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ABSTRACT 

 

The (Pro)renin receptor (P)RR/Atp6ap2 is a cell surface protein capable of binding 

and non-proteolytically activate prorenin. Additionally, (P)RR is associated with H+-

ATPases and alternative functions in H+-ATPase regulation as well as in Wnt 

signalling have been reported. Kidneys express very high levels of H+-ATPases 

which are involved in multiple functions such as endocytosis, membrane protein 

recycling as well as urinary acidification, bicarbonate reabsorption, and salt 

absorption. Here, we wanted to localize the (P)RR/Atp6ap2 along the murine 

nephron, exmaine whether the (P)RR/Atp6ap2 is coregulated with other H+-ATPase 

subunits, and whether acute stimulation of the (P)RR/Atp6ap2 with prorenin regulates 

H+-ATPase activity in intercalated cells in freshly isolated collecting ducts. We 

localized (P)PR/Atp6ap2 along the murine nephron by qPCR and 

immunohistochemistry. (P)RR/Atp6ap2 mRNA was detected in all nephron segments 

with highest levels in the collecting system coinciding with H+-ATPases. Further 

experiments demonstrated expression at the brush border membrane of proximal 

tubules and in all types of intercalated cells colocalizing with H+-ATPases. In mice 

treated with NH4Cl, NaHCO3, KHCO3, NaCl, or the mineralocorticoid DOCA for 7 

days, (P)RR/Atp6ap2 and  H+-ATPase subunits were regulated but not co-regulated 

at protein and mRNA levels. Immunolocalization in kidneys from control, NH4Cl or 

NaHCO3 treated mice demonstrated always colocalization of PRR/Atp6ap2 with H+-

ATPase subunits at the brush border membrane of proximal tubules, the apical pole 

of type A intercalated cells, and at basolateral and/or apical membranes of non-type 

A intercalated cells. Microperfusion of isolated cortical collecting ducts and luminal 

application of prorenin did not acutely stimulate H+-ATPase activity. However, 

incubation of isolated collecting ducts with prorenin non-significantly increased 
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ERK1/2 phosphorylation. Our results suggest that the PRR/Atp6ap2 may form a 

complex with H+-ATPases in proximal tubule and intercalated cells but that prorenin 

has no acute effect on H+-ATPase activity in intercalated cells. 

   

 
 
 

Key words: (Pro)renin receptor (P)RR, H+-ATPases, ATP6ap2, prorenin, angiotensin 

II, kidney, proximal tubule, intercalated cells  
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INTRODUCTION 

 

The (pro)renin receptor (P)RR is a protein spanning the membrane once and 

with a large extracellular domain. The extracellular domain can be cleaved to yield a 

soluble, shorter fragment of approximately 28 kDa [1,2,3]. The (P)RR was initially 

identified as a receptor for renin and prorenin, inducing non-proteolytical activation of 

prorenin and thus allowing local production of angiotensin I from angiotensinogen by 

both renin and prorenin. In addition, binding of prorenin and renin may activate an 

angiotensin-independent intracellular signaling cascade leading to enhanced ERK1/2 

phosphorylation [4].  

 

(P)RR is identical to ATP6AP2, a protein that associates and co-

immunoprecipitates with vacuolar-type H+-ATPases (V-ATPases) [5]. H+-ATPases 

are membrane-associated multi-protein complexes mediating the transport of protons 

by hydrolyzing ATP [6,7]. In the kidney, H+-ATPases are localized at the plasma 

membrane of most epithelial cells lining the nephron and mediate proton extrusion 

into urine or blood [8]. Moreover, H+-ATPases are found in many intracellular 

organelles such as endosomes and lysosomes and play there a critical role in 

endocytosis, e.g. receptor-mediated endocytosis in the proximal tubule [7,9]. The 

activity of plasma membrane-associated H+-ATPases is regulated by various 

hormones and factors including angiotensin II, aldosterone, acidosis or alkalosis [7]. 

Some of these effects are mediated by intracellular signaling cascades involving 

cAMP/PKA, PKC, ERK1/2 or AMPK [10,11,12,13,14]. Activation of these signaling 

pathways can result in enhanced trafficking and localization of H+-ATPases at the 

plasma membrane associated with increased activity. Disruption of signaling or the 



The prorenin receptor/Atp6ap2 and renal H+-ATPases 

 

 5 

actin cytoskeleton-dependent trafficking reduces plasma membrane H+-ATPase 

localization and stimulation [15,16,17,18,19,20,21].  

In various model organisms such as Drosophila or Xenopus laevis larvae, the 

(P)RR/Atp6ap2 is critical for fundamental cellular processes such as endocytic 

retrieval of proteins and Wnt signaling [22,23,24]. Whether these functions of the 

(P)RR/Atp6ap2 are related to its possible role as accessory subunit of the H+-ATPase 

or due to other functions has not been fully elucidated. However, endocytosis as well 

as Wnt signaling (e.g. the recycling of Wnt receptors) are sensitive to the disruption 

of other bona fide H+-ATPase subunits and H+-ATPase inhibitors providing a strong 

argument for a role of the (P)RR/Atp6ap2 in H+-ATPase trafficking, regulation, or 

function [22,24]. However, limited information is available  about the localization of 

the (P)RR/Atp6ap2 in kidney, an organ with very intense expression of H+-ATPases, 

and whether H+-ATPase activity itself can be affected by acute application of 

prorenin.  

 

The main questions addressed in this manuscript are 1) the localization of 

(P)RR/Atp6ap2 protein along the murine nephron and its colocalization with plasma 

membrane associated H+-ATPases, 2) the coregulation of (P)RR/Atp6ap2 and two 

major H+-ATPase subunits on mRNA and protein level, and 3) to test whether acute 

application of prorenin could regulate native plasma membrane H+-ATPase in 

intercalated cells in freshly isolated murine collecting ducts. 
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MATERIALS AND METHODS 

Animals  

Experiments were performed in 8-12 weeks old male C57BL/6 (body weight 

25-30 g) mice. All animal experiments were conducted according to Swiss laws for 

the welfare of animals and were approved by local authorities (Swiss Veterinary 

Authority of the Kanton Zurich, permission no 03/2011). The animals had free access 

to food and tap water. Where indicated NaCl (0.28 M), NaHCO3 (0.28 M), KHCO3 

(0.28 M), or NH4Cl (0.28 M) were added to the drinking water for 7 days. Animals 

receiving the aldosterone analogue desoxycorticosterone acetate (DOCA) received 

subcutaneous injections at day 1 and 4 (2 mg/mouse). These treatments have been 

shown to induce metabolic acidosis or alkalosis in rodents and induce regulation of 

major transport proteins expressed in intercalated cells [25]. Each group consisted of 

at least 5 animals and was compared to the time-, age- and gender-matched 

corresponding control groups. All diets except of DOCA were given in drinking water 

supplemented with 1% sucrose and maintained on a standard diet. The control group 

received only 1% sucrose in drinking water. 

