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ABSTRACT
Motivation: Although Genome Wide Association Studies (GWAS)
genotype a very large number of single nucleotide polymorphisms
(SNPs), the data is often analyzed one SNP at a time. The low
predictive power of single SNPs, coupled with the high significance
threshold needed to correct for multiple testing, greatly decreases the
power of GWAS.
Results: We propose a procedure in which all the SNPs are analyzed
in a multiple generalized linear model, and we show its use for
extremely high-dimensional datasets. Our method yields p-values
for assessing significance of single SNPs or groups of SNPs while
controlling for all other SNPs and the family wise error rate (FWER).
Thus, our method tests whether or not a SNP carries any additional
information about the phenotype beyond that available by all the other
SNPs. This rules out spurious correlations between phenotypes and
SNPs that can arise from marginal methods because the ”spuriously
correlated” SNP merely happens to be correlated with the ”truly
causal” SNP. In addition, the method offers a data driven approach to
identifying and refining groups of SNPs that jointly contain informative
signals about the phenotype. We demonstrate the value of our
method by applying it to the seven diseases analyzed by the WTCCC
(The Wellcome Trust Case Control Consortium, 2007). We show,
in particular, that our method is also capable of finding significant
SNPs that were not identified in the original WTCCC study, but were
replicated in other independent studies.
Availability: Reproducibility of our research is supported by the
open-source Bioconductor package hierGWAS.
Contact: peter.buehlmann@stat.math.ethz.ch

1 INTRODUCTION
Genome-Wide Association Studies (GWAS) have enjoyed increasing
success and popularity in recent years, due mostly to the thousands
of genetic variants found to be significantly associated with complex
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traits (Welter et al., 2014). The two common designs are case-
control studies, which look for associations between SNPs and
disease, and population-based studies which focus on finding
associations between SNPs and continuous traits (McCarthy et al.,
2008). The larger goal of these studies is to function as hypothesis-
generating machines, resulting in sets of loci that require further
analysis. Thus GWAS are an important first step in the gene
identification process (Cantor et al., 2010). The findings from
these studies provide preliminary genetic information, which need
additional analysis and follow-up experiments to be validated.
However, many studies have found only a few common SNPs
per trait, and these SNPs have generally low predictive power,
explaining only a small percentage of the variance (Manolio et al.,
2009).

Often, SNPs are tested individually for association with the
phenotype, using the Armitage Trend Test. Because genome-wide
scans analyze hundreds of thousands or even millions of markers,
the multiple testing issue is resolved by applying a stringent
significance threshold - most commonly 5 ∗ 10−8 (Panagiotou and
Ioannidis, 2012) - to the p-values. This method is successful only
if the study is well-powered, such that the associations are strong
enough to pass the stringent threshold. However, even if that is the
case, this type of analysis has several limitations, which have been
addressed in the literature (Schork, 2001; Hoggart et al., 2008; Li
et al., 2011; He and Lin, 2011; Rakitsch et al., 2013). Here we focus
on two of them. Firstly, single SNPs tend to have small effect sizes.
We can increase the explanatory power by looking at the joint effect
of multiple SNPs. Secondly, when we test a SNP individually, we
ignore the effects of all other SNPs. If we analyze marginally two
sufficiently correlated SNPs, out of which only one is causal for the
disease, both may show an association. This leads to higher false
positive rates.

