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Abstract

Communication networks have enabled human beings and machines to communicate with

each other using either wired or wireless technologies. With the ever-growing reliance on

the networks, there is a need for efficiently managing and using the available infrastruc-

tures as the demand for the resources is more than their supply. Due to the advent of novel

paradigms, such as the Internet of Things (IoT) and edge computing, and the growing

demand for resources for data analytics and machine learning (among many other applica-

tions), existing resource management algorithms and frameworks may no longer be viable.

Therefore, there is a need for novel resource management frameworks that will enable the

optimal utilization and timely provision of available resources to different applications to

maximize a single or multiple objectives. In particular, there is a need for multi-objective

resource sharing frameworks that will enable different service providers (SPs), despite hav-

ing different objectives or utilities, to share their resources in order to improve their utility

and achieve higher application (user) satisfaction.

To achieve the above, we first study the single-objective optimization problem of allocat-

ing storage, communication and computation resources to reduce energy consumption in a

communication network. This issue is important because energy efficiency is a fundamental

requirement of communication systems, as reflected in much recent work on performance

analysis of system energy consumption. However, most work has only focused on com-

munication and computation energy consumption without considering data caching costs.

Given the increasing interest in cache networks, this is a serious deficiency. We consider

the problem of energy consumption in data communication, compression and caching (C3)

with a quality-of-information (QoI) guarantee in a communication network. Our goal is

to identify the optimal data compression rates and cache placement over the network that

minimizes the overall energy consumption in the network. We formulate the problem as

a Mixed Integer Non-Linear Programming (MINLP) problem with non-convex functions,

which is NP-hard in general. We propose a variant of the spatial Branch-and-Bound algo-

rithm (V-SBB) that can provide an ǫ-global optimal solution to the problem. By extensive

numerical experiments, we show that the C3 optimization framework improves the energy

efficiency by up to 88% compared to any optimization that only considers either com-

munication and caching or communication and computation. Furthermore, the V-SBB

technique provides comparatively better solutions than some other MINLP solvers at the

cost of added computation time.

We then study the problem of multi-objective resource sharing in a communication net-
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work with multiple SPs, such as in an edge computing setting, where resources belong to

different SPs that have their own objectives or utilities to optimize. On the one hand,

certain SPs may not have sufficient resources to satisfy their applications according to

the associated service-level agreements (SLAs). On the other hand, some SPs may have

additional unused resources. For the case where SPs treat their native and non-native

(belonging to other SPs) applications uniformly, we propose a bargaining-theory based

resource-sharing framework that enables different SPs to optimally manage their resources

and improve the satisfaction level of applications subject to constraints, such as communica-

tion costs for sharing resources across SPs. For a specific class of concave utility functions,

we present an N -person Nash Bargaining Solution (NBS) for resource management and

sharing among SPs with the Pareto optimality guarantee. Furthermore, we propose a dis-

tributed algorithm to obtain the NBS by proving that the strong-duality property holds

for the resultant resource-sharing optimization problem. Using synthetic and real-world

data traces, we show numerically that the proposed NBS framework not only enhances the

ability to satisfy applications’ resource demands, but also improves the utilities of different

SPs.

Finally, we propose a cooperative game-theoretic framework for resource sharing among

SPs with multiple objectives that only requires the SPs to have monotonic, non-decreasing

and non-negative utility functions. In contrast with our proposed NBS framework, the

cooperative game-theoretic framework is applicable to more general settings at the cost of

added computational complexity. Furthermore, the cooperative game-theoretic framework

can support two different strategies employed by SPs. In the uniform priority strategy,

SPs do not differentiate between their native and non-native applications for resource man-

agement. In the non-uniform priority strategy, SPs first allocate resources to their native

applications and then share remaining resources with other SPs, if needed. For the uni-

form priority strategy, we prove that the proposed resource-sharing game is canonical and

cardinally convex. Hence, the core is not empty and the grand coalition of SPs is stable.

We propose Game-theoretic Pareto optimal allocation for the Uniform Priority strategy

(GPUS), a centralized algorithm to obtain a Pareto optimal allocation from the core for

the uniform priority strategy. We then modify our game-theoretic framework to enable

the SPs to employ non-uniform priority as a strategy. We prove that despite the modifica-

tion, our proposed resource-sharing game is canonical and cardinally convex. We propose

two algorithms, referred to as the Game-theoretic Pareto optimal allocation (GPOA) and

Polyandrous-Polygamous Matching based Pareto Optimal Allocation (PPMPOA), also to

provide allocations from the core. Hence the obtained allocations are Pareto optimal and

the grand coalition of all SPs is stable. Experimental results confirm that our proposed

resource-sharing framework improves utilities of SPs and the degree of application request

satisfaction.
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1. Introduction

Communication networks have become ubiquitous due to the wide range of services that

they provide. The growing demand for communication networks requires not only to in-

crease the resources to meet the demand, but also to manage the existing infrastructure

optimally from a number of perspectives, such as reducing the energy consumed by these

networks, which in turn will reduce their carbon footprint.

Optimization theory and game theory have been used in the literature for single objec-

tive and multi-objective optimal resource management and have shown promising results.

However, the advent of paradigms, such as edge computing, machine learning, and the

Internet of Things (IoT) necessitates novel frameworks and algorithms that can efficiently

manage and allocate resources. Furthermore, resource management problems may also be

multi-objective that render existing single objective optimization frameworks inapplicable.

Therefore, there is a need to develop novel frameworks and algorithms for communication

networks that guarantee the optimal management of available resources with respect to a

particular objective (such as minimizing energy consumption). Furthermore, there is also

a need for efficient multi-objective resource-sharing frameworks among different service

providers (SP) that enable SPs to satisfy requests of as many applications as possible.

1.1. Background and Motivation

Communication networks have enabled human beings and machines1 to communicate and

provide a wide range of services, such as video calls, high speed data transfer, and live

streaming, etc. All these services require different resources, such as communication, com-

putation (processing) and storage resources. Communication resources enable data transfer

from the transmitter to the receiver. Computation resources process data, such as com-

pressing the transmitted data in order to reduce energy [2,3] and bandwidth consumption,

whereas storage allows one to store data for future use or minimize latency by storing data

closer to the receiver as done by caching networks [4]. However, these resources are usually

limited and it may not be possible to satisfy the requests of all applications or users2. The

management and allocation of resources to different applications needs to be planned so

that resources are used optimally. Furthermore, when resources are not available, there is

a need to first obtain3 and then optimally allocate the obtained resources for satisfying as

1Through paradigms, such as the Internet of Things and Machine-to-Machine Communication.
2Throughout the thesis, we use the terms applications and users interchangeably.
3Either by purchasing new resources or borrowing from other service providers.
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many applications as possible.

Each communication network, in accordance with a single or multiple objectives, intends

to optimally allocate resources based on a particular Service Level Agreement (SLA) with

the applications. For example, in cellular networks, throughput, coverage area and reliabil-

ity are some of the basic parameters that the SP can optimize to improve user satisfaction

and increase the generated revenue. On the other hand, communication links in military

networks only support low data transfer rates, i.e., on the order of kilo-bits per second

(kbps). However, network robustness, energy efficiency, and latency are the main prior-

ities for military networks. Therefore, the design of network and resource management

objectives are highly application dependent.

Reducing network energy consumption is one such objective that has recently attracted a

number of researchers [2–10]. It has been reported that the average annual power consump-

tion only for data analytics in communication networks was 25 Giga-Watts in 2013 [9,11],

which is equivalent to operating 23 nuclear reactors. This not only increases the opera-

tional costs, but also has an adverse environmental impact. Energy consumption is also a

fundamental challenge for many wireless components that operate on limited battery power

supply and are usually deployed in remote or inaccessible areas. Similarly, about 5 zeta-

bytes of data passed through the global network in 2017 [12]. This not only requires a huge

network bandwidth, but may further increase the energy expenditure, because communi-

cating such a large amount of data incurs tremendous transmission energy costs. These

challenges necessitate the need for resource management designs that can enhance the en-

ergy efficiency of communication systems with a QoI guarantee. We discuss network energy

consumption below.

1.1.1. Network Energy Consumption

Due to the increasing energy cost of operating communication networks, there has been an

increase in interest in green networking and green communication where the primary goal

is to reduce the energy consumed by the network. Similarly for certain networks, such as

sensor networks, minimizing energy consumption is of paramount importance in order to

increase the lifetime of the network. A typical communication network consumes energy as

follows:

1. Communication Energy: Communication is one of the most energy hungry compo-

nents of a communication system. The larger the data transmitted, the higher will

be the energy consumption. Therefore, reducing the amount of transmitted data can

drastically reduce the energy consumed in the network [2].

2. Computation Energy4: Computation also incurs energy cost. The higher the data

processing, the larger will be the energy cost.

4Throughout the course of the thesis, we use computation energy to refer to energy used for data processing.
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3. Storage (Caching) Energy: Data caching stores the data to reduce latency and move

the data closer to the requesting nodes. However, this also incurs energy costs propor-

tional to the amount of data and time for which the data is cached. This is because

the data is usually cached in volatile Random Access Memory (RAM) that incurs low

latency [4], but loses data in the absence of power.

To reduce energy consumption in the network, a number of approaches have been pro-

posed in the literature [6–10] ranging from turning the transmitters off when not processing

data [2,3]. However, there is no existing work that jointly considers data transmission, data

processing and caching energy costs to minimize the overall network energy consumption.

Since all these three resources contribute significantly to network energy consumption, we

jointly consider them in our novel formulation in Chapter 3 of this thesis and rely on

simulations to show the resulting improvement in energy efficiency.

While minimizing energy consumption in particular, or optimal management of resources

with a single objective in general, is an important research problem, another significant and

relatively novel problem is that of resource sharing and allocation among different service

providers in distributed systems, such as cloud or edge computing that have their own

objectives and utilities. Particularly, big data and machine learning require a large amount

of resources and it may not be possible for a single SP to provide resources to all of its

applications at any given time. Therefore, enabling resource sharing among different SPs

can help. This is discussed in detail below.

1.1.2. Multi-Objective Resource Sharing and Allocation

So far we primarily discussed the optimal management and utilization of available resources

with respect to a single objective. However, service providers also aim to provide resources

to as many applications as possible. What happens if new requests for resources arrive

and the service provider is operating at maximum operation capability? While different

solutions are possible, such as buying or renting extra resources [13,14], or creating a shared

resource pool [15–17]; sharing of resources among service providers is considered a promising

approach [18]. Let us consider edge computing service providers given in Figure 1.1 as an

illustrative example. There are multiple edge SPs that need to provide resources to different

applications. In a typical setting, if an SP, say SP 1, does not have enough resources to

provide to its native applications, the request is forwarded to the backend cloud through the

backhaul and internet [18]. However, this incurs a higher latency. An alternative solution is

to create a shared resource pool of SPs5 or coalition of SPs that eliminates the need to use

backend cloud resources to satisfy the requests as SPs that have under utilized resources can

share their resources with SP 1 to satisfy its applications’ requests. Such a resource pool

5This thesis does not consider privacy issues with resource sharing. However, SPs can negotiate the terms
and conditions for resource sharing. Furthermore, competitors use each other’s resources. For example
Netflix and Amazon Prime Video services are competing with each other. However, Netflix relies on
Amazon’s Web Services for its streaming services.
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Figure 1.1.: An edge computing setting.

enables SPs to share and use resources whenever needed to meet their dynamic demands.

This cooperation and resource sharing among SPs is beneficial, because it is unlikely that

resources of different SPs are over-utilized [19]. However, existing work mostly considers

the creation of a shared logical pool of resources among the service providers without

considering the objective or utilities of individual service providers [15–17]. Furthermore,

the emphasis is primarily on a single resource, such as communication resources [20]. Hence,

there is lack of a generic framework that considers different resources and the objectives

of all the SPs. We bridge this gap in the literature by proposing different multi-objective

resource-sharing frameworks based on bargaining theory and cooperative game theory. In

particular, through our proposed resource-sharing frameworks, we attempt to answer the

following questions:

1. Should an SP help another SP by sharing resources?

2. How should resources be allocated to applications across different SPs, while consid-

ering issues, such as communication costs?

3. How can SPs share the profits of resource sharing?

Our proposed frameworks can be used in a number of distributed multi-service provider
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settings, such as cloud computing, edge computing, etc. However, due to the recent growing

interest in edge computing because of its ability to support distributed machine learning

among many other applications, we apply our developed multi-objective frameworks to an

edge computing setting to highlight their efficacy.

1.2. Outline and Contributions

A summary of each chapter along with the main contributions, is given as follows:

❼ Chapter 2: Preliminaries and Related Work presents the basics of optimization

and game theory. Since providing an exhaustive discussion is beyond the scope of this

thesis, we primarily emphasize on aspects of optimization and game theory related

to the contents of this thesis. Furthermore, the chapter also discusses work related

to network energy consumption and resource allocation in the literature.

❼ Chapter 3: Optimal Energy Consumption with Communication, Compu-

tation, Caching and QoI-Guarantee considers the single objective optimization

problem of energy consumption in a system with communication, computation, and

storage resources. The objective is to minimize the energy consumption by finding

the optimal data compression rate and caching (storage) location with a QoI guar-

antee. The formulated optimization problem is proven to be NP-hard. To solve the

problem to ε-global optimality, a variant of the Spatial Branch-and-Bound algorithm

is proposed. Through simulation results, it is shown that jointly considering com-

munication, computation and caching energy costs can improve energy consumption

significantly.

❼ Chapter 4: A Distributed Bargaining-Theoretic Approach For

Multi-Objective Resource Sharing moves from the single objective optimiza-

tion problem of minimizing network energy consumption discussed in the preceding

chapter and considers the multi-objective optimization problem of resource-sharing

among different service providers. To solve the multi-objective optimization problem,

it is modeled as a bargaining problem for which a Nash Bargaining Solution (NBS)

is used to obtain a fair and Pareto optimal allocation. It is shown that the strong

duality property holds and a distributed algorithm to compute the NBS is proposed.

Through simulation results, it is shown that resource sharing among the SPs can

improve the utility as well as application satisfaction.

❼ Chapter 5: A Cooperative Game-Theoretic Framework For Resource Shar-

ing: Uniform Priority Case departs from the preceding chapter’s assumption of

using concave utilities for service providers and proposes a cooperative game-theoretic

framework for resource sharing. The chapter assumes that the SPs have monotone

non-decreasing utility functions and it is shown that the resource sharing and al-

location problem can be modeled as a cooperative game. General game properties
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are discussed and properties, such as superadditivity, cardinal convexity, and non-

emptiness of the core are proven. The framework supports two different strategies

that can be employed by the service providers. In the uniform priority case, just

like Chapter 4, SPs do not differentiate between their native (applications or users

belonging to the SP) and non-native applications (applications or users belonging to

other SPs). The uniform priority strategy is considered in this chapter. A centralized

algorithm, Game-theoretic Pareto optimal allocation with Uniform Priority strategy

(GPUS), is presented that provides an allocation from the core. Experimental results

are provided to show the impact of the proposed game-theoretic framework on utility

of SPs, resource utilization and application satisfaction.

❼ Chapter 6: A Cooperative Game-Theoretic Framework For Resource Shar-

ing: Non-Uniform Priority Case extends/modifies the framework proposed in

Chapter 5, and considers the setting in which the SPs employ a non-uniform priority

strategy. SPs first allocate resources to their native applications and then share the

remaining resources with applications of resource deficit SPs. It is shown that the

resource sharing game with non-uniform priority strategy is also cardinally convex.

Two algorithms, Game-theoretic Pareto optimal allocation (GPOA) and Polyandrous-

Polygamous Matching based Pareto Optimal Allocation (PPMPOA) that provide al-

locations from the core are proposed. Hence, the obtained allocations using GPOA

and PPMPOA are Pareto optimal and the grand coalition of all the service providers

is stable. Experimental results confirm that the proposed resource sharing framework

improves utilities of service providers and application request satisfaction.

❼ Chapter 7: Conclusions and Future Work provides the concluding remarks of

the thesis and suggests a number of future research directions.

The frameworks and algorithms proposed in the four core chapters, i.e., Chapter 3,

Chapter 4, Chapter 5 and Chapter 6, are evaluated and analyzed through simulations

under different settings. Lengthy proofs of the main results are relegated to the appendices

to avoid interruptions and improve readability. The system models discussed in Chapters

4, 5, and 6 are almost identical. However, for making each chapter self-sufficient and for

sake of completeness, we present the system model in all the aforementioned three chapters.

Furthermore, the reader is referred to the table of notations given in each of the four core

chapters for a description of symbols and notations used in the corresponding chapters to

avoid confusion. The variables, symbols and notations are also defined the first time they

are used in each of the chapters.
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2. Preliminaries and Related Work

This chapter first discusses the basics of optimization theory, cooperative game theory and

Nash bargaining solution. Since providing a detailed discussion on the aforementioned

topics is beyond the scope of this thesis, we only discuss them in the context of work done

in this thesis. We then present some of the work done in the literature related to network

energy consumption, and resource management and sharing in cloud and edge computing.

Finally, we also distinguish the work done in Chapters 3, 4, 5 and 6 from the work done in

the literature and highlight some of the contributions of this thesis. Detailed information

about contributions of each chapter is presented in the corresponding chapters.

2.1. Preliminaries

2.1.1. Optimization Theory

In this section, we present an overview of optimization theory. In particular, we discuss

convexity, non-convexity, the Lagrangian function and duality theory. For a detailed dis-

cussion, we refer the readers to [21].

Definition 2.1. Convex Set: A set Q is considered to be convex if

❼ It is a subset of Rn.

❼ For any x, y ∈ Q and α ∈ [0, 1], we have αx+ (1− α)y ∈ Q. This means that all the

points on the line segment joining any two points x and y from the set Q will also be

part of the set Q.

Figure 2.1 shows a convex and a non-convex set. It is evident that any two points in the

convex set, i.e., the hexagon, can be joined by a line segment that also lies in the hexagon.

However, for the non-convex set, it is evident that the red line segment that joins the two

points contains points that do not lie within the set.

Definition 2.2. Convex Function: A function f : Q → R where Q is the aforementioned

convex set given in Definition 2.1, is a convex function if

f
(
αx+ (1− α)y

)
≤ αf(x) + (1− α)f(y), ∀x, y ∈ Q, ∀α ∈ [0, 1]. (2.1)

This physically means that the line segment between (x, f(x)) and (y, f(y)) always lies

above the graph of f .
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Convex set Non-convex set

Figure 2.1.: Convex and non-convex set

Convex Function Concave Function Neither convex nor concave

(x, f(x))

(y, f(y))

(x, f(x)) (y, f(y))

(x, f(x))

(y, f(y))

Figure 2.2.: Example of convex, concave and neither convex nor concave function

Definition 2.3. Concave Function: A function f : S → R where Q is the aforementioned

convex set given in definition 2.1, is a concave function if

f
(
αx+ (1− α)y

)
≥ αf(x) + (1− α)f(y), ∀x, y ∈ Q, ∀α ∈ [0, 1]. (2.2)

This physically means that the line segment between (x, f(x)) and (y, f(y)) always lies

below the graph of f . Figure 2.2 illustrates a convex and concave function along with a

function that is neither convex nor concave. It is evident from the definition of convex and

concave functions that if f is convex then −f is concave and vice versa.

Definition 2.4. Strictly convex function: If the inequality given in (2.1) is strict, then the

function is a strictly convex function.

Definition 2.5. Strictly concave function: If the inequality given in (2.2) is strict, then

the function is a strictly concave function.

min
x

f(x),

s.t. hi(x) ≤ 0, i = 1, . . . ,m,

gk(x) = 0; k = 1, . . . , n. (2.3)
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The goal of solving an optimization problem given in (2.3) is to obtain a value for the

optimization variable x that will optimize the objective function f(x) while satisfying the

constraints hi(x) ≤ 0, i = 1, . . . ,m and gk(x) = 0; k = 1, . . . , n. The minimization op-

timization problem given in (2.3) is a convex optimization problem if the objective function

f(x) is a convex function and the feasible set (given by the constraints) is a convex set.

For a maximization problem, the objective function has to be a concave function.

In general, obtaining the minimum of a convex optimization problem is easier when com-

pared to a non-convex optimization problem. This is because the global and local optimal

points for convex optimization problems are the same. However, non-convex optimization

problems have local optimal points that are not necessarily global optimal.

Definition 2.6. ǫ-global optimal: Let f(x∗) be the global optimal value for (2.3). Then

f(x̄) will be the ǫ-global optimal value if f(x̄) − f(x∗) ≤ ǫ for some ǫ ≥ 0, where x̄ is the

ǫ-global optimal solution.

An alternative way to solve the optimization problem given in (2.3) is to use duality

theory. Let us call the problem in (2.3) the primal problem. We need to formulate its dual

problem. To do so, we define the Lagrangian function.

L(x,λ,µ) := f(x) +

m∑

i=1

λihi(x) +

n∑

k=1

µkgk(x). (2.4)

The Lagrangian function augments the objective function with the weighted sum of con-

straint functions, whereas the weights are known as Lagrange multipliers [21,22]. λi is the

Lagrange multiplier associated with the constraint hi(x) and µk is the Lagrange multiplier

associated with constraint gk(x). It is also worth mentioning that the vectors λ and µ are

known as the dual variables or Lagrange multiplier vectors for the problem in (2.3). Hence,

the Lagrangian dual function D is the minimum value of the Lagrangian function or given

by

D(λ,µ) = inf
x
L(x,λ,µ) = inf

x

(
f(x) +

m∑

i=1

λihi(x) +

n∑

k=1

µkgk(x)
)
, (2.5)

if the Lagrangian function is unbounded below. The inf is the greatest lower bound. Since

the primal problem in (2.3) is a minimization problem, the resulting dual is a maximization

problem. Similarly, if the primal problem is a maximization problem then the dual will be a

minimization problem and the inf in (2.5) should be replaced with the greatest upper bound,

i.e., sup. Note that the dual problem is always convex, even if the primal is non-convex.

This is because the dual is the point-wise infimum (or supremum for a maximization primal

problem) of the affine combination of the dual variables. Mathematically, the dual for the

primal problem in (2.3) is given as
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max D(λ,µ),

s.t. λ ≥ 0. (2.6)

Definition 2.7. Weak duality: If p∗ is the optimal value for the primal minimization

problem and d∗ is the optimal for the dual problem, then p∗ ≥ d∗. This is known as weak

duality.

The Lagrangian dual is the lower bound for a primal minimization problem.

Definition 2.8. Strong duality: If p∗ = d∗, then the property is known as strong duality.

For strong duality to hold, certain conditions called constraint qualifications need to be

satisfied [21].

Definition 2.9. Duality gap: The difference between the optimal value of the primal and

dual problems is known as the duality gap. Mathematically, the duality gap is given by

p∗ − d∗:

If strong duality holds, then the following condition holds at the optimal point.

m∑

i=1

λ∗ihi(x
∗) +

n∑

k=1

µ∗kgk(x
∗) = 0. (2.7)

This gives rise to complementary slackness, which is mathematically expressed as

λ∗i > 0 =⇒ hi(x
∗) = 0. (2.8)

This means that λi is zero unless the corresponding constraint is active at the optimum.

To solve certain optimization problems in a distributed manner, an iterative method

called the gradient method [23] can be used [22]. Gradient method can work only for

differentiable objective functions and constraints. At each iteration t of the algorithm,

the new value of the optimization variable x is calculated using its current value and the

gradient of the Lagrangian function. For a minimization problem, this is given by:

xt+1 = xt − αtDt∇L(xt), (2.9)

where Dt is the positive definite symmetric matrix, αt is the step size and ∇L(xt) is the

gradient of the Lagrangian. The term Dt∇L(xt) is known as the direction dt of the gradient

method.

Different variants of gradient method exist based on the direction dt and step size αt.

In the steepest descent method, Dt is chosen to be an identity matrix. The steepest

descent method is less complex, but may be slow to converge. An alternative is Newton’s

method, where Dt = (∇2L(xt))−1 and ∇2L(xt) is a positive definite matrix. Despite a fast

29



convergence rate, Newton’s method is complex, because it requires calculating the Hessian

at each iteration. Detailed discussion on variants of gradient method based on direction dt

can be found in [23].

Similarly, there are different methods for choosing the step size αt, such as:

❼ Constant step size: αt = α is a positive constant.

❼ Minimization rule: The step size αt is chosen such that the cost function is minimized

along the direction dt. Mathematically, the chosen step size αt should satisfy:

f(xt − αtdt) = min
α≥0

f(xt − αdt). (2.10)

❼ Goldstein rule: A fixed scalar µ ∈ (0, 1/2) is selected and then the step size αt is

chosen such that:

µ ≤
f(xt − αtdt)− f(xt)

αt∇f(xt)′dt
≤ 1− µ. (2.11)

There are various other techniques for choosing a step size details of which can be found

in [23]. The constant step size, for a sufficiently small step size, can force the gradient

method to converge to a point very close to the optimal solution.

2.1.2. Multi-Objective Optimization

Form inequality constraints and n equality constraints, multi-objective optimization (MOO)

identifies a vector x∗ = [x∗1, x
∗
2, · · · , x

∗
t ]
T that optimizes a vector function

f̄(x) = [f1(x), f2(x), · · · , fN (x)]T , (2.12)

such that

gi(x) ≥ 0, i = 1, 2, · · · ,m, (2.13)

hi(x) = 0 i = 1, 2, · · · , n,

where x = [x1, x2, · · · , xt]
T is a vector of t decision variables and the feasible set is denoted

by F . The fundamental difference between a single objective optimization (SOO) and

MOO is that MOO involves a vector of objective functions rather than a single objective

function. Therefore, in MOO, the optimal solution is not a single point but a frontier of

solutions known as the Pareto frontier or Pareto boundary (see [24] for details).

Definition 2.10. Pareto optimality: For any minimization problem, x∗ is Pareto optimal

if the following holds for every x ∈ F ,

f̄(x∗)�f̄(x). (2.14)

where f̄(x) = [f1(x), f2(x), · · · , fN (x)]T and f̄(x∗) = [f1(x
∗), f2(x

∗), · · · , fN (x∗)]T .

30



Figure 2.3.: MOO with two objective functions

Figure 2.3 shows an MOO problem (minimization problem) with two objective functions

f1 and f2. The boundary
←→
ab consists of all the Pareto optimal solutions and is called the

Pareto frontier.

2.1.3. Cooperative Game Theory

Cooperative game theory provides a set of analytical tools that assists in understanding

the behavior of rational players in a cooperative setting [25]. Players can have agreements

among themselves that affect the strategies as well as obtained utilities of game players.

Definition 2.11. Strategy: Strategy of the game players is defined as the policy/rule that

governs the actions that players take in the game.

Coalition games are one of the basic types of cooperative games that deal with the

formation of coalitions, namely groups of two or more cooperating players. Formally,

Definition 2.12. Coalition games [25]: Any coalition game with non-transferable utility

(discussed below) can be represented by the pair (N ,V) where N is the set of players that

play the game, S ⊆ N , and V is a set of payoff vectors such that [26]:

1. V(S) is a closed and convex subset of RS .

2. V(S) is comprehensive, i.e., if we are given payoffs p ∈ V(S) and q ∈ RS where q�p,

then q ∈ V(S). In other words, if the members of coalition S can achieve a payoff

allocation p, then the players can change their strategies to achieve an allocation q.
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3. The set {p|p ∈ V(S) and pn ≥ p
′

n, ∀n ∈ S}, with p
′

n = max{qn|q ∈ V({n})} ≤

∞, ∀n ∈ N is a bounded subset of RS . In other words, the set of vectors in V(S) for

a coalition S where the coalition members receive a payoff at least as good as working

alone (non-cooperatively) is a bounded set.

