variational inequalities are an important class. As
a concrete example, consider that of drivers moving on a
road traffic network with the objective of reaching their
destination as swiftly as possible. Based on historical data,
a given user would like to i) plan her route, and ii) estimate
how likely she is to reach the destination within a given time.

Towards this goal, it is natural to consider variational
inequalities whose solutions are robust against a set of ob-
served realizations of the uncertainty, as formalized in what
follows. Given a collection of sets {Xδi}Ni=1 in Rn, where
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{δi}Ni=1 are independent observations from the probability
space (∆,F ,P), and given F : Rn → Rn, we consider the
following variational inequality problem:

find x? ∈ X .
=

N⋂
i=1

Xδi s.t. F (x?)>(x−x?) ≥ 0 ∀x ∈ X .

(1)
We assume that no information is available on the distribu-
tion P with which the δi’s are drawn, and ask the following
fundamental question: how robust is a solution of (1) against
unseen realizations?

In this respect, our main objective is to provide prob-
abilistic bounds on the feasibility of a solution to (1),
while ensuring that such solution can be computed using
a tractable algorithm. Later, we will show how to apply the
obtained results to game theoretic models to, e.g., quantify
the probability of incurring a higher cost compared to what
originally predicted.

Related work. Two formulations are typically employed
to incorporate uncertainty into variational inequality models
[6]. A first approach, termed expected-value formulation,
captures uncertainty arising in the corresponding operator F
in an average sense. Given X ⊆ Rn, F : X×∆→ Rn, and a
probability space (∆,F ,P), a solution to the expected-value
variational inequality is an element x? ∈ X such that

E[F (x?, δ)]>(x− x?) ≥ 0 ∀x ∈ X . (2)

Naturally, if the expectation can be easily evaluated, solving
(2) is no harder than solving a deterministic variational
inequality, for which much is known (e.g., existence and
uniqueness results, as well as algorithms [1]). If this is not
the case, one could employ sampling-based algorithms to
compute an approximate solution of (2), see [7].

A second approach, which we refer to as the robust
formulation, is used to accommodate uncertainty both in the
operator, and in the constraint sets. Consider the collection
{Xδ}δ∈∆, where Xδ ⊆ Rn, and let X .

= ∩δ∈∆Xδ . A solution
to the robust variational inequality is an element x? ∈ X s.t.

F (x?, δ)>(x− x?) ≥ 0 ∀x ∈ X , ∀δ ∈ ∆. (3)

It is worth noting that, even when the uncertainty enters
only in F , a solution to (3) is unlikely to exist.1 The
above requirement is hence weakened employing a formula-
tion termed expected residual minimization (ERM), see [8].

1To understand this, consider the case when the variational inequality is
used to describe the first order condition of a convex optimization program.
Within this setting, (3) requires x? to solve a family of different optimization
problems, one per each δ ∈ ∆. Thus, (3) only exceptionally has a solution.



Within this setting, given a probability space (∆,F ,P), a
solution is defined as x? ∈ arg minx∈X E[Φ(x, δ)], where
Φ : X ×∆→ R is a residual function.2 In other words, we
look for a point that satisfies (3) as best we can (measured
through Φ), on average over ∆. Sample-based algorithms for
its approximate solution are derived in, e.g., [8].

While the subject of our studies, defined in (1), differs
in form and spirit from that of (2), it can be regarded as
connected to (3). Indeed, our model can be thought of as a
sampled version of (3), where the uncertainty enters only in
the constraints. In spite of that, our objectives significantly
depart from that of the ERM formulation, as detailed next.

Contributions. The goal of this manuscript is that of quanti-
fying the risk associated with a solution of (1) against unseen
samples δ ∈ ∆, while ensuring that such solution can be
computed tractably. Our main contributions are as follows.

i) We provide a-priori and a-posteriori bounds on the
probability that the solution of (1) remains feasible for
unseen values of δ ∈ ∆ (out-of-sample guarantees).

ii) We show that the bounds derived in i) hold for the
broader class of quasi variational inequality problems.

iii) We leverage the bounds obtained in i) to study Nash
equilibrium problems with uncertain constraint sets.

iv) We employ the bounds derived in ii) to give concrete
probabilistic guarantees on the performance of Nash
equilibria, relative to games with uncertain payoffs, as
originally defined by Aghassi and Bertsimas in [9].

v) We consider a simple demand-response scheme and
exemplify the applicability and quality of our proba-
bilistic bounds through numerical simulations.