Joint modeling of all SNPs is challenging. Since in most GWAS
the number of SNPs is much larger than the number of samples, the
data cannot be analyzed using standard multivariable approaches.
An established method in the field is the GCTA (Genome-wide
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Complex Trait Analysis), which is based on linear mixed models
(Yang et al., 2011, 2014) and enables some joint analysis of SNPs.
It allows for statistical significance tests of single SNPs (as fixed
effects) while all SNPs other than the considered single SNP are
built into the model as a simultaneous random effect. We would
classify the obtained statistical significance of the SNPs as a hybrid
between marginal (with only one or a few SNPs as fixed effects)
and joint (since all the SNPs are in the model) modeling. It also
enables to assess the combined effect of all SNPs which quantifies
the heritable component of phenotype variation explained jointly
by all the genotyped SNPs (Yang et al., 2010). Another solution
to the high-dimensionality of the problem is the use of penalized
regression, which constrains the magnitude of the regression
coefficients, and allows them to be estimated. The two most widely
used penalization methods are the Lasso (Tibshirani, 1996) and
Ridge regression (Hoerl and Kennard, 1970). The Lasso penalizes
the sum of the absolute values of the regression coefficients. It is a
sparse estimator, meaning that it sets some regression coefficients
to zero, while keeping others non-zero. Ridge regression penalizes
the sum of squared regression coefficients, but it does not reduce
the number of parameters in the model. In Abraham et al. (2013) it
has been shown in the context of GWAS that penalization decreases
the false positive rate and increases the probability of detecting
the causal SNPs. There are several papers which consider a joint
analysis. Methods which apply a penalized model include: the
Bayesian Lasso (Li et al., 2011), a two-stage procedure using
single regression followed by a Lasso selection (Shi et al., 2011),
stability selection in the context of GWAS (Alexander and Lange,
2011), the so-called ISIS (Iterative Sure Independence Screening)
combined with stability selection to select significant SNPs (He
and Lin, 2011), a combination of Lasso and linear mixed models
(Rakitsch et al., 2013), Lasso for screening (Wu et al., 2010) or
ridge regression (Malo et al., 2008). None of the proposals (Li
et al., 2011; He and Lin, 2011; Rakitsch et al., 2013; Shi et al.,
2011; Alexander and Lange, 2011) compute p-values for SNPs. Wu
et al. (2010) aims to control the type I error rate, the approaches
using stability selection aim to control the expected number of false
positive selections (Meinshausen and Bühlmann, 2010), while Shi
et al. (2011) controls the False Discovery Rate (FDR).

Our goal is to construct valid p-values for SNPs in a (joint)
multiple generalized linear model together with a computationally
efficient and powerful way to address the issue of massive multiple
statistical hypothesis testing. The problem is challenging due to the
complex setting with hundreds of thousands of SNPs. Our method
relies on a hierarchical procedure from Mandozzi and Bühlmann
(2015) which we apply here for the first time to GWAS with very
high-dimensional data-sets. It provides p-values for multiple (joint)
regression modeling of SNPs in high-dimensional settings. We
compute p-values not only for individual SNPs, but also for groups
of SNPs. The idea is to adapt to the strength of the signal present
in the data: if the signal is too weak or the SNPs exhibit too high
correlation, we might still detect a significant group of SNPs, instead
of single SNP markers. Additionally, we compute the explained
variance for every such group in a high-dimensional generalized
linear model.

We demonstrate our method on the WTCCC data (The Wellcome
Trust Case Control Consortium, 2007), due to the fact that strong
associations have been found for some phenotypes in this data
set, and many of their findings have been replicated in subsequent

studies. However, our method’s advantages are also evident
for phenotypes with weak associations: for biologically distant
phenotypic traits, the goal is rather to find regions of the genome
that are strongly associated with the phenotype. Our proposed
method makes it statistically and computationally possible to assess
the significance of the parameters in a multiple (generalized)
linear model, for large scale GWAS problems with millions of
SNP markers. The interpretation of the parameters in a multiple
(generalized) linear model is markedly different from marginal
association and also from GCTA (Yang et al., 2011). In fact, under
some assumptions, we can link the (joint) multiple linear model
to causal inference (see Section 2.1). Thus, it as an important step
to perform the statistical inference in a multiple generalized linear
model.

2 METHODS
Consider the following setting and notation. There are n samples (e.g.,
persons in a study), and each of them is indexed with i ∈ {1, . . . , n}. A
response variable Yi for the ith sample point (e.g., the ith person in the study)
encodes the status of a phenotype of interest. For example the binary status
of a disease with Yi ∈ {0, 1}, the continuous value of a survival time with
Yi ∈ R+ or the continuous degree of an exposure or (log-) concentration
with Yi ∈ R. The regressor Xi is a (long) p × 1 vector which encodes
the SNP profile for the ith sample point: Xi,j ∈ {0, 1, 2} is the value of
the jth SNP for sample point i, taking three possible values corresponding
to the number of minor alleles per person. Typically, the number of SNPs
(regressors) is p ≈ 106, while the number of samples is at least one
order of magnitude smaller. A model measuring multivariable association
is introduced next.

2.1 Generalized linear models
A well-established model for relating the phenotype (response variable) and
the SNPs (regressors) is a generalized linear model (McCullagh and Nelder,
1989).

The easiest form thereof is a linear model for continuous (R-valued)
responses:

Yi = β0 +

p∑
j=1

βjXi,j + εi (i = 1, . . . , n), (1)

where ε1, . . . , εn are independent and identically distributed noise terms
with expectation E[εi] = 0, finite variance and which are uncorrelated with
the regressors Xi,j .