Definition 2.13. Value of a coalition: The sum of all players’ payoffs from a particular

payoff vector for any coalition is known as the value of a coalition.

It is worth mentioning that V is the set of payoff vectors, while the value of a coalition,

v, is the sum of payoffs that all players get in a particular payoff vector from the set V.

Definition 2.14. Non-transferable utility (NTU) [25]: If the total utility of any coalition

cannot be assigned a single real number or if there is a rigid restriction on how the total

utility (payoff) is distributed, then the game has a non-transferable utility.

Definition 2.15. Characteristic function [25]: The characteristic function for any coalition

game with NTU is a function that assigns a set of payoff vectors, V(S) ⊆ RS, where each

element of the payoff vector pn represents a payoff that player n ∈ S obtains, depending on

the selected strategy, within the coalition S.

Definition 2.16. Characteristic form coalition games [25]: A coalition game is said to be

of characteristic form, if the value of coalition S ⊆ N depends only on the members of

coalition.

Definition 2.17. Superadditivity of NTU games [26]: A canonical game with NTU is said

to be superadditive if the following property is satisfied.

v(S1 ∪ S2) ⊃ {p ∈ RS1∪S2 |(pn)n∈S1
∈ v(S1), (pn′)n′∈S2

∈ v(S2)} ∀S1 ⊂ N , S2 ⊂ N ,

S1 ∩ S2 = ∅, (2.15)

I.e., if any two disjoint coalitions S1 and S2 form a large coalition S1 ∪ S2, then the

coalition S1 ∪ S2 can always give its members the payoff that they would have received in

the disjoint coalition S1 and S2.

Definition 2.18. Canonical game: A coalition game is canonical if it is super-additive and

in characteristic form.

The core is a widely used solution concept for canonical games as discussed below.

2.1.4. Core

We first define some terms related to the core [25, 26].

Definition 2.19. Group rational: A payoff vector p ∈ RN is group-rational if
∑

n∈N pn =

v(N ).
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Definition 2.20. Individually rational: A payoff vector p ∈ RN is individually-rational

if every player can obtain a payoff no less than acting alone, i.e., pn ≥ v({n}), ∀n ∈ N ,

where v({n}) is the payoff a player achieves when working alone.

Definition 2.21. Imputation: A payoff vector that is both individually and group rational

is an imputation.

Definition 2.22. Grand coalition: The coalition formed by all game players in N is the

grand coalition.

Based on the above definitions, we can now define the core of an NTU canonical coalition

game.

Definition 2.23. Core [25]: For any NTU canonical game (N ,V), the core is the set of

imputations in which no coalition S ⊂ N has any incentive to reject the proposed payoff

allocation and deviate from the grand coalition to form a coalition S instead. This can be

mathematically expressed as

CNTU = {p ∈ V(N )|∀S, ∄q ∈ V(S), such that qn > pn, ∀n ∈ S}. (2.16)

Remark 2.1. Any payoff allocation from the core is Pareto-optimal as evident from the

definition of the core. Furthermore, the grand coalition formed is stable, i.e., no group of

two or more players will have an incentive to leave the grand coalition to form a smaller

coalition.

However, the core is not always guaranteed to exist. Even if the core exists, it may be

very large as it is a convex set [27]. Therefore, finding a suitable allocation from the core

is challenging.

2.1.5. Nash Bargaining Solution (NBS)

We use a two-player game as an illustrative example to introduce NBS. Consider two players

1 and 2 that need to reach an agreement (e.g., resource sharing and allocation decision)

in an outcome space A ⊆ R2 [25]. Both players have a utility given by u1 and u2 over

the space A ∪ {D} where D specifies a disagreement outcome for players in the event of

a disagreement, i.e., when two players cannot reach an agreement. Let E be the set of all

possible utilities that both players can achieve:

E = {(u1(a1), u2(a2))|(a1, a2) ∈ A}. (2.17)

We also define d = (d1, d2), where d1 = u1(D) and d2 = u2(D), as the payoff each player

receives at the disagreement point. We define the bargaining problem as the pair (E , d)

where E ⊂ R2 and d ∈ D such that

❼ E is a convex and compact set;
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❼ There exists e ∈ E such that e > d.

In NBS, the goal is to obtain a function f(E , d) that provides a unique outcome in E for

every bargaining problem (E , d). Nash studied the possible outcomes (agreements) that

players can reach whereas the agreements, along with the Pareto optimality, must also

satisfy the following set of axioms (also called fairness axioms) [25]:

1. Symmetry: Let e1, e2 ∈ E , where e1 = e2 and d1 = d2, then f1(E , d) = f2(E , d). This

means that the bargaining solution will not discriminate among players if players are

indistinguishable, i.e., players have identical utilities.

2. Invariance to equivalent utility representation: If a bargaining problem (E , d)

is transformed into another bargaining problem (E ′, d′) where E ′i = γiEi + ζi and

d′i = γidi + ζi, γi > 0, then f(E ′, d′) = γif(E , d) + ζi.

3. Independence of irrelevant alternatives: For any two bargaining problems (E , d)

and (E ′, d) where E ′ ⊆ E , if f(E , d) ∈ E ′, then f(E ′, d) = f(E , d).

It is shown in [28] that there is a unique bargaining solution that satisfies the above axioms.

We present it in the following theorem.

Theorem 2.1. [25] There exists a unique solution satisfying the aforementioned axioms

and this solution is the pair of utilities (e∗1, e
∗
2) ∈ E that solves the following optimization

problem:

max
e1,e2

(e1 − d1)(e2 − d2), s.t. (e1, e2) ∈ E , (e1, e2) ≥ (d1, d2). (2.18)

The solution of (2.18) is the NBS. The above framework can be extended to N players by

allowing E to be an N -dimensional space [29]. For this case, the bargaining problem (E , d),

with d = (d1, d2, · · · , dN ) as the disagreement point, becomes the unique solution of the

optimization problem.

max
e1,··· ,eN

N∏

n=1

(en − dn),

s.t. (e1, · · · , eN ) ∈ E ,

(e1, · · · , eN ) ≥ (d1, · · · , dN ). (2.19)

Solving (2.18) is easier compared to the N−player bargaining problem in (2.19) [25].

Remark 2.2. Since each player in an N -player bargaining game has a particular objective

to optimize, the resulting problem is multi-objective, where the goal is to obtain a Pareto

optimal solution. NBS is a fair and Pareto optimal solution for such MOO problems,

provided that the fairness axioms are satisfied.
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2.2. Related Work

2.2.1. Energy Consumption

Energy consumption in communication networks, particularly wireless sensor networks,

has been extensively studied [30, 31]. However, existing work in wireless sensor networks

primarily is concerned with routing [32], MAC protocols [30], and clustering [33]. With the

growing deployment of smart sensors in modern systems [3], in-network data processing,

such as data aggregation or data compression, has been widely used as a mean of reducing

system energy cost by lowering the data volume for transmission. Energy efficient inference

in a random fusion network without QoI guarantee was considered in [34]. Network Utility

Maximization (NUM) framework was applied in [35] to obtain optimal compression rate for

data aggregation as well as optimal locations for performing data compression. The optimal

energy allocation between communication and sensing to maximize the total information

received at the sink node was studied in [36], but they did not consider data computation.

An efficient algorithm for data compression in a data gathering tree was proposed in [37].

A distributed algorithm to minimize overall energy costs in a tree structured network by

optimizing the compression factor at each node was presented in [3].

Data Compression: Compression has been supported by many data-parallel program-

ming models [38]. For WSNs, data compression is usually performed over a hierarchical

topology to improve communication energy efficiency [39], whereas we focus on energy

consumption in a network with communication, computation and caching capabilities in

Chapter 3.

Data Caching: Caches play a significant role in many systems with hierarchical topolo-

gies, e.g., WSNs, microprocessors, CDNs, etc. There is a rich literature on the performance

of caching in terms of designing different caching algorithms, e.g., [40–43], and we do not

attempt to provide an overview here. Utility maximization approach has also been studied

for cache management [44–46]. However, none of these work considered the costs of caching,

which may be significant in some systems [4]. A cooperative caching protocol designed for

WSNs was presented in [47]. Two cooperative caching protocols for WSNs that minimized

latency and improved the energy efficiency of the WSN were also presented in [48]. A

detailed survey on cache based transport protocols for WSNs was presented in [49].

While these work only focus on energy costs of data communication and processing or

data communication and caching, we study the energy consumption in data communication,

computation and caching with QoI guarantee in Chapter 3. A key focus of the work in

Chapter 3 is to demonstrate and validate the joint application of data computation and

caching to achieve minimal energy consumption due to data communication, computation

and caching with a QoI guarantee. Key decisions for certain communication networks are

how much of the computation should be performed at each node and where the data should

be cached in the system. The basic building blocks of our model in Chapter 3 are simple

and have been studied in various settings. However, to the best of our knowledge, there

35



is no prior work that jointly considers communication, computation and caching costs in

data communication networks with a QoI guarantee for end users.

2.2.2. Resource Management

Resource management has been studied in a wide range of systems. However, we primarily

focus here on multiple service provider settings such cloud computing and edge computing.

Resource Management in Edge Computing

There have been a number of solutions proposed in the literature related to resource man-

agement in edge computing [8, 18, 19, 50–55]. A novel model for allocating resources in

an edge computing setting was proposed in [52], where the allocation of distributed edge

resources is decoupled from service provisioning management at the service provider side.

The authors develop an auction-based resource sharing contract establishment and resource

allocation that maximizes the utilities of service providers and edge computing infrastruc-

ture providers. The long-held assumption that storage resources are not shareable is relaxed

in [18] and the authors study the optimal allocation of both shareable and non-shareable

resources in a mobile edge computing setting. The authors consider the joint problem of

service placement and request scheduling, and propose a constant-factor approximation

algorithm since the problem is proven to be NP-hard. An optimization framework, for-

mulated as a Stackelberg equilibrium, for edge nodes, data service operators and service

subscribers that provides optimal resource allocation in a distributed manner is proposed

in [53]. A secure caching scheme in heterogeneous networks for multi-homed subscribers

is proposed in [54]. The scheme relies on a trust mechanism for verifying the reliability of

edge computing-enabled small cell base stations . The authors also propose a Chinese re-

minder theorem based protocol for preserving privacy. A Stackelberg game is used to model

the interaction between the mobile users and the edge cloud and the goal is to maximize

utilities of both users and service providers. An auction-based resource allocation scheme

for edge service providers that provide resources for blockchains is proposed in [56]. The

proposed mechanism maximizes the social welfare and guarantees truthfulness, computa-

tional efficiency and individual rationality. The mobility problem in mobile edge clouds is

considered in [57] and the authors propose a novel algorithm for selecting communication

path and VM placement. The proposed approach relies on predicting user movement that

helps in VM placement and accordingly selecting the communication path.

Resource Management in Cloud Computing

A 2-approximation algorithm for network resource allocation in a distributed cloud envi-

ronment is presented in [58]. The main objective of the system is to minimize the latency.

Furthermore, they also propose a similar algorithm that selects the racks and servers where

any particular VM requested by the user can be placed. A model for resource allocation
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in a cloud computing environment is proposed in [59]. The resource allocation problem

is modeled in a task-oriented framework where resource allocation task is ranked on the

basis of the pairwise comparison among the available resources and user requests. This is

achieved using a matrix technique and analytic hierarchy process. An improved differential

evolution algorithm for resource allocation in clouds is proposed in [60] that combines dif-

ferential evolution algorithm with Taguchi method. The system objective is to optimize the

total cost and makespan, hence the authors consider a multi-objective problem for a single

service provider. A dynamic resource allocation framework that considers different SLA

parameters and premptable task execution is proposed in [61]. Simulation results show that

the proposed algorithm improves resource utilization when there is fierce competition for

limited resources. A system that relies on virtualization technology for allocating resources

dynamically to different users and enhances energy efficiency of the system by minimizing

the number of servers used is proposed in [62]. The authors rely on the concept of skewness

to improve resource utilization and prevent system overload. A resource sharing architec-

ture for mobile clouds that relies on service-oriented utility functions is discussed in [63].

The authors primarily consider service latency and rely on a centralized framework.

NBS Based Resource Management

NBS is used to allocate bandwidth for elastic services in high speed networks in [20]. The

fairness criteria when allocating resources to different cloud users is considered in [64].

The authors rely on NBS to guarantee fairness. Using dual composition and sub-gradient

method, the authors also develop a distributed algorithm. An NBS-based model for cost-

effective and dynamic VM allocation with multimedia traffic is proposed in [65] that can

reduce the cost of running different servers along with maximizing resource utilization and

satisfying the QoS requirements. He et al. [66] study the optimal deployment of content in

a cloud assisted video distribution system. NBS is used in [67] for Virtual Machine (VM)

migration to maximize the resource utilization in a video streaming data center.

We present a distributed framework based on NBS in Chapter 4 that requires a specific

utility function that can be used to model different metrics, such as latency, delay, and

numerous other objectives. In contrast with [20, 65–68], to the best of our knowledge, our

framework is the first of its kind that uses NBS for resource sharing among SPs with dif-

ferent utilities (objective functions). We show that resource sharing can improve utilities

of SPs and enhance application satisfaction. Furthermore, for a particular class of utili-

ties, we have proved that a distributed algorithm exists for obtaining NBS for the resource

sharing and allocation problem. Table 2.1 summarizes some other solutions proposed in

the literature that use NBS for resource allocation in different systems. Other distributed

algorithms proposed in the literature either rely on dual decomposition [64] or gradient

projection [20,68]. However, most of the functions are not dual decomposable and gradient

projection is a computationally expensive approach [23], whereas gradient descent is com-

paratively computationally less expensive, and is widely used particularly in machine and
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Table 2.1.: Comparison of our NBS based resource sharing and allocation framework with
other NBS based solutions.

Ref. Objective Sharing
Distributed Algorithm

Technique

[20] Fair Bandwidth Allocation × X Gradient Projection

[64] Fairness × X Dual decomposition and
sub-gradient method are
used.

[65] Cost and Resource Utilization × × N/A

[66] Cost and User Experience × × N/A

[67] Resource utilization × × N/A

[68] Bandwidth allocation × X Gradient Projection

Chapter 4 SP utility and user satisfaction X X Gradient descent based al-
gorithm that works for the
class of utilities described in
Section 4.2.3.

deep learning.

Game Theory Based Resource Management

The interaction among cloud service operators and edge service owners is modeled as a

Stackelberg game for maximizing the utilities of both cloud and edge service providers

in [55]. The authors obtain the optimal payment along with the computation offloading

strategies. Scheduling in hybrid clouds is modeled as a sequential cooperative game in

[69]. The authors proposed a storage and communication aware algorithm that jointly

optimizes the execution time and economic cost of scheduling Bag-of-Tasks work flows. A

Shapley value based mechanism for on-demand bandwidth allocation between data centers

is proposed in [70]. The authors focus on network bandwidth and do not take computing and

storage resources into account. An online auction mechanism for dynamically providing

virtual clusters in geo-distributed clouds is proposed in [71]. A distributed negotiation

mechanism that allows service providers and users to negotiate the contract price, and a

decommitment penalty is proposed in [72]. A non-cooperative game theory based approach

for resource allocation in the cloud is proposed in [73]. The objective of the algorithm is to

maximize fairness among different users. They show that a Nash equilibrium is guaranteed

to exist provided that the resource allocation problem has feasible solutions.

Our work in Chapter 5 and Chapter 6 differs from [18,52–55] since we consider the multi-

objective nature of the resource sharing problem and allowed different service providers

to share resources and improve their utilities, while satisfying the requests of different

users. Furthermore, rather than allocating a single resource [70], our framework considers

the allocation of a number of different resources that an application requires to perform

a certain task. Our framework guarantees Pareto optimality. Every service provider is
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guaranteed to attain a utility as good as working alone and the grand coalition formed

by all service provider is stable. Hence, no service provider has the incentive to leave the

resource sharing coalition and are guaranteed a minimum performance. Our cooperative

game-theoretic framework allows two different strategies, i.e., uniform and non-uniform

priority. A centralized algorithm that provides an allocation from the core is proposed for

the uniform priority strategy. Two algorithms that provide allocation from the core are

proposed for the non-uniform priority strategy.

The algorithms proposed in Chapter 5 and Chapter 6 are designed based on the principles

of game theory to ascertain that solutions with desirable characteristics, such as Pareto

optimality, individual rationality, group rationality, and stability of coalition are obtained

efficiently when compared to using off-the-shelf solvers. For example, an off-the-self solver

will require a large (exponential) number of constraints in the optimization problem [25]

to guarantee the stability of the coalition. On the other hand, our tailor-made algorithms

leverage game-theoretic concepts to eliminate the need for such large number of constraints.

2.3. Summary and Conclusions

This chapter provided the necessary preliminaries for the remainder of this thesis. Basics of

optimization theory, multi-objective optimization, cooperative game theory, and bargain-

ing theory were provided. The chapter also discussed some of the work related to resource

management in cloud computing, edge computing, use of game theory and bargaining the-

ory for resource management in different settings. Furthermore, we also presented a brief

discussion on how the work done in this thesis is different than that done already in the

literature. It is evident that none of the existing works have jointly considered communi-

cation, computation and caching energy costs when minimizing energy consumption in a

communication network. Furthermore, cooperative game theory and NBS have been used

for resource allocation in different domains. However, existing literature has not studied

the problem of multi-objective resource sharing.

39





3. Optimal Energy Consumption with

Communication, Computation,

Caching and QoI-Guarantee

Data transmission is an energy hungry process. Data computation, such as compression,

by reducing the number of bits to be transmitted, can reduce energy consumption in the

network. However, if the data is compressed beyond a certain threshold, compression can

consume more energy than data transmission. Similarly, data caching is primarily used

for reducing latency. Additionally, data caching by storing data closer to the requesting

node eliminates the need for repeatedly transmitting the data from source node to the

requesting node. This can also reduce the communication energy cost. Most existing work

has only focused on communication and computation energy costs without accounting for

data caching costs. Given the increasing interest in cache networks and energy consumption

in a communication network, this is a serious deficiency.

In this chapter, the problem of energy consumption in data communication, compres-

sion and caching (C3) with a quality-of-information (QoI) guarantee in a communication

network is presented. The goal is to identify the optimal data compression rates and cache

placement over the network that minimizes the overall energy consumption in the network.

The energy consumption problem is formulated as a Mixed Integer Non-Linear Program-

ming (MINLP) problem with non-convex functions, which is shown to be NP-hard. A

variant of the Spatial Branch-and-Bound algorithm (V-SBB) is proposed that can pro-

vide an ǫ-global optimal solution to the problem. By extensive numerical experiments, it

is shown that a C3 optimization framework improves the energy efficiency by up to 88%

compared to any optimization that only considers either communication and caching or

communication and computation.

3.1. Introduction

The rapid growth of smart environments, and advent of the Internet of Things (IoT) have

led to the generation of large amounts of data. However, it is a daunting task to transmit

enormous amounts of data through traditional networks due to limited bandwidth and

energy limitations [3]. This data needs to be efficiently compressed, transmitted, and

cached to satisfy the Quality of Information (QoI) required by end users. In fact, many

wireless components operate on a limited battery power supply and are usually deployed
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Figure 3.1.: A general wireless sensor network.

in remote or inaccessible areas, which necessitates the need for designs that can enhance

the energy efficiency of the system with a QoI guarantee.

A particular example of modern systems that require high energy efficiency is a wireless

sensor network (WSN). Consider a WSN with various types of sensors, which can generate

enormous amounts of data to serve end applications or users. On one hand, data com-

pression has been adopted to reduce transmission (communication) cost at the expense of

computation cost [3]. On the other hand, caches can be used as a mean of reducing trans-

mission costs and access latency, thus enhancing QoI but with the expense of the added

caching cost. Hence, there exists a tradeoff in energy consumption due to data communica-

tion, computation and caching. This raises the question: what is the right balance between

compression and caching so as to minimize the total energy consumption of the network?

We answer the question in this chapter.

Each node has the ability to compress and cache the data with some finite storage

capacity. We focus on wireless sensor networks as our motivating example. In particular,

as shown in Figure 3.1, we assume that only edge sensors generate data, and there exists a

single sink node that collects and serves the requests for the data generated in this network.

The model can be extended to include any arbitrary node that produces data at the expense

of added notational complexity.

A common assumption in previous works is that energy required to compress data is

smaller than that needed to transmit data. Therefore, data compression was considered a

viable technique for reducing energy consumption. However, it has been shown that com-

putational energy cost can be significant and may cause a net-energy increase if data are

compressed beyond a certain threshold [74]. Furthermore, the degree of the data aggrega-

tion or compression in a system is crucial for QoI. It has been shown that data aggregation

can deteriorate QoI in some situations [75]. Hence, it is necessary to consider both trans-

mission and computation costs, and it is important to characterize the trade-off between
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them [3] along with the impact on QoI.

Caches have been widely used in networks and distributed systems to improve perfor-

mance by storing information locally, which jointly reduces access latency and bandwidth

requirements, and hence improves user experience. Content Distribution Networks (CDNs),

Software Defined Networks (SDNs), Named Data Networks (NDNs) and Content Centric

Networks (CCNs) are important examples of such systems. The fundamental idea behind

caching is to make information available at a location closer to the end-user. Again, most

previous work focused on designing caching algorithms to enhance system performance

without considering the energy cost of caching. Caching can reduce the transmission energy

by storing a local copy of the data at the requesting node (or close by), hence eliminating

the need for multiple re-transmission from the source node to the requesting node. How-

ever, caching itself can incur significant energy costs [4]. Therefore, analyzing the impact

of caching on overall energy consumption in the network (along with data communication

and compression) is critical for system design.

We focus on a tree-structured sensor network where each leaf node generates data, and

compresses and transmits the data to the sink node in the network, which serves the

requests for these data from devices outside this network. Examples of such a setting are

military sites, wireless sensors or societal networks, where a large number of devices gather

data, and desire to transmit the local information to any device outside this network that

requires this information. The objective of our work in this chapter is to obtain optimal

data compression rate at each node, and an optimal data placement in the network for

minimizing energy consumption with QoI guarantee.

3.1.1. Organization and Main Results

In Section 3.2, we describe our system model in which nodes are logically arranged as a tree.

Each node receives and compresses data from its children node(s). The compressed data are

transmitted and further compressed towards the sink node. Each node can also cache the

compressed data locally. In Section 3.3, we formulate the problem of energy-efficient data

compression, communication and caching with QoI constraint as an MINLP problem with

non-convex functions, which is shown to be NP-hard. We then show that there exists an

equivalent problem obtained through symbolic reformation [1] in Section 3.4, and propose

a variant of the Spatial Branch-and-Bound (V-SBB) algorithm to solve it. We show that

our proposed algorithm can achieve ǫ-global optimality.

In Section 3.6, we evaluate the performance of our optimization framework and show that

the use of caching along with data compression and communication can significantly im-

prove the energy efficiency of a communication network. More importantly, we observe that

with the joint optimization of data communication, computation and caching (C3), energy

efficiency can be improved by as much as 88% compared to only optimizing communication

and computation, or communication and caching (C2). The improvement depends on the

values of parameters in the model and the magnitude of improvement varies with different
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Figure 3.2.: Tree-structured network model.

energy costs of the model. While the improvement in energy efficient is important, our

framework helps in characterizing and analyzing the enhancement in energy efficiency for

different network settings. We also evaluate the performance of the proposed V-SBB algo-

rithm through extensive numerical studies. In particular, we make a thorough comparison

with other MINLP solvers Bonmin [76], NOMAD [77], Matlab’s genetic algorithm (GA),

Baron [78], SCIP [79] and Antigone [80] under different network scenarios. The results

show that our algorithm can achieve ǫ-global optimality, and the achieved objective func-

tion value (we achieve a lower objective function value for a minimization problem) is mostly

better than stochastic algorithms, such as NOMAD, GA while it performs comparably with

deterministic algorithms, such as Baron, Bonmin, SCIP and Antigone. Furthermore, our

algorithm provides a solution in varying network situations even when other solvers such

as Bonmin, and SCIP are not able to. We provide concluding remarks in Section 3.7.

3.2. Analytical Model

We represent the network as a directed graph G = (V,E). For simplicity, we consider a tree,

with |V | nodes, as shown in Figure 3.2. It is possible to generalize our framework to general

network topology with arbitrary source nodes, provided that the route between the source

and requesting node is known. Node v ∈ V is capable of storing Sv amount of data. Let

K ⊆ V with K = |K| be the set of leaf nodes, i.e., K = {1, 2, . . . ,K}. Time is partitioned in

periods of equal length T > 0 and data generated in each period are independent. Without

loss of generality (W.l.o.g.), we consider one particular period in the remainder of the

chapter. We assume that only leaf nodes k ∈ K can generate data, and all other nodes in
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the tree receive and compress data from their children nodes, and either cache or transmit

the compressed data to their parent nodes during time T. Arbitrary source nodes can also

be incorporated into the model at the cost of added notational and model complexity.

Let yk be the amount of data generated by leaf node k ∈ K. The data generated at

the leaf nodes are transmitted up the tree to sink node s, which serves requests for data

generated in the network. Let h(k) be the depth of node k in the tree. W.l.o.g., we assume

that the sink node is located at level h(s) = 0. We represent a path from node k to the

sink node as the unique path Hk of length h(k) as a sequence {hk0, h
k
1, · · · , h

k
h(k)} of nodes

hkj ∈ V such that (hkj , h
k
j+1) ∈ E, where h

k
0 , s (i.e., the sink node) and hk

h(k) , k (i.e., the

node itself).

We denote the per-bit reception, transmission and compression cost of node v ∈ V as

εvR, εvT , and εvC , respectively. Each node hki along the path Hk can compress the data

generated by leaf node k with a data reduction rate δk,i, where 0 < δk,i ≤ 1, ∀i, k. The

reduction rate characterizes the degree to which a node can compress the received data,

which plays an important role for determining the QoI. The higher the value of δk,i, the

lower the compression will be, and vice versa. The higher the degree of data compression,

the larger will be the amount of energy consumed by compression. Similarly, caching the

data closer to the sink node may reduce the transmission cost for serving the request,

however, each node only has finite storage capacity. We study the energy consumed at

each node for transmitting, compressing and caching the data.

Denote the total energy consumption at node v as Ev, which consists of reception cost

EvR, transmission cost EvT , computation cost EvC and storage (caching) cost EvS ; it takes

the form

Ev = EvR + EvT + EvC + EvS ,

where EvR = yvεvR, EvT = yvεvT δv,

EvC = yvεvC lv(δv), EvS = wcayvT. (3.1)

The above energy consumption models for data transmission, compression and caching have

been used in the literature [3,4,35] and are suitable for highlighting the energy consumption

in a communication network. However, our formulation can be extended to incorporate

various other energy consumption models as well. In (3.1), lv(δv) captures the computation

energy. Since computation energy increases with the degree of compression, we assume that

lv(δv) is a continuous, decreasing and differentiable function of the reduction rate. One

candidate function is lv(δv) = 1/δv−1 [3,35]. Moreover, we consider an energy-proportional

model [4] for caching, i.e., EvS = wcayvT if the received data yv is cached for a duration

of T where wca represents the power efficiency of caching, which strongly depends on the

storage hardware technology. W.l.o.g., wca is assumed to be identical for all the nodes. The

energy-proportional model is widely used for cache networks [4, 81, 82], since the data is

usually cached in volatile Random Access Memory (RAM) in systems, such as WSN. The
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use of RAMs helps in minimizing access latency1, because getting data from RAMs is fast.