Our results follow the same spirit of those derived within
the so-called scenario approach, where the sampled counter-
part of a robust optimization program is considered, and the
risk associated to the solution is bounded in a probabilistic
sense [10]–[16]. To the best of the authors’ knowledge, our
contribution is the first to enlarge the applicability of the sce-
nario approach to the broader class of variational inequalities,
and hence to the class of Nash equilibrium problems. While
variational inequalities are used to model a wide spectrum of
problems, we discuss the impact of our results limitedly to
the class of uncertain games, due to space considerations.

Organization. In Section II we introduce the main subject of
our analysis, as well as some preliminary notions. Section III
contains the main result and its extension to quasi variational
inequalities. In Section IV we show the relevance of the
bounds previously derived in connection to uncertain games.
In Section V we test our results on a demand-response
scheme through exhaustive numerical simulations. All the
proofs are included in [17], for reasons of space.

II. THE SCENARIO APPROACH TO VARIATIONAL
INEQUALITIES

Motivated by the previous discussion, in the remainder
of this paper we consider the variational inequality (VI)

2A function Φ : X × ∆ → R is a residual function if, Φ(x, δ) = 0
whenever x is a solution of (3) for given δ, and Φ(x, δ) > 0 elsewhere.

introduced in (1) and reported in the following:

find x? ∈ X .
=

N⋂
i=1

Xδi s.t. F (x?)>(x−x?) ≥ 0 ∀x ∈ X ,

where F : Rn → Rn and Xδi ⊆ Rn for i ∈ {1, . . . , N}
are elements of a family of sets {Xδ}δ∈∆. Throughout
the presentation we assume that {δi}Ni=1 are independent
samples from the probability space (∆,F ,P), though no
knowledge is assumed on P. In order to provide out-of-
sample guarantees on the feasibility of a solution to (1), we
begin by introducing two concepts that play a key role: the
notion of risk and that of support constraint.

Definition 1 (Risk). The risk of a given x ∈ X is given by
V (x)

.
= P{δ ∈ ∆ s.t. x /∈ Xδ}.

The quantity V (x) measures the violation of the constraints
defined by x ∈ Xδ for all δ ∈ ∆. As such, V : X →
[0, 1] and, for fixed x, it constitutes a deterministic quantity.
Nevertheless, since x? is a random variable (through its
dependance on (δ1, . . . , δN )), the risk V (x?) associated with
the solution x? is also a random variable.3 Our objective will
be that of acquiring deeper insight into its distribution.

Standing Assumption (Existence and uniqueness). For any
N and for any tuple (δ1, . . . , δN ), the variational inequality
(1) admits a unique solution identified with x?.

Throughout the manuscript, we assume that the Standing
Assumption is satisfied, so that x? is well defined and
unique. It is worth noting that the existence of a solution
to (1) is guaranteed under very mild conditions on the
operator F and on the constraints set X . Uniqueness of x?

is instead obtained under structural assumptions on F (e.g.,
strong monotonicity). While these cases do not encompass
all possible variational inequalities arising from (1), the set-
up is truly rich and includes important applications such as
traffic dispatch [2], cognitive radio systems [18], demand-
response markets [3], and many more. Sufficient conditions
guaranteeing the satisfaction of the Standing Assumption are
presented in Proposition 1, included at the end of this section.

Definition 2 (Support constraint). A constraint x ∈ Xδi is of
support for (1), if its removal modifies the solution x?. We de-
note with S? the set of support constraints associated to x?.

x1

x2
feasible region

δ2

δ3

δ1

x?

F (x?)

Fig. 1. Example of variational inequality (1) in dimension two. The grey
area describes the set X defined by {δi}3i=1. Note that x? is a solution of
(1) as x? ∈ X , and the inner product between F (x?) with any feasible
direction at x? is non-negative. While δ1 is a support constraint, δ2 or δ3
are not, for the removal of one of them does not change the solution.