For some experiments, mice were used expressing eGFP under the control of 

the Atp6v1b1 (B1) H+-ATPase subunit promoter inducing high levels of eGFP 

expression in intercalated cells along the collecting duct system (B1-eGFP mice) [26]. 

B1-eGFP mice were kindly provided by Dr. Lance Miller and Dr. Raoul Nelson, 

University of Utah, Salt Lake City.. 

 

Isolation of mouse nephron segments and mRNA extraction 

 Defined segments of mouse nephrons were isolated from the kidneys of 

untreated male C57BL/6 mice or B1-eGFP, 10 – 12 weeks old using hand-dissection 
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under a stereo microscope illuminated with normal light or fluorescent light (Leica 

M165FC). 

mRNA extraction of organs and hand-dissected isolated nephron segments with 

subsequent quantitative real time RT-PCR was performed as described previously 

[27]. Enrichment of the hand-dissected nephron segment preparation was ensured, 

by testing each sample for the most dominantly expressed segment specific mRNA 

transcripts (Podoplanin, NaPi-IIa, NKCC2, NCC, AQP2, and Pendrin). 

 

RNA extraction from kidney and semi-quantitative RT-qPCR analysis  

To determine (P)RR/ATP6AP2, ATP6V1B1, ATP6V0A4, and HPRT relative 

mRNA abundance in dissected tissues, total RNA was extracted from dissected 

kidney cortex and medulla using an RNeasy kit (Qiagen, Basel, Switzerland). RNA 

was bound to columns and treated with DNase for 15 min at room temperature to 

reduce genomic DNA contamination. Quantity and purity of total eluted RNA was 

assessed by spectrometry. To generate complementary DNA (cDNA), total RNA was 

reverse transcribed (RT reaction) by Taqman Reverse Transcription Kit (Applied 

Biosystems, USA). The thermal cycle conditions used were 25°C (10 min), 48°C (30 

min) and 95° (5 min). Primers and probes were designed using Primer Express 

(Applied Biosystems, USA) and purchased from Microsynth, Switzerland 

(Supplementary Table S1). The specificity of the primers was tested using adult 

mouse kidney cDNA by conventional PCR. Each pair of primers resulted only in a 

single band of the expected size (data not shown). Probes were labelled with the 

reporter dye FAM at the 5ʹ end and the quencher dye TAMRA at the 3ʹ end. RT-PCR 

reactions were performed using Taqman Universal PCR Master Mix (Applied 

Biosystems, USA)  17 μl reactions were prepared using 3 μl of cDNA-template. 

Reactions were run in 96-well Optical reaction plates and caps (Applied Biosystems, 
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USA). Thermal cycles were set at 50°C (2 min) 95°C (10 min) and then 40 cycles at 

95°C (15 sec) and 60°C (1 min). Each reaction was made in triplicates and the 

average taken. Samples without enzyme in the RT reaction were used as negative 

controls to exclude contamination with genomic DNA. Only results with less than 1 

cycle difference were taken into consideration. Cross point threshold (Ct  value) was 

taken as the earliest cycle number in the PCR amplification, when fluorescence rises 

significantly above the background fluorescence.  

The expression of candidate genes was normalized to the reference gene, HPRT 

giving comparable results and analyzed by the delta delta Ct method. 

  

MDCK cells and cell culture 

MDCK cells (C11 clone, kindly provided by Dr. H. Oberleithner, University of 

Münster, Germany) [28] were cultured at 37°C and 5 % CO2 in DMEM (no. E15-810, 

GE Healthare, Glattbrugg, Switzerland) supplemented with 10 % heat-inactivated 

fetal bovine serum (FBS, Sigma-Aldrich, Buchs, Switzerland), 2 mM L-glutamine, and 

1 % non-essential amino acids (no. M11-003, GE Healthcare). After cells had 

reached 80-90 % confluency, they were starved for 24 hrs and thereafter treated with 

the AT1R blocker losartan (10 M, Sigma-Aldrich, Buchs Switzerland) and the AT2R 

blocker PD123319 (10 M, Sigma-Aldrich, Buchs, Switzerland) for 30 min at 37°C 

followed by human prorenin (1 and 20 nM, a kind gift of Dr. Walter Fischli, Actelion, 

Allschwil, Switzerland) and angiotensin  II (10 nM, Sigma-Aldrich, Buchs Switzerland) 

stimulation for 10 min.  

 

Membrane preparation from kidney and western blot analysis 

For total membrane preparations, kidneys were dissected into cortex and 

medulla. Samples were homogenized in an ice-cold K-HEPES buffer (200 mM 
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mannitol, 80 mM HEPES, 41 mM KOH, pH 7.5) containing a protease inhibitor mix 

(Complete Mini, Roche Diagnostics, Germany) at a final concentration of 1 tablet in a 

volume of 10 ml solution. Samples were centrifuged at 2000 rpm for 20 min at 4°C. 

Subsequently, the supernatant was transferred to a new tube and centrifuged at 

41’000 rpm for 1 h at 4°C. The resultant pellet was resuspended in K-HEPES buffer 

containing protease inhibitors.  

 

MDCK cells were lysed with ice-cold Radio-Immunoprecipitation Assay (RIPA) 

buffer (150 mM NaCl, 50 mM Tris, pH 7.4, 1% NP-40, 0.5 % Na-Deoxycholate, 2 mM 

Phenylmethylsulfonylfluoride) supplemented with a protease inhibitor mix  (Complete 

Mini, Roche Diagnostics, Germany, at a final concentration of 1 tablet in a volume of 

10 ml solution) and incubated for 30 min on ice. Cellular debris was pelleted by 

centrifugation at 2500 g for 10 min at 4 °C. 