However, the data will be lost if the power supply is lost. For simplicity, denote f(δv)=

εvR+εvT δv+εvC lv(δv) as the sum of per-bit reception, transmission and compression cost

at node v per unit time.

During time period T , we assume that there are Rk requests at sink node s for data yk

generated by leaf node k. For simplicity, we assume that the number of requests for the

data of a node k is constant. The boolean variable bk,i equals 1 if the data from node k

is stored along the path Hk at node hki , otherwise it equals 0. We allow the data to be

cached at only one node along the unique path between the leaf node and root node. For

ease of notation, we define bk,h(k) by bk. Let Cv denote the set of leaf nodes k ∈ K that

are descendants of node v. We also assume that the energy cost for searching for data at

different nodes in the network is negligible [3,43]. For convenience, let δk,h(k) , δk. For ease

of exposition, the parameters used throughout this chapter are summarized in Table 3.1.

3.3. Energy Optimization

In this section, we first define the cost function in our model and then formulate the

optimization problem. Data produced by every leaf node is received, transmitted, and

possibly compressed by all nodes in the path from the leaf node to the root node, consuming

energy

EC
k =

h(k)∑

i=0

ykf(δk,i)

h(k)∏

m=i+1

δk,m, (3.2)

where
∏j

m=i δk,m := 1 if i ≥ j. (3.2) captures one-time2 energy cost of receiving, com-

pressing and transmitting data yk from leaf node (level h(k)) to the sink node (level 0).

The amount of data received by any node at level i from leaf node k is yk
∏h(k)

m=i+1 δk,m

due to the compression from level h(k) to i + 1. The term f(δk,i) captures the reception,

transmission and compression energy cost for node at level i along the path from leaf node

k to the sink node.

Let ER
k be the total energy consumed in responding to the subsequent (Rk−1) requests.

We have

ER
k =

h(k)∑

i=0

yk(Rk − 1)

{
f(δk,i)

h(k)∏

m=i+1

δk,m

(
1−

i∑

j=0

bk,j

)
+

( h(k)∏

m=i

δk,m

)
bk,i

(
wcaT

Rk − 1
+ εkT

)}
.

(3.3)

Note that the remaining (Rk − 1) requests are either served by the leaf node or a cached

copy of data yk at level i for i = 1, · · · , h(k). W.l.o.g., we consider node vk,i at level i. If

1Cache networks are primarily used to minimize access latency.
2During every time period T , data is always pushed towards the sink upon the first request.
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Table 3.1.: Summary of notations used in Chapter 3

Notation Description

yk number of data (bits) generated at node k

K Set of leaf nodes

δk,v reduction rate at node v, is the ratio of amount of output data to input
data

γ the QoI threshold

εvR per-bit reception cost of node v

εvT per-bit transmission cost of node v

εvC per-bit compression cost of node v

bk,v 1 if node v caches the data from leaf node k; otherwise 0

Sv storage capacity of node v

wca caching power efficiency

Rk request rate for data from node k

Iv set of leaf nodes that are descendants of node v

T time length that data are cached

φu upper bound of the objective function

L list of regions

R any sub-region in L
φR,u upper bound on the objective function in sub-region R
φR,l lower bound on the objective function in sub-region R
ǫ difference between the upper and lower bound

wR,l
i lower bound on auxiliary variable wi in sub-region R

wR,u
i upper bound on auxiliary variable wi in sub-region R

wj
bc jth candidate variable for branching

wb chosen branching variable

w∇
b value at which the variable is branched

bt bilinear terms

lft linear fractional terms

Tbt set of bilinear terms (bt)

Tlft set of linear fractional terms (lft)

data yk is not cached from vk,i up to the sink node (level 0), i.e., bk,j = 0 for j = 0, · · · , i,

the cost is incurred due to receiving, transmitting and compressing the data (Rk−1) times,

which is captured by the first term in (3.3), the second term is 0. Otherwise, the (Rk − 1)

requests are served by the cached copy at vk,i, the corresponding caching and transmission

cost serving from vk,i are captured by the second term in (3.3), and the corresponding

reception, transmission and compression cost from vk,i−1 upto sink node is captured by the

first term. Note that the first time cost of reception, transmission and compressing the data

from leaf node to vk,i is already captured by (3.2). We present a simple but illustrative

example to explain the above equations.

Example 1. We consider a network with one leaf node and one sink node, i.e., k = 1 and

h(k) = 1. Then the cost in (3.2) becomes EC
1 = y1f(δ1,0)δ1,1 + y1f(δ1,1), where the first

and second terms capture the reception, transmission and compression cost for data y1 at
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the sink node and the leaf node, respectively. The cost in (3.3) is ER
1 =

y1(R1 − 1)

[
f(δ1,0)δ1,1(1− b1,0) + δ1,0δ1,1b1,0

(
wcaT

R1 − 1
+ ε1T

)]

︸ ︷︷ ︸
Term 1

+ y1(R1 − 1)

[
f(δ1,1)(1− b1,0 − b1,1) + δ1,1b1,1

(
wcaT

R1 − 1
+ ε1T

)]

︸ ︷︷ ︸
Term 2

,

where Term 1 and Term 2 capture the costs at the sink node and the leaf node, respectively.

To be more specific, there are three cases: (i) data y1 is cached at sink node 0, i.e., b1,0 = 1

and b1,1 = 0 (since we only cache one copy); (ii) data y1 is cached at leaf node 1, i.e.,

b1,0 = 0 and b1,1 = 1; and (iii) data y1 is not cached, i.e., b1,0 = b1,1 = 0. We consider these

three cases in the following.

Case (i), i.e., b1,0 = 1 and b1,1 = 0, Term 2 becomes 0 and Term 1 reduces to y1(R1 −

1)δ1,0δ1,1b1,0(
wcaT
R1−1+ε1T ) since all the (R1 − 1) requests are served from sink node. This

indicates that the total energy cost is due to caching the data for time period T and

transmitting it (Rk − 1) times from the sink node to users that request it.

Case (ii), i.e., b1,0 = 0 and b1,1 = 1, Term 1 becomes y1(R1−1)f(δ1,0)δ1,1, which captures

the reception, transmission and compression costs at sink node 0 for serving the (R1 − 1)

requests. Term 2 becomes y1(R1 − 1)δ1,1b1,1

(
wcaT
R1−1 + ε1T

)
, which captures the cost of

caching data at the leaf node and transmitting the data (Rk − 1) times from the cached

copy to the sink node. The sum of them is the total cost to serve (R1 − 1) requests.

Case (iii), i.e., b1,0 = b1,1 = 0, ER
1 = y1(R1 − 1)f(δ1,0)δ1,1 + y1(R1 − 1)f(δ1,1), which

captures the reception, transmission and compression costs at sink node 0 and leaf node 1

for serving the (R1 − 1) requests since there is no cached copy in the network.

The total energy consumed in the network is Etotal,

Etotal(δ, b) ,
∑

k∈K

(
EC

k + ER
k

)
, (3.4)

where δ = {δk,i, ∀k ∈ K, i = 0, · · · , h(k)} and b = {bk,i, ∀k ∈ K, i = 0, · · · , h(k)}. Our

objective is to minimize the total energy consumption of the network with a QoI constraint

for end users by choosing the compression ratio vector δ and caching decision vector b in

the network G. Therefore, the optimization problem is,

min
δ,b

Etotal(δ, b) (3.5a)

s.t.
∑

k∈K

yk

h(k)∏

i=0

δk,i ≥ γ, (3.5b)
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∑

k∈Cv

bk,h(v)yk

h(v)∏

j=h(k)

δk,j ≤ Sv, ∀ v ∈ V, (3.5c)

h(k)∑

i=0

bk,i ≤ 1, ∀k ∈ K, (3.5d)

0 < δk,i ≤ 1, ∀k ∈ K, i = 0, . . . , h(k), (3.5e)

bk,i ∈ {0, 1}, ∀k ∈ K, i = 0, . . . , h(k), (3.5f)

where h(v) is the depth of node v in the tree. The first constraint is the QoI constraint,

i.e., the total data available at the sink node [3]. The second constraint is on total amount

of data that can be cached at each node. The third constraint is that at most one copy of

the generated data should be cached on the path between the leaf node and the sink node.

The fourth constraint indicates that the compression rate is between 0 and 1, whereas the

last constraint indicates that our decision (caching) variable bk,i is binary. In this thesis, we

define QoI as the total amount of data (bits) that are received at the sink node [2,3]. The

implicit assumptions with such a definition of QoI are that the data of all the leaf nodes

have equal priority and information depends on the number of bits that are received3.

However, it is possible that the data of one leaf node may have a higher priority when

compared to other leaf nodes. Furthermore, some leaf nodes may produce a small amount

of data (bits), but may have more information. For example, a single bit can be used to

represent whether a sensor has detected any volcanic activity in an area or not. For such a

setting, an alternative approach will be to include separate QoI constraints with different

QoI thresholds (γk) for each of the leaf node k. This will enable the system to assign

different priority to the leaf nodes and ascertain that more valuable information, such as

the aforementioned volcanic activity is accounted for, while enabling data compression to

reduce energy consumption.

The optimization problem in (3.5) is a non-convex MINLP problem with Θ continuous

variables, the δk,i’s and Θ binary variables, the bk,i’s where, Θ =
∑

k∈K h(k).

3.3.1. Properties

We first analyze the complexity of the problem given in (3.5) and show that it is NP-hard.

Theorem 3.1. The optimization problem in (3.5) is NP-hard.

Proof. We prove the hardness by a reduction of any given 0 − 1 knapsack problem (KP)

to a corresponding instance of (3.5). The KP is given as follows:

max
x

|K|∑

k=1

vkxk

3The larger the number of bits, the more will be the information.
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s.t.

|K|∑

k=1

wkxk ≤W,

xk ∈ {0, 1}, ∀k ∈ K. (3.6)

where |K| is the number of items, xk is a boolean variable that shows whether item k is

stored in the knapsack or not, wk is the weight of the item, vk is the value of the item and

W is the knapsack capacity.

In the corresponding instance of (3.5), the processing tree has two levels; that is, the tree

has |K| number of leaf nodes, which can generate data, and the sink node where only the

sink node can choose to cache data generated by the leaf nodes. Furthermore, the threshold

γ is set to γ =
∑

k∈K yk that enforces all the δ’s to be one so that the constraint in (3.5b)

can always be satisfied and thus be removed. We also set the cache size at the sink node

to be W and the caching decisions of bk, ∀k ∈ {1, · · · , |K|} and the data sizes from all leaf

nodes yk, ∀k ∈ {1, · · · , |K|} are one-to-one correspondent with xk, ∀k ∈ {1, · · · , |K|} and

wk, ∀k ∈ {1, · · · , |K|} of the knapsack problem, respectively. The sum EC
k in (3.4) becomes

a constant since all δ’s have been set to 1. As for the ER
k in (3.3) can be reduced to:

ER
k =

1∑

i=0

{
yk(Rk − 1)f(1)

}
− bk

(
1∑

i=0

{
yk(Rk − 1)f(1)

}
− yk(Rk − 1)

(
wcaT

Rk − 1
+ εkT

))
.

(3.7)

Note that the first term in the above is a constant and can be removed from the objective

function. By setting the caching cost in the instance of (3.5) to zero, (3.7) becomes:

ER
k = −bk

(
yk(Rk − 1)

{
1∑

i=0

f(1)− εkT

})
. (3.8)

For the given value of vk in the knapsack problem, we choose yk, Rk, εkT so that (3.8) is

given by:

ER
k = −bkck. (3.9)

where ck = yk(Rk − 1)
{∑1

i=0 f(1) − εkT
}
≥ 0 as f(1) ≥ εkT . As a result, solving the

corresponding instance of (3.5) provides the solution to the knapsack problem. As the

latter is NP-hard, so is (3.5).

Remark 3.1. The objective function Etotal defined in (3.5) is monotonically increasing in

the number of requests Rk for all k ∈ K provided that δ and b are fixed.

Notice that (3.2) is independent of Rk and (3.3) is linear in Rk, and its multipliers are

positive. Hence, for any fixed b and δ, (3.4) increases monotonically with Rk.
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Remark 3.2. Given a fixed network scenario, if we increase the number of requests Rk

for the data generated by leaf node k, then these data will be cached closer to the sink

node or at the sink node, if there exists enough cache capacity, to reduce the overall energy

consumption.

For fixed δ, observe from (3.3) that energy consumption decreases if the cache is moved

closer to the root since the nodes deep in the tree do not need to retransmit.

3.3.2. Relaxation of Assumptions

In our model, we make several assumptions for the sake of simplicity. In the following, we

discuss the relaxation of these assumptions.

While we assume that the network is structured as a tree, this assumption can be easily

relaxed as long as there exists a simple fixed path from each leaf node to the sink node.

The tree structure represents a simple topology that captures the key parameters in the

optimization formulation without the complexity introduced by a general network topology.

Furthermore, for simplicity, we assume that all parameters across the nodes are identical,

which is not necessary as seen from the cost function. We also assume that only leaf nodes

generate data. However, our model can be extended to allow intermediate nodes to generate

data at the cost of added complexity.

3.4. Variant of Spatial Branch-and-Bound Algorithm

In this section, we present a variant of the Spatial Brand-and-Bound algorithm (V-SBB).

Instead of solving the MINLP problem (3.5) directly, we use V-SBB to solve a standard

form of the original MINLP. We refer the reader to Appendix A.1 for an introduction to

the Symbolic Reformulation [1] method that reformulates the MINLP (3.5) into a standard

form needed by V-SBB.

Definition 3.1. An MINLP problem is said to be in a standard form if it can be written

as

min
w

wobj

s.t. Aw = b,

wl ≤ w ≤ wU ,

wk ≡ wiwj , ∀(i, j, k) ∈ Tbt,

wk ≡ wi/wj , ∀(i, j, k) ∈ Tlft, (3.10)

where the vector of variables w consists of continuous and discrete variables in the original

MINLP. The sets Tbt and Tlft contain all relationships that arise in the reformulation. A

and b are a matrix and a vector of real coefficients, respectively. The index obj denotes the
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position of a single variable corresponding to the objective function value within the vector

w.

Theorem 3.2. The non-convex MINLP problem (3.5) can be transformed into a standard

form.

Due to space constraints, we relegate detailed reformulations (see Appendix A.1 for

details of symbolic reformulation) and standard form of (3.5) to Appendix A.2.

Here, we give an example to illustrate the above reformulation process.

Example 2. Consider the same network in Example 1, the non-convex MINLP problem

becomes

min
δ,b

Etotal(δ, b) = EC
1 + ER

1

s.t. y1δ1,0δ1,1 ≥ γ,

b1,0, b1,1 ∈ {0, 1},

b1,0y1δ1,0δ1,1 ≤ S0,

b1,1y1δ1,1 ≤ S1,

b1,0 + b1,1 ≤ 1. (3.11)

δ1,0δ1,1 is a bilinear term. Based on symbolic reformulation rules, a new bilinear auxiliary

variable wbt
1,0 needs to be added. The first constraint in (3.11) is then transformed into

y1w
bt
1,0 ≥ γ, which is linear in auxiliary variable wbt

1,0. Similarly, we add wlft
1,0 for linear-

fractional term δ1,1/δ1,0 that appears in f(·). b1,0δ1,0δ1,1 in the third constraint of (3.11) is

a tri-linear term. Since δ1,0δ1,1 is replaced by wbt
1,0, we obtain a bilinear term b1,0w

bt
1,0. Again,

based on symbolic reformulation rules, b1,0w
bt
1,0 is replaced by a new auxiliary variable wbt

1,0.

Similarly we add new auxiliary variables w̃b
1,1, w̃

bt
1,0, w̃

lft
1,0 and w̃lft

1,1. The objective function

in (3.11) can be then expressed as a function of these new auxiliary variables. Therefore,

the standard form of (3.11) is

min
δ,b

wobj

s.t. y1w
bt
1,0 ≥ γ,

b1,0, b1,1 ∈ {0, 1},

y1w
bt
1,0 ≤ S0,

y1w̃
bt
1,1 ≤ S1,

b1,0 + b1,1 ≤ 1,

wbt
1,0 = δ1,1 × δ1,0,

wlft
1,0 = δ1,1/δ1,0,

wbt
1,0 = b1,0 × w

b
1,0,
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w̃bt
1,1 = b1,1 × δ1,1,

w̃bt
1,0 = δ1,1 × b1,0,

w̃lft
1,0 = b1,0/δ1,1,

wlft
1,0 = b1,0w

lft
1,0,

w̃lft
1,1 = b1,1/δ1,1,

wobj = y1ε1Rδ1,1 + ε1T y1w
bt
1,0 + y1ε1Cw

lft
1,0 − y1ε1Cδ1,1 + y1ε1Rε1T y1δ1,1 + y1ε1C/δ1,1−

y1ε1C + y1(R1 − 1)

(
ε1Rδ1,1 + ε1Tw

bt
1,0 − ε1Cδ1,1 + ε1Cw

lft
1,0 − ε1Rw̃

bt
1,0 − ε1Tw

bt
10+

ε1Cw̃
bt
1,0 − ε1Cw

lft
1,0

)
+ y1(R1 − 1)ε1T + y1wcaTw

bt
1,0 + y1(R1 − 1)

(
ε1R − ε1C+

ε1T δ1,1 + ε1C/δ1,1 − ε1Rb1,0 − ε1Cb1,0 − ε1T w̃
bt
1,0 − ε1Cw̃

lft
1,0 − ε1Rb1,1 + ε1Cb1,1−

ε1T w̃
bt
1,1 − ε1Cw̃

lft
1,1

)
. (3.12)

Through this reformulation, the non-convex and non-linear terms in the original problem

are transformed into bilinear and linear fractional terms that can be easily used to compute

the lower bound of each region in V-SBB, which are discussed in details later. This is the

reason V-SBB requires reformulating the original problem into a standard form.

Theorem 3.3. Reformulated problem and the original MINLP are equivalent.

The proof is available in [1, Section 2, page 460].

Due to the reformulation, the number of variables in the reformulated problem is larger

than in the original MINLP. In the following, we show that the number of auxiliary variables

that arise from symbolic reformulation is bounded.

Theorem 3.4. The number of auxiliary variables in the symbolic reformulation is O(n2),

where n = 2Θ is the number of variables in the original formulation.

Proof. From [83], a way to transform a general form optimization problem into a stan-

dard form (3.10) is through basic arithmetic operations on original variables. To be more

specific, any algebraic expression results from the basic operators including the five basic

binary operators, i.e., addition, subtraction, multiplication, division and exponentiation,

and the unary operators, i.e., logarithms, etc. Therefore, in order to construct a standard

problem consisting of simple terms corresponding to these binary or unary operations, new

variables need to be added corresponding to these operations. From the symbolic reformu-

lation process [83–85], any added variable results from the basic operations between two

(including possibly the same) original variables or added variables. Hence, based on the

basic operations, there are at most n2 combinations of these variables, given that there are

n variables in the original problem (3.5). Therefore, the number of added variables in the

symbolic reformulation is bounded as O(n2).

In the remainder of this section, we present the V-SBB to solve the equivalent problem.
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Algorithm 3.1 Variant of Spatial Branch-and-Bound (V-SBB)

Step 1: Initialize φu :=∞ and L to a single domain
Step 2: Choose a sub-region R ∈ L using least lower bound rule
if L = ∅ Go to Step 6
end if
if for chosen region R, φR,l is infeasible or φR,l ≥ φu − ǫ Go to Step 5
end if
Step 3: Obtain the upper bound φR,u

if upper bound cannot be obtained or if φR,u > φu Go to Step 4
else φu :=φR,u and, from the list L, delete all sub-regions S ∈ L such that φS,l ≥ φu−ǫ
end if
if φR,u − φR,l ≤ ǫ Go to Step 5
end if
Step 4: Partition R into new sub-regions Rright and Rleft

Step 5: Delete R from L and go to Step 2
Step 6: Terminate Search
if φu =∞ Problem is infeasible
else φu is ǫ-global optimal
end if

3.4.1. Our Variant of Spatial Branch-and-Bound

The proposed spatial Branch-and-Bound method is a variant of the method proposed in [83]

and is primarily tuned for solving our optimization problem (A.2) that is also the solution

of (3.5). Our algorithm is different from [83] because

❼ We do not use any bounds tightening steps since it does not always guarantee faster

convergence [86] and in case of our problem slowed down the process.

❼ By eliminating the bounds tightening step, we do not need to calculate the lower

bound φR,l again separately and utilize the lower bound obtained in Step 2 for the

chosen region R, hence reducing the computational complexity of the algorithm.

Algorithm 3.1 provides an overview of the steps involved in spatial Branch-and-Bound

algorithm. We describe some of the steps in Algorithm 3.1 in detail below.

Step 2: There are a number of approaches that can be used to choose a sub-region R from

L [87]. Here we use the least lower bound rule, i.e., we choose a sub-region R ∈ L that

has the lowest lower bound among all the sub-regions, since it is a widely used and well

researched method. The lower bound can be obtained by solving a convex relaxation of

the problem in (A.2). Since our optimization problem in (3.5) and (A.2) contains only

bilinear and linear fractional terms, we use McCormick linear over-estimators and under-

estimators [88] (see Appendix A.4) to obtain a convex relaxation of all such terms. The

resulting problem is then a Mixed Integer Linear Programming (MILP) problem that we

solve using the SCIP solver [79]. The SCIP solver is a fast and well known solver for MILP

problems. The sub-region with lowest lower bound is then used as the region to explore
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for an optimum. The chosen regions’ lower bound is used as φR,l. If the convex relaxation

is infeasible or if the obtained lower bound is higher than the existing upper bound φu of

the problem, we fathom or delete the current region by moving to step 5.

Step 3: In step 3, we calculate the upper bound φR,u for the sub-region R chosen in Step

2. This can be done in a number of ways (see [83]), here we use a local MINLP solver,

such as Bonmin [76] to obtain a local minimum for the sub-region since it performed better

in terms of time than using local non-linear programming optimization with fixed discrete

values or added discreteness constraints in our simulation settings. If the upper bound for

the region φR,u cannot be obtained or if it is greater than φu then we move to Step 4 to

further divide the region and search further for a better solution. Otherwise we set it as

the current best solution φu and delete all the sub-regions whose lower bound is greater

than the obtained upper bound since all such regions cannot contain the ǫ-global optimal

solution. If the difference between the upper and lower bound for the region is within

the ε-tolerance, the current sub-region need not to be searched further, then we delete the

current sub-region by going to step 5, otherwise we move to step 4 for further searching in

the space.

Step 4: Step 4 also known as the branching/partitioning step helps in partitioning/dividing

a region to further refine the search for solution. In the branching step, we select a variable

for branching/partitioning as well as the value of the variable at which the region is to

be divided. There are a number of different rules and techniques that can be used for

branching (see [87] for detailed discussion). Here we use the variable selection and value

selection rule specified in [84], since it has been found efficient for our problem [84].

We branch on the variable that causes the maximum reduction in the feasibility gap

between the solution of the convex relaxation (solution of Step 2) and the exact problem.

To do so, the approximation error for the bilinear and linear fractional terms in (A.2) is

calculated using (3.13a) and (3.13b), respectively, where S2 means the value of the variable

obtained in Step 2. The variable with the maximum approximation error of all is chosen

as the branching variable, because that tightens the gap between the relaxation and the

exact problem [84]. This results in two candidate variables for branching i.e., wi and wj . If

one of the variables is discrete (binary in our case) and the other is continuous then choose

the discrete variable since it will result only in finite number of branches. However, if both

variables are of the same type (either binary or continuous), then the branching variable

is chosen using (3.14), i.e., we choose the variable wb that has its value wR
b closer to its

range’s midpoint. However, we first need to obtain the branching value for the candidate

variables w∇
bc (the value at which to branch). w∇

bc should be between the upper and lower

bounds of the variable in the region i.e. w∇,l
bc < w∇

bc < w∇,u
bc . The rules for the choice of the

branch point have been set in [84], however we restate them here for sake of completeness.

❼ Set w∇
bc to the value obtained in Step 2, i.e., w∇

bc := wS2

bc .

❼ If any feasible upper bound φu = φ(w∗
bc) has been obtained and w∇,l

bc < w∗
bc < w∇,u

bc ,
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Figure 3.3.: Candidate network topologies used in the experiments: (a) one sink node and
one leaf node; (b) one sink node and two leaf nodes; (c) one sink node, one
intermediate node and two leaf nodes; and (d) one sink node, two intermediate
nodes and four leaf nodes.

then w∇
bc := w∗

bc and stop the search for the value.

❼ If step 4 provided an upper bound φR,u for the subregion R, then w∇
bc := wR

bc.

After obtaining the branch point value, we have all the parameters required for (3.14) and

can then choose the variable for branching.

Eijk
bt = |wS2

k − w
S2

i wS2

j | ∀(i, j, k) ∈ Tbt (3.13a)

Eijk
lft =

∣∣∣∣w
S2

k −
wS2

i

wS2

j

∣∣∣∣ ∀(i, j, k) ∈ Tlft (3.13b)

wb = arg min

{∣∣∣∣0.5−
(
w∇
i − w

R,l
i

wR,u
i − wR,l

i

)∣∣∣∣,
∣∣∣∣0.5−

(
w∇
j − w

R,l
j

wR,u
j − wR,l

j

)∣∣∣∣

}
(3.14)

We partition the sub-region R into Rright and Rleft and add Rright, Rleft into our region

list L. Then we move to Step 5 and delete the sub-region R from the list L.

3.5. Convergence of Spatial Branch-and-Bound

The spatial branch-and-bound method guarantees convergence to ǫ-global optimality, which

has been proven in [86]. However, for sake of completeness, we restate the proof in Appendix

A.3.

3.6. Evaluation

We evaluate the performance of our joint communication, compression and caching (C3)

optimization framework through a series of experiments on several network topologies as

shown in Figure 3.3. Our goal is to study the performance of C3 and assess the improvement
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in energy efficiency that can be achieved by considering jointly the C3 costs when com-

pared with only optimizing C2 cost. While highlighting the performance gain is valuable,

characterizing the performance of C3 for different settings and parameters, and obtaining

the optimal caching locations and data compression rates is also of importance. We also

compare the performance of our V-SBB algorithm with several existing MINLP solvers

(methods).

The highlights of the evaluation results are:

❼ Our C3 joint optimization framework improves energy efficiency by as much as 88%

compared to the C2 optimization over communication and computation, or communi-

cation and caching. This reveals the significance of jointly considering the C3 energy

costs for networks with limited energy supply.

❼ The improvement in energy efficiency using the C3 framework increases since the

number of requests or the network size increase. Furthermore, as expected, data that

has the largest number of requests is cached at the sink node or closer to the sink

node in order to reduce communication costs.