3We assume measurability of all the quantities introduced in this paper.



Within the example in Figure 1, note that the removal of the
constraints Xδ2 or Xδ3 - one at a time - does not modify the
solution: hence, neither Xδ2 , nor Xδ3 are support constraints.
Nevertheless, the simultaneous removal of Xδ2 and Xδ3 does
change the solution. To rule out degenerate conditions such
as this, we introduce the following assumption.

Assumption 1 (Non-degeneracy). The solution x? coincides
PN almost-surely with the solution obtained by eliminating
all the constraints that are not of support.

Finally, we provide sufficient conditions that guarantee the
existence and uniqueness of the solution to (1).

Proposition 1 (Existence and uniqueness, [1]).
- If X is nonempty compact convex, and F is continuous,

then the solution set of (1) is nonempty and compact.
- If X is nonempty closed convex, and F is strongly

monotone on X , then (1) admits a unique solution.4

III. MAIN RESULT: PROBABILISTIC FEASIBILITY FOR
VARIATIONAL INEQUALITIES

The aim of this section is to provide bounds on the risk as-
sociated to the solution of (1) that hold with high confidence.
Towards this goal, we introduce the map t : N→ [0, 1].

Definition 3. Given β ∈ (0, 1), for any k ∈ {0, . . . , N − 1}
consider the polynomial equation in the unknown t

β

N + 1

N∑
l=k

(
l

k

)
tl−k −

(
N

k

)
tN−k = 0. (4)

Let t(k) be its unique solution in the interval (0, 1).5 Further,
let t(k) = 0 for any k ≥ N .

The distribution of the risk V (x?) is intimately connected
with the number of support constraints at x?, which we
identify with s? = |S?|. Given a confidence parameter
β ∈ (0, 1), we wish to construct a function ε(s?) so that

PN [V (x?) ≤ ε(s?)] ≥ 1− β

holds for any variational inequality (1) satisfying the required
assumptions. Theorem 1 employs t(s?) to construct ε(s?).

Theorem 1 (Probabilistic feasibility for VI). Given β ∈
(0, 1), consider t : N→ R as per Definition 3.
(i) Under the Standing Assumption, and Assumption 1, for

any ∆ and P it holds that

PN [V (x?) ≤ ε(s?)] ≥ 1−β with ε(s?)
.
= 1− t(s?),

(5)
(ii) If, in addition, the constraint sets {Xδi}Ni=1 are convex,

then s? ≤ n (dimension of the decision variable x), and
the following a-priori bound holds for all ∆ and P

PN [V (x?) ≤ ε(n)] ≥ 1− β with ε(n)
.
= 1− t(n).

4An operator F : X → Rn is strongly monotone on X if there exists
α > 0 such that (F (x)−F (y))>(x−y) ≥ α||x−y||2 for all x, y ∈ X . If
F is continuously differentiable, a sufficient (and easily checkable) condition
amounts to requiring the Jacobian of F to be uniformly positive definite,
that is y>JF (x)y ≥ α||y||2 for all y ∈ Rn for all x ∈ X o, where X o is
an open superset of X , see [1, Prop. 2.3.2].

5Existence and uniqueness of the solution to (4) is shown in [16, Thm. 2].

The first statement in Theorem 1 provides an a-posteriori
bound, and requires no additional assumptions other than the
Standing Assumption and Assumption 1 (e.g., no convexity
of the constraint sets is required). In practice, one computes
a solution to (1), determines s?, and is then given a prob-
abilistic feasibility statement for any choice of β ∈ (0, 1).6

In this respect, we are typically interested in selecting β
very small (e.g., 10−6) so that the statement V (x?) ≤ ε(s?)
holds with very high confidence (e.g., 1−10−6 = 0.999999).
Upon assuming convexity of the constraints sets, the second
statement provides an a-priori bound of the form (5) where
s? is replaced by n (the dimension of the decision variable).
Overall, Theorem 1 shows that the upper bound on the
risk derived in [16, Thm. 4] is not limited to optimization
programs, but holds for variational inequality problems too.