For binary responses with Yi ∈ {0, 1}, representing case (= 1) or control
(= 0), we consider a logistic regression model:

Yi ∼ Bernoulli(πi),

πi = P (Yi = 1|Xi, β) =
exp(ηi)

1 + exp(ηi)
, (i = 1, . . . , n),

ln(
πi

1− πi
) = ηi = β0 +

p∑
j=1

βjXi,j

(2)

Here, πi represents the probability of individual i having a case status given
its SNPs Xi. There is no additional noise term and the stochastic nature of
the model comes from the probability πi.

In both models, β0 denotes the intercept, and the coefficients βj are the
(logistic) regression coefficients which measure the association of the jth
SNP with the response. Such models, which take into account all SNPs,
have two features. First, the (generalized) regression coefficients have the
following (well-known) interpretation: βj measures the association effect of
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Xi,j on Yi which is not explained by all other variables {Xi,k; k 6= j}.
Thus, a large βj , in absolute value, has the very powerful interpretation
that SNP j has a strong association to the phenotype given all other SNPs
or controlling for all other SNPs. This is in sharp contrast to marginal
correlation between SNP j and the phenotype Y which can easily be of
spurious nature and caused by another SNP k having a strong correlation
with the phenotype and with SNP j.

Furthermore, the regression models are predictive in the sense that for
a new sample point (e.g. person) with a given SNP profile Xnew we
obtain a prediction for the corresponding phenotype (e.g. disease status)
E[Ynew|Xnew] = β0+

∑p
j=1 βjXnew,j or P[Ynew = 1|Xnew] = ηnew,

where ηnew = β0 +
∑p
j=1 βjXnew,j . Note that this prediction is likely

to be more informative or precise than a prediction that is based merely on
marginal correlations because the general linear model applied here enables
us to use the whole new SNP profile, and not just single SNPs, for predictive
purposes.

Our main goal is to infer statistical significance of a single SNP or of
a possibly large group of correlated SNPs for a given phenotype. More
precisely, we aim for p-values, adjusted for multiple testing, when testing
the following hypotheses:

for single SNP j

H0,j : βj = 0 versus HA,j : βj 6= 0, (3)

or for a group G ⊆ {1, . . . , p} of SNPs

H0,G : βj = 0 for all j ∈ G

versus HA,G : at least for one j ∈ G we have that βj 6= 0. (4)

The obtained p-values are with respect to a regression model and hence, they
share the interpretation with the regression parameters described above. In
particular, they are markedly different from a marginal or linear mixed model
approach: the differences are also illustrated in simulation studies in Section
3.1.

A link to causal inference. If we assume (i) that the model is correct and that
beyond the measured SNPs there are no hidden confounding variables - a
condition that might be somewhat less problematic when having a million
or more SNP markers - and (ii) that the causes point from the SNPs to
the phenotype Y , the parameters βj (j = 1, . . . , p) can be given a
causal interpretation. This link to causal inference shows again that a (joint)
multiple regression model is very different from a marginal model. In a
structural equation model the assumption that the causes point from the SNPs
to the phenotype Y means that the arrows in a directed acyclic graph, that
encode the causal influence diagram, point to Y and never point away from
Y , i.e., Y is childless. Such an assumption says that some SNPs might be
the cause for a phenotype, but the phenotype cannot be a cause for the SNPs,
which seems a very reasonable assumption. Under these conditions, the
following holds: if βj 6= 0, then there must be a directed edge in the causal
influence diagram of a linear structural equation model from SNP j to the
phenotype Y with non-zero edge weight, i.e., there exists a non-zero direct
causal effect from SNP j to the phenotype Y . This statement is not true with
marginal associations (i.e., if SNP j is only marginally associated with Y )
since adjusting for all other SNPs (different from SNP j) is crucial for causal
statements. The details are given in Proposition S1.1 in the Supplementary
Material Section S1.

2.2 The challenge of high-dimensionality
The difficulty with a regression type analysis is the sheer high-
dimensionality of the problem. The number of SNPs p ≈ 106 is massively
larger than sample size n, which is at least one order of magnitude smaller. In
such scenarios, standard statistical inference methods fail. Recent progress
based on new methods such as multiple sample splitting, has allowed us
to obtain statistical significance measures for regression parameters βj
(Meinshausen et al., 2009; Bühlmann, 2013; Zhang and Zhang, 2014,
cf.) or groups thereof (Mandozzi and Bühlmann, 2015). We rely here

on this method (Mandozzi and Bühlmann, 2015), which shows reliable
performance over a wide range of simulation settings (Dezeure et al., 2015),
and enjoys the property of being computationally vastly more efficient than
procedures which operate on the entire data-set. We extend the procedure
from Mandozzi and Bühlmann (2015) from linear to logistic regression,
and we show here for the first time how it performs for extremely high-
dimensional GWAS data. The entire statistical procedure is schematically
summarized in Figure 1.