❼ In comparison with different MINLP solvers, the V-SBB algorithm obtained an ǫ-

global optimal solution. We vary the network parameters and find that the V-SBB

is able to obtain a feasible solution for all settings. Existing solvers, such as SCIP,

Baron, Bonmin, and Antigone are faster in obtaining solutions. However, they are

either not able to obtain solutions in some of the settings or they provide an objective

value higher than that obtained by our algorithm, particularly for low QoI threshold

γ.

3.6.1. Methodology

To highlight the improvement in energy consumption by the C3 framework when compared

with that in C2, we define energy efficiency as:

Γ =
Etotal∗(C2)− Etotal∗(C3)

Etotal∗(C2)
× 100%, (3.15)

where Etotal∗(C3) and Etotal∗(C2) are the optimal energy costs under the C3 optimization

framework in (3.5) and the C2 optimization, respectively. Γ reflects the reduction of en-

ergy consumption for the C3 over the C2. While the increase in energy efficiency using C3

framework is noteworthy, characterizing the magnitude of the improvement and the param-

eters that significantly impact the energy efficiency is important. Such a characterization

identifies the operating regions for the network and accordingly facilitates development of

heuristic algorithms for specific operating regions.

Setup: We implement the V-SBB in Matlab on a Core i7 3.40 GHz CPU with 16 GB RAM.

Existing MINLP solvers like Bonmin (version 1.8.4), NOMAD (version 3.8.1), SCIP (version

4.0.0) and GA (version R2018a), are implemented with Opti-Toolbox [90], while Baron
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Table 3.2.: Characteristics of the solvers used in this chapter.

Solver Characteristics

Bonmin [76] A deterministic approach based on Branch-and-Cut method that
solves relaxation problem with Interior Point Optimization tool
(IPOPT), as well as mixed integer problem with Coin or Branch
and Cut (CBC).

NOMAD [77] A stochastic approach based on Mesh Adaptive Direct Search
Algorithm (MADS) that guarantees local optimality. It can be
used to solve non-convex MINLP and has a relatively good per-
formance.

GA [89] A meta-heuristic stochastic approach that can be tuned to solve
global optimization problems. We use Matlab Optimization Tool-
box ’s implementation.

SCIP [79] One of the fastest, non-commercial, deterministic global opti-
mization solver that uses branch-and-bound algorithm for solving
MINLP problems.

Baron [78] A deterministic global solver for MINLP problems that relies on
Branch and Cut approach for solving MINLP problems.

Antigone [80] A deterministic global solver for MINLP problems that relies on
special structure of the problem and uses Branch and Cut ap-
proach to solve the problem.

Table 3.3.: Parameters used in simulations.

Parameter Value Parameter Value (Joules)

yk 1000 εvR 50 × 10−9

Rk 100 εvT 200 × 10−9

wca 1.88 × 10−6 εcR 80 × 10−9

T 10s γ [1,
∑

k∈K yk]

(version 15.6.5) and Antigone (version 1.0) are implemented in GAMS. We summarize the

characteristics of these solvers in Table 3.2. Note that these solvers can be applied directly

to solve the original optimization problem in (3.5), while our V-SBB solves the equivalent

problem obtained through symbolic reformulation. The required reformulation is executed

by a Java based module and we derive the bounds on the auxiliary variables. The V-SBB

terminates when ǫ-optimality is obtained or a computation timer of 7200 seconds expires.

When the timer expires, the last feasible solution is taken as the best solution. We set

ǫ=0.001 in our study. Our simulation parameters are provided in Table 3.3, which are the

typical values used in the literature [3,30,31]. For the results shown in Tables 3.4, 3.5, 3.6,

and 3.7, we vary the QoI threshold value of γ in (3.5) between 1%, 25%, 50%, 75% and

100% of the total data produced by all leaf nodes.

3.6.2. Efficacy of the C3 Framework

Figure 3.4 shows that energy consumption increases with the number of requests for differ-
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Figure 3.4.: Total energy costs vs. number of requests.
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Figure 3.6.: Comparison of C3 and C2 optimization for the two nodes network in Figure 3.3.

ent network and compression settings. We observe that the total energy cost increases, as

the number of requests increases, as reflected in Remark 3.1. An important observation is

that the increase in the energy cost is large initially. However, when data are cached (i.e.,

when the number of requests reaches ≈ 40), the slope of energy increase decreases. This

is because transmission cost is usually much larger than caching cost (using the energy

proportional model for caching [4]) and once data are cached, the cached copy is used to

satisfy other requests.

We compare the total energy costs under the joint C3 optimization with those under the

C2 optimization. We consider two cases for the C2 optimization: (i) C2o (Communication

and Computation), where we set Sv = 0 for each node to avoid any data caching; (ii)

C2a (Communication and Caching), where we set γ =
∑

k∈K yk, which is equivalent to

δv = 1, ∀v ∈ V , i.e., no computation. Comparisons between C3, C2o and C2a are shown in

Figure 3.5. For the parameters that we used in the simulation, the energy cost for the C3

joint optimization is lower than that for C2o optimization for the same parameter setting.

This highlights the improvement that can be achieved using the C3 optimization. In other

words, although C3 incurs caching costs, it may significantly reduce communication and

computation energy costs, which in turn brings down total energy cost. Similarly, the C3

optimization outperforms C2a. Energy efficiency ((3.15)) is as much as 88% better for the

C3 optimization over C2. These trends are observed for other network topologies. Figure

3.6 shows the improvement of C3 over C2 for a two-node network. Energy efficiency is

as much as 70% better for the C3 versus C2. The results for three node and four nodes

networks are presented in Tables 3.5 and 3.6.
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Remark 3.3. Note that the above results are based on parameter values typically used in

the literature, as shown in Table 3.3. From our analysis, it is clear that the larger the ratio

between εvT and εvR, εvC , the larger the improvement provided by the C3 formulation.

3.6.3. Comparison with other solution techniques

We compare the performance of our proposed V-SBB with other MINLP solvers with

respect to:

Objective Function Value of the Best Solution

We compare the performance of the V-SBB with several solvers in the literature for the

networks in Figure 3.3. The results for two, three, four and seven-node networks are

presented in Tables 3.4, 3.5, 3.6 and 3.7, respectively. We observe that V-SBB, Bonmin,

SCIP, Antigone, and Baron achieve comparable performance for large values of γ, while

V-SBB outperforms other algorithms for small values of γ (which will be discussed in detail

later). Furthermore, Bonmin and SCIP cannot generate a feasible solution even when it

exists for some cases. For the case of Bonmin, there are a number of probable reasons

for such a feasibility related problem: a) For MINLP problems with non-convex functions,

Bonmin relies on heuristic options and does not guarantee ǫ-global optimality [91]. The

heuristics can cause such problems; b)The Branch-and-Cut method, used by Bonmin, is

based on the outer-approximation (OA) algorithm [92]. For MINLPs with non-convex

functions, OA constraints do not necessarily result in valid inequalities for the problem.

Hence the branch-and-cut method in Bonmin sometimes deletes search regions where a

better solution exists. NOMAD and GA in general yield a higher objective-function value

than V-SBB does. This is because both NOMAD and GA are based on a stochastic

approach that does not guarantee obtaining the ǫ-global optimum.

Algorithm Run Time

The time taken to obtain the best solution is important in practice. The time an algorithm

requires to obtain its best solution as discussed in Section 3.6.3 is shown in Tables 3.4-

3.7. It can be seen that Bonmin, Antigone, Baron and SCIP (when it is able to provide

a solution) are the fastest methods. However, Bonmin, and SCIP sometimes cannot find

a solution even though it exists. V-SBB takes longer to obtain a better solution, because

our reformulation introduces auxiliary variables and additional linear constraints. The

reformulation, however, also assists in obtaining an ǫ-global optimal solution.

Sensitivity

As shown in Tables 3.4 to 3.7, Bonmin is faster but does not produce feasible solutions in

some cases. Recall from (3.5) that the threshold value of QoI γ determines the acceptable

62



T
a
b
le

3.
6.
:
T
h
e
va
lu
e
o
f
ob

je
ct
iv
e
fu
n
ct
io
n
(O

b
j.
)
an

d
al
go

ri
th
m

ru
n
ti
m
e
fo
r
fo
u
r
n
o
d
e
n
et
w
or
k
.

S
o
lv
e
r

γ
=

1
γ
=

50
0

γ
=

10
00

γ
=

15
00

γ
=

20
00

O
b
j.

T
im

e
(s
)

O
b
j.

T
im

e
(s
)

O
b
j.

T
im

e
(s
)

O
b
j.

T
im

e
(s
)

O
b
j.

T
im

e
(s
)

B
o
n
m
in

20
0
×
10

−
5

0.
36

2
0
0
×
1
0−

4
0.
11

39
0
×
10

−
4

0.
11

60
0
×
10

−
4

0.
10

80
0
×
10

−
4

0.
16

N
O
M

A
D

30
0
×
10

−
5

11
2
.5

2
3
0
×
1
0−

4
97
.6
8

40
0
×
10

−
4

59
.8
6

60
0
×
10

−
4

52
.8

10
0
×
10

−
3

2.
28

G
A

40
0
×
10

−
5

1.
01

2
0
0
×
1
0−

4
24
.9
4

40
0
×
10

−
4

13
.0
2

12
0
×
10

−
3

27
.7

14
0
×
10

−
3

35
.3
3

S
C
IP

20
0
×
10

−
5

7.
05

2
0
0
×
1
0−

4
19

99
.4

40
0
×
10

−
6

2.
00

90
0
×
10

−
5

0.
43

40
0
×
10

−
4

0.
16

B
a
ro

n
20

4
×
10

−
5

0.
52

2
0
0
×
1
0−

4
2.
69

39
0
×
10

−
4

0.
89

60
0
×
10

−
4

0.
16

78
0
×
10

−
4

0.
1

A
n
ti
g
o
n
e

20
0
×
10

−
5

21
.2

2
0
0
×
1
0−

4
0.
26

42
0
×
10

−
4

0.
18

60
0
×
10

−
4

0.
1

78
0
×
10

−
4

0.
08

V
-S

B
B

20
0
×
10

−
5

45
2

2
0
0
×
1
0−

4
41

1
39

0
×
10

−
4

34
1

60
0
×
10

−
4

44
5

78
0
×
10

−
4

41
3

T
ab

le
3.
7
.:
T
h
e
b
es
t
so
lu
ti
on

to
th
e
ob

je
ct
iv
e
fu
n
ct
io
n
(O

b
j.
)
an

d
al
go

ri
th
m

ru
n
ti
m
e
fo
r
se
ve
n
n
o
d
es

n
et
w
or
k
.

S
o
lv
e
r

γ
=

1
γ
=

10
00

γ
=

20
00

γ
=

30
00

γ
=

40
00

O
b
j.

T
im

e
(s
)

O
b
j.

T
im

e
(s
)

O
b
j.

T
im

e
(s
)

O
b
j.

T
im

e
(s
)

O
b
j.

T
im

e
(s
)

B
o
n
m
in

20
0
×
10

−
6

0.
21

4
3
9
0
×
1
0−

4
0.
16

4
78

0
×
10

−
4

0.
59

3
11

7
×
10

−
3

0.
16

7
15

6
×
10

−
3

0.
21

2

N
O
M

A
D

40
0
×
10

−
5

43
3
.9
8
8

1
2
1
×
1
0−

3
38

1
.2
93

10
8
×
10

−
3

20
3.
69

6
15

8
×
10

−
3

61
.0
93

18
1
×
10

−
3

26
.0
31

G
A

43
0
×
10

−
4

44
.5
38

9
6
0
×
1
0−

4
30
.6
05

16
4
×
10

−
3

44
.9
70

22
6
×
10

−
3

17
.3
07

30
3
×
10

−
3

28
.8
20

S
C
IP

N
S

72
00

N
S

72
00

N
S

48
29
.4

N
S

72
00

15
6
×
10

−
3

1.
37

B
a
ro

n
20

0
×
10

−
6

0.
74

3
9
0
×
1
0−

4
10

02
.1
4

78
0
×
10

−
4

72
00

11
7
×
10

−
3

3.
41

15
6
×
10

−
3

0.
15

A
n
ti
g
o
n
e

20
0
×
10

−
6

3.
57

3
9
0
×
1
0−

4
0.
38

81
0
×
10

−
4

0.
34

11
7
×
10

−
3

0.
32

15
6
×
10

−
3

0.
13

V
-S

B
B

10
0
×
10

−
6

18
71
.4
03

3
9
0
×
1
0−

4
25
.1
01

78
0
×
10

−
4

30
.4
25

11
7
×
10

−
3

23
.7
06

15
6
×
10

−
3

19
.1
25

T
ab

le
3
.8
.:
C
om

p
ar
is
o
n
b
et
w
ee
n
V
-S
B
B

an
d
B
on

m
in

fo
r
sm

al
le
r
va
lu
es

of
γ
in

se
v
en

n
o
d
e
n
et
w
or
k
.

S
o
lv
e
r

γ
=
1

γ
=
3

γ
=
5

γ
=
8

γ
=
50

O
b
j.

T
im

e
(s
)

O
b
j.

T
im

e
(s
)

O
b
j.

T
im

e
(s
)

O
b
j.

T
im

e
(s
)

O
b
j.

T
im

e
(s
)

B
o
n
m
in

21
0
×
10

−
6

0
.2
14

3
00
×
1
0−

6
0
.2
11

30
0
×
10

−
6

0.
22

4
50

0
×
10

−
6

0
.2
3

21
0
×
10

−
5

0
.3
64

A
n
ti
g
o
n
e

20
1
×
10

−
6

3
.5
7

3
10
×
1
0−

6
2
.4
7

39
5
×
10

−
6

6.
53

51
0
×
10

−
6

15
.6
1

21
0
×
10

−
5

2
.7
1

B
a
ro

n
20

0
×
10

−
6

0
.7
4

3
10
×
1
0−

6
48

46
39

0
×
10

−
6

72
00

50
0
×
10

−
6

72
00

21
0
×
10

−
5

72
00

V
-S

B
B

10
0
×
10

−
6

18
7
1

1
50
×
1
0−

6
23

30
19

0
×
10

−
6

12
43

47
0
×
10

−
6

13
50

20
0
×
10

−
5

33
25

63



Table 3.9.: Infeasibility of Bonmin for networks in Figure 3.3.

Networks (a) (b) (c) (d)

# of test values 1000 2000 2000 4000

# of infeasible solutions 0 0 1 216

Infeasibility (%) 0 0 0.05 5.4

degree of data compression. When the γ value is small, the system can compress much

less of the data relative to the cases with large values of γ. For this reason, we further

examine the sensitivity of Bonmin performance with respect to γ as follows. We fix all

other parameters in Table III, except varying the value of γ. Specifically, for each network

topology (a) to (d) in Figure 3.3, we choose the maximal value of γ and then run the

Bonmin method for all possible integer values of γ from 1 to the maximal value. That

is, the number of tests (cases) for the Bonmin method equals the maximal value for each

topology. From the results in Table 3.9, we see that as the network size grows, the likelihood

that the Bonmin method fails to produce a feasible solution increases. For the topology

(d) and γ=4000, the Bonmin method does not yield feasible solutions in 5.4% of the test

cases.

Furthermore, from our extensive numerical experiments, Bonmin and Antigone (and

Baron to a much lesser extent) can quickly provide feasible solutions for smaller values

of γ, but we observe that the solutions by these techniques are not as good as those by

the proposed V-SBB in terms of the objective-function value of the solutions. Specifically

for the cases in Table 3.8, the energy consumption for the V-SBB outperforms Bonmin,

Antigone and Baron by as much as 52.45%, 50%, and 50%, respectively when searching

for an ǫ-global optimum. Note that Baron results for γ=5, 8 and 50 in Table 3.8 represent

the best solutions obtained so far by Baron when it reaches the run-time limit of 7200s (2

hours).

3.7. Summary and Conclusions

In this chapter, we investigated energy consumption among communication, computation

and caching (C3) with QoI guarantees in communication networks. We first formulated an

optimization problem that characterizes the energy costs for communication, computation

and caching. This optimization problem is an MINLP with non-convex functions, which

is hard to solve in general. We then proposed a variant of the spatial Branch-and-Bound

(V-SBB) algorithm, which can solve the MINLP with an ǫ-global optimality guarantee.

Numerically, we observed that the C3 optimization, which to the best of our knowledge

has not been investigated in the literature, leads to energy reduction as large as 88%

compared to either of the widely studied C2 optimizations. Furthermore, we compared the

performance of the proposed V-SBB with some of the other solvers and show the V-SBB

is a viable and robust approach for handling the C3 framework.
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4. A Distributed Bargaining-Theoretic

Approach For Multi-Objective

Resource Sharing

In the previous chapter, we studied the problem of minimizing network energy consumption

and showed how our single objective optimization framework can enable optimally choosing

caching locations and compression rates to reduce the energy consumption in the network.

With the increasing demands for resources particularly due to big data and machine learn-

ing, paradigms, such as cloud and edge computing are emerging as viable systems that can

provide the required resources. However, resources may belong to different service providers

that may have different objectives both in cloud and edge computing settings. Single ob-

jective optimization techniques cannot be used for such systems. Therefore, we direct our

attention to the multi-objective resource sharing problem. In this chapter, we model the

resource sharing problem among different SPs using Bargaining theory for a particular class

of concave utility functions. We show that we can achieve Pareto optimality and fairness by

relying on the Nash Bargaining Solution (NBS). Furthermore, since a distributed solution

is highly desirable in such a multi-service provider setting, we show that the strong duality

property holds and propose a distributed algorithm to compute the NBS. Our proposed so-

lution can be used in a number of distributed multi-service provider settings, such as cloud

and edge computing. However, for the current and remaining chapters in this thesis, we

apply our developed multi-objective frameworks to an edge computing setting to highlight

their efficacy.

4.1. Introduction

4.1.1. Motivation

Edge computing has received much attention recently since it enables on-demand provision-

ing of computing resources for different applications and tasks at the network edge [93–95].

One of the fundamental advantages of edge computing is that it can provide resources with

low latencies when compared with traditional cloud computing architectures [94]. The

demand for edge computing has further increased due to the advent of the Internet of

Things (IoT) [96] and wide-scale use of machine and deep learning [97] in different indus-

tries since these learning-based models can be trained and run using edge computing nodes
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with adequate storage and computing power [98].

A typical edge computing system consists of a large number of edge nodes that have

different types of resources. An edge service provider earns a utility for allocating resources

to different applications and guarantees to provide resources according to a Service Level

Agreement (SLA). However, when compared with cloud computing systems and data cen-

ters, resources in an edge setting are limited. Therefore, optimal management and use of

these limited resources has been an active area of research. Even when resources are avail-

able, allocating them to applications with the goal of maximizing overall edge SP utility is

a difficult problem. Furthermore, the aforementioned resource intensive paradigms, such

as deep learning, and data analytics exacerbate the problem by challenging the scalability

of traditional resource allocation techniques.

Edge SPs typically attempt to provide enough resources to different applications at their

edge nodes to meet the peak demand. However, it is highly likely that resources of one SP

will be over-utilized, while other edge SPs’ resources will be under-utilized. For example,

an edge SP provisions resources to an application at an edge node that is physically closest

to the requesting application. However, if the closest edge node has a resource deficit or is

overloaded, the request can be satisfied through edge SP’s next closest edge node that may

physically be at a distant location or deep in the network, such as at the data center [18].

This incurs high cost and a larger latency that may not be acceptable for delay constrained

applications. One possible solution is to create a shared resource pool with other SPs that

are physically closer [15–18]. Such a resource pool enables SPs to share and use resources

whenever needed to meet their dynamic demands. This cooperation and resource sharing

among SPs seem beneficial for them, because it is unlikely that resources of different SPs

will be simultaneously over-utilized.

As seen in Figure 4.1, SPs 2 and 3 satisfy all their applications and have resource surpluses

whereas SP 1 has resource deficits when working alone. However, through cooperation

among these SPs that results in a coalition, SP 1 satisfies its applications by using resources

of other coalition partners resulting in an improved utility for all partners. It is evident that

if different SPs do not share resources, different application requests cannot be satisfied.

Therefore, there is a need for frameworks that allow resource sharing among these SPs.

Furthermore, a distributed solution may be favorable when compared with a centralized

solution, because

❼ An attacker can target the central system causing the entire cooperation among SPs

to fail.

❼ SPs need to reach a consensus for choosing the central node that runs the resource

sharing algorithm.

❼ A centralized framework requires a large amount of information to be transmitted to

the central node.
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Figure 4.1.: Cooperation among SPs

4.1.2. Methodology and Contributions

We consider a number of edge SPs that share their resources to satisfy resource requests

of different applications as shown in Figure 4.1. We formulate such resource sharing and

allocation among SPs as a multi-objective optimization (MOO) problem, for which our goal

is to achieve a Pareto optimal solution. Furthermore, since Pareto solutions are spread over

the Pareto frontier [24], choosing a single solution among them is challenging. Since the

Nash Bargaining Solution (NBS) [28] guarantees the provision of a fair and Pareto optimal

solution to such an MOO problem, we develop a distributed NBS-based framework for

resource sharing and allocation. To the best of our knowledge, this is the first generic

NBS-based framework for resource sharing and allocation among edge SPs.

The main contributions of this chapter are:

1. We present an NBS based resource sharing framework for edge SPs with different

objectives in allocating resources to meet dynamic demands. Our framework also

considers practical engineering constraints, such as communication costs and resource

fragmentation1.

2. We show that SPs can benefit from sharing resources with other SPs, because they

can earn a higher profit and improve the average application satisfaction.

3. We show that the strong-duality property holds for the formulated problem, which

enables us to propose a distributed algorithm to obtain the NBS.

1We define resource fragmentation as the scenario in which an application receives resources from multiple
SPs rather than a single SP.
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4. We evaluate the performance of our algorithms using synthetic and real world traces.

Results show that resource sharing improves the utilities of SPs, increases resource

utilization and enhances average user (application) satisfaction. Furthermore, our

results show that the profit sharing among SPs is also fair.

The rest of this chapter is structured as follows. We present the system model in Sec-

tion 4.2. In Section 4.3, we describe our proposed NBS framework for resource sharing and

allocation. In Section 4.3.2, we present a distributed algorithm for obtaining the NBS. In

Section 4.4, we present simulation results of the proposed framework for different settings.

We present the summary and conclude the chapter in Section 4.5.

4.2. System Model

Let N = {1, 2, · · · , N} be the set of all edge SPs. We assume that each provider has a set

of J = {1, 2, · · · , J} types of resources, such as communication, computation and storage

resources. Cn = {Cn,1, · · · , Cn,J}, with Cn,j denoting the amount of type j resources

available at service provider n. Each service provider n has a set of native applications

Mn = {1, 2, · · · ,Mn}. The set of all applications that request resources from all service

providers is given byM =M1∪M2 · · ·∪MN , where we assumeMn∩Mn′ = ∅, ∀n 6= n′,

i.e., each application initially demands resources from only its native service provider. We

also define M to represent M\Mn and N to represent N\{n}. Every SP n ∈ N has a

request (requirement) matrix Rn,

Rn =

[
r
1
n
.
.
.

r
Mn
n

]
=

[ r1n,1 ··· ··· r1n,J. . . .
. . . .
. . . .

r
Mn
n,1 ··· ··· r

Mn
n,J

]
. (4.1)

Here rmn,j is the amount of resource j that application m ∈ Mn requires. When an

edge SP is working alone (no sharing of its resources with any other service provider),

its objective is to maximize its utility by allocating resources to its native applications.

A service provider n earns a utility um(xmn,j) by allocating xmn,j amount of resource j to

application m ∈ Mn, where the vector xm
n = [xmn,1, x

m
n,2, · · · , x

m
n,J ]

T . Table 4.1 contains

notations used throughout this chapter. We present the optimization formulation for a

single service provider in Section 4.2.1, followed by a formulation for the multiple service

provider problem in Section 4.2.2.

4.2.1. Problem Formulation for Single Service Provider

We first present the resource allocation problem for a stand-alone single service provider

(i.e., no resource sharing with other service providers). For a single SP n ∈ N , the allocation
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Table 4.1.: List of notations used throughout chapter 4

Notation Description

N , N, n Set, number and index of SPs

J , J, j Set, number and index of resources

M,M,m Set, number and index of applications

Mn Set of native applications at SP n

C Capacity vector of all SPs

Cn Capacity vector of SP n

Cn,j Capacity of resource j at SP n

Rn Request matrix at SP n

rmn,j Request of application m for resource j from SP n

xmn,j Allocation decision of resource j for application m at SP n

xm
n Allocation decision vector for applicationm at SP n when working alone,

i.e., xm
n = [xmn,1, · · · , x

m
n,J ]

T

Xn Allocation decision for SP n in the resource sharing case

X Allocation decision for the entire set of SPs

um(xmn,j) Utility SP n earns by allocating resource j to application m

um(xm
n ) Utility SP n earns by allocating vector of resources to application m

decision consists of vectors x1
n, · · · ,x

Mn
n . The optimization problem is:

max
x1
n,··· ,x

Mn
n

∑

m∈Mn

∑

j∈J

um(xmn,j), (4.2a)

s.t.
∑

m

xmn,j ≤ Cn,j , ∀j ∈ J , (4.2b)

xmn,j ≤ r
m
n,j , ∀ m ∈Mn, j ∈ J , (4.2c)

xmn,j ≥ 0, ∀ m ∈Mn, j ∈ J . (4.2d)

The goal of a single service provider in solving this single objective optimization (SOO)

problem, as mentioned earlier, is to maximize its utility by appropriately allocating re-

sources. The first constraint (4.2b) indicates that allocated resources cannot exceed ca-

pacity. The second constraint (4.2c) reflects that allocated resources should not exceed

the requested amounts. The last constraint, (4.2d) says the allocation cannot be negative.

However, it is possible that a service provider n may earn a larger utility by providing its

resources to applications of other service providers or it may not have sufficient resources

to satisfy requests of all its native applications. On the other hand, there may be another

service provider n′ ∈ N\{n} that may have a surplus of resources, which can be “rented”

by service provider n. Below, we discuss resource sharing among these service providers.