Computational aspects. While Theorem 1 provides cer-
tificates of probabilistic feasibility, its result is of practical
interest especially if it is possible to determine a solution
of (1) efficiently. With respect to the computational aspects,
much is known for monotone variational inequalities, i.e.,
those variational inequalities where the operator F is mono-
tone or strongly monotone (see footnote 4). Examples of
efficient algorithms applicable to this class include projec-
tion methods, proximal methods, splitting and interior point
methods, see [1, Chap. 12]. On the contrary, if the operator
F is not monotone, the problem is intractable to solve in
the worst-case. Indeed, non-monotone variational inequalities
hold non-monotone linear complementarity problems as a
special case. The latter class is NP-complete [19].

A. Extension to quasi variational inequalities

In this section we show how the results of Theorem 1 carry
over to the case when (1) is replaced by a more general
class of problems known as quasi variational inequality
(QVI). Quasi variational inequalities extend the notion of
variational inequality by allowing the decision set X to
be parametrized by x, see [20]. QVIs are important tools
used to model complex equilibrium problems arising in
various fields including game theory, transportation network,
solid mechanics, biology [5], [21], [22]. As we shall see
in Section IV, this generalization will be used to provide
concrete performance guarantees for robust Nash equilibrium
problems, when the uncertainty enters in the agents’ cost
functions. Let Xδi : Rn ⇒ 2R

n

be elements of a collection
of set-valued maps {Xδ}δ∈∆, for i ∈ {1, . . . , N}. Given
F : Rn → Rn, we consider the following quasi variational
inequality problem: find x? ∈ X (x?)

.
= ∩Ni=1Xδi(x?) such

that
F (x?)>(x− x?) ≥ 0 ∀x ∈ X (x?). (6)

Once more, we assume that {δi}Ni=1 are independent samples
from the probability space (∆,F ,P). Additionally, we as-
sume that (6) admits a unique solution. The notion of support
constraint carries over unchanged from Definition 2, while
the notion of risk requires a minor adaptation.

6Computing the number of support constraints can be easily achieved by
solving the original problem where constraints are removed one at a time.



Definition 4 (Risk for QVI). The risk associated to x is

V (x)
.
= P{δ ∈ ∆ s.t. x /∈ Xδ(x)}

The next theorem shows that the main result presented in
Theorem 1 extends to quasi variational inequalities.

Theorem 2 (Probabilistic feasibility for QVI). Let x? be the
(unique) solution of (6) and s? be the number of support
constraints. Let Assumption 1 hold. Given β ∈ (0, 1), let
t : N→ R be as per Definition 3. Then, for any ∆, P, it is

PN [V (x?) ≤ ε(s?)] ≥ 1− β where ε(s?)
.
= 1− t(s?).

(7)
If, in addition, the sets {Xδi(x?)}Ni=1 are convex, then s? ≤ n
and the bound (7) holds a-priori with n in place of s?.

IV. APPLICATION TO ROBUST GAME THEORY

A. Uncertainty entering in the constraint sets

We begin by considering a general game-theoretic model,
where agents aim to minimize private cost functions, while
satisfying uncertain local constraints robustly. Formally, each
agent j ∈M = {1, . . . ,M} is allowed to select xj ∈ X j .

=
∩Ni=1X

j
δi
⊆ Rm, where {X jδi}

N
i=1 is a collection of sets from

the family {X jδ }δ∈∆, and {δi}Ni=1 are independent samples
from the probability space (∆,F ,P). Agent j ∈M aims at
minimizing the cost function Jj : X j → R. To ease the
notation, we define x−j = (x1, . . . , xj−1, xj+1, . . . , xM ),
for any j ∈M. We consider the notion of Nash equilibrium.

Definition 5 (Nash equilibrium). A tuple xNE =
(x1

NE, . . . , x
M
NE) is a Nash equilibrium if xNE ∈ X 1 × · · · ×

XM and Jj(xjNE, x
−j
NE) ≤ Jj(xj , x−jNE) for all deviations

xj ∈ X j and for all agents j ∈M.

Assumption 2. For all j ∈ M, the cost function Jj is
continuously differentiable, and convex in xj for any fixed
x−j . The sets {X j}Mj=1 are non-empty, closed, convex for
every tuple (δ1, . . . , δN ), for every N .