Fig. 1. Schematic overview of the method. ”Clustering” refers to the step
of hierarchically clustering the SNPs. SNPs on different chromosomes are
clustered separately, after which the 22 clusters are joined into one final
cluster containing all SNPs. ” Multi-Sample Splitting and SNP Screening”
stands for the SNP selection in steps 1 and 2 of the method described in
Section 2.4.2. These selected SNPs are used to compute the p-values. Finally,
the last step of the method - ”Hierarchical Testing” - uses the selected
SNPs to test groups of SNPs and eventually single SNPs. This testing is
done hierarchically, on the cluster previously constructed. The output of
the method consists of significant groups , or single SNPs, along with their
p-values, that are adjusted for multiple testing.

In view of the high-dimensional nature of GWAS, it is rather unlikely
to detect single SNPs which are significant when controlling for all other
SNPs. Thus, it is a-priori more likely to detect (large) significant groups of
SNPs with respect to the group hypothesesH0,G in a regression model. The
construction of such groups is achieved by clustering the SNPs, as explained
next.

2.3 Clustering
Our goal is to perform significance testing on single SNPs (the hypotheses
H0,j ) as well as arbitrarily large groups of SNPs (the hypotheses H0,G).
We do this hierarchically since this allows for powerful multiple testing
adjustment as well as for efficient computation (see Section 2.4).

We first discuss the hierarchical clustering of SNPs. The hierarchy can
be constructed in different ways. One option is to use specific domain
knowledge to group the SNPs, for instance by clustering them first into
genes, and then into functional pathways. Another option is to use standard
hierarchical clustering methods which rely on a distance measure between
the SNPs.

Here we adopt the second approach, which is similar to the construction
of haplotype maps (Barrett et al., 2005). We use hierarchical clustering with
average linkage (Jain and Dubes, 1988) which can be represented as a cluster
tree, denoted by T . The method requires a distance or dissimilarity measure
between SNPs. We consider the distance between two SNPs as one minus
their linkage disequilibrium (LD) value, where LD refers to the statistical
dependency of the DNA content at nearby locations of the chromosome.
One of the most common measures of LD is the square of the Pearson
correlation coefficient (Hill and Robertson, 1968), which quantifies the linear
dependence between two loci. Thus, two SNPs will have an LD equal to
one if they are perfectly correlated, or an LD equal to zero if they are
uncorrelated. Since LD has a tendency to decay with the distance of the
studied loci, close-by SNPs are typically in high LD. This means that SNPs
belonging to the same gene, or more generally, neighboring SNPs will end up
in the same cluster. Often, LD is studied within each chromosome separately.
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Therefore, we construct separate cluster trees for each chromosome 1 , and
we then join these into one tree T which contains all the SNPs in the study,
as shown in Figure 2.

Genome

Chrom 1

...
...

Chrom 2

...
...

Chrom 21

...
...

Chrom 22

...
...

· · ·

Fig. 2. The final cluster tree. The SNPs are first partitioned into
chromosomes, and then a cluster tree is built for each chromosome
separately using hierarchical clustering with average linkage. The
hierarchical clusters of SNPs within chromosomes are not shown due to their
size.

2.4 Statistical Significance Testing
A cluster, as described in Section 2.3, is denoted by the generic letter G
which encodes a subset of {1, . . . , p} of single SNPs. We explain here how
to test a null-hypothesis for a groupH0,G in (4) or for a single SNPH0,j in
(3).

2.4.1 Hierarchical inference
In section 2.4.2 we will show how one can construct valid p-values for the
hypotheses H0,j and H0,G. On the basis of valid p-values, our hierarchical
approach proceeds as follows:

1. Test the global hypothesis H0,Gglobal
where Gglobal = {1, . . . , p}:

that is, we test whether all SNPs have corresponding (generalized)
regression coefficients equal to zero or alternatively, whether there is
at least one SNP which has a non-zero regression coefficient. If we can
reject this global hypothesis, we go to the next step.

2. Test the hypotheses H0,G1
, . . . , H0,G22

where Gk contains all the
SNPs from chromosome k. For those chromosomes k where H0,Gk

can be rejected, we go to the next step.

3. Test hierarchically the groups G which correspond to chromosomes k
whereH0,Gk

was previously rejected. Consider first the largest groups
and then proceed hierarchically (down the cluster tree) to smaller
groups until a hypothesisH0,G cannot be rejected anymore or the level
of single SNPs is reached.