4.2.2. Problem Formulation For Multiple Service Providers

Allowing resource sharing among service providers, while considering their objectives, could

improve resource utilization and application satisfaction. By sharing its resources, edge SP
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n earns a utility,

um(zmj + xmn,j)− u
m(zmj )−Dm(xmn,j), (4.3)

after allocating xmn,j for application m ∈Mn′ where zmj =
∑

n′∈N xmn′,j . The term um(zmj +

xmn,j) − u
m(zmj ) captures the incremental increase in utility of provider n due to the allo-

cation of additional resource xmn,j . D
m(xmn,j) represents the communication cost of serving

application m ∈M by using resource of type j at provider n rather than its native service

provider n′. We assume that um(xmn,j) = um(xmn′,j) when x
m
n,j = xmn′,j . We also let

xm = [
∑

n∈N

xmn,1,
∑

n∈N

xmn,2, · · · ,
∑

n∈N

xmn,J ]
T ,

i.e., the total resource allocated to any application m ∈M is the sum of resources allocated

to application m from all service providers. The resource sharing and allocation algorithm,

based on resource requests and capacities of service providers, has to make an allocation

that optimizes utilities of all service providers n ∈ N and satisfy user requests as well. The

allocation decision is given by X = {X1,X2, · · · ,XN}, where Xn, ∀n ∈ N is given by:

Xn =

[
x
1
n
.
.
.

x
|M|
n

]
=

[ x1

n,1 ··· ··· x1

n,J. . . .
. . . .
. . . .

x
|M|
n,1 ··· ··· x

|M|
n,J

]
. (4.4)

Each service provider aims to maximize the sum of utilities by allocating its resources to

its native applications, and allocating resources to applications belonging to other service

providers. Each provider n ∈ N intends to solve the following optimization problem.

max
Xn

∑

m∈Mn

∑

j∈J

(
um(zmj + xmn,j)− u

m(zmj )
)
+
(∑

l∈M

∑

j∈J

(
ul(zlj + xln,j)− u

l(zlj)−

Dl(xln,j)
))
, (4.5a)

s.t.
∑

m

xmn,j ≤ Cn,j , ∀ j ∈ J , (4.5b)

∑

n′∈N

xmn′,j ≤ r
m
n,j , ∀ m ∈M, j ∈ J , (4.5c)

xmn,j ≥ 0, ∀ m ∈M, j ∈ J , (4.5d)

ul(zlj + xln,j)− u
l(zlj)−D

l(xln,j) ≥ 0, ∀l ∈M, j ∈ J . (4.5e)

The first part of (4.5a) represents the utility earned by an SP providing resources to the

native applications, whereas the second part describes the utility earned by providing re-

sources to non-native applications. Note that constraint (4.5b) indicates that the total

allocated resources cannot exceed the resource capacity of the service providers. (4.5c)

states that the total amount of resources allocated to any application using the resource-

sharing framework cannot exceed the amount of requested resources. (4.5d) says that
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the resource allocation cannot be negative whereas (4.5e) indicates that the incremental

increase in utility earned by providing resources to non-native applications should be non-

negative. z for any SP n in the objective function is fixed, and the objective function is

concave only in x. Solving (4.5) is not straightforward since each provider needs to consider

the allocations at other SPs.

4.2.3. Assumptions

In our model, we assume that each utility is a concave injective function for which the

inverse of the first derivative exists, such as (1 − e−x). Strictly speaking, our centralized

NBS framework requires only concave injective utility functions [20]. However, the existence

of the inverse of the first derivative is required for the distributed NBS (see details in

Section 4.3). The communication cost is a convex function, hence the objective function

in (4.5) is concave. All resources are fully utilized in the optimal solution. However, there

are enough resources to provide a positive utility to all service providers when sharing

resources. This is a realistic assumption as the demand for resources is usually more than

the supply. Furthermore, we assume that when SPs share resources, there exist solutions

that are better than when they are all working alone. This assumption can be relaxed, that

is, if certain SPs cannot improve their utility using the bargaining solution, they will not

participate in the resource sharing framework. However, the framework can still be used

for the remaining SPs.

4.2.4. Choice of Utility Function

While our framework works with any utility that satisfies the conditions in Section 4.2.3,

choosing a suitable utility function along with the communication cost can minimize re-

source fragmentation. Generally, a concave utility has a steeper slope at the start that

becomes flatter as more resources are allocated, i.e., the rate of increase in the payoff for

allocating resources reduces with an increase in the amount of allocated resources as shown

in Figure 4.2. It is evident that the utility drastically increases when the allocated resource

increases from 0 to 1. However, the rate of increase in the utility decreases as more re-

sources are allocated. This can serve as the impetus for SPs to allocate only a fraction

of the requested resources. For example, an SP may have two different applications each

asking for 2 units of resources. However, the SP only has two units of resources. Therefore,

ideally, the SP should allocate these two units to one of the applications (to reduce resource

fragmentation) and borrow resources from other SPs for the other application. However,

due to the aforementioned nature of concave utility, the SP may allocate 1 unit to each of

the applications in order to maximize its utility. Hence, both the applications do not get

all the resources they needed, and have to ask another SP for more resources, resulting in

resource fragmentation.

To avoid such problems, we propose that the utility function should consider the mini-
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Figure 4.2.: A utility function that does not consider requested resources.

mum acceptable amount of resources. The SPs should earn either zero utility or a negative

utility if the resources provided are not within ξ units of the requested resource rmn,j . Rather

than using a utility function, such as 1−e−(xm
n,j) that pays the SP even when a small amount

of resources are provided, it is better to use 1− e−(xm
n,j−rmn,j+ξ) that becomes positive only

when the allocation xmn,j is within ξ units of the requested resource rmn,j . If the allocation

xmn,j is not within ξ units of the requested resource rmn,j , the utility can be negative and will

serve as a penalty for not providing sufficient resources. Therefore, the SPs will attempt to

provide as many resources as possible to the applications to avoid a negative utility. Such a

utility along with the communication cost helps minimize the aforementioned fragmentation

problem.

4.3. NBS for Resource Sharing among SPs

As mentioned earlier, NBS is a Pareto optimal and fair solution in settings that involve

different players (SPs in our case) where each player has an objective to optimize. Therefore,

it can be used to solve our MOO problem in (4.5) since we have different SPs that need to

optimize their objectives and improve their utilities over what they would receive working

alone. We first specify the disagreement point for our bargaining problem. If the SPs

cannot come to an agreement, they can all start working alone. Hence the disagreement

point is the solution to the SOO problem given in (4.2) for all SPs. Let us denote the

solution to the SOO problem by d0n, ∀ n ∈ N . In the cooperative setting2, the utility

(represented by en in (2.19)) for an SP n ∈ N is given by:

U =
∑

m∈Mn

∑

j∈J

(
um(zmj + xmn,j)− u

m(zmj )
)
+
(∑

l∈M

∑

j∈J

(
ul(zlj + xln,j)− u

l(zlj)−D
l(xln,j)

))
.

Below, we present the centralized NBS algorithm.

2Service providers share resources among each other.
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4.3.1. Centralized NBS

We first present the optimization problem to obtain NBS for our N− SP bargaining game

[29] and then present its equivalent problem [20] that is computationally efficient to solve.

Theorem 4.1. The NBS for the MOO optimization problem in (4.5) can be obtained by

solving the following optimization problem:

max
X

N∏

n=1

( ∑

m∈Mn

∑

j∈J

(
um(zmj + xmn,j)− u

m(zmj )
)
+
(∑

l∈M

∑

j∈J

(
ul(zlj + xln,j)− u

l(zlj)−

Dl(xln,j)
))
− d0n

)
, (4.6a)

s.t. Constraints in (4.5b)− (4.5e), ∀n ∈ N ,
∑

m∈Mn

∑

j∈J

(
um(zmj + xmn,j)− u

m(zmj )
)
+
(∑

l∈M

∑

j∈J

(
ul(zlj + xln,j)− u

l(zlj)−

Dl(xln,j)
))

> d0n, ∀ n ∈ N . (4.6b)

Proof. The feasible set for the above optimization problem is convex and compact, since

all constraints are convex and the intersection of convex sets is a convex set. Furthermore,

based on our assumptions, there exist solutions (allocation and sharing decisions) that

provide better utility than the disagreement point d0n, ∀ n ∈ N . Hence, the solution of the

optimization problem in (4.6) is the NBS.

However, solving (4.6) is computationally complex and the problem is not always convex.

Therefore, there is a need for an efficient method to obtain the NBS. Toward this goal, we

transform the problem (4.6) into an equivalent problem as proposed in [20].

Corollary 1. The NBS for (4.5) is obtained by solving the following optimization problem:

max
X

N∑

n=1

ln

( ∑

m∈Mn

∑

j∈J

(
um(zmj + xmn,j)− u

m(zmj )
)
+
(∑

l∈M

∑

j∈J

(
ul(zlj + xln,j)− u

l(zlj)−

Dl(xln,j)
))
− d0n

)
, (4.7)

s.t. Constraints in (4.5b)− (4.5e), (4.6b), ∀n ∈ N .

Proof. SP utilities are concave and bounded above. Furthermore, the feasible set along

with the set of achievable utilities is convex and compact (due to the nature of utilities

and constraints). Utilities of SPs are also injective functions of the allocation decision.

Hence (4.7) is equivalent to (4.6) [20]. Since the logarithm of any positive real number is

concave [21], (4.7) is a convex optimization problem with a unique solution, which is the

NBS.

The centralized Algorithm 4.1 provides the allocation decision using NBS.
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Algorithm 4.1 Centralized Algorithm for NBS

Input: C,R, and vector of utility functions of all SPs u
Output: The optimal resource allocation X and payoffs of all SPs
Step 1:
for n ∈ N

d0n ← Objective function at optimal point in (4.2)
end for
Step 2: X← Solution of the optimization problem in (4.7)

L(X,α,β, ζ, γ, π) =
N∑

n=1

ln

( ∑

m∈Mn

∑

j∈J

(
um(zmj + xmn,j)− u

m(zmj )
)
+
(∑

l∈M

∑

j∈J

(
ul(zlj + xln,j)

− ul(zlj)−D
l(xln,j)

))
− d0n

)
+

∑

n∈N

∑

m∈M

∑

j∈J

γmn,jx
m
n,j +

∑

n∈N

∑

j∈J

αn,j(Cn,j −
∑

m∈M

xmn,j)+

∑

m∈M

∑

j∈J

βmj (rmj −
∑

n∈N

xmn,j) +
∑

n∈N

ζn

( ∑

m∈Mn

∑

j∈J

(
umn (zmj + xmn,j)− u

m(zmj )
)
+

(∑

l∈M

∑

j∈J

(
ul(zlj + xln,j)− u

l(zlj)−D
l(xln,j)

))
− d0n

)
+
∑

n∈N

∑

l∈M

∑

j∈J

πln,j

(
ul(zlj + xln,j)−

ul(zlj)−D
l(xln,j)

)
. (4.8)

4.3.2. Distributed Algorithm for NBS

While resource allocation and sharing using a central algorithm is feasible, it is desirable to

develop low overhead distributed algorithms. To obtain a distributed algorithm, we rely on

Duality Theory and use the Lagrangian function in (4.8). The dual optimization problem

is given by

min
α,β,ζ,γ,π

D(α,β, ζ, γ, π) = L
(
X∗(α,β, ζ, γ, π),α,β, ζ, γ, π

)
,

s.t. α,β, ζ, γ, π ≥ 0. (4.9)

X∗(α,β, ζ, γ, π) = argmax
X

L(X,α,β, ζ, γ, π). (4.10)

The dual problem can be solved iteratively using steepest gradient descent [23]3 as below:

αn,j [t+ 1] = αn,j [t]− φn,j
∂L(X,α,β, ζ, γ, π)

∂αn,j
,

3There are other variants of gradient descent (based on the descent direction), such as Newton’s method,
modified Newton’s method, and Gauss-Newton method. Details of these methods can be found in [23].
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βmj [t+ 1] = βmj [t]− ηmj
∂L(X,α,β, ζ, γ, π)

∂βmj
,

ζn[t+ 1] = ζn[t]− ωn
∂L(X,α,β, ζ, γ, π)

∂ζn
,

γmn,j [t+ 1] = γmn,j [t]− θ
m
n,j

∂L(X,α,β, ζ, γ, π)

∂γmn,j
,

πln,j [t+ 1] = πln,j [t]− ψ
l
n,j

∂L(X,α,β, ζ, γ, π)

∂πln,j
, (4.11)

where φn,j , η
m
j , ωn, θ

m
n,j and ψl

n,j are step sizes. A preliminary discussion on the step size

can be found in Chapter 2, whereas a detailed discussion can be found in [23].

Furthermore, the gradients in (4.11) are given below.

∂L(X,α,β, ζ, γ, π)

∂αn,j
= (Cn,j −

∑

m∈M

xmn,j),

∂L(X,α,β, ζ, γ, π)

∂βmj
= (rmj −

∑

n∈N

xmn,j),

∂L(X,α,β, ζ, γ, π)

∂ζn
=

( ∑

m∈Mn

∑

j∈J

(
um(zmj + xmn,j)− u

m(zmj )
)
+
(∑

l∈M

∑

j∈J

(
ul(zlj + xln,j)−

ul(zlj)−D
l(xln,j)

))
− d0n

)
,

∂L(X,α,β, ζ, γ, π)

∂γmn,j
= xmn,j ,

∂L(X,α,β, ζ, γ, π)

∂πln,j
=
(
ul(zlj + xln,j)− u

l(zlj)−D
l(xln,j)

)
. (4.12)

Since the objective function in (4.7) is a sum of strictly concave functions and the constraints

are partially separable, the dual problem can be solved in a distributed manner [99–101].

However, we need to show that strong duality holds4 to ascertain that the distributed

solution will be the same as the centralized solution. Unless certain conditions, such as

Slater’s constraint qualification are satisfied, strong duality is not guaranteed to hold for

our primal and dual problems [21]. However, we rely on Theorems B.1 and B.2 in Appendix

B to show that strong duality holds. We present the following theorem about the global

optimality of our distributed algorithm given in Algorithm 4.2.

Theorem 4.2. For any concave injective utility function for which the inverse of the first

derivative exists, the iterative distributed algorithm consisting of (4.10) and (4.11) con-

verges to the global optimal solution.

Proof. The proof is relegated to Appendix B.

4Strong duality implies that there is no duality gap between the primal and dual problem.
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Algorithm 4.2 Distributed Algorithm for NBS

Input: ∀ α0, β0, ζ0, γ0, π0, C,R, vector of utility function of all SPs u and X0

Output: The optimal resource allocation X and payoffs of all SPs
Step 0: t = 0, α[t]← α0, β[t]← β0, ζ[t]← ζ0, γ[t]← γ0,π[t]← π0,X[t]← X0

Step 1:
for n ∈ N

d0n ← Objective function at optimal point in (4.2)
end for
Step 2: t ≥ 1
while First order conditions [102] 6=true

Compute xmn,j [t+ 1] for m ∈M, j ∈ J and n ∈ N through (B.3) and (B.4);
Compute α[t+1], β[t+1], ζ[t+1], γ[t+1] and π[t+1] through (4.11) given X[t+1],

α[t], β[t], ζ[t], γ[t] and π[t]
end while

Protocol for Distributed Execution: All SPs first broadcast information regarding

resource requests from their native applications. Then any randomly chosen SP starts

allocating resources as specified in Step 2 of Algorithm 4.2 and updates the corresponding

Lagrangian multipliers. This SP then passes on the information about its allocation and

updated request matrix to the next SP (that has not yet allocated resources in the current

round5) that repeats the same procedure until all the SPs allocate their resources. This

process continues until the first order conditions given in [102] are met.

Algorithm scalability and run-time: To compute the NBS, we need to solve N + 1

convex optimization problems. In particular, we need to solve (4.2) for each of the N SPs

and then solve (4.7). The number of decision variables and the constraints in (4.2) depends

on the total number of resource types J and the total number of native applications at

SP n given by Mn = |Mn|. Hence, the number of decision variables and constraints in

(4.2) is bounded as O(MnJ). Similarly, the number of decision variables and constraints

in (4.7) depends on the total number of SPs N , resource types J , and total applications

M = |M|. Mathematically, constraints and decisions variables in (4.7) are bounded as

O(NMJ), where M is large when compared to N and J . The run-time of the algorithm

will increase with an increase in these parameters.

4.4. Simulation Results

We evaluate the performance of the proposed NBS framework for resource sharing and

allocation across several settings in Table 4.2. Each SP has three different resources, i.e.,

storage, communication and computation. The model can be extended to include other

resources/parameters. We study the proposed framework using both synthetic and real-

world data traces [103–105]. For the study with synthetic and real-world data traces,

5A single round consists of all the SPs executing Step 2 of Algorithm 4.2 once.
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Figure 4.3.: Comparison of centralized and distributed algorithms.

requests Rn and capacities Cn, ∀n ∈ N are randomly generated in the range (1, 5) using

Matlab’s randi command, which generates integers from a uniform distribution. The total

requests for each individual resource j at every SP is summed and represented by Γn,j . For

the SPs with resource deficit, the capacity is chosen randomly from a uniform distribution

in the range [0,Γn,j). For the SPs with resource surplus, the capacity is generated from

a uniform distribution in the range (Γn,j , κj/N
′), where N ′ represents the number of SPs

with resource surplus and κj represents the total amount of resource j deficit at resource

deficit SPs. This ensures that all the resources are utilized at the optimal solution.

Simulations were run in Matlab R2019a on a Core-i7 processor with 16 GB RAM. To solve

the optimization problems in (4.2) and (4.7), we use the OPTI-toolbox [106]. We primarily

used IPOPT (version 3.12.7) and fmincon (version R2016a) solvers from OPTI-toolbox. In

certain instances where IPOPT and fmincon did not converge to the optimal solution, we

used filtersd (version 1.0) from OPTI-toolbox. We evaluate our proposed algorithms

from the perspective of service providers that are interested in maximizing their utilities

and evaluate the impact of our framework on the applications. We define application request

satisfaction (RS) as the ratio of allocated resources to requested resources. Mathematically,

average RS for an SP n in the resource sharing case is defined as:

RSn =

∑
m∈Mn

∑
j∈J

(∑
n′∈N xm

n′,j

rmn,j

)

MnJ
× 100, (4.13)
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Table 4.2.: Simulation network settings for NBS based resource sharing framework.

Setting Parameters

1 N = 3,Mn = 3, ∀n ∈ N , J = 3

2 N = 3,Mn = 20, ∀n ∈ N , J = 3

3 (data traces) N = 3,Mn = 20, ∀n ∈ N , J = 3

4 N = 6,Mn = 6, ∀n ∈ N , J = 3

5 N = 6,Mn = 20, ∀n ∈ N , J = 3
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Figure 4.4.: Utility, average request satisfaction and average resource utilization for Setting
1 when SPs are working alone and using our proposed NBS framework.

um(xmn,j) = 1− e−(xm
n,j−rmn,j+ξ),

Dm(xmn,j) =
xmn,j
w

. (4.14)

The utility and communication cost functions used in simulation are given in (4.14).

Here ξ is set to 1 and weight w is randomly chosen from a uniform distribution in the

range (1, 104).
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Figure 4.5.: Utility, average request satisfaction and average resource utilization for Setting
2 when SPs are working alone and using our proposed NBS framework.
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Figure 4.6.: Utility, average request satisfaction and average resource utilization for Setting
4 when SPs are working alone and using our proposed NBS framework.

4.4.1. Simulations Results for Synthetic Data

Evaluation of the Distributed Algorithm

To validate our results related to strong duality and our proposed distributed algorithm,

we obtain the solution for Setting 1 in Table 5.2 using both the central and distributed

algorithm as shown in Figure 4.3. It is evident that both the algorithms converge to

the same solution, hence the duality gap is zero and our proposed distributed algorithm

converges to the global optimal.

Utility, Resource utilization, and Request Satisfaction

To highlight the efficacy of our framework, we compare its performance with a setting where

SPs work alone (i.e., no resource sharing among edge SPs). In particular, we compare SP

utility, the average resource utilization (averaged across all J resources) and the average

request satisfaction (averaged across requests of all SPs applications) in Figures 4.4 and 4.5

for settings 1 and 2 given in Table 4.2. When SP 1 works alone, it has a resource deficit

(evident from 100% average resource utilization and average request satisfaction of less

than 60% and 80% in Figures 4.4 and 4.5, respectively) whereas SPs 2 and 3 have resource

surpluses as indicated by less than 100% resource utilization and 100% request satisfaction.

The resource deficit results in a lower utility and request satisfaction for SP 1.

On the other hand, both SPs 2 and 3 achieve higher utilities by satisfying all their

applications when working alone. However, by using our resource sharing framework, the

utilities of all SPs improve since the framework provides optimal resource sharing. For the

case with three applications, average request satisfaction improves from 86.11% (working

alone) to 94.5% (resource sharing) whereas it improves from 90.9% to 99% for the 20

application case. It is worth noting that request satisfaction for native applications of SPs

2 and 3 reduce, because these SPs allocate their resources to applications of SP 1 for a

higher utility. Furthermore, resource utilizations also increase for the SPs with resource

surpluses since they share their resources with the SP with a resource deficit. Similar results
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Figure 4.7.: Utility, average request satisfaction and average resource utilization for Setting
5 when SPs are working alone and using our proposed NBS framework.
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Figure 4.8.: Utility, average request satisfaction and average resource utilization for Setting
3 when SPs are working alone and using our proposed NBS framework.

are obtained for settings 4 and 5 given in Table 4.2. For setting 4, the request satisfaction

improves from 82.96% to 92.94% using our proposed NBS framework, whereas request

satisfaction improves in setting 5 from 84.85% to 88.94% using our proposed resource

sharing framework. Table 4.3 summarizes request satisfactions and resource utilization in

different settings using our framework and when working alone.

4.4.2. Results for the Data Traces

We use trace files from fastStorage, Rnd [103], and materna [104, 105]. We simulate a

setting with three different SPs and randomly extract the normalized resource request

information related to the number of CPU cores, the amount of CPU and memory (RAM)

for 20 different resource requests from the fastStorage, Rnd and materna dataset. Since

the datasets do not provide the capacities of these service providers, we assign capacities

in such a way that fastStorage serves as the SP with resource deficit while the other two

have resource surpluses. Figure 4.8 shows SP utilities, request satisfaction and resource

utilization based on the data traces. It is evident that SP utilities improve and resource

utilizations increase to satisfy more applications by use of the proposed NBS framework.
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Table 4.3.: Summary of average request satisfaction and resource utilization in different
settings with and without the proposed NBS sharing framework.

Setting
Request Satisfaction(%) Resource Utilization(%)
Alone NBS Alone NBS

1 91.39 96.90 93.37 100

2 90.93 99.04 94.01 100

3 83.30 92.44 96.76 100

4 82.96 92.94 87.54 100

5 84.85 88.94 96.13 100

The average request satisfaction also increases from 83.3% to 92.44%.

4.4.3. Measure of Fairness

NBS is known for its fairness property [25]. In this section, we show the fairness of our

proposed NBS based resource sharing framework for different settings given in Table 5.2.

In particular, to measure the degree of fairness of the proposed sharing framework, we

calculate Jain’s index [107,108].

Definition 4.1. Jain’s Index (JI) is a number that rates the fairness of utilities assigned

to different SPs. Mathematically,

JI(p1, p2, . . . , pN )=
(
∑N

n=1 pn)
2

N
∑N

n=1 p
2
n

, (4.15)

where pn is the payoff or utility obtained by SP n. The value of JI ranges from 1
N

(worst

case) and 1 (best case).

Figure 4.9 shows Jain’s index for different settings given in Table 4.2. The value of Jain’s

index is larger than 0.95 in all the settings. Especially for scenarios with a large number

of applications, these results reveal that our framework enables fair sharing and allocation

of resources among SPs, as one would expect from the product-based fairness as offered by

the NBS.

As evident from the results above, our proposed resource sharing framework significantly

improves the performance of SPs. A higher number of application requests was satisfied by

using the available resources. The extent of improvement due to the framework depends

on the settings and parameters used.

4.5. Summary and Conclusions

The focus in this chapter was to optimally share and utilize available resources for satisfying

a larger number of applications and improving the utility of service providers. Using an edge

computing setting as an example, we showed that although edge SPs may have different
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Figure 4.9.: Jain’s index in different settings using our proposed NBS based resource sharing
framework.

utilities, they should share resources to improve their utilities and enhance application

request satisfaction. Resource sharing among SPs was formulated as a bargaining problem

and a resource-sharing framework using Nash Bargaining Solution (NBS) was proposed,

which was shown to be beneficial for the SPs. Since a centralized solution for obtaining the

NBS may not always be desirable, the strong duality property was proven, which enabled

us to develop a distributed algorithm for the NBS. Using synthetic and real-world data

traces, we demonstrated the effectiveness of the proposed framework. In particular, our

results confirmed that SPs with resource deficits and surpluses can improve their utilities

as well as application satisfaction by sharing resources.
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5. A Cooperative Game-Theoretic

Framework For Resource Sharing:

Uniform Priority Case

In the previous chapter, we proposed a resource sharing framework in which the service

providers had concave utilities and both native and non-native applications had uniform

priority. However, the service providers may not always have concave utilities. Further-

more, SPs may employ different resource sharing strategies. In this chapter, we present

a cooperative game-theoretic framework for resource sharing that relaxes the assumption

of concave utility function and requires service providers to have monotone non-decreasing

utility (concave, or non-concave). Hence, the framework is more generic than the NBS

based resource sharing framework at the cost of added complexity. Furthermore, the pro-

posed framework can support both uniform and non-uniform priority strategies employed

by SPs. However, we consider the uniform priority strategy in this chapter. We show that

our proposed resource sharing game is canonical and cardinally convex, hence the core is

non-empty. We then propose a centralized algorithm, Game-theoretic Pareto optimal allo-

cation with Uniform Priority (GPUS), that can provide allocations from the core, hence

guaranteeing stability of the coalition and Pareto optimality of the solution. Simulation

results show that our proposed framework results in higher utilities for the service providers

along with an increased application satisfaction.

5.1. Main Contributions

The main contributions of this chapter are:

1. We propose a cooperative game theory (CGT) based multi-objective resource sharing

and allocation framework for multiple SPs that guarantees Pareto optimality.

2. We show that the resource sharing and allocation problem can be modeled as a

canonical game with non-transferable utility. Furthermore, when SP objectives are

represented by monotone non-decreasing utilities, we show that our canonical game

is cardinally convex. Due to the convexity of the game, the core is non-empty and

the grand coalition formed by all service providers is stable.

3. We address the problem of obtaining an allocation from the core by proposing a cen-

tralized algorithm, Game-theoretic Pareto Optimal Allocation with Uniform Priority
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(GPUS), which can provide allocations from the core.

4. We evaluate the performance of our proposed framework through extensive experi-

ments and show that resource sharing can improve the utility of all service providers

and also increase user satisfaction.

The chapter is further structured as: Section 5.2 presents the system model, which is similar

to the system model presented in Chapter 4 with minor differences. It also presents the

resource sharing and allocation problem. Section 5.3 presents the theoretical properties of

the cooperative game used to obtain the Pareto optimal solution. Section 5.4 presents our

experimental results. Section 5.5 concludes the chapter.

5.2. System Model

Let N = {1, 2, · · · , N} be the set of all edge SPs. We assume that each provider has a set

of J = {1, 2, · · · , J} types of resources, such as communication, computation and storage

resources. Cn = {Cn,1, · · · , Cn,J}, with Cn,j denoting the amount of type j resources

available at service provider n. Each service provider n has a set of native applications

Mn = {1, 2, · · · ,Mn}. The set of all applications that request resources from all service

providers is given byM =M1∪M2 · · ·∪MN , where we assumeMn∩Mn′ = ∅, ∀n 6= n′,

i.e., each application initially demands resources from only its native service provider. We

also define M to represent M\Mn and N to represent N\{n}. Every SP n ∈ N has a

request (requirement) matrix Rn,

Rn =

[
r
1
n
.
.
.

r
Mn
n

]
=

[ r1n,1 ··· ··· r1n,J. . . .
. . . .
. . . .

r
Mn
n,1 ··· ··· r

Mn
n,J

]
. (5.1)

Here rmn,j is the amount of resource j that application m ∈ Mn requires. When an

edge SP is working alone (no sharing of its resources with any other service provider),

its objective is to maximize its utility by allocating resources to its native applications.

A service provider n earns a utility um(xmn,j) by allocating xmn,j amount of resource j to

application m ∈ Mn, where the vector xm
n = [xmn,1, x

m
n,2, · · · , x

m
n,J ]

T . Table 5.1 contains

notations used throughout the chapter. We present the optimization formulation for a

single service provider in Section 5.2.1, followed by a formulation for the multiple service

provider problem in Section 5.2.2.