The next proposition, adapted from [1] draws the key con-
nection between Nash equilibria and variational inequalities.

Proposition 2 ([1, Prop. 1.4.2]). Let Assumption 2 hold. A
point xNE is a Nash equilibrium iff it solves (1), with

F (x)
.
=

 ∇x1J1(x)
...

∇xMJM (x)

 , Xδi
.
= X 1

δi × · · · × X
M
δi . (8)

Within the previous model, the uncertainty described by
δ ∈ ∆ is meant as shared among the agents. This is indeed
the most common and challenging situation. In spite of that,
our model also includes the case of non-shared uncertainty,
i.e., the case where X jδ is of the form X jδj as δ can represent a
vector of uncertainty. Limitedly to the latter case, it is possi-
ble to derive probabilistic guarantees on each agent’s feasibil-
ity by direct application of the scenario approach [11] to each
agent optimization xjNE ∈ arg minxj∈X j Jj(xj , x

−j
NE) , after

having fixed x−j = x−jNE. Nevertheless, for the case of shared
uncertainty, a direct application of [16] provides no answer.

Instead, the following corollary offers feasibility guarantees
for xNE. In this context, a constraint is of support for the
Nash equilibrium problem, if its removal alters the solution.

Corollary 1 (Probabilistic feasibility for xNE).
- Let Assumption 2 hold. Then, a Nash equilibrium exists.
- Further assume that the operator F defined in (8) is

strongly monotone. Then, xNE is unique.
- Fix β ∈ (0, 1), and let t : N → [0, 1] be as in

Definition 3. In addition to the previous assumptions,
assume that xNE coincides PN almost-surely with the
Nash equilibrium of a game obtained eliminating all the
constraints that are not of support. Then, the following
a-posteriori and a-priori bounds hold for any ∆ and P

PN [V (xNE) ≤ ε(s?)] ≥ 1− β with ε(s?) .
= 1− t(s?),

PN [V (xNE) ≤ ε(n)] ≥ 1− β with ε(n)
.
= 1− t(n),

where n is the dimension of the decision variable x,
and s? is the number support constraints of xNE.

A consequence of Corollary 1 is the possibility to bound the
infeasibility risk associated to any agent j ∈M. Indeed, let
V j(x)

.
= P{δ ∈ ∆ s.t. xj /∈ X j}. Since V j(x) ≤ V (x),

Corollary 1 ensures that PN [V j(xNE) ≤ ε(s?)] ≥ 1− β.

B. Uncertainty entering in the cost functions

We consider a game-theoretic model where the cost
function associated to each agent depends on an uncertain
parameter. Within this setting, we first revisit the notion of
robust equilibrium introduced in [9]. Our goal is to exploit
the results of Section III and bound the probability that an
agent will incur a higher cost, compared to what predicted.

Let M = {1, . . . ,M} be a set of agents, where j ∈ M
is constrained to select xj ∈ X j . Denote X .

= X 1 × · · · ×
XM . The cost incurred by agent j ∈M is described by the
function Jj(xj , x−j ; δ) : X × ∆ → R. Since Jj depends
both on the decision of the agents, and on the realization of
δ ∈ ∆, the notion of Nash equilibrium is devoid of meaning.
Instead, [9], [23] propose the notion of robust equilibrium
as a robustification of the former.7 While a description of
the uncertainty set ∆ is seldom available, agents have often
access to past realizations {δi}Ni=1, which we assume to be
independent samples from (∆,F ,P). It is therefore natural to
consider the “sampled” counterpart of a robust equilibrium.

Definition 6 (Sampled robust equilibrium). Given sam-
ples {δi}Ni=1, a tuple xSR is a sampled robust equilib-
rium if xSR ∈ X and maxi∈{1,...,N} J

j(xjSR, x
−j
SR; δi) ≤

maxi∈{1,...,N} J
j(xj , x−jSR; δi), ∀xj ∈ X j , ∀j ∈M.