 

After measurement of the total protein concentration (Bio-Rad Dc protein 

Assay; Bio-Rad, Hercules, CA, USA), 10 μg of crude membrane proteins from cortex 

or medulla or 20 μg  of MDCK extracts were solubilised in Laemmli buffer, and SDS-

PAGE was performed on 10% polyacrylamide gels.  

For immunoblotting, proteins were transferred electrophoretically to 

polyvinylidene difluoride membranes (Immobilon-P; Millipore, Bedford, MA, USA). 

After blocking with 5% milk powder in Tris-buffered saline/0.1% Tween-20 for 60 min; 

the blots were incubated with the respective primary antibodies: goat anti mouse 

(P)RR 1:1000, Novus Biologicals, USA (NB100-1318), rabbit anti mouse ATP6V1B1 

1:5000 [29], rabbit anti-human ATP6V0A4 1:5000 [30], rabbit anti-pERK1/2 1:1000 

(Cell Signaling, 9101, Danvers, MA, USA), rabbit anti-total ERK1/2 1:1000 (Cell 

Signaling, 9102, Danvers, MA, USA , and mouse monoclonal anti-β-actin antibody 



The prorenin receptor/Atp6ap2 and renal H+-ATPases 

 

 10 

(42 kDa; Sigma, St. Louis, MO, USA) 1:5000, diluted in 1% milk/TBS-T) either for 2 h 

at room temperature or overnight at 4°C. After washing, the membranes were 

incubated for 1 h at room temperature with the secondary antibodies: donkey anti-

goat, goat anti-rabbit and goat anti-mouse IgG-conjugated with alkaline phosphatase 

1:5000 (Promega, WI, USA) and sheep anti-mouse IgG-conjugated with horseradish 

peroxidase (Amersham Life Sciences, 1:10000). Antibody binding was detected with 

enhanced chemiluminescence ECL kit (Amersham Pharmacia Biotech) or the CDP-

Star Western chemiluminescence Kit (Roche Diagnostics, Mannheim, Germany) 

using the DIANA III-chemiluminescence detection system (Raytest; Straubenhardt, 

Germany). All images were analyzed using appropriate software (Advanced Image 

Data Analyzer, Raytest, Straubenhardt, Germany) to calculate the protein of 

interest/β-actin ratio. 

 

Immunohistochemistry 

Mice were anesthetized with Ketamine/Xylazine and perfused through the left 

ventricle with phosphate-buffered saline (PBS) followed by paraformaldehyde-lysine-

periodate (PLP) fixative [31]. Kidneys were removed and fixed overnight at 4°C by 

immersion in PLP. Kidneys were washed 3 times with PBS and 5 μm cryosections 

were cut after cryoprotection with 2.3 M sucrose in PBS for at least 12 h. 

Immunostaining was carried out as described previously [32,33,34]. Briefly, sections 

were incubated with 10 mM TRIS (Trizma Base, Sigma, pH 10 at 100 °C for 20 min 

in a microwave, washed 3 times with PBS and incubated with 5 % (v/v) donkey 

serum in PBS for 15 min prior to the primary antibody. The primary antibodies (goat 

anti-(P)RR (Novus Biologicals, USA) 1:100), rabbit anti-ATP6V0A4 (a4) serum 

1:1000 [29,30], rabbit polyclonal anti ATP6V1B1 (B1) 1:150 [29], guinea-pig anti-

pendrin 1:1000 [35], guinea-pig anti-AE1 1:500 [36], and rabbit-anti-AQP2 (kindly 
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provided by J. Loffing, Zurich)[37] 1:1000 were diluted in PBS and applied either for 

75 min at room temperature or overnight at 4°C. Sections were then washed twice for 

5 min with high NaCl PBS (PBS + 18 g NaCl/l), once with PBS, and incubated with 

dilutions of the secondary antibodies (donkey anti-rabbit 586 (1:1000), donkey anti-

goat 488 (1:1000), donkey anti-guinea-pig Dylight 649 (Jackson ImmunoResearch 

Lab Inc) (1:1000) mixed with DAPI (Molecular Probes, Oregon, USA) 1:1000 for 1 h 

at room temperature. Sections were again washed twice with high NaCl PBS and 

once with PBS before mounting with glycergel mounting medium (Dako, USA). 

Sections were viewed with a Leica DM5500B epifluorescence microscope and for 

images comparing localization and intensity of stainings pictures were taken on the 

same day and with identical settings for gain, intensity, and fluorescence filters. 

Images were processed (overlays) using Adobe Photoshop. 

 

In vitro microperfusion experiments 

Mice were anesthetized with Xylazin/Ketamin i.p., both kidneys were cooled in 

situ with control bath solution containing in mM (138 NaCl, 1.5 CaCl2 1.2 MgSO4, 2 

K2HPO4, 10 HEPES, 5.5 glucose, 5 alanine, pH 7.4) for 1 min and then removed and 

cut into thin coronal slices for tubule dissection. Cortical collecting ducts (CCDs) were 

dissected under a stereo microscope from the cortex at 10°C in the control solution. 

 

Intracellular pH measurement 

The isolated  cortical collecting ducts were transferred into the bath chamber 

on the stage of an inverted microscope (IX81, Olympus, Japan) in the control solution 

and then mounted on concentric pipettes and perfused ex vivo with Na+-free, 

ammonium-free solution where N-methyl-D-Glutamine+ (NMDG+) replaced Na+. The 

average tubule length exposed to bath fluid was limited to 300 – 350 µm in order to 
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prevent motion of the tubule. CCDs were loaded with 5 µM of the fluorescent probe 

BCECF-AM (2’,7’-bis(2-carboxyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester, 

Invitrogen, Switzerland) for ~20 min at 37°C in the control bath solution. The loading 

solution was then washed out by initiation of bath flow and the tubule was 

equilibrated with dye-free control bath solution for 5 min. Luminal incubation with 

prorenin (20 pM and 1 nM) was initiated during the BCECF loading and prorenin was 

presented throughout the incubation period and experiment (approx.40 min). Bath 

solution was delivered at a rate of 20 ml/min and warmed to 37°C by water jacket 

immediately upstream to the chamber. After temperature equilibration in control 

solution, tubules were first transiently acidified by peritubular Na+ removal (Na-free, 

ammonium-free solution) (10 min duration), where sodium was replaced by NMDG+ 

to avoid exit of NH4
+ by basolateral Na+-coupled transport. This maneuver was done 

in the luminal absence of Na+. During the fluorescence recording, perfusion solution 

was delivered to the perfusion pipette via a chamber under an inert gas (N2) pressure 

(around 1 bar) connected through a manual 6-way valve. With this system, opening 

of the valve instantaneously activates flow of solutions. The majority of the fluid 

delivery to the pipette exits the rear of the pipette system through a drain port at 4 

ml/min. This method results in a smooth and complete exchange of the luminal or the 

peritubular solution in less than 3 to 4 s [38].  

After the fluorescence signal stabilization, luminal fluid was instantly (at the 

rate of 4 ml/min in the draining) replaced by a Na+-free solution containing 20 mM 

NH4Cl (and 118 mM NMDG-Cl) that elicited a rapid intracellular alkalinization, 

followed by a sharp acidification. The rate of intracellular alkalinization has been 

associated with the entry of NH3 whereas the subsequent phase of intracellular 

acidification in the continous presence of extracellular NH4Cl reflects mostly NH4
+ 

entry [39]. Intracellular dye was excited alternatively every 2 seconds at 434 and 494 
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nm with a MT fluorescence light source (150W Xenon/Mercury mixed gas burner) 

including a light guide and coupling to a disk scan Unit (Olympus, Japan). Emitted 

light was collected through a dichroïc mirror, passed through a 530 nm filter and 

focused onto a EM-CCD camera (Hamamatsu, Japan) connected to a computer. The 

measured light intensities were digitized with the CellM&CellR Imaging hardware 

system (Olympus, Japan) for further analysis. Intracellular dye was calibrated at the 

end of each experiment using the high [K+]-nigericin technique. Tubules were 

perfused and bathed with a HEPES-buffered, 95-mM K+-solution containing 10 μM of 

the K+/ H+-exchanger nigericin. Four different calibration solutions, titrated to pH 6.3, 

6.9 ,7.5, or 7.8 were used. 

 

Statistical analysis 

Data are provided as means ± SEM; n represents the number of independent 

experiments. All data were tested for significance using Student's unpaired two-tailed 

t-test, or ANOVA, where applicable. The level of statistical significance was set at * p 

< 0.05, ** p < 0.01 and *** p < 0.001.  
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RESULTS 

 

Localization of the (pro)renin receptor/Atp6ap2 in mouse kidney 

The distribution of (pro)renin receptor/Atp6ap2 mRNA was examined in mouse 

kidney using hand-dissected nephron segments by semi-quantitative RT-qPCR. 

(P)RR/Atp6ap2 mRNA was detected in the glomerulus and all other segments, with 

highest levels in the connecting tubule/cortical collecting duct (CNT/CCD) and outer 

medullary collecting duct (OMCD) (Figure 1). The high mRNA abundance of 

(P)RR/Atp6ap2 in CNT/CCD and OMCD was paralleled by high mRNA levels of the 

B1 (Atp6v1b1) H+-ATPase subunit which is selectively enriched in intercalated cells 

[40,41]. The enrichment of nephron segments was ascertained by RT-qPCR for 

segment specific markers (Podoplanin for the glomerulum, NaPi-.IIa for the S1 /S2 , 

S3 segments of the proximal tubule and DCT, NKCC2 for the TAL, NCC for the DCT, 

AQP2 for the collecting duct system, and pendrin for the CNT/CCD). Patterns of 

expression are in good agreement with previous transcript analyses along the mouse 

nephron [42].  

  

Immunohistochemistry detected weak (P)RR/Atp6ap2 related staining in the 

glomerulus as described before [43,44]. However, clear signals were detected in the 

proximal tubule at the brush border membrane and in cells in the collecting duct 

system (Figure 2 A,B). Costaining of (P)RR/Atp6ap2 with the a4 (Atp6v0a4) H+-

ATPase subunit, which is expressed along the entire nephron [32,45,46], showed 

strong overlay at the apical side of proximal tubular cells (Figure 2 D-F). In the 

collecting duct, costaining with the principal cell specific marker AQP2 demonstrated 

that the (P)RR/Atp6ap2 was expressed in intercalated cells (Figure 2 C). Further 

studies demonstrated that the (P)RR/Atp6ap2 colocalized in intercalated cells with 
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the a4 (Atp6v0a4) H+-ATPase subunit that forms part of the plasma membrane H+-

ATPase (Figure 3) [9,47]. 

H+-ATPases in intercalated cells can be associated with the luminal 

membrane in type A intercalated cells and with either the basolateral and/or luminal 

membrane in non-type A intercalated cells [7,8,32,48,49]. Type A intercalated cells 

were identified by the presence of AE1 specifically expressed at the basolateral 

membrane of these cells. In AE1 positive cells, (P)RR/Atp6ap2 staining was always 

detected at the luminal side of cells (Fig. 4A, B). In cells expressing pendrin, a marker 

of non-type A intercalated cells which is localized at the luminal membrane, 

(P)RR/Atp6ap2 staining was observed either at the basolateral membrane and/or 

colocalizing with pendrin at the luminal pole (Fig. 4C, D).  

 Thus, the (P)RR colocalizes with H+-ATPases at the plasma membrane in 

various nephron segments and can be found both at the apical side of cells in the 

proximal tubule and in type A and non-type A intercalated cells as well as at the 

basolateral side of some non-type A intercalated cells as previously described for 

other H+-ATPase subunits [32,40,41,46,48,49]. 

 

Regulation of (P)RR/Atp6ap2 mRNA and protein abundance in kidney by acid-

base status and electrolyte intake  

Mice were treated with different diets to alter activity of the different subtypes 

of intercalated cells and renal handling of bicarbonate and protons, conditions that 

have been associated with altered activity, expression, and/or localization of H+-

ATPases along the nephron [32,48]. 

Semi-quantitative qPCR was used to assess the relative abundance of 

mRNAs encoding (P)RR, B1 and a4 subunits of the vacuolar H+-ATPase in dissected 

cortex and medulla from control mice and animals that had received NaCl, NaHCO3, 
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KHCO3, NH4Cl, or the mineralocorticoid DOCA for 7 days (n = 5 per group). The 

abundance of (P)RR/Atp6ap2 mRNA was significantly increased in kidney cortex 

from NaHCO3 treated mice and reduced with NH4Cl treatment (Fig. 5). Atp6v1b1 

mRNA was higher in cortex with NaHCO3 treatment and Atp6v0a4 mRNA increased 

with NH4Cl supplementation (Fig. 5). In kidney medulla, (P)RR/Atp6ap2 mRNA was 

not altered by any of the diets, whereas Atp6v1b1 mRNA decreased with NaCl, 

NH4Cl, and DOCA treatments. Similarly, Atp6v0a4 mRNA expression in medulla was 

reduced with NaHCO3 or DOCA treatments. Thus, these data provided no evidence 

for coordinated regulation of mRNA expression of these three genes. 

 

 Next we assessed protein abundance of (P)RR/Atp6ap2, and the B1 and a4 

H+-ATPase subunits separately in kidney cortex and medulla. In cortex, NaHCO3 

treatment resulted in a significant increase in the protein abundance of (P)RR protein 

whereas all other treatments had no influence (Fig. 6). The expression of the B1 

(Atp6v1b1) subunit was reduced by NaCl intake and increased by alkali treatment 

such as NaHCO3 or KHCO3, whereas NaHCO3, KHCO3, and NH4Cl increased the a4 

(Atp6v0a4) subunit. In contrast, DOCA reduced a4 protein expression. In medulla, 

(P)RR/Atp6ap2 abundance was not regulated, whereas B1 abundance increased 

with KHCO3 and decreased with NaHCO3 treatment. Moreover, a4 expression 

decreased with NaHCO3, KHCO3, NH4Cl and DOCA treatments (Fig. 7). Similar to 

the mRNA data, these experiments did not indicate coordinated regulation of protein 

abundance of H+-ATPase subunits and (P)RR/Atp6ap2. 
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Trafficking of H+-ATPase and (P)RR/Atp6ap2 in response to alkali and acid 

loading 

 Loading of rodents with either alkali/bicarbonate or acid (NH4Cl) provokes 

increased trafficking of H+-ATPase subunits to the basolateral membrane of non-type 

A intercalated cells or luminal membrane of type A intercalated cells, respectively 

[32,48,49]. We performed immunohistochemistry for the a4 H+-ATPase subunit 

together with the (P)RR/ Atp6ap2 and AE1 as a marker of type A intercalated cells on 

kidneys from control mice and mice receiving NaHCO3 or NH4Cl for 7 days (Figure 

8).  In the proximal tubule, the signals for (P)RR/Atp6ap2 (green) and a4 H+-ATPase 

(red) showed a high degree of colocalization as indicated by the strong yellow color 

(Figure 8 B, E, H). Similarly, in intercalated cells, (P)RR and a4 H+-ATPase strongly 

colocalized at the luminal and/or basolateral side (Figure 8 A, C, D, F, G, I). In AE1 

positive intercalated cells, yellow staining was confined mostly to the luminal 

membrane, whereas in intercalated cells negative for AE1, yellow staining was 

detected at the luminal and/or basolateral side. Neither NaHCO3 nor NH4Cl treatment 

did alter the apparent costaining, at least at the level of light microscopy. 

 

Acute exposure of ex vivo microperfused collecting ducts to prorenin does not 

stimulate H+-ATPase activity and ERK1/2 phosphorylation 

The (P)RR/Atp6ap2 has been identified because of its ability to bind prorenin 

and experiments in MDCK cells demonstrated increased ERK1/2 phosphorylation 

and stimulated H+-ATPase activity when incubated with prorenin [50,51] . Thus, we 

tested in freshly isolated and microperfused mouse cortical collecting ducts whether 

luminal application of prorenin could stimulate H+-ATPase activity also in ex vivo 

preparations (Fig. 9). However, luminal microperfusion with two different 

concentrations of prorenin (20 pM and 1 nM) for 15 minutes did not alter H+-ATPase 
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activity measured as pHi recovery rates after intracellular acidification with a NH4Cl 

prepulse (20 mM) as described previously [13,20,21,29]. Next, we incubated hand-

dissected connecting tubules and cortical collecting ducts with prorenin (1 and 20 

nM) for 10 min at 37 °C in vitro. For these experiments, we used mice expressing 

eGFP in intercalated cells [26] to facilitate isolation of large enough quantities of 

these nephron segments for experiments. In three independent preparations, no 

difference in pERK1/2 abundance could be detected (Figure 10 A, B), however, 20 

nM prorenin caused a strong trend towards increased ERK1/2 phosphorylation (p = 

0.08). We performed parallel experiments in MDCK cells incubated for 10 minutes 

with prorenin (20 nM) or angiotensin II (10 nM) in the absence or presence of the AT1 

and AT2 receptor blockers losartan (10 M) and PD123310 (10 M) (Figure 10). In 

the combined presence of losartan and PD123310 a non-significant tendency to 

more pERK1/2 abundance (p = 0.2) was detected in MDCK cells incubated with 

prorenin (Figure 10 C, D). 
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DISCUSSION 

 

Our study provides new insights into the localization of the prorenin 

receptor/Atp6ap2 and its regulation in mouse kidney by confirming and expanding  

previous observations reporting the expression and localization of the (P)RR/Atp6ap2 

in the vasculature and podocytes of the glomerulus [4,43,44,52], in proximal tubule 

[52,53], and in the collecting duct [52] and intercalated cells  [50,54,55,56]. 

Here, we present the detailed expression and localization of the (P)RR along 

the entire nephron. Semi-quantitative qPCR showed abundant expression of 

(P)RR/Atp6ap2 mRNA in hand-dissected mouse nephron segments spreading from 

glomerulus to the distal segments including the collecting duct. Of note, the highest 

mRNA levels were found in the collecting duct system coinciding with the localization 

of intercalated cells. Previous experiments using in-situ hybridization in rat kidney 

had detected signals in proximal tubule and thick ascending limb of the loop of Henle 

(TAL) but with much weaker intensity than in the collecting duct supporting our 

observations [50]. Immunohistochemistry shows (P)RR/Atp6ap2 localization at the 

luminal membrane of proximal tubules and in all subtypes of intercalated cells. Weak 

immunohistochemical signals for (P)RR/Atp6ap2 were also detected in TAL and 

distal convoluted tubule (DCT) and were very weak or absent from segment-specific 

cells (principal cells) in the collecting duct system. In intercalated cells, localization of 

the (P)RR/Atp6ap2 differed between specific cell subtypes. In type A intercalated 

cells, identified by positive basolateral localization of AE1 [57], (P)RR/Atp6ap2 

staining was detected only at the luminal pole consistent with the luminal localization 

of H+-ATPases in these cells [7,49]. Consistently, Advani and colleagues had 

reported the localization of immunogold-labeled (P)RR/Atp6ap2 at the luminal 

membrane of rat type A intercalated cells with electron microscopy [50]. In contrast, 
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intercalated cells expressing pendrin (type B and non-A/non-B intercalated cells) 

[58,59] showed luminal, basolateral or combined (P)RR/Atp6ap2 staining as reported 

previously also for other H+-ATPase subunits [32,46,48,49]. Accordingly, 

(P)RR/Atp6ap2 staining colocalized at the level of light microscopy with the 

a4/Atp6v0a4 H+-ATPase subunit at the brush border membranes of proximal tubule 

cells and in all subtypes of intercalated cells. Thus, the (P)RR/Atp6ap2 is apparently 

localized to kidney cells where plasma membrane-associated H+-ATPases are also 

expressed such as in the proximal tubule and intercalated cells.  

Next we examined whether mRNA and protein abundance of the 

(P)RR/Atp6ap2 paralleled mRNA and protein expression levels of two H+-ATPase 

subunits, a4/Atp6v0a4 and B1/Atp6v1b1, in membrane preparations from kidney 

cortex and kidney medulla from mice subjected to different treatments known to 

affect acid-base status and H+-ATPase regulation [25,32,35,48,60,61]. Changes in 

acid-base and electrolyte balance caused changes in mRNA and protein expression 

of all three molecules but did not show an uniform and obvious pattern of 

coregulation. At the level of the kidney cortex this may not be surprising since the 

preparation contains a mixture of proximal tubules, connecting tubules, and cortical 

collecting ducts which may have differential patterns of regulation. The medullary 

preparations (from outer and inner medulla) are more homogenous and thus 

representative for medullary collecting ducts even though containing also fractions 

from the late proximal tubule and medullary TALs [62]. Nevertheless, no consistent 

coregulation of the H+-ATPase subunits and the (P)RR/atp6ap2 was observed. Along 

the same line, B1 and a4 subunit isoforms showed varying responses which may 

reflect different expression patterns. Part of the changes in H+-ATPase subunit 

isoform expression and (PRR/Atp6ap2 may also be due to remodeling of the 

collecting duct that during chonic changes in electrolyte and acid-base status can 
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affect the relative abundance of principal versus intercalated cells as well as the 

relative frequency of the different intercalated cell subtypes [25,63]. 

 

Regulation of the (P)RR/Atp6ap2 has been shown in rodent models subjected 

to low or high salt intake [52,64]. Similar to our results no effect of high salt intake on 

(P)RR/Atp6ap2 mRNA was detected [52] whereas low salt diet increased 

(P)RR/Atp6ap2 mRNA [64,65]. In contrast, on protein level high salt diet was 

associated with increased full length (P)RR/Atp6ap2 protein expression in cortex and 

medulla which was attributed to changes in glomerular and proximal tubular 

abundance [52]. But also low salt intake caused higher expression of (P)RR/Atp6ap2 

protein at the level of the total kidney [64,65,66]. The functional relevance of the 

seemingly same response of the (P)RR/Atp6ap2 to both high and low salt intake are 

not known to date. 

 

Regulation of H+-ATPase activity occurs on several levels involving assembly 

and disassembly of V0 and V1 sectors, trafficking of pumps into and from the 

membrane, and phosphorylation of subunits [6,7]. Changes in acid-base status or 

electrolyte homeostasis as well as aldosterone or its analogue DOCA have been 

shown to induce marked redistribution of H+-ATPases in intercalated cells with more 

pronounced membrane association at the luminal membrane in type A intercalated 

cells upon NH4Cl or DOCA treatment [13,20,32,48,67]. Likewise, supplementation 

with bicarbonate leads to a strong staining of basolateral and/or luminal membranes 

in type B and non-A/non-B intercalated cells [32,48,67]. Thus, we tested whether the 

(P)RR/Atp6ap2 would colocalize with the a4/Atp6v0a4 H+-ATPase subunit that has 

been previously shown to participate in the trafficking of H+-ATPases to the different 

membrane domains in type A and non-type A intercalated cells [32]. Detailed 
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analysis of intercalated cells in the connecting tubule and medullary collecting duct 

showed that (P)RR/Atp6ap2 and the a4/Atp6v0a4 H+-ATPase subunit showed a high 

degree of colocalization both in intercalated cells stained for AE1 (type A intercalated 

cells) and intercalated cells negative for AE1 (non-type A intercalated cells). In the 

latter cell population, (P)RR/Atp6ap2 and a4/Atp6v0a4 were detected at the 

basolateral and luminal membrane as expected and consistent with the detection of 

(P)RR/Atp6ap2 in pendrin positive cells (Figure 4C,D). Also in the proximal tubule, 

(P)RR/Atp6ap2 and a4/Atp6v0a4 strongly colocalized at the brush border membrane 

under all treatments. Thus, the (P)RR/Atp6ap2 appears to colocalize with H+-

ATPases under different conditions inducing a subcellular redistribution of pumps.  

 

 In a last set of experiments we addressed the question whether prorenin 

would acutely affect basal H+-ATPase function in type A intercalated cells. Isolated 

cortical collecting ducts microperfused in vitro were exposed to two different 

concentrations of luminal prorenin that had previously been shown to induce cellular 

responses in other preparations [50,51]. However, we detected no differences 

between tubules microperfused with prorenin or left untreated in the realkalinization 

rates after washing out the NH4Cl prepulse. The rate of realkalinization represents 

mostly proton extrusion by H+-ATPases as indicated by its sensitivity to typical H+-

ATPase inhibitors such as bafilomycin or concanamycin [20,29,68]. Moreover, we 

and others have previously shown that various stimuli including aldosterone, 

angiotensin II, or cAMP can stimulate H+-ATPase activity in such preparations 

[12,13,20,21,69].  In a previous study using MDCK cells as model for intercalated 

cells we had shown that prorenin was able to stimulate H+-ATPase activity, albeit at 

high concentrations, and that siRNA mediated suppression of (P)RR/Atp6ap2 

expression reduced expression of the a2 but not the a4, d2, and B1/2 H+-ATPase 
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subunits and diminished stimulation of H+-ATPase activity by the antidiuretic 

hormone [51]. The discrepancy between our present study and the previous 

experiments in MDCK cells may be explained by differences in the composition of 

proton pump subunits present in MDCK and the native murine cortical collecting duct 

or by more general differences between the MDCK cell culture system and freshly 

isolated intercalated cells. Some subclones of the original MDCK cell line, namely the 

C7 and C11 clones, are believed to resemble principal and intercalated cells [28]. 

However, we performed qPCR for typical markers expressed by intercalated cells 

(e.g. pendrin, AE1, Foxi1, CP2L1, B1/ATP6V1B1) and by principal cells (e.g. AQP2) 

on these clones and found only very low or inconsistent expression of specific 

intercalated cell markers in these clones (Kampik, Wagner, unpublished data) 

suggesting that MDCK cells may not represent a very faithful model to investigate 

intercalated cell functions and regulation. Along the same line, Advani et al had 

reported that incubation of MDCK cells with renin and prorenin stimulated ERK1/2 

phosphorylation and that this effect was blocked by the H+-ATPase inhibitor 

bafilomycin [50]. We thus incubated freshly isolated cortical collecting ducts and 

MDCK cells with prorenin. In both preparations, cortical collecting ducts and MDCK 

cells, only a weak but not significant increase of ERK1/2 phosphorylation was found. 

In freshly isolated murine collecting ducts ERK1/2 participates in the stimulatory 

effect of aldosterone on H+-ATPase activity [13]. Hence, an increase in pERK1/2 

might directly stimulate H+-ATPase activity or be permissive for other positive stimuli. 

Therefore, the absence of a stimulatory effect of prorenin on H+-ATPase activity is 

consistent with the absence of an effect on ERK1/2 phosphorylation in the same 

preparation and possibly also in MDCK cells. Of note, all batches of prorenin were 

extensively tested for in vitro activity before use in microperfusion or in vitro 

incubation experiments ruling out that an inactive form of prorenin was used [70,71]. 
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In summary, we extend previous observations on the localization of the 

(P)RR/Atp6ap2 along the entire murine nephron and provide detailed information on 

its subcellular localization in the various types of intercalated cells. (P)RR/Atp6ap2 

and two other H+-ATPase subunits did not show coordinated regulation of mRNA and 

protein expression in kidneys from mice receiving different treatments. Nevertheless, 

immunolocalization of (P)RR/Atp6ap2 and the a4/Atp6v0a4 H+-ATPase subunit 

showed colocalization under all conditions suggesting that (P)RR/Atp6ap2 may be 

closely linked to or an integral part of the pump. In freshly isolated collecting ducts, 

prorenin had no effect on basal H+-ATPase activity and ERK1/2 phosphorylation 

indicating that prorenin and possibly also renin are not directly regulating H+-ATPase 

activity under the conditions used in this assay. Whether prorenin may have a 

permissive effect on the regulation of H+-ATPase function by other stimuli cannot be 

ruled out. Our data do not provide any answer to the question whether the 

(P)RR/Atp6ap2 is a functionally relevant part of the H+-ATPase in the proximal tubule 

or intercalated cells. Experiments in Drosophila suggest that the (P)RR/Atp6ap2 

might participate in endocytic retrieval of proteins from urine in the proximal tubule 

[22]. Genetic deletion of (P)RR/Atp6ap2 in other tissues and cells suggests that the 

absence of (P)RR/Atp6ap2 impairs the expression and function of the proton pump 

complex [44,51,72]. Also, the genetic deletion of (P)RR/Atp6ap2 from the entire 

collecting duct in mice causes hydronephrosis and more alkaline urine consistent 

with an important role of the protein in the collecting duct [73]. The timed and specific 

deletion of (P)RR/Atp6ap2 from renal cells will have to address the specific 

function(s) of the (P)RR/Atp6ap2 in these cells and its relationship to H+-ATPase 

function. 
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FIGURE LEGENDS 

Figure 1. Expression of (P)RR/Atp6ap2 mRNA along the mouse nephron 

Nephron segments were dissected from mouse kidney and relative mRNA 

abundance of the (P)RR and the B1 (Atp6v1b1) subunit of the vacuolar H+-ATPase 

assessed. Segment-specific enrichment of nephron fragments was tested by qPCR 

for various transcripts: Podoplanin for the glomerulum, NaPi-.IIa for the S1 /S2 , S3 

segments of the proximal tubule and DCT, NKCC2 for the TAL, NCC for the DCT, 

AQP2 for the collecting duct system, and pendrin for the CNT/CCD. Data are mean ± 

SEM (n= 4 mice/segments). Glom glomerulus, S1/S2 convoluted part of the proximal 

tubule, S3 straight part of the proximal tubule, thin limb thin descending and 

ascending limb of the loop of Henle, TAL thick ascending limb of the loop of Henle, 

DCT distal convoluted tubule, CNT/CCD connecting tubule/cortical collecting duct, 

OMCD outer medullary collecting duct, IMCD inner medullary collecting duct, WT M 

12 wk C57BL/6 male mouse 12 weeks old.   

 

Figure 2. Localization of the (P)RR/Atp6ap2 in mouse kidney 

Immunoflourescence staining for the (P)RR/Atp6p2 in mouse kidney (green). (A) 

Overview showing (P)RR/Atp6ap2 (green), the principal cell specific AQP2 water 

channel (red), and nuclei (blue), original magnification 40 x. (B) A cortical field with 

glomerulus (G), and (P)RR/Atp6ap2 staining (green) in the proximal tubule (PT) and 

connecting tubules (CNT), 400 x magnification. (C) Cortical and outer medullary 

collecting duct stained for (P)RR/Atp6ap2 (green) and the principal cell specific AQP2 

water channel (red), 400 x magnification. (E,D,F) (P)RR staining (D: green) was 

detected in the proximal tubule (PT) in the brush border membrane and colocalized 

with the a4 H+-ATPase subunit (ATP6V0A4)(E: red) as indicated by the yellow color 

(F), original magnification 400x.  



The prorenin receptor/Atp6ap2 and renal H+-ATPases 

 

 27 

 

FIGURE 3 

Colocalization of the (P)RR/Atp6ap2 with the a4 H+-ATPase subunit in 

intercalated cells 

Staining of mouse kidney sections with antibodies against the a4 (Atp6v0a4) H+-

ATPase subunit (red, upper panels) and the (P)RR/Atp6ap2 (green, middle panels) 

demonstrates colocalization (yellow, lower panels) in intercalated cells at the light 

microscopy level. Original magnification 400x.  

 

FIGURE 4 

Subcellular localization of the (P)RR/Atp6ap2 in type A and non-type A 

intercalated cells 

(A,B) Staining of mouse kidney sections with antibodies against the (P)RR/Atp6ap2 

(green), the type A intercalated cell specific marker AE1 (red) and nuclei with DAPI 

(blue). In cells expressing AE1, (P)RR/Atp6ap2 related staining is found and localizes 

to the apical side of cells (insert in B), original magnification 630-1000 x. (C,D) 

Staining of mouse kidney sections with antibodies against the (P)RR/Atp6ap2 

(green), the non-type A intercalated cell specific marker pendrin (red) and nuclei with 

DAPI (blue). In cells positive for pendrin, (P)RR/Atp6ap2 staining is detected either at 

the basolateral side of cells (asterisks in D) and/or luminal side (yellow overlay, arrow 

in D). Original magnification 400 - 630 x. 

 

 

 

FIGURE 5 
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Regulated mRNA expression of (P)RR/Atp6ap2 and the B1/Atp6v1b1 and 

a4/Atp6v0a4 H+-ATPase subunits in mouse kidney.  

Mice were treated with NaCl, NaHCO3, KHCO3, NH4Cl or DOCA for 7 days, and 

relative mRNA expression levels of (P)RR/Atp6ap2, and the B1/Atp6v1b1 and 

a4/Atp6v0a4 H+-ATPase subunits were assessed by semi-quantitative real-time RT-

PCR in cortex and medulla. N = 5 animals/ group, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. 

 

FIGURE 6 

Regulated protein abundance of (P)RR/Atp6ap2 and the B1/Atp6v1b1 and 

a4/Atp6v0a4 H+-ATPase subunits in mouse kidney cortex.  

Mice were treated with NaCl, NaHCO3, KHCO3, NH4Cl or DOCA for 7 days, and 

protein expression levels of (P)RR/Atp6ap2, and the B1/Atp6v1b1 and a4/Atp6v0a4 

H+-ATPase subunits were examined by immunoblotting of total membrane fractions 

prepared from kidney cortex (A). All blots were stripped and reprobed for β-actin. (42 

kDa), and the ratio of (P)RR : β-actin was calculated. Bar graphs (B) summarize data 

from the blots. Arithmetic means ± SD are shown, n = 5 animals/ group, *p ≤ 0.05, 

**p ≤ 0.01, ***p ≤ 0.001. 

 

FIGURE 7 

Regulated protein abundance of (P)RR/Atp6ap2 and the B1/Atp6v1b1 and 

a4/Atp6v0a4 H+-ATPase subunits in mouse kidney medulla.  

Mice were treated with NaCl, NaHCO3, KHCO3, NH4Cl or DOCA for 7 days, and 

protein expression levels of (P)RR/Atp6ap2, and the B1/Atp6v1b1 and a4/Atp6v0a4 

H+-ATPase subunits were examined by immunoblotting of total membrane fractions 

prepared from kidney outer and inner medulla (A). All blots were stripped and 

reprobed for β-actin. (42 kDa), and the ratio of (P)RR to β-actin was calculated. Bar 
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graphs (B) summarize data from the blots. Arithmetic means ± SD  are shown, n = 5 

animals/ group, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. 

 

FIGURE 8 

Colocalization of (P)RR/Atp6ap2 and the a4/Atp6v0a4 H+-ATPase subunit under 

conditions of acidosis and alkalosis 

Mice were left untreated or received NH4Cl (0.28 M) or NaHCO3 (0.28 M) in drinking 

water for 7 days to induce metabolic acidosis or alkalosis, respectively. Kidney 

sections were stained with antibodies against the (P)RR/Atp6ap2 (green), the 

a4/Atp6v0a4 H+-ATPase subunit (red), the type A intercalated cell specific anion 

exchanger AE1 (white), and with DAPI (blue) to mark nuclei. (A-C) Kidney sections 

from control mice with a cortical field (A) (400x), convoluted proximal tubules (B)(630 

x), and  an outer medullary collecting duct (C)(630x). The insert in (C) shows a higher 

magnification of type A intercalated cells in the outer medulla. (D-F) Kidney sections 

from mice receiving NH4Cl showing a cortical field (D) (400x), convoluted proximal 

tubules (E)(630 x), and  an outer medullary collecting duct (F)(630x). The insert in (F) 

shows a higher magnification of type A intercalated cells in the outer medulla. (G-I) 

Kidney sections from mice treated with NaHCO3 showing a cortical field (G) (400x), 

convoluted proximal tubules (H)(630 x), and  an outer medullary collecting duct 

(I)(630x). The insert in (I) shows a higher magnification of type A intercalated cells in 

the outer medulla. N = 4 animals/group.  

 

 

 

 

FIGURE 9 
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Prorenin does not acutely stimulate H+-ATPase activity in microperfused 

mouse outer medullary collecting ducts 

Cortical collecting ducts were prepared by hand-dissection from mouse kidney and 

microperfused ex vivo. H+-ATPase activity was assessed from pHi recovery rates in 

BCECF loaded intercalated cells using the NH4Cl prepulse technique. 1 nM or 20 pM 

Prorenin was applied from the luminal side and pHi recovery rates were measured. N 

= 4 to 6 tubules/group  

 

FIGURE 10 

Prorenin stimulates ERK1/2 phosphorylation in isolated mouse collecting 

ducts and MDCK cells  

(A) Outer medullary collecting ducts were prepared by hand-dissection from kidneys 

of mice expressing EGFP under the control of the intercalated cell specific Atp6v1b1 

promoter [26] and incubated in vitro with or without prorenin for 10 min. Immunoblots 

were performed for pERK1/2 and total ERK1/2. (B) Three independent experiments 

were performed and are summarized as bar graph showing the ratio of pERK1/2 over 

total ERK1/2. (C, D) MDCK cells were incubated for 10 minutes with prorenin (20 nM) 

or angiotensin II (10 nM) in the absence or presence of the AT1 and AT2 receptor 

blockers losartan (10 M) and PD123310 (10 M). Immunoblots were performed for 

pERK1/2 and total ERK1/2. Three independent experiments were performed and are 

summarized as bar graph showing the ratio of pERK1/2 over total ERK1/2. 
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Supplementary table 1 

Sequences of forward and reverse primers and probes used for semi-quantitative 

real-time RT-PCR. 
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