5.2.1. Problem Formulation for Single Service Provider

We first present the resource allocation problem for a single, stand-alone provider (i.e., no

resource sharing with other providers). For each provider n ∈ N , the allocation decisions
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Table 5.1.: List of notations used throughout chapter 5

Notation Description

N , N, n Set, number and index of game players (service providers)

J , J, j Set, number and index of resources

M,M,m Set, number and index of applications

Mn Set of native applications at player (provider) n

S A coalition of game players (providers), where S ⊆ N
V Set of payoff vectors

v(S) Value of coalition S

C Capacity vector of all game players (providers)

Cn Capacity vector of player (provider)n

Cn,j Capacity of resource j at player (provider) n

Rn Request matrix at player (provider) n

rmn,j Request of application m for resource j from player (provider) n

xmn,j Allocation decision of resource j for application m at player (provider)
n

xm
n Allocation decision vector for application m at player (provider) n when

working alone

Xn Allocation decision for player (provider) n in the coalition

X Allocation decision for the entire coalition

um(xmn,j) Utility player (provider) n earns by allocating resource j to application
m

um(xm
n ) Utility player (provider) n earns by allocating vector of resources to

application m

GC Grand coalition

RS Request satisfiability

NTU Non-transferable utility

CGT Cooperative game theory

MOO Multi-objective optimization

SOO Single-objective optimization

consist of the vectors x1
n, · · · ,x

Mn
n . The optimization problem is:

max
x1
n,··· ,x

Mn
n

∑

m∈Mn

∑

j∈J

fm(xmn,j), ∀n ∈ N , (5.2a)

s.t.
∑

m

xmn,j ≤ Cn,j , ∀j ∈ J , (5.2b)

xmn,j ≤ r
m
n,j , ∀ m ∈Mn, j ∈ J , (5.2c)

xmn,j ≥ 0, ∀ m ∈Mn, j ∈ J . (5.2d)

The objective function fm(xmn,j) is required to be a monotonic, non-negative and non-

decreasing function. For illustration purposes in this thesis, we assume that:

fm(xmn,j) = um(xmn,j) +
xmn,j
rmn,j

,
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where the term
xm
n,j

rmn,j
captures the request satisfaction and um(.) is the non-decreasing and

non-negative utility the service provider earns by providing the resources to application m.

The first constraint (5.2b) indicates that allocated resources cannot exceed capacity. The

second constraint (5.2c) reflects that allocated resources should not exceed the requested

amounts. The last constraint, (5.2d) says the allocation cannot be negative. However, as

mentioned in the preceding chapter, it is possible that a service provider n may earn a

larger utility by providing its resources to applications of other service providers or it may

not have sufficient resources to satisfy requests of all its native applications. On the other

hand, there may be another service provider n′ ∈ N that may have a surplus of resources,

which can be “rented” by service provider n. Below, we discuss resource sharing among

these service providers.

5.2.2. Problem Formulation for Multiple Service Providers

Let us assume that an edge service provider n′ does not have sufficient resources to satisfy

all its native applications. Suppose that service provider n has a resource surplus. Allow-

ing resource sharing among such providers can improve resource utilization and application

satisfaction. It is worth mentioning here again that in this chapter’s formulation, SPs are

considered to employ the uniform priority strategy. Hence, an SP does not differentiate be-

tween its native and non-native applications. By sharing and allocating its type j resources

to a non-native application l, service provider n earns a non-decreasing and non-negative

net utility H l(xln,j), which in this chapter is assumed to be

H l(xln,j) =
(
ul(zlj + xln,j)− u

l(zlj)−D
l(xln,j)

)
, ∀l ∈M, n ∈ N\n′, (5.3)

where zlj =
∑

n′′∈N xln′′,j is the amount of resource j allocated already to application l by

providers other than n. ul(zlj + xln,j) − u
l(zlj) captures the incremental increase in utility

of provider n due to the allocation of additional resource xln,j . Dl(xln,j) represents the

communication cost of serving application l ∈ M by using resource of type j at provider

n rather than its native service provider n′. We assume that the communication cost is a

positive monotonic non-decreasing function.

To consider each provider and its native applications, let Fm(xmn,j) represent the utility

service provider n earns by allocating resource j to its native applications along with the

increase in request satisfaction due to provision of resources to its applications at different

service providers including itself. We assume:

Fm(xmn,j) = um(zmj + xmn,j)− u
m(zmj ) +

∑
n′∈N xmn′,j

rmn,j
. (5.4)

Note that Fm is also monotonic non-decreasing and non-negative. Furthermore, we implic-

itly assume that um(xmn,j) = um(xmn′,j), if x
m
n,j = xmn′,j . The latter assumption reflects that

different providers earn the same utility when allocating the same amount of resources of
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the same type to a given application, either locally or remotely. Furthermore,

xm = [
∑

n∈N

xmn,1,
∑

n∈N

xmn,2, · · · ,
∑

n∈N

xmn,J ]
T .

That is, the total resources allocated to any application m ∈ M is the sum of resources

allocated to it across all service providers. The resource sharing and allocation framework,

based on resource requests and capacities of service providers, has to make allocations that

optimize the utilities of all the service providers n ∈ N , while satisfying user requests as

well. The allocation decision is given by X = {X1,X2, · · · ,XN}, where Xn, ∀n ∈ N is

given by:

Xn =

[
x
1
n
.
.
.

x
|M|
n

]
=

[ x1

n,1 ··· ··· x1

n,J. . . .
. . . .
. . . .

x
|M|
n,1 ··· ··· x

|M|
n,J

]
. (5.5)

When service providers share resources, each service provider aims to maximize the

sum of utilities obtained by a) allocating resources to its native applications; b) allocating

resources to applications of other service providers; and c) improving the request satisfaction

of its applications by using its own resources or borrowing from other service providers

(when needed and possible). This is mathematically formulated for each SP n as the

following optimization problem:

max
Xn

∑

m∈Mn

∑

j∈J

Fm(xmn,j) +
∑

l∈M

∑

j∈J

H l(xln,j), (5.6a)

s.t.
∑

m

xmn,j ≤ Cn,j , ∀ m ∈M, j ∈ J , (5.6b)

∑

n′∈N

xmn′,j ≤ r
m
n,j , ∀ m ∈M, j ∈ J , (5.6c)

xmn,j ≥ 0, ∀ m ∈M, j ∈ J , (5.6d)

ul(zlj + xln,j)− u
l(zlj) ≥ D

l(xln,j), ∀l ∈M, j ∈ J , (5.6e)

where Fm(xmn,j) and H l(xln,j) are given in (5.3) and (5.4). Constraints (5.6b)-(5.6d) are

similar to those for the formulation in (5.2). (5.6e) indicates that the utility earned by shar-

ing resources must be higher than the communication cost. Since the utility uj , ∀n ∈ N

can differ for each application j, (5.6) for all providers n represents a multi-objective opti-

mization problem. However, each SP independently solving (5.6) is not the right approach

as the objective function (5.6a) for an SP n also depends on the allocation decisions and

strategies of other SPs. Therefore, we solve this problem by a game-theoretic approach as

follows.
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5.3. Game-Theoretic Solution

In this section, we first present general properties of our game and show that the resource-

sharing problem for multiple providers can be modeled as a canonical cooperative game

with non-transferable utility. We then show that the core is non-empty, by proving that

our canonical game is cardinally convex [109]. Finally, we propose our GPUS algorithm in

Section 5.3.2 to obtain allocations from the core.

5.3.1. General Game Properties

We model each service provider as a player in our game to obtain the optimal resource

sharing/allocation decision. Let N be the set of players that play the resource sharing and

allocation game. The value of coalition for the game players S ⊆ N is given by (5.7), where

FS is the feasible set for resource sharing and allocation given by, (5.6b)-(5.6e).

v(S) =
∑

n∈S

( ∑

m∈Mn

∑

j∈J

(
um(zmj + xmn,j)− u

m(zmj ) +

∑
n′∈S x

m
n′,j

rmn,j

)
+
(∑

l∈M

∑

j∈J

(
ul(zlj + xln,j)

− ul(zlj)−D
l
n(x

l
n,j)
)))

. (5.7)

The value of coalition given in (5.7) is generic and depends on the strategy employed by

SPs. In this chapter, as mentioned earlier, SPs employ the uniform priority strategy where

the SPs do not differentiate between their native and non-native applications.

Remark 5.1. A resource allocation and sharing problem (with multiple objectives) for the

aforementioned system model where the SPs employ the uniform priority strategy can be

modeled as a canonical cooperative game with NTU.

This is so because the stated problem satisfies the following two conditions.

❼ Characteristic form of payoff: Since the utility function in our formulated resource

sharing and allocation problem only relies on service providers that are part of the

coalition, the game or payoff function is of characteristic form.

❼ Superadditivity: Let S1, S2 ⊆ N where S1, S2 are non-empty and S1 ∩ S2 = ∅.

Hence, S1, S2 ⊂ (S1 ∪ S2). Superadditivity follows from the monotonic utility func-

tions.

Definition 5.1 (Cardinally convex games [109]). An NTU game is said to be cardinally

convex if ∀ S1, S2 ⊆ N :

V(S1) ∪ V(S2) ⊆ V(S1 ∪ S2) ∪ V(S1 ∩ S2). (5.8)

Theorem 5.1. Our canonical game with uniform priority strategy is cardinally convex.
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Proof. Let us consider two coalitions S1 and S2 that are non-empty subsets of N . Then

from superadditivity of the game,

V(S1) ∪ V(S2) ⊂ V(S1 ∪ S2). (5.9)

Furthermore, due to the non-negative and non-decreasing nature of the utility used,

V(S1 ∪ S2) ⊆ V(S1 ∪ S2) ∪ V(S1 ∩ S2). (5.10)

The proof follows.

Remark 5.2. The core of any convex game (N ,V) is non-empty [110] and large [27].

Remark 5.3. Our canonical cooperative game (N ,V) with NTU can be used to obtain the

Pareto-optimal solution for the multi-objective resource sharing problem for various service

providers that employ a uniform priority strategy.

The convexity of our game proves that the core is non-empty. However, obtaining an

allocation from the core is challenging, which we address in the following subsection.

5.3.2. Centralized GPUS Algorithm for Game-Theoretic Resource

Sharing

While the existence of the core, i.e., the core being non-empty, guarantees the grand coali-

tion is stable, finding a suitable allocation from the core is challenging since the core is

large. Algorithm 5.1 provides an allocation from the core1, by solving |N |+1 optimization

problems.

max
X

∑

n∈N

( ∑

m∈Mn

∑

j∈J

(
um(zmj + xmn,j)− u

m(zmj ) +

∑
n′∈N xmn′,j

rmn,j

)
+
(∑

l∈M

∑

j∈J

(
ul(zlj + xln,j)

− ul(zlj)−D
l
n(x

l
n,j)
)))

, (5.11a)

s.t. constraints in (5.6b)-(5.6e), ∀n ∈ N ,
( ∑

m∈Mn

∑

j∈J

(
um(zmj + xmn,j)− u

m(zmj ) +

∑
n′∈N xmn′,j

rmn,j

)
+
(∑

l∈M

∑

j∈J

(
ul(zlj + xln,j)−

ul(zlj)−D
l
n(x

l
n,j)
)))

≥ v({n}), ∀n ∈ N . (5.11b)

Theorem 5.2. The allocation decision obtained using Algorithm 5.1 lies in the core.

Proof. To prove the theorem, we need to show that the allocation decision obtained using

Algorithm 5.1: a) is individually rational; b) is group rational; and c) no players have the

1Provided that the aforementioned assumptions hold.
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Algorithm 5.1 Centralized Game-Theoretic Pareto Optimal Allocation for Uniform Pri-
ority Strategy (GPUS)

Input: R,C, and vector of utility functions of all players u
Output: X, u(X)
Step 1: u(X)←0, X←0
Step 2:
for n ∈ N

v({n})←Optimal objective function value in (5.2)
end for
Step 3: X←Optimal allocation decision from (5.11)

u(X)←Payoff vector from (5.11)

incentive to leave the grand coalition and form another sub-coalition S ⊂ N .

Individual Rationality: For each player n ∈ N , the solution obtained using (5.11)

is individually rational due to the constraint in (5.11b). Hence the solution obtained as a

result of Algorithm 5.1 is individually rational.

Group Rationality: The value of the grand coalition v{N} as per (5.11a) is the sum

of utilities of all players that they achieve from the payoff vector V(N ) ⊆ R|N |. Hence the

allocation obtained from Algorithm 5.1 is group rational.

Furthermore, due to superadditivity of the game and monotonic non-decreasing nature

of the utilities, no subgroup of players have an incentive to form a smaller coalition. Hence

Algorithm 5.1 provides a solution from the core.

In Algorithm 5.1, we first solve the single objective optimization problem (5.2) for all

players n ∈ N . We then solve the problem in (5.11) that provides the allocation from the

core. v({n}) in (5.11b) is the payoff a player n receives when working alone.

Algorithm scalability and run-time: To obtain an allocation from the core, GPUS

solves N + 1 optimization problems. In particular, we need to solve (5.2) for each of the

N SPs and then solve (5.11). The number of decision variables and the constraints in

(5.2) depends on the total number of resource types J and the total number of native

applications at SP n given by Mn = |Mn|. Hence, the number of decision variables and

constraints in (5.2) is bounded as O(MnJ). Similarly, the number of decision variables and

constraints in (5.11) depends on the total number of SPs N , resource types J , and total

applications M = |M|. Mathematically, constraints and decisions variables in (5.11) are

bounded as O(NMJ), where M is large when compared to N and J . The run-time of

GPUS will increase with an increase in these parameters.

Remark 5.4. The optimization problems in (5.2), and (5.11) are non-convex. The hard-

ness of these problems depend on the parameters, such as the utility functions, requests

and capacities. Therefore, it is difficult to evaluate the hardness of these problems, but the

instances we consider in Section 5.4 are easily solved using existing solvers. If the optimal

solutions are not found for (5.2), and (5.11), then the allocation will not be from the core.
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Table 5.2.: Simulation network settings for cooperative game-theoretic resource sharing
framework with uniform priority strategy.

Setting Parameters

1 N = 3,Mn = 3, ∀n ∈ N , J = 3

2 N = 3,Mn = 20, ∀n ∈ N , J = 3

3 N = 6,Mn = 6, ∀n ∈ N , J = 3

4 N = 6,Mn = 20, ∀n ∈ N , J = 3

In the next section, we evaluate the performance of our resource sharing and allocation

framework.

5.4. Experimental Results

We evaluate the performance of the proposed resource sharing and allocation framework

for a number of settings as shown in Table 5.2. Each player has three different types

of resources (J = 3), i.e., storage, communication and computation. Without loss of

generality, the model can be extended to include other type of resources/parameters. We

used linear and sigmoidal utilities (see (5.13)) for all the players. However, the results hold

for any monotone non-decreasing utility.

um(xmn,j) = axmn,j + c, ∀n ∈ N , j ∈ J ,m ∈M, (5.12)

um(xmn,j) =
1

1 + e−µ(xm
n,j−rmn,j)

, ∀n ∈ N , j ∈ J ,m ∈M. (5.13)

µ is chosen to be 0.01, whereas the constants a and c were randomly generated in the range

(1, 5) using Matlab’s randi command that produces integers from a uniform distribution.

Requests Rn and capacities Cn, ∀n ∈ N are also generated using Matlab’s randi command

in the range (1, 5). The total requests for each individual resource j at every SP is summed

and represented by Γn,j . For the SPs with resource deficit, the capacity is chosen randomly

from a uniform distribution in the range [0,Γn,j), whereas for the SPs with resource surplus,

the capacity is randomly generated from a uniform distribution in the range (Γn,j , 3Γn,j ].

The simulations were run in Matlab R2019b on a Core-i7 processor with 16 GB RAM.

To solve the optimization problems, we used the OPTI-toolbox [106]. We primarily used

IPOPT (version 3.12.7) and fmincon (version R2016a) solvers from OPTI-toolbox. In cer-

tain instances where IPOPT and fmincon did not converge to the optimal solution, we

used filtersd (version 1.0) from OPTI-toolbox. Below, we provide detailed experimental

results.

5.4.1. Verification of Game-Theoretic Properties

In Table 5.3, we present results for a 3-player 20-application game that verify different game

theoretic properties, such as individually rationality, group rationality, super additivity and
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Figure 5.1.: Player utilities working alone and in the grand coalition (GC) with the proposed
GPUS algorithm for a 3 SP - 3 Application Settings
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Figure 5.2.: Player utilities working alone and in the grand coalition (GC) with the proposed
GPUS algorithm for a 3 SP - 20 Application Settings

show that the obtained allocation is from the core. The payoff all players receive in the

grand coalition, i.e., {1, 2, 3} is at least as good as players 1, 2 and 3 working alone. This

shows that the solution obtained using the GPUS algorithm for the grand coalition is

individually rational. Similarly, the value of the coalition is the sum of payoff all players

receive, hence our solution is group rational. Furthermore, with an increase in the coalition

size, value of coalition also increases. Hence, the grand coalition has the largest value, which

shows the super-additive nature of the game. Also, no set of players has any incentive to

divert from the grand coalition and form a smaller sub-coalition. Hence, the grand coalition

is stable and the allocation we obtain using Algorithm 5.1 is from the core. Similar results

can be obtained for other settings given in Table 5.2.

5.4.2. Efficacy of the Resource Sharing Framework

Figure 5.1 shows the utility of SPs, request satisfaction and resource utilization for setting 1

given in Table 5.2 when working alone and in the grand coalition using GPUS algorithm. SP

94



6 SPs - 6 Applications

Alone GPUS

0

20

40

60

80

100

R
e
q

u
e
s
t 

S
a
ti

s
fa

c
ti

o
n

6 SPs - 6 Applications

Alone GPUS

0

20

40

60

80

100

R
e
s
o

u
rc

e
 U

ti
li
z
a
ti

o
n

6 SPs - 6 Applications

Alone GPUS

0

20

40

60

80

100

120

U
ti

li
ty

 A
c
h

ie
v
e
d

SP 1 SP 2 SP 3 SP 4 SP 5 SP 6

Figure 5.3.: Player utilities working alone and in the grand coalition (GC) with the proposed
GPUS algorithm for a 6 SP - 6 Application Settings
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Figure 5.4.: Player utilities working alone and in the grand coalition (GC) with the proposed
GPUS algorithm for a 6 SP - 20 Application Settings

1 had resource deficit (100% resource utilization and less than 100% request satisfaction)

whereas SPs 2 and 3 had resource surplus, evident from 100% request satisfaction and

less than 100% resource utilization when working alone. Since SP 1 has to improve its

application request satisfaction by providing resources to as many applications as possible,

it forms a coalition with the other 2 SPs, which is beneficial to all the coalition members.

SPs 2 and 3 share their resources with applications of SP 1. This results in increased

utilities for both SPs 2 and 3 and an improved application request satisfaction for SP 1

when forming the grand coalition using GPUS algorithm. For setting 1 in Table 5.2, the

average user satisfaction using GPUS improved from 75.71% (when working alone) to 100%,

whereas it improved from 94.4% to 100% in setting 2. Similarly for settings 3 and 4, the

average request satisfaction improved from 84.4% to 100% and 91.4% to 100%, respectively.

Details of request satisfaction and resource utilization are summarized in Table 5.4. For the

communication cost and available resources used in the simulation, request satisfaction for

all the SPs is 100% as seen in Figures 5.1, 5.2, 5.3 and 5.4. However, if the communication

cost significantly increases, then resource sharing will be constrained due to constraint

(5.6e). Therefore, it may not always be possible to achieve 100% request satisfaction even
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Table 5.3.: Player payoffs using the proposed GPUS algorithm in different coalitions for a
3 player - 20 application game

Coalition Player 1 Player 2 Player 3 Value of coalition

{1} 582.74 0.00 0.00 582.74

{2} 0 88.61 0 88.61

{3} 0 0 88.59 88.59

{1, 2} 582.75 217.26 0 800.02

{1, 3} 583.40 0 218.17 801.57

{2, 3} 0 116.80 116.73 238.41

{1, 2, 3} 589.36 137.94 88.59 815.90

Table 5.4.: Summary of average request satisfaction and resource utilization in different
settings with and without the proposed GPUS Algorithm.

Setting
Request Satisfaction(%) Resource Utilization(%)
Alone GPUS Alone GPUS

1 75.71 100 57.98 88.75

2 94.46 100 73.66 81.87

3 84.54 100 79.2 92.54

4 91.73 100 85.94 94.82

if resources are available at other SPs due to communication costs.

5.4.3. Measure of Fairness

Figure 5.5 shows Jain’s index for different settings given in Table 5.2. It is evident that

the proposed framework is fair. For the settings with 3 SPs, Jain’s index is lower than for

settings with 6 SPs. This can be attributed to the parameter settings as well as larger

request and SP diversity in settings 3 and 4.

It is evident from our results that the use of resource sharing and allocation is beneficial

for service providers. By allowing different service providers to cooperate, the utility of

Fairness measure of the proposed GPUS Algorithm
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Figure 5.5.: Jain’s Index in different settings using our proposed GPUS algorithm.
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service providers increases and resources are utilized in an optimal manner. All the service

providers in the game have the incentive to work together and use their resource capacities

in the best possible way.

5.5. Summary and Conclusions

In this chapter, we proposed a cooperative game theory based framework for resource

sharing and allocation among service providers. We showed that for a monotonic non-

decreasing utility, resource sharing among multiple service providers can be modeled as a

canonical game with non-transferable utility. We proved that the game is convex, hence

the core of the game is non-empty. To address the problem of obtaining an allocation

from the core for uniform priority strategy, we proposed GPUS, a centralized algorithm,

that was proven to provide an allocation decision from the core. Simulation results showed

that our proposed framework improves utility of service providers. Furthermore, request

satisfaction of users also improved.
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6. A Cooperative Game-Theoretic

Framework For Resource Sharing:

Non-Uniform Priority Case

In the previous chapter, we presented a cooperative game-theoretic framework for resource

sharing that only requires service providers to have monotone non-decreasing utility (con-

cave, or non-concave). However, we only explored the uniform priority strategy employed

by the SPs. We slightly modify our cooperative game-theoretic framework in this chapter

and allow the SPs to employ the non-uniform priority strategy. We show that despite

the change in the strategy employed by SPs, the game is canonical, and cardinally con-

vex with a non-empty core. We propose two algorithms, Game-theoretic Pareto optimal

allocation (GPOA) and Polyandrous-Polygamous Matching based Pareto Optimal Alloca-

tion (PPMPOA) that provide allocations from the core. Experimental results confirm that

our proposed resource sharing framework improves utilities of SPs and application request

satisfaction.

6.1. Main Contributions

The main contributions of this chapter are:

1. We modify/extend the cooperative game-theoretic resource sharing framework pro-

posed in Chapter 5 and enable the SPs to employ the non-uniform priority strategy.

2. We prove that the game is super-additive and cardinally convex, hence the core is

non-empty and the grand coalition of all SPs is stable.

3. We propose a distributed Game-theoretic Pareto Optimal Allocation (GPOA) algo-

rithm that provides an allocation from the core.

4. To reduce the number of SPs (with resource surplus) that provide resources to ap-

plications of a specific resource deficit SP, we also propose Polyandrous Polygamous

Matching based Pareto Optimal Allocation (PPMPOA) algorithm that matches re-

source deficit SPs with resource surplus SPs. Using evaluations we show that PPM-

POA:

❼ Provides an allocation from the core.
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❼ Results in a stable matching [27].

❼ Reduces the number of SPs that provide resources to applications of resource

deficit SPs.

5. We also prove that the proposed algorithms, GPOA and PPMPOA, enforce truth-

telling, i.e., no service provider has the incentive to misreport its capacity and native

application requests.

6. We evaluate the performance of our proposed framework by extensive simulations.

We verify the game-theoretic properties of our proposed approach by showing that the

game is super-additive and the core is non-empty, i.e., our obtained solutions are from

the core and satisfy properties, such as individual rationality, group rationality, and

stability. We also show that the resource sharing and allocation framework improves

the utilities of game players. Furthermore, our framework also improves application

(user) satisfaction.

The rest of the chapter is structured as follows. Section 6.2 describes our system model

and presents the resource sharing/allocation optimization problem. Section 6.3 discusses

the game-theoretic solution and Section 6.4 presents our experimental results. Section 6.5

concludes the chapter.

6.2. System Model

The basic system model for this chapter is the same as chapter 5. However, the value of

a coalition is slightly different. This is because the SPs employ the non-uniform priority

strategy where all the SPs allocate resources to native applications and share the surplus

resources with resource deficit SPs. For sake of completeness and to make the chapter

self-sufficient, we restate the system model below.

Let N = {1, 2, · · · , N} be the set of all edge SPs. We assume that each provider has

a set of J = {1, 2, · · · , J} types of resources, such as communication, computation and

storage resources. Cn = {Cn,1, · · · , Cn,J}, with Cn,j denoting the amount of type j resource

available at service provider n. Each service provider n has a set of native applications

Mn = {1, 2, · · · ,Mn}. The set of all applications that request resources from all service

providers is given byM =M1∪M2 · · ·∪MN , where we assumeMn∩Mn′ = ∅, ∀n 6= n′,

i.e., each application initially demands resources from only its native service provider. We

also define M to represent M\Mn and N to represent N\{n}. Every SP n ∈ N has a

request (requirement) matrix Rn,

Rn =

[
r
1
n
.
.
.

r
Mn
n

]
=

[ r1n,1 ··· ··· r1n,J. . . .
. . . .
. . . .

r
Mn
n,1 ··· ··· r

Mn
n,J

]
, (6.1)
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Here rmn,j is the amount of resource j that application m ∈ Mn requires. When the

service provider works alone1, its objective is to maximize its utility by allocating resources

to its native applications and improving application satisfaction. A service provider n

earns a non-negative monotonically non-decreasing utility um(xmn,j) by making allocation

decision xmn,j , i.e., allocating xmn,j amount of resource j to application m ∈ Mn, where

xm
n = [xmn,1, x

m
n,2, · · · , x

m
n,J ]

T . Table 6.1 summarizes the notations used throughout the

chapter. We present the optimization formulation for a single service provider in Section

6.2.1, followed by the multiple service provider problem in Section 6.2.2.

6.2.1. Problem Formulation for Single Service Provider

We first present the resource allocation problem for a single, stand-alone provider (i.e., no

resource sharing with other providers). For each provider n ∈ N , the allocation decisions

consist of the vectors x1
n, · · · ,x

Mn
n . The optimization problem is:

max
x1
n,··· ,x

Mn
n

∑

m∈Mn

∑

j∈J

fm(xmn,j), (6.2a)

s.t.
∑

m

xmn,j ≤ Cn,j , ∀j ∈ J , (6.2b)

xmn,j ≤ r
m
n,j , ∀ m ∈Mn, j ∈ J , (6.2c)

xmn,j ≥ 0, ∀ m ∈Mn, j ∈ J . (6.2d)

The objective function fm(xmn,j) is required to be a monotonic, non-negative and non-

decreasing function. For illustration purposes in this thesis, we assume that:

fm(xmn,j) = um(xmn,j) +
xmn,j
rmn,j

,

where the term
xm
n,j

rmn,j
captures the request satisfaction and um(.) is the non-decreasing and

non-negative utility the service provider earns by providing the resources to applications.