Observe that xSR can be thought of as a Nash equilibrium
with respect to the worst-case cost functions

Jjmax(x)
.
= max
i∈{1,...,N}

Jj(x; δi). (9)

In parallel to what discussed in Section IV-A, the uncertainty
should be regarded as shared amongst the agents. In this

7A feasible tuple xR is a robust equilibrium if ∀j ∈ M, ∀xj ∈ X j , it
is maxδ∈∆ Jj(xjR, x

−j
R ; δ) ≤ maxδ∈∆ Jj(xj , x−jR ; δ), see [9], [23].



context, we are interested in bounding the probability that a
given agent j ∈ M will incur a higher cost, compared to
what predicted by the empirical worst case Jjmax(xSR).

Definition 7 (Agent’s risk). The risk incurred by agent j ∈
M at the given x ∈ X is

V j(x) = P
{
δ ∈ ∆ s.t. Jj(x; δ) ≥ Jjmax(x)

}
In addition to existence and uniqueness results, the following
corollary provides a bound on such risk measure.

Corollary 2 (Probabilistic feasibility for xSR). Assume that,
for all j ∈M, the cost function Jj is continuously differen-
tiable, as well as convex in xj for fixed x−j and δ. Assume
that the sets {X j}Mj=1 are non-empty, closed, convex.

- Then, a sampled robust equilibrium exists.
- Further assume that, for all tuples (δ1, . . . , δN ), and N ,

F (x)
.
=

 ∂x1J1
max(x)
...

∂xMJMmax(x)

 (10)

is strongly monotone.8 Then xSR is unique.
- Fix β ∈ (0, 1). Let ε(k) = 1 − t(k), k ∈ N, with t :
N→ [0, 1] as in Definition 3. In addition to the previous
assumptions, assume that xSR coincides PN almost-
surely with the robust sampled equilibrium of a game
obtained by eliminating all the constraints that are not
of support. Then, for any agent j ∈M, any ∆, P

PN [V j(xSR) ≤ ε(s?)] ≥ 1− β,
PN [V j(xSR) ≤ ε(n+M)] ≥ 1− β,

(11)

where s? is the number support constraints of xSR.

Corollary 2 ensures that, for any given agent j ∈ M,
the probability of incurring a higher cost than Jjmax(xSR) is
bounded by ε(s?), with high confidence.

V. AN APPLICATION TO DEMAND-RESPONSE MARKETS

In this section, we consider a demand response scheme
where electricity scheduling happens 24-hours ahead of time,
agents are risk-averse and self-interested. Formally, given
a population of agents M = {1, . . . ,M}, agent j ∈ M
is interested in the purchase of xjt electricity-units at the
discrete time t ∈ {1, . . . , T}, through a demand-response
scheme. Agent j ∈ M is constrained in his choice to xj ∈
X j ⊆ RT≥0 convex, as dictated by its energy requirements.
Let σ(x) =

∑n
j=1 x

j be the total consumption profile.
Given an inflexible demand profile d = [d1, . . . , dT ] ∈ RT≥0

corresponding to the non-shiftable loads, the cost incurred
by each agent j is given by its total electricity bill

Jj(xj , σ(x);d) =

T∑
t=1

(αtσt(x) + βtdt)x
j
t , (12)

8∂xjJ
j
max(x) denotes the subgradient of Jjmax with respect to xj ,

computed at x. While the operator F (x) is now set valued, the definition
of strong monotonicity given in footnote 4 can be easily generalized.

where we have assumed that, at time t, the unit-price of elec-
tricity ctσt(x) + βtdt is a sole function of the shiftable load
σt(x) and of the inflexible demand dt (with αt, βt > 0), in
the same spirit of [24], [25]. In a realistic set-up, each agent
has access to a history of previous profiles {di}Ni=1 (playing
the role of {δi}Ni=1), which we assume to be independent
samples from the probability space (∆,F ,P), though P is
not known. We model the agents as self-interested and risk-
averse, so that the notion of sampled robust equilibrium in
Definition 6 is well suited. Assumption 2 is satisfied, while
the operator F defined in (10) is strongly monotone for every
N and tuple (d1, . . . ,dN ).9 By Corollary 2, xSR exists and is
unique. Additionally, under the non-degeneracy assumption,
we inherit the probabilistic bounds (11), whose quality and
relevance we aim to test in the following numerics.