4. The output is a collection of groups Gfinal,1, . . . , Gfinal,m where
H0,Gfinal,k

is rejected (k = 1, . . . ,m) and all subgroups of Gfinal,k

(k = 1, . . . ,m) downwards in the cluster tree are not significant
anymore.

In such a hierarchical testing procedure, which belongs to the scheme
of sequential multiple hypothesis testing, the multiple testing adjustment
is resolution dependent. To guarantee that the familywise error, i.e., the
probability for at least one false rejection of the hypotheses among the
multiple tests, is smaller than or equal to α for some pre-specified 0 <

1 In addition to providing a biological interpretation, clustering each
chromosome separately results in substantial computational gains for
problems with p ≈ 106 SNPs.

α < 1, e.g., α = 0.05, the hypothesis tests must be performed at different
significance levels, depending on where one is in the hierarchy. The more we
descend in the hierarchy, the more the multiple testing adjustment increases
because we do more tests. It is important to keep in mind that even though
the procedure controls the type I error simultaneously over all levels of the
hierarchy, the adjustment for larger clusters does not depend on whether one
will test their subclusters or not. While there is an ordering of the clusters,
due to the nature of the hierarchical clustering procedure, and testing of
subclusters stops once the null hypothesis of the parent cluster is accepted,
the adjustment applied to the p-value of any cluster does not depend on the
number of tests that have already been performed, but only (essentially)
on the size of that particular cluster, see Section 2.4.2. The details have
been developed by Meinshausen (2008). In other words: the final output
of the method are p-values for significant groups Gfinal,1, . . . , Gfinal,m

with the interpretation, that these p-values control the familywise error rate
for multiple testing.2 Furthermore, due to the hierarchical structure of the
procedure, we can massively reduce the number of computations: if the final
clusters or groups Gfinal,k are relatively high up in the hierarchy of the
cluster tree, we only need to compute relatively few hypothesis tests.

2.4.2 Construction of the p-values

The hierarchical inference procedure above assumes that one has a method
that constructs p-values which are valid.3

Due to the high-dimensionality with p � n, obtaining a p-value for the
hypothesesH0,j orH0,G in (3) or (4) is a non-trivial problem. We rely here
on a multiple sample splitting approach from Meinshausen et al. (2009), and
we follow exactly the method from Mandozzi and Bühlmann (2015). The
idea is as follows. For b = 1, . . . , B repetitions:

1. Randomly partition the n samples into two parts, say N(b)
in and N(b)

out.

2. Using a variable selection procedure such as the (logistic) Lasso
(Tibshirani, 1996; Friedman et al., 2010), select regressors (SNPs)
based on data from the first half-sample N(b)

in . Denote the selected
regressors by Ŝ(b) ⊆ {1, . . . , p}. Because a Lasso estimated model
has cardinality smaller or equal to min(n, p), the number of selected
variables |Ŝ(b)| < n/2 will be smaller than half of the sample size .
We choose to select the first n/6 SNPs that enter the Lasso path. This
ensures that we have enough regressors for computing p-values.

3. Based on data from the second half-sampleN(b)
out, use classical p-value

constructions in a linear or generalized linear model with the selected
regressors (SNPs) from Ŝ(b) in the previous step. The construction of a
p-value of a clusterG is done in the following manner: we intersect the
hierarchy T constructed in Section 2.3 (using hierarchical clustering)
with Ŝ(b), obtaining an induced hierarchy with root node Ŝ(b). The
testing is then applied on this induced hierarchy. Finally we assign the
p-value to the entire clusterG, although we have only used the variables
in G ∩ Ŝ(b).

pG,(b) =

pG∩Ŝ
(b)

out based on Y
N

(b)
out

, X
N

(b)
out

, if G ∩ Ŝ(b) 6= ∅

1, if G ∩ Ŝ(b) = ∅,
(5)

where pG
′

out is the p-value for H0,G′ based on data from N
(b)
out (G′ ⊆

{1, . . . , p}). For a cluster G ∈ T , the multiplicity adjusted p-value is

2 If we collect all groups with a p-value smaller or equal to α, then the
probability for making one or more false rejections among all considered
tests is less or equal to α.
3 A p-value P is valid for a null-hypothesis H0 if PH0

[P ≤ α] ≤ α for
any 0 < α < 1, where PH0 denotes the probability assuming that H0 is
true.
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defined as:

p
G,(b)
adj = min(pG,(b)

|Ŝ(b)|
|G ∩ Ŝ(b)|

, 1) (6)

if G ∩ Ŝ(b) 6= ∅ and pG,(b)adj = 1 otherwise.

4. Repeat steps