The first constraint in (6.2b) indicates that the allocated resources cannot exceed capacity.

The second constraint in (6.2c) indicates that the allocated resources should not exceed the

required amounts. The last constraint, (6.2d) requires the allocation to be non-negative.

The goal of this single-objective optimization problem for every provider, as mentioned

earlier, is to maximize its utility by allocating available resources to its native applications

and improving application satisfaction. We note that this single-provider formulation does

not consider the following. For example, it is possible that a service provider n may

earn a larger utility by providing its resources to applications of other service providers.

Furthermore, provider(s) may not have sufficient resources to satisfy requests of all its native

applications, while other providers may have resource surpluses that can be “rented” and

utilized by other providers. As mentioned earlier, in this chapter we focus on strategies

1Not borrowing from or renting out its resources to any other service provider.
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Table 6.1.: List of notations used throughout chapter 6

Notation Description

N , N, n Set, number and index of game players (service providers)

J , J, j Set, number and index of resources

M,M,m Set, number and index of applications

Mn Set of native applications at player (provider) n

S A coalition of game players (providers), where S ⊆ N
V Set of payoff vectors

v(S) Value of coalition S

G1 Set of players (providers) with resource deficit

G2 Set of players (providers) with resource surplus

C Capacity vector of all game players (providers)

Cn Capacity vector of player (provider)n

Cn,j Capacity of resource j at player (provider) n

Rn Request matrix at player (provider) n

rmn,j Request of application m for resource j from player (provider) n

xmn,j Allocation decision of resource j for application m at player (provider)
n

xm
n Allocation decision vector for application m at player (provider) n when

working alone

Xn Allocation decision for player (provider) n in the coalition

X Allocation decision for the entire coalition

Xn Allocation decision for player (provider) n in the coalition excluding its
native applications

n′
Xn Allocation decision for applications of player (provider) n′ at player

(provider) n in the coalition s

um(xmn,j) Utility player (provider) n earns by allocating resource j to application
m

um(xm
n ) Utility player (provider) n earns by allocating vector of resources to

application m

GC Grand coalition

RS Request satisfiability

TU Transferable utility

NTU Non-transferable utility

CGT Cooperative game theory

MOO Multi-objective optimization

SOO Single-objective optimization

where each service provider allocates resources to its native applications and then shares

any remaining resources with other service providers who are not able to fully satisfy their

native applications. These aspects are considered in the following section.

6.2.2. Multiple Service Provider Setting

Let us assume that a service provider n′ does not have sufficient resources to satisfy all its

native applications. Suppose that service provider n has a resource surplus, after allocating
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its resources to its native applications that can be shared with n′. Allowing resource sharing

among such providers can improve resource utilization and application satisfaction. By

sharing and allocating its type j resources to application l, service provider n earns a

non-decreasing and non-negative net utility H l(xln,k), which is assumed to be

H l(xln,j) =
(
ul(zlj + xln,j)− u

l(zlj)−D
l(xln,j)

)
, ∀l ∈M, n ∈ N\n′, (6.3)

where zlj =
∑

n′′∈N xln′′,j is the amount of resource j allocated already to application l by

providers other than n. ul(zlj + xln,j) − u
l(zlj) captures the incremental increase in utility

of provider n due to the allocation of additional resource xln,j . Dl(xln,j) represents the

communication cost of serving application l ∈Mn′ by using resource of type j at provider

n rather than its native service provider n′. We assume that the communication cost is a

positive monotonic non-decreasing function.

To consider each provider and its native applications, let Fm(xmn,j) represent the utility

service provider n earns by allocating resource j to its native application m along with the

increase in request satisfaction due to provision of resources to its applications at different

service providers including itself. We assume:

Fm(xmn,j) = um(xmn,j) +

∑
n′∈N xmn′,j

rmn,j
. (6.4)

Note that Fm is monotonic non-decreasing and non-negative. Furthermore, we implicitly

assume that um(xmn,j) = um(xmn′,j), if x
m
n,j = xmn′,j . The latter assumption reflects that

different providers earn the same utility when allocating the same amount of resources of

the same type to a given application, either locally or remotely. Furthermore,

xm = [
∑

n∈N

xmn,1,
∑

n∈N

xmn,2, · · · ,
∑

n∈N

xmn,J ]
T .

That is, the total resources allocated to any application m ∈ M is the sum of resource

allocated to it across all service providers. The resource sharing and allocation framework,

based on resource requests and capacities of service providers, has to make allocations that

optimize the utilities of all the service providers n ∈ N while satisfying user requests as

well. The allocation decision is given by X = {X1,X2, · · · ,XN}, where Xn, ∀n ∈ N is

given by:

Xn =

[
x
1
n
.
.
.

x
|M|
n

]
=

[ x1

n,1 ··· ··· x1

n,J. . . .
. . . .
. . . .

x
|M|
n,1 ··· ··· x

|M|
n,J

]
. (6.5)

When service providers share resources, each service provider aims to maximize the

sum of utilities obtained by a) allocating resources to its native applications; b) allocating

resources (if available) to applications of other service providers; and c) improving the
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request satisfaction of its applications by using its own resources or borrowing from other

service providers (when needed and possible).

max
Xn

∑

m∈Mn

∑

j∈J

Fm(xmn,j) +
∑

l∈M

∑

j∈J

H l(xln,j), (6.6a)

s.t.
∑

m

xmn,j ≤ Cn,j , ∀ m ∈Mn, j ∈ J , (6.6b)

∑

m′

xm
′

n,j ≤ max{Cn,j −
∑

m∈Mn

rmn,j , 0}, ∀ m′ ∈M, j ∈ J , (6.6c)

∑

n′∈N

xmn′,j ≤ r
m
n,j , ∀ m ∈M, j ∈ J , (6.6d)

xmn,j ≥ 0, ∀ m ∈M, j ∈ J , (6.6e)

ul(zlj + xln,j)− u
l(zlj) ≥ D

l(xln,j), ∀l ∈M, j ∈ J , (6.6f)

where F j(.) and H l(.) are given in (6.3) and (6.4). Constraint in (6.6b) indicates that

resources allocated to native application cannot exceed the capacity. Constraint in (6.6c)

ascertains that resources are first allocated to native applications and only surplus re-

sources are shared with non-native applications. It also indicates that resources allocated

to non-native applications cannot exceed the surplus capacity (if any). Constraint in (6.6d)

indicates that allocated resources cannot exceed the requests whereas constraint in (6.6e)

indicates that the allocation decision is non-negative. Constraint in (6.6f) indicates that

the utility earned by sharing resources must be higher than the communication cost.

Since the utility uj , ∀n ∈ N can differ for each application j, (6.6) for all providers n

represents a multi-objective optimization problem. However, solving (6.6) is not straight-

forward since the objective function (6.6a) for an SP n also depends on the allocation

decisions and strategies of other SPs. Therefore, we solve this problem by a game-theoretic

approach as follows.

6.3. Game-Theoretic Solution

In this section, we first present general properties of our game and show that the resource-

sharing problem for multiple providers employing the non-uniform priority strategy can

be modeled as a canonical cooperative game with non-transferable utility. We then show

that the core is non-empty, by proving that our canonical game is cardinally convex [109].

Finally, we propose algorithms in Section 6.3.2 to obtain allocations from the core.

6.3.1. General Game Properties

We model each service provider as a player in our game to obtain the optimal resource

sharing/allocation decision. Let N be the set of players that play the resource sharing and

allocation game. The value of coalition for the game players S ⊆ N is given by (6.7), where
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FS is the feasible set for resource sharing and allocation.

v(S) =
∑

n∈S
X∈FS

( ∑

m∈Mn

∑

j∈J

(
um(xmn,j) +

∑
n′∈S x

m
n′,j

rmn,j

)
+
(∑

l∈M

∑

j∈J

(
ul(zlj + xln,j)− u

l(zlj)−

Dl
n(x

l
n,j)
)))

. (6.7)

Remark 6.1. A resource allocation and sharing problem (with multiple objectives) for the

aforementioned system model where the SPs employ non-uniform priority strategy can be

modeled as a canonical cooperative game with NTU.

This is so because the payoff is of characteristic form and the game is super-additive as

given below.

❼ Characteristic form of payoff: Since the utility function in our formulated resource

sharing and allocation problem only relies on service providers that are part of the

coalition, the game or payoff function is of characteristic form.

❼ Superadditivity: Let S1, S2 ⊆ N where S1, S2 are non-empty and S1 ∩ S2 = ∅.

Hence, S1, S2 ⊂ (S1 ∪ S2). Superadditivity follows from the monotonic utility func-

tions.

Theorem 6.1. Our canonical game with non-uniform priority is cardinally convex.

Proof. This can easily be proved using the arguments given in the proof of Theorem 5.1.

Since the game is cardinally convex, our canonical resource sharing game has a large

core.

Remark 6.2. Our canonical cooperative game (N ,V) with NTU can be used to obtain the

Pareto-optimal solutions for multi-objective resource sharing problem among many service

providers.

The convexity of our game proves that the core is non-empty. However, obtaining an

allocation from the core is challenging, which we address in the following subsection.

6.3.2. Proposed Algorithms

In the non-uniform priority strategy, as mentioned earlier, all the SPs first allocate resources

to their native applications. Once that is done, some of the SP may have resource surpluses

while the others may have resource deficits. The goal then for the SPs with resource surplus

is to achieve a larger utility for its available resources. The goal for the SPs with resource

deficit is to avail as many resources as possible for their applications. Therefore, we propose

two different algorithms in this section to achieve allocations from the core. However, the

two algorithms have a subtle difference in how they allocate resources of SPs with surpluses
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to applications of SPs with deficits. We first discuss our proposed Game-theoretic Pareto

Optimal Allocation (GPOA) that enables an SP with resource surplus to jointly consider all

the SPs with resource deficits when allocating resources. This means that GPOA enables

SPs with resource surpluses to maximize their utilities by considering all the applications.

We then describe our second algorithm, Polyandrous-Polygamous Matching based Pareto

Optimal Allocation (PPMPOA), that enables an SP with resource surplus to consider SPs

with resource deficits one by one when allocating resources. We show that both these

algorithms provide allocations from the core. Below we discuss these algorithms in detail.

Game-theoretic Pareto Optimal Allocation

We propose a computationally efficient algorithm, GPOA in Algorithm 6.1, that obtains a

Pareto-optimal allocation by solving N + |G2| optimization problems, where G2 represents

the set of players with resource surplus. Inputs are available resources/capacities, appli-

cation requests and utilities of all game players. The algorithm outputs an allocation. In

Step 1, utilities of players, the allocation decision, and vectors v, A and B are initialized.

v stores the utility each service provider achieves when working alone. A stores the utility

of players in G2 whereas B stores the utility increase due to request satisfaction of applica-

tions in resource deficit group G1. Step 2 calculates every player’s utility in the absence of

resource sharing, i.e., the single objective optimization problem in (6.2) is solved by every

player. To consider the resources allocated in Step 2, the remaining resource capacities and

requests for various applications C,R are updated and stored in C ′ and R′, respectively.

Step 4 divides players into two groups G1 (resource deficit) and G2 (resource surplus), on the

basis of updated capacities and requests. Step 5 allocates the shared resources of players

in G2 to players in G1. In step 6, the utility reflecting an increase in application satisfaction

for native applications of players in G1 is calculated using the allocation obtained in Step 5.

Below, we prove that the GPOA Algorithm given in Algorithm 6.1 provides an allocation

from the core.

Theorem 6.2. The solution obtained using GPOA lies in the core.

Proof. To prove the theorem, we need to show that a) utilities obtained using GPOA are

individually rational and group rational, and b) no group of players has the incentive to

leave the grand coalition to form another sub-coalition S ⊂ N .

Individual Rationality: For each player n ∈ N , v({n}) obtained by solving (6.2) is

the utility a player obtains by working alone in the absence of resource sharing. Because

the utilities are non-negative, An ≥ 0, ∀n ∈ N . Furthermore utilities of players in G1 may

increase due to increase in request satisfaction if its applications are provided additional

resources by players in G2 given by Bn′ . Hence GPOA produces an individually rational

resource allocation.

Group Rationality: The value of the grand coalition v{N} as per (6.7) is the sum of

different utilities. Steps 2, 5 and 6 of GPOA obtain the sum of utilities as well. Hence the
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Algorithm 6.1 Game-theoretic Pareto Optimal Allocation (GPOA)

Input: R,C, and vector of players’ utility function u
Output: X
Step 1: u(X)←0, X ←0, v ←0, A←0, B ←0, z ←0
Step 2:
for n ∈ N

v({n})←Objective function value of (6.2)
x1
n, · · · ,x

Mn
n ←Allocation decision of (6.2)

Update zm’s based on the allocation decision of (6.2)
end for
Step 3: Update C and R based on Step 2

C ′ ← Cupdated, R
′ ← Rupdated

Step 4: Divide the players into two subsets G1 and G2 representing players with resource
deficit and resource surplus
Step 5:
for n ∈ G2
Xn=Xn\{x

1
n, · · · ,x

Mn
n }← Optimal allocation decision of (6.8) ∀n′ ∈ G1

An← Utility earned by n ∈ G2 due to resource allocation Xn

Update zmj ’s based on Xn

Update C ′ and R′

end for
Step 6:
for n′ ∈ G1

Bn′ ← Utility earned by satisfying users m ∈ Mn′ due to allocation

decision in Step 5
end for

solution obtained as a result of GPOA is group rational.

Furthermore, due to superadditivity of the game and monotonic non-decreasing nature

of the utilities, no group of players has the incentive to form a smaller coalition. Hence

GPOA provides a solution from the core.

Remark 6.3. GPOA is a distributed algorithm. All players first allocate resources to their

native applications and then update their capacities and requests. The updated requests and

capacities are broadcasted by all players to obtain G1 and G2. The order to execute Step 5 is

chosen based on some criteria (see details below). Players in G2, after allocating resources,

send the updated requests to other players in G2 that have not yet executed Step 5.

Remark 6.4. Any payoff allocation from the core generated by GPOA is Pareto-optimal.

Remark 6.5. The allocation decision obtained using GPOA always belongs to the core

irrespective of the order in which players execute Step 5.

max
Xn

∑

n′∈G1

(
∑

m∈Mn′

∑

j∈J

((
um(zj

m + xmn,j)− u
m(zmj )−Dm(xmn,j)

))
)
, ∀n ∈ G2, (6.8a)

s.t.
∑

m

xmn,j ≤ C
′
n,j , ∀j ∈ J , ∀m ∈Mn′ , ∀n′ ∈ G1, (6.8b)
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xmn,j ≤ r
′m
n′,j , j ∈ J , ∀m ∈Mn′ , ∀n′ ∈ G1, (6.8c)

xmn,j ≥ 0, j ∈ J , ∀m ∈Mn′ , ∀n′ ∈ G1, (6.8d)

um(zmj + xmn,j)− u
m(zmj ) ≥ Dm(xmn,j), j ∈ J , ∀m ∈Mn′ , ∀n′ ∈ G1. (6.8e)

Based on Remark 6.5, it is important to note that GPOA can generate different solutions

according to the order in which players execute Step 5. Some candidate ordering schemes

are listed below.

1. Capacity ascending order (CAO): Players in G2 are arranged in an ascending

order on the basis of the remaining capacities of a resource j, which is then used for

executing Step 5.

2. Capacity descending order (CDO): Players in G2 are arranged in a descending

order on the basis of the remaining capacities of a resource j, which is then used for

executing Step 5.

3. Random Order: The order in which players execute Step 5 is random.

While all these variants provide allocations from the core, finding the most beneficial

order for the for-loop in Step 5 requires evaluating all possible combinations of possible

orders for executing the for-loop.

Next, we present below a matching-based resource sharing algorithm that intends to

reduce the number of SPs that provide resources to applications native to SPs with resource

deficits. The advantage of reducing the number of SPs that provide resources to applications

of resource deficit SPs is that a) it eliminates the overhead of negotiating and coming to an

agreement with different SPs; b) applications receive resources from the minimum number

of SPs that reduces resource fragmentation, i.e., the splitting of resources across different

SPs.

max
n′
Xn

∑

m∈Mn′

∑

j∈J

(
um(zj

m + xmn,j)− u
m(zj

m)−Dm(xmn,j)
)
, ∀n′ ∈ G1, n ∈ G2 (6.9a)

s.t.
∑

m

xmn,j ≤ C
′
n,j , ∀j ∈ J , ∀m ∈Mn′ , (6.9b)

xmn,j ≤ r
′m
n′,j , j ∈ J , ∀m ∈Mn′ , (6.9c)

xmn,j ≥ 0, j ∈ J , ∀m ∈Mn′ (6.9d)

um(zmj + xmn,j)− u
m(zmj ) ≥ Dm(xmn,j), j ∈ J , ∀m ∈Mn′ . (6.9e)

Polyandrous-Polygamous Matching for Resource Sharing

Our proposed algorithm is based on polyandrous polygamous matching [111] that matches

players (service providers) in G1 to G2 with the goal of maximizing utility for players in
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G2 and reducing the number of SPs with resource surpluses that provide resources to

applications of players in G1. The idea behind our matching algorithm, inspired from two-

sided markets [27], is as follows. Players in G1 have specific preferences over which players

in G2 they would like to obtain resources from on the basis of the amount of resources that

players in G2 can provide. On the other hand, players in G2 aim to maximize their utilities.

Since our framework relies on monotonic non-decreasing utilities, the objectives of players

in G1 and G2 can be mapped to each other, i.e., the more resources players in G2 share with

players in G1, the higher will their utilities be and the lower will the number of SPs be

with resource surpluses that provide resources to the applications of resource deficit SPs.

Therefore, during each round, resources of one player in G2 are assigned to applications of

a player in G1 that produces the largest increase in its utility. This means that a G2 player

will provide as many resources as possible (increasing its utility) that in turn should reduce

number of SPs with resource surpluses that provide resources to applications in G1. Our

scheme will transform into polygamous/many-to-one matching [27] or stable marriage/one-

to-one matching [112] in the best case scenario. Below, we discuss the different steps of the

algorithm.

In Algorithm 6.2, all variables are initialized in Step 1. ρ is a vector that stores allocations

for every application m ∈ M across different players. In Step 2, all game players n ∈ N

allocate resources to their native applications. Request matrices and capacity vectors are

updated in Step 3, and players are divided into two groups G1 and G2 in Step 4. Here A and

B record utilities of players in G2 and G1, respectively. Step 5 is the core of the algorithm.

In Step 5a, Algorithm 6.3 is used to construct a matching matrix Υ. The elements of

matching matrix Υ (n′ rows and n columns) are obtained by solving and obtaining the

objective function value of the problem in (6.9) for every possible pair of (n′ ∈ G1, n ∈ G2).

(6.9) maximizes the incremental utility a player in G2 earns by sharing its resources with a

player in G1. (6.9b) indicates that the allocated resources cannot exceed the capacity. (6.9c)

indicates that the allocation cannot be more than the required resources. (6.9d) shows that

the allocation decision is non-negative whereas (6.9e) indicates that the incremental increase

in utility cannot be less than the communication cost.

Algorithm 6.3 also provides total amount of resources used for each element of Υ and

allocation decision n′
Xn that captures how resources are allocated to all applications m ∈

Mn′ for n′ ∈ G1 at player n ∈ G2. In 5b, the largest element in Υ, given by Υn′,n, is

used to match n′ to n, i.e., the player n (with resource surpluses) shares its resources with

the player n′ (with resource deficits). If there are multiple maximum values, then the one

that uses smallest number of resources is used to choose the matching. In 5c, applications

m ∈ Mn′ are assigned to n ∈ G2. In 5d, An is updated with the utility of player n ∈ G2

based on the assignment in 5c. Similarly, Bn′ ,Xn and ρm are updated to reflect the increase

in application satisfaction, resources allocated by n to different applications and resources

allocated to m ∈Mn′ , respectively. Requests and capacities are updated in 5e whereas 5f

updates elements of G1 and G2 if required.
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Algorithm 6.2 Polyandrous-Polygamous Matching based Pareto Optimal Allocation
(PPMPOA)

Input: R,C, and vector of players’ utility function u
Output: X, u(X)
Step 1: u(X)← 0, X← 0, v ← 0, [Υ]|G1|×|G2| ← 0,ρ← 0
Step 2:
for n ∈ N

v({n})←Objective function value from (6.2)
x1
n, · · · ,x

Mn
n ←Allocation decision from (6.2)

Update zm’s based on the allocation decision of (6.2)
end for
Step 3: Update C and R based on Step 2

C ′ ← Cupdated, R
′ ← Rupdated

Step 4: Divide the players into two subsets G1 and G2 representing players with resource
deficit and resource surplus

A← 0, B ← 0
Step 5:
while G1 6= ∅ || G2 6= ∅

Step 5a: [Υ]|G1|×|G2| ← Algorithm 6.3 for constructing matching matrix
Step 5b:
if Multiple maximum values in [Υ]

Choose one with the lowest Rn′,n

else
Obtain the row n′ and column n of the maximum value in [Υ]

end if
Step 5c: Assign all m ∈Mn′ , n′ ∈ G1 to n ∈ G2
Step 5d: Update An,Bn′ ,Xn and ρm using the preceding assignment
Step 5e: Update Cn and Rn′

Step 5f :
if Cn = 0,
G2 = G2\n

end if
if Rn′ = 0,
G1 = G1\n

′

end if
end while

Definition 6.1. Objection to a matching [27]: A player n′ ∈ G1 and n ∈ G2 object to a

matching Ψ if they both prefer being matched to each other than to whom they are matched

by Ψ.

Definition 6.2. Stable matching [27]: A matching Ψ is stable if there is no pair n′ ∈ G1

and n ∈ G2 that objects to a matching.

Theorem 6.3. The polyandrous-polygamous matching in Algorithm 6.2 is stable.

Proof. We prove this by contradiction. Assume that the matching Ψ obtained from Al-

gorithm 6.2 is not stable and there exists a pair (n′ ∈ G1, n ∈ G2) that objects to the
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Algorithm 6.3 Constructing matching matrix Υ

Input: R,C, u,ρ
Output: Υ,R,n

′
Xn

for n ∈ G2
for n′ ∈ G1

Υn′,n ← Payoff for allocation decision from (6.9)
Rn′,n ← Resources allocated in (6.9)

end for
end for

matching. Ψ has originally matched n′ ∈ G1 to n̄ and n ∈ G2 to n′′. The objection by n

means that it can achieve a higher utility by being matched with n′ when compared with

the current match n′′ ∈ G1. However, this is not possible since n′′ was matched with n

based on the maximization problem given in (6.9), i.e., n′′ provides the largest utility to n

for its resources. Hence, our assumption is wrong and the matching is stable.

Remark 6.6. PPMPOA given in Algorithm 6.2 provides an allocation from the core.

Algorithm scalability and run-time: To obtain an allocation from the core, GPOA

solves N + |G2| optimization problems. In particular, we need to solve (6.2) for each of

the N SPs and then solve (6.8) for all the SPs in G2. The number of decision variables

and constraints in (6.2) depends on the total number of resource types J and the total

number of native applications at SP n given byMn = |Mn|. Hence, the number of decision

variables and constraints in (6.2) is bounded as O(MnJ). The number of decision variables

and constraints in (6.8) depends on the total number of SPs in G1, resource types J , and

applications in G1 given byMG1
. Therefore, the number of decision variables and constraints

in (6.8) is bounded as O(|G1|MG1
J), where MG1

can be large when compared to |G1| and

J .

PPMPOA solves N + ν|G1||G2|, where ν > 0 represents the finite number of iterations of

Step 5 in Algorithm 6.2. Just like GPOA, PPMPOA needs to first solve (6.2) for each of

the N SPs. Then it needs to solve (6.9) ν|G1||G2| times. The number of decision variables

and constraints in (6.9) is bounded as O(MnJ).

Remark 6.7. The optimization problems in (6.2), (6.8) and (6.9) are non-convex. The

hardness of these problems depend on the parameters, such as the utility functions, requests

and capacities. Therefore, it is difficult to evaluate the hardness of these problems, but the

instances we consider in Section 6.4 are easily solved using existing solvers. In general, cer-

tain non-convex optimization problems can usually be solved to optimality by proving that

strong duality holds [21], and then solving the convex dual of these non-convex problems.

Detailed discussions on strong duality can be found in [21] whereas [22] presents the nec-

essary and sufficient conditions for strong duality of non-convex problems. If the optimal

solutions are not found for (6.2), (6.8) or (6.9), then the allocation will not be from the

core.
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Lemma 6.1. Our resource sharing framework improves request satisfaction.

Proof. Let the average application request satisfaction for the non-resource sharing case

be given by RSn,1, where RSn,1 is obtained following the resource allocation decision in

Step 2 of Algorithms 6.1 and 6.2, ∀n ∈ N . Since players in G2 share their resources with

players in G1, average user satisfaction as a result of the allocation, given by RSn,2 is

also positive, i.e., > 0. Hence, user satisfaction achieved using our framework is given by

RSn = RSn,1 +RSn,2, where RSn ≥ RSn,1.

6.3.3. Strategy-Proof Incentive

In this section, we answer the question: Is there an incentive for a single player or group of

players to cheat and report incorrect capacities and application requests to other players?

That is, will misreporting the capacities or application requests improve the payoff a player

or group of players receive? The answer is no as given by the following Theorem.

Theorem 6.4. When the service providers use Algorithms 6.1 and 6.2 for resource sharing

and allocation, no player or group of players has any incentive to cheat and misreport

capacities and application requests, i.e., each player n ∈ N can achieve the highest payoff

by truthfully reporting its capacity and requests.

Proof. Assume a player n ∈ N improves its utility Un by misreporting its capacity and

application requests, i.e., U ′
n > Un where U ′

n is the utility obtained by cheating and Un

is the utility obtained by truthful reporting. Each player receives its payoff for providing

resources to its own applications first and then sharing the remaining resources (if any)

with the applications of other service providers. Player payoff improves once resources are

provided and user requests are satisfied.

The larger the amount of resources provided and requests satisfied, the higher will be

the obtained payoff. There are two cases for cheating:

❼ Under-reporting2 the capacity and application requests: In this case, the

player will not receive the payoff possible by satisfying its applications and fully

utilizing its capacity by allocating resources to its own applications and applications

of other players. This contradicts the assumption that U ′
n > Un. Hence, the player

has no incentive to under-report its capacity and application requests.

❼ Over-reporting3 the capacity and application requests: Since the payoff de-

pends on the actual amount of resources provided and requests satisfied rather than

the reported capacity and application requests, the highest payoff possible for the

player is Un contradicting our assumption that U ′
n > Un.

2Reporting a lower value than the actual value.
3Reporting a larger value than the actual value.
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Figure 6.1.: Performance of our framework with GPOA for 3 player - 3 application settings.
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Figure 6.2.: Performance of our framework with GPOA for 3 player - 20 application settings.