We use California’s winter daily consumption profiles
(available at [26]), as samples of the inflexible demand
{di}Ni=1, on top of which we imagine to deploy the demand-
response scheme. In order to verify the quality of our bounds
- and only for that reason - we fit a multidimensional
Gaussian distribution N (µ,Σ) to the data. Figure 2 displays
100 samples from the dataset [26] (left), and 100 synthetic
samples from the multidimensional Gaussian model (right).
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Fig. 2. Left: data samples from [26]. Right: synthetic samples ∼ N (µ,Σ).

We assume that the agents’ constraint sets are given by
X j = {xj ∈ R24

≥0, s.t.
∑24
t=1 x

j
t ≥ γj}, where γj is

randomly generated according to a truncated gaussian dis-
tribution with mean 480, standard deviation 120 and 400 ≤
γj ≤ 560, all in MWh. We set αt = βt = 500$/MWh2,
and consider M = 100 agents representing, e.g., electricity
aggregators. We let N = 500 samples (i.e., a history of 500
days) to make the example realistic. Since n+M = 2500, the
a-priori bound in (11) is not useful. On the other hand, the
values of s? observed after extracting {di}Ni=1 from N (µ,Σ)
and computing the solution xSR, are in the range 3 ≤ s? ≤ 7.
Considering the worst-case with s? = 7, and setting β =

9This can be seen upon noticing that Jjmax(x) =
∑T
t=1(αtσt(x))xjt +

maxi∈{1,...,N}(Bdi)
>xj , where B = diag(β1, . . . , βT). Correspond-

ingly, the operator F is obtained as the sum of two contributions
F = F1 + F2. The operator F1 is relative to a game with costs
{
∑T
t=1(αtσt(x))xjt}Mj=1, and F2 is relative to a game with costs

{maxi∈{1,...,N}(Bdi)
>xj}Mj=1. While F1 has been shown to be strongly

monotone in [3, Lem 3.], F2 is monotone as it is obtained stack-
ing one after the other the subdifferentials of the convex functions
{maxi∈{1,...,N}(Bdi)

>xj}Mj=1. Thus, F is strongly monotone.



10−6, the a-posteriori bound in (11) gives V j(xSR) ≤ ε(7) =
6.49% for all agents, with a confidence of 0.999999. Since
the cost Jj(xj , σ(x);d) is linear in d, and d ∼ N (µ,Σ),
it is possible to compute the risk at the solution V j(xSR)
in closed form. This calculation reveals that the highest risk
over all the agents is 0.16% ≤ 6.49% = ε(7), in accordance
to Corollary 2 (the lowest value is 0.11%).
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Fig. 3. Left: cost distribution for the agent with the highest risk. Right:
sum of average inflexible demand µ = E[d], and flexible demand σ(xSR).

Figure 3 (left) shows the distributions of the cost for the
agent with the highest risk. Figure 3 (right) shows the
sum of the average inflexible demand µ, and the flexible
demand σ(xSR). The difference between ε(7) = 6.49% and
0.11% ≤ V j(xSR) ≤ 0.16%, j ∈M is partly motivated, by
the request that the bound V j(xSR) ≤ ε(7) = 6.49% holds
true for very high confidence 0.999999. While an additional
source of conservatism might be ascribed to having used
V (xSR) ≤ ε(s?) to derive V j(xSR) ≤ ε(s?) (see the proof
of Corollary 2 in Appendix), this is not the case relative to the
setup under consideration. Indeed, Monte Carlo simulations
show that V (xSR) ≈ 0.17%, comparably with V j(xSR). In
other words, a realization that renders xSR unfeasible for
agent j is also likely to make xSR unfeasible for agent l 6= j.

VI. CONCLUSION

In this manuscript, we aimed at unleashing the power
of the scenario approach to the rich class of problems
described by variational and quasi variational inequalities.
As fundamental contributions, we provided a-priori and a-
posteriori bounds on the probability that the solution of
(1) or (6) remains feasible against unseen realizations. We
then showed how to leverage these results in the context of
uncertain game theory. While this work paves the way for
the application of the scenario approach to a broader class
of real-world applications, it also generates novel research
questions. An example that warrants further attention is that
of tightly bounding the risk incurred by individual players,
when taking data-driven decisions in multi-agent systems.
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