6.4. Experimental Results

We evaluate the performance of proposed resource sharing and allocation framework for

several parameter settings as shown in Table 5.2, where G1 and G2 represent the set of service

providers with resource deficits and surpluses respectively. Each player has three different

types of resources (J = 3), i.e., storage, communication and computation. Without loss of

generality, the model can be extended to include other types of resources. We use linear

and sigmoidal utilities for all the players given below.

um(xmn,j) = axmn,j + c, ∀n ∈ N , j ∈ J ,m ∈M, (6.10)

um(xmn,j) =
1

1 + e−µ(xm
n,j−rmn,j)

, ∀n ∈ N , j ∈ J ,m ∈M. (6.11)

µ is chosen to be 0.01, whereas the constants a and c were randomly generated in the range

(1, 5) using Matlab’s randi command that produces integers from a uniform distribution.

Requests Rn and capacities Cn, ∀n ∈ N are also generated using Matlab’s randi command

in the range (1, 5). The total requests for each individual resource j at every SP is added

and represented by Γn,j . Since we require two different groups G1 and G2, the capacities

are generated in such a way that for SPs in G1, the capacity is chosen randomly from a
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Table 6.2.: Simulation network settings for cooperative game-theoretic resource sharing
framework with non-uniform priority strategy.

Setting Parameters G1 G2
1 N = 3,Mn = 3, ∀n ∈ N , J = 3 {1} {2, 3}
2 N = 3,Mn = 20, ∀n ∈ N , J = 3 {1} {2, 3}
3 N = 6,Mn = 6, ∀n ∈ N , J = 3 {1, 2, 3} {4, 5, 6}
4 N = 6,Mn = 20, ∀n ∈ N , J = 3 {1, 2, 5} {3, 4, 6}

uniform distribution in the range [0,Γn,j), whereas for SPs in G2, the capacity is randomly

generated from a uniform distribution in the range (Γn,j , 3Γn,j ].

Simulations were run in Matlab R2019b on a Core-i7 processor with 16 GB RAM. To

solve the optimization problems, we used the OPTI-toolbox [106]. We primarily used

IPOPT (version 3.12.7) and fmincon (version R2016a) solvers from OPTI-toolbox. In cer-

tain instances where IPOPT and fmincon did not converge to the optimal solution, we

used filtersd (version 1.0) from OPTI-toolbox. Below, we provide detailed experimental

results for both algorithms.

6.4.1. Results for GPOA Algorithm

Verification of game-theoretic properties

In Table 6.3, we present results for a 3-player 20-application game that verify different game

theoretic properties, such as individually rationality, group rationality, super additivity

and show that the obtained allocation lies in the core. Player 1 has a resource deficit

while players 2 and 3 have resource surpluses. The payoffs all players receive in the grand

coalition are at least as good as they would receive working alone. This shows that the

solution obtained using GPOA for the grand coalition is individually rational. Similarly,

the value of coalition is the sum of payoff all players receive, hence our solution is group

rational. Furthermore, as the coalition size increases, coalition value increases. Hence, the

grand coalition has the largest value, which shows the super additive nature of the game.

Also, no set of players has any incentive to divert from the grand coalition and form a

smaller coalition. Hence, the grand coalition is stable and the allocation we obtain using

GPOA lies in the core. There are two different results for the grand coalition, i.e., GC1 or

{1, 2, 3} and GC2 or {1, 3, 2} which shows that changing the order of for-loop in Step 5 of

GPOA given in Algorithm 6.1 only changes the utility achieved by players in G2. However,

both allocations lie in the core. For {1, 2, 3}, player 2 precedes player 3 in Step 5 (of GPOA

given in Algorithm 6.1) while player 3 precedes player 2 in Step 5 for the grand coalition

in {1, 3, 2}. From the results, it is evident that having player 2 execute Step 5 in GPOA

before player 3 is preferable to the order player 3 before player 2. However, it is impossible

to know that in advance and we need to try all possible combinations.
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Figure 6.3.: Performance of our framework with GPOA for 6 player - 6 application settings.

6 SPs - 20 Applications

Alone GC
1

GC
2

0

50

100

150

200

250

300

350

U
ti

li
ty

 A
c

h
ie

v
e

d

SP 1 SP 2 SP 3 SP 4 SP 5 SP 6

6 SPs - 20 Applications

Alone GC
1

GC
2

0

20

40

60

80

100

R
e

q
u

e
s

t 
S

a
ti

s
fa

c
ti

o
n

6 SPs - 20 Applications

Alone GC
1

GC
2

0

20

40

60

80

100

R
e

s
o

u
rc

e
 U

ti
li

z
a

ti
o

n

Figure 6.4.: Performance of our framework with GPOA for 6 player - 20 application settings.

Efficacy of the resource sharing framework

Figures 6.1, 6.2, 6.3 and 6.4 show the efficacy of our resource sharing framework using

GPOA and compare it with a setting in which the SPs are working alone for different

player-application settings given in Table 6.2. We evaluate the impact of the proposed

framework on SP utility, request satisfaction, and resource utilization. It is evident that

SPs with resource deficits are able to improve their application satisfaction and utilities

(due to increase in application satisfaction) whereas SPs with resource surpluses improve

their utilities by sharing their resources, which in turn increases resource utilization. For

Table 6.3.: Player payoff in different coalitions for a 3 player - 20 application game

Coalition Player 1 Player 2 Player 3 Value of coalition

{1} 584.40 0.00 0.00 584.40

{2} 0 90 0 90

{3} 0 0 90 90

{1, 2} 588.72 160 0 748.72

{1, 3} 589.99 0 168.75 758.74

{2, 3} 0 90 90 180

{1, 2, 3}1 590 160 108.75 858.75

{1, 3, 2}2 590 90 168.75 848.75
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Table 6.4.: Summary of average request satisfaction and resource utilization in different
settings with and without the proposed GPOA Algorithm.

Setting
Request Satisfaction (%) Resource Utilization (%)
Alone GC Alone GC

1 75.71 100 57.98 88.75

2 96.88 100 74.63 82.06

3 84.54 100 68.30 93.13

4 91.73 100 85.94 94.98
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Figure 6.5.: Performance of our framework with PPMPOA for 6 player - 6 application
settings.

GC1 results in the 6 player-6 application setting, player 4 and 5 precede player 6 in Step 5

of Algorithm 6.1 whereas in GC2, player 6 precedes players 4 and 5. For GC1 results in the

6 player-20 application setting, players 3 and 4 precede player 6 whereas in GC2, player

6 precedes players 3 and 4 in step 5 of Algorithm 6.1. The utility function distributions

among players vary for GC1 and GC2, however, both allocations are in the core and are

Pareto optimal.

Table 6.4 summarizes the average request satisfaction and resource utilization with

GPOA algorithm and when the SPs are working alone. It is evident that the request

satisfaction improves in all settings. Furthermore, resource utilization also increases.

6.4.2. Results for PPMPOA Algorithm

Figure 6.5 presents the results for PPMPOA Algorithm given in Algorithm 6.2. It is

evident that Algorithm 6.2 improves the utilities and application satisfaction of different

SPs (compared with SPs working alone). A comparison of Figures 6.3 and 6.5 indicates that

the distribution of utility among SPs using GPOA and PPMPOA is different. However,

both of them result in a Pareto optimal allocation. Furthermore, the value of a coalition

achieved using PPMPOA will be either the same or lower, but cannot be larger than

GPOA. This is because an SP with resource surplus that uses GPOA jointly considers

all the resource deficit SPs when allocating resources whereas in PPMPOA, an SP with

resource surplus considers a single resource deficit SP at a time. To highlight the decrease
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Figure 6.6.: SPs in G2 that provide resources to SPs in G1 using GPOA and PPMPOA
algorithms in a 6 player - 6 application setting.

in number of SPs that provide resources to applications of SPs in G1 due to PPMPOA,

we compare it with GPOA. Figure 6.6 shows the percentage of resources allocated to

applications of different SPs in G1 by SPs in G2 using GPOA and PPMPOA.

Using GPOA for resource sharing in the 6 player-6 application setting (GC1), applications

of SP 1 are allocated resources at SP 4, whereas applications of SP 2 receive resources from

SPs 4, 5 and 6. SP 3 receive resources from SPs 4, and 5. For the same setting and

using PPMPOA algorithm, resources to applications of SP 2 are provided by SP 4 and 6.

Resources to applications of SP 1 and 3 are provided by SP 4 and 5, respectively. This shows

that PPMPOA reduces the number of SPs in G2 that provide resources to applications of

SPs in G1 when compared with GPOA algorithm at the cost of solving large number of

optimization problems.

6.4.3. Measure of Fairness

Figure 6.7 shows Jain’s index for different settings given in Table 6.2 using GPOA algorithm

for both GC1 and GC2. It is evident that GPOA achieves a high value of Jain’s index in

all settings, highlighting its fairness property. It is also worth mentioning that for the 6

player and 6 application setting, PPMPOA resulted in a Jain’s index value of 0.75. These

results show that the proposed GPOA and PPMPOA algorithms are also fair.

6.5. Summary and Conclusion

In this chapter, we extended our cooperative game-theoretic framework given in Chapter 5

by allowing the SPs to employ the non-uniform priority as a strategy. We showed that for

monotonic, non-decreasing and non-negative utilities, resource sharing among SPs under

the non-uniform priority strategy can be modeled as a cardinally convex canonical game.

We proved that the core exists and proposed two efficient algorithms that provide allocation
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Figure 6.7.: Jain’s index for different settings of Table 6.2 using GPOA algorithm.

from the core. Hence, the obtained solutions are Pareto optimal and the grand coalition of

the service providers is stable. Furthermore, we reduced the number of SPs with resource

surplus that provide resources to applications of resource deficit SPs using the matching

based algorithm that also provides an allocation in the core. Experimental results show

that utilities of all service providers and user satisfaction are improved, when compared

with edge clouds working alone, using our framework.
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7. Conclusions and Future Work

This thesis has addressed the following single and multi-objective problems for resource

management in communication networks:

1. Managing caching, computational and communication resources to minimize network

energy consumption while providing Quality of Information (QoI) guarantees.

2. Multi-objective resource sharing among different service providers.

We have started by considering the problem of minimizing energy consumption in a com-

munication network in Chapter 3. Each node in the network has the ability to transmit,

compress and store data. The goal is to find the optimal compression rate and caching

location to minimize the overall energy consumed in the network subject to the QoI con-

straint. We have formulated the problem as a non-convex MINLP and showed that it is

NP-hard. We then propose a variant of Spatial Branch-and-Bound Algorithm that provides

an ǫ-global optimal solution. Through simulations, we show that jointly considering com-

munication, compression and caching can improve energy efficiency by about 88% when

compared with only considering communication and compression or communication and

caching.

In Chapter 4, we propose a multi-objective framework based on Nash Bargaining Solu-

tion (NBS) to enable different service providers with varying objectives or utilities to share

resources. Our proposed NBS based framework provides Pareto optimal allocation of re-

sources and is fair to all the service providers. Furthermore, we have also shown that strong

duality holds for a particular class of utility functions and proposed a distributed algorithm

to obtain NBS. Through simulation using synthetic data and trace files, we showed that the

proposed framework improves the utility of service providers, increases resource utilization

and average application satisfaction.

Since the NBS-based resource-sharing framework requires a concave utility function, we

have developed a cooperative game-theoretic framework in Chapter 5 for resource sharing

that only requires a monotonically non-decreasing utility function. The service providers

employ the uniform priority strategy where native and non-native applications are given

equal priority in receiving resources. We have shown that the resource sharing among

service providers can be modeled as a canonical cooperative game with non-transferable

utility. We show that the game is convex, hence the core is non-empty. To address the

problem of obtaining a resource allocation from the core, we have proposed the centralized

GPUS algorithm. Through simulations, we showed that the proposed algorithm provides
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allocations from the core. Furthermore, it has been shown that the proposed resource

sharing framework improves the utility for service providers, application satisfaction and

increases resource utilization.

In Chapter 6, we have further extended our game-theoretic framework to cases where

the service providers employ a strategy in which they prioritize their native applications

over non-native applications in resource allocation. We have shown that even with the non-

uniform priority strategy, the game is canonical and convex with a non-empty core. To

address the problem of getting a resource allocation from the core, we have proposed two al-

gorithms, Game-theoretic Pareto optimal allocation (GPOA) and Polyandrous-Polygamous

Matching based Pareto Optimal Allocation (PPMPOA). Our simulation results confirm

that both algorithms can provide allocations from the core. Furthermore, the proposed

algorithms improve utility of the service providers, application satisfaction and increase

resource utilization. PPMPOA further reduces the number of service providers from which

a resource deficit provider can borrow resources in order to satisfy its applications, thus

avoiding resource fragmentation when possible. However, PPMPOA requires solving a

larger number of optimization problems when compared with GPOA.

In terms of future work, several research directions can be explored as follows.

❼ Reducing the complexity of symbolic reformulation: Symbolic reformulation

reduces the problem complexity for non-convex MINLPs by removing the non-convex

terms from the objective function. However, the addition of auxiliary variables due

to symbolic reformulation is problematic and makes it suitable only for small size

problems [87]. Therefore, there is a need to modify and enhance the symbolic refor-

mulation rules to reduce the number of auxiliary variables.

❼ Single-Agent reinforcement learning for minimizing network energy con-

sumption: Due to the recent advances in deep learning and reinforcement learning,

it will be interesting to train an agent for the energy minimization problem tackled in

Chapter 3. Using existing reinforcement learning algorithms and fine tuning them to

the energy minimization problem can help develop a caching and data compression

policy that will choose a suitable compression rate and caching location for different

network settings.

❼ Multi-Agent reinforcement learning (MARL) for resource sharing: To au-

tomate the resource sharing process, MARL with partial or no observations [113] can

be explored as a viable alternative. While MARL may not provide any performance

guarantee, it can help in obtaining a resource sharing policy for service providers.

Each provider can have an agent that has access to the capacity as well as resource

request information at the SP. An agent affiliated with each provider can learn a

resource sharing policy in a distributed manner that will then eliminate the need

for solving optimization problems every single time when new requests arrive or the
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capacities of service providers change. To the best of our knowledge, there is no ex-

isting fully distributed MARL algorithm in which the agents have no access to the

observations of other agents throughout training and testing.
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A. Supplementary Content for Chapter 3

A.1. Symbolic Reformulation

The first step of the symbolic reformulation is to represent the algebraic expression (ob-

jective function and constraints) using a binary tree as shown in Figure A.1. Symbolic

reformulation transforms the algebraic expression represented as a binary tree into a set

of linear constraints that might involve some newly introduced variables. Since our opti-

mization problem (3.5) contains bilinear and linear fractional terms, the newly introduced

auxiliary variables are therefore either products or ratios of other variables i.e. wi ≡ wjwk

and wi ≡
wj

wk
. The rules for efficiently1 achieving such transformation are presented in [1],

part of which we restate in the Table A.1. We create a binary tree for representing the

algebraic expressions and assign the leaf nodes a class that can be either a constant (C),

an expression (X), or a variable (V). If we are at some intermediate node that represents

a multiplication operation, and both its right and left child nodes are of class expression

(X), then the reformulation would require us to introduce two linear constraints (for both

right and left node explained) as well as introduce new bilinear auxiliary variable.

min
w

wf

s.t. Aw = b,

wl ≤ w ≤ wU ,

wk ≡ wiwj , ∀(i, j, k) ∈ Tbt,

wk ≡ wi/wj , ∀(i, j, k) ∈ Tlft. (A.1)

All the linear constraints are added into the constraint Aw = b in (A.1) while the variables

introduced are added into the vector w and depending on its type (either bilinear or linear

fractional) its definition is added into either Tbt or Tlft. After such reformulation, we obtain

(A.1). The new variable vector w consists of continuous and discrete variables in the

original MINLP, as well as other auxiliary variables introduced as a result of reformulation.

The objective function wf is a single auxiliary variable. This reformulation ensures that

the new objective function and first constraint in (A.1) are linear, and all non-convexities

and non-linearities in the original MINLP are absorbed by the sets Tbt and Tlft.

1Keeping the number of newly introduced variables to minimum
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Figure A.1.: Binary Tree representation for algebraic expression bkw + ak

A.1.1. Linear Constraint and Variable Creation

As seen in Table A.1, certain arithmetic operations during the symbolic reformulation

require creation of new linear constraints and introduction of new variables. This can be

easily explained by an example. Let the parent node (any intermediate node that has 2

child nodes) represent a multiplication operation, the left subtree (child) be abc (expression

where a,b are constants and c is a variable) and the right subtree be d (variable), then using

the rules in the Table A.1, we need to introduce a new linear constraint (for the left subtree)

and then a bilinear variable. So the linear constraint would be abc − w(i) = 0 where w(i)

is the ith auxiliary variable introduced. The bilinear variable that has to be introduced

would be w(i+ 1) ≡ w(i)d where d is the variable in the original right subtree. The linear

constraint will become part of of Aw = b in (A.1) while w(i + 1) will be part of the set

of binary terms Tbt. If the intermediate node was a division operation, we introduce the

linear constraint just like we did for the multiplication operation, however we follow that by

adding a linear fractional term w(i+ 1) ≡ w(i)
d

. This is a recursive process and is repeated

until all the terms in our objective function as well constraints are reformulated. Note that

symbolic reformulation does not affect the linear terms in the original problem (3.5). Using

this process, we reformulate (3.5) into (A.2) that can then be used with V-SBB.
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A.2. Standard Form of the Optimization Problem in (3.5)

min
w

wf

s.t.
∑

k∈K

ykw
C1

k,j ≥ γ,

∑

k∈Cv

ykw
C2

k,i ≤ Sv, ∀ v ∈ V,

h(k)∑

i=0

bk,i ≤ 1, ∀k ∈ K,

bk,i ∈ {0, 1}, ∀k ∈ K, i = 0, · · · , h(k),

wl ≤ w ≤ wU , ∀k ∈ K, i = 0, · · · , h(k),

wb
k,i = δk,i × wk,a, ∀k ∈ K, i = 0, · · · , h(k),

wf
k,i =

wk,a

δk,i
, ∀k ∈ K, i = 0, · · · , h(k),

ykbk,i − w
C′′

2

k,i = 0, ∀k ∈ K, i = 0, · · · , h(k),

wC2

k,i = w
C′′

2

k,i × w
C′

2

k,β , ∀k ∈ K, i = 0, · · · , h(k),

i−1∑

j=0

bk,j − w̃k,i = 0, ∀k ∈ K, i = 0, · · · , h(k),

wk,i = wk,a × w̃k,i, ∀k ∈ K, i = 0, · · · , h(k),

wb
k,i = wb

k,i × w̃k,i, ∀k ∈ K, i = 0, · · · , h(k),

wf
k,i = wf

k,i × w̃k,i, ∀k ∈ K, i = 0, · · · , h(k),

h(k)∏

m=i+1

δk,m = w
k,h(k)− 2− i︸ ︷︷ ︸

a

=





δk,h(k) × δk,h(k)−1, ∀a = 0

wk,a−1 × δk,m, m+ a = h(k)− 1

δk,h(k), ∀i = h(k)− 1,

h(k)∏

i=0

δk,i = wC1

k,h(k)− 1︸ ︷︷ ︸
j

=





δk,h(k) × δk,h(k)−1, ∀j = 0

wC1

k,j−1 × δk,j+1, ∀j = 1 · · ·h(k)− 1

δk,h(k), ∀i = h(k),

h(v)∏

j=h(k)

δk,j = w
C′

2

k,τ − 2︸ ︷︷ ︸
β

=





δk,h(k) × δk,h(k)−1, ∀β = 0

wC1

k,j−1 × δk,j+1, ∀β > 0

δk,h(k), ∀β < 0,

wf =
∑

k∈K

h(k)∑

i=0

yk

((
εkRwk,a + εkTw

b
k,i + εkCw

f
k,i − εkcwka

)
+A+B

)
,

A = εkRRkwk,a + εkTw
b
k,i + εkcRkw

f
k,i − εkCRkwk,a − εkRwk,a − εkTw

b
k,i − εkCw

f
k,i + εkCwk,a,

B = −εkRRkwk,i − εkTRkw
b
k,i − εkcRkw

f
k,i + εkCRkwk,i + εkRwk,i + εkTw

b
k,i + εkCw

f
k,i − εkCwk,i.

(A.2)
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A.3. Convergence Proof for the Spatial Branch and Bound

Algorithm

For completeness, we present the following proofs for the convergence of spatial branch-

and-bound [86], which work for our V-SBB.

Definition A.1. Let Ω ⊆ Rn. A finite family of sets S is a net for Ω if it is pairwise

disjoint and it covers Ω.

Definition A.2. A net S ′ is a refinement of the net S if there are finitely many pairwise

disjoint s′i ∈ S
′ such that s =

⋃
i s

′
i ∈ S and s /∈ S.

Definition A.3. Let Mn be an infinite sequence of subsets of x such that Mi ∈ Si. Mn

is a filter for Sn if ∀i ∈ NMi ⊆Mi−1 where M∞ =
⋂

i∈N Mi be the limit of the filter.

Definition A.4. Let x ⊆ Rn and f(x) be the objective function of an MINLP problem then

a spatial branch-and-bound algorithm would be convergent if γ∗ = inf f(x) = lim
k→∞

γk .

Definition A.5. A selection rule is exact if

1. The infinimum objective function value of any region that remains qualified during

the whole solution process is greater than or equal to the globally optimal objective

function value, i.e.,

∀M ∈
∞⋂

k=1

Rk(inf f(x ∩M) ≥ γ∗)

2. The limit M∞ of any filter Mk is such that inf f(Ω∩M) ≥ γ∗ where Ω is the feasible

set.

Theorem A.1. A Spatial branch-and-bound algorithm using an exact selection rule con-

verges.

Proof. Proof by contradiction:

Let there be x ∈ Ω with f(x) < γ∗. Let x ∈ M with M ∈ Rn for some n ∈ N. Because

of the first condition of exactness of selection rule, the filter M cannot remain qualified

forever. Furthermore, unqualified regions may not, by hypothesis, include points with

better objective function values than the current incumbent γk. Hence M must necessarily

be split at some iteration n′ > n so x belongs to every Mn in some filter {Mn}, thus

x ∈ Ω ∩M∞. By condition 2 of exactness of selection rule, f(x) ≥ f(Ω ∩M∞) ≥ γ∗. The

result follows.

138



A.4. McCormick Over and Under Estimators

A.4.1. Bilinear Terms

The McCormick linear over estimator and under estimator for bilinear terms with form

wk ≡ wiwj are given by (A.3) and (A.4), respectively.

wk ≤ w
l
iwj + wu

jwi − w
l
iw

u
j ,

wk ≤ w
u
i wj + wl

jwi − w
u
i w

l
j . (A.3)

wk ≥ w
l
iwj + wl

jwi − w
l
iw

l
j ,

wk ≥ w
u
i wj + wu

jwi − w
u
i w

u
j . (A.4)

A.4.2. Linear Fractional Terms

The linear over estimator and under estimator for a linear fractional term with form wk ≡
wi

wj
are similar to the over estimator and under estimator of bilinear terms given in (A.3)

and (A.4). We first transform the linear fractional term into bilinear term, i.e., wi ≡ wkwj

and then we can use (A.5) and (A.6) for the the linear over estimator and under estimator,

respectively.

wi ≤ w
l
kwj + wu

jwk − w
l
kw

u
j ,

wi ≤ w
u
kwj + wl

jwk − w
u
kw

l
j . (A.5)

wi ≥ w
l
kwj + wl

jwk − w
l
kw

l
j ,

wi ≥ w
u
kwj + wu

jwk − w
u
kw

u
j . (A.6)

The advantage of such linear understimator and overestimator is that even if the original

problem is a non-convex MINLP, the relaxed problem will be an MILP which is compara-

tively easy to solve.
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B. Supplementary Content for Chapter 4

Theorem B.1 (Sufficient Condition [22]). If the price based function X∗(α,β, ζ, γ, π)

is continuous at one or more of the optimal Lagrange multipliers, the iterative algorithm

consisting of (4.10) and (4.11) will converge to the global optimal solution.

Theorem B.2 (Necessary Condition [22]). The condition in Theorem B.1 is also necessary

if at least one of the constraints in (4.7) is active (binding) at the optimal solution.

Lemma B.1. At the optimal solution, the optimal Lagrange multiplier vector corresponding

to the capacity constraint is non-zero, i.e., α∗

j > 0.

Proof. At the optimal point, all resources are fully utilized, i.e., capacity constraints are

active. From complementary slackness [21], we know that

α∗
n,j

( ∑

m∈M

x∗mn,j − Cn,j

)
= 0, ∀n ∈ N . (B.1)

∑
m∈M x∗mn,j = Cn,j , i.e., the constraint is active, which implies that α∗

j > 0.

B.1. Proof of Theorem 4.2

Proof. We show that the price function obtained by ∂L(X,α,β,ζ,γ,π)
∂xm

n,j
= 0 is continuous at

one or more of the optimal Lagrange multipliers for (4.8).

Let u
′−m(.) and f

′−l(.) represent the inverses of the first derivative of
(
um(zmj + xmn,j)−

um(zmj )
)
and

(
ul(zlj + xln,j) − u

l(zlj) −D
l(xln,j)

)
, respectively. αn,j , β

m
j , ζn, γ

m
n,j and πln,j

are the Lagrange multipliers whereas:

∆n =
∑

m∈Mn

∑

j∈J

(
um(zmj + xmn,j)− u

m(zmj )
)
+
(∑

l∈M

∑

j∈J

(
ul(zlj + xln,j)− u

l(zlj)−

Dl(xln,j)
))
− d0n. (B.2)

We consider two different cases
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m ∈Mn:
∂L

∂xm
n,j

= 0

u
′m(zmj + xmn,j)(1 + ∆nζn)−∆n(αn,j + βmj − γ

m
n,j) = 0,

=⇒ u
′m(zmj + xmn,j) =

∆n(αn,j + βmj − γ
m
n,j)

1 + ∆nζn
,

xmn,j = u
′−m

(
∆n(αn,j + βmj − γ

m
n,j)

1 + ∆nζn

)
− zmj . (B.3)

We prove that (B.3) is continuous at the optimal point by showing that the numerator

∆n(αn,j + βmj − γ
m
n,j) and denominator 1 + ∆nζn are positive1. At the optimal point, the

denominator (1 + ∆∗
nζ

∗
n) is positive as ∆∗

n > 0 (from Section 4.2.3) and ζ∗n = 0 (from com-

plementary slackness). Similarly, in the numerator, (α∗
n,j + β∗mj − γ∗mn,j ) > 0, as α∗

n,j > 0

(from Lemma B.1) and α∗
n,j + β∗mj > γ∗mn,j (from sensitivity analysis [21]). Hence, (B.3) is

continuous at the optimal point.

l ∈ {M\Mn}:
∂L

∂xl
n,j

= 0

f
′l(zlj + xln,j)(1 + ∆nζn +∆nπ

l
n,j)−∆n(αn,j + βlj − γ

l
n,j) = 0,

=⇒ f
′l(zlj + xln,j) =

∆n(αn,j + βlj − γ
l
n,j)

1 + ∆nζn +∆nπ
l
n,j

.

xln,j = f
′−l

(
∆n(αn,j + βlj − γ

l
n,j)

1 + ∆nζn +∆nπ
l
n,j

)
− zlj .

(B.4)

The continuity at optimal point can be established using arguments similar to that for

m ∈ Mn case. The proof of zero-duality gap follows from Theorem B.1. Hence, strong

duality holds and our proposed distributed algorithm 4.2 converges to the NBS.

1Positive numerator and denominator are required if u
′−m is log. For other cases, it will suffice to prove

that the denominator is non-zero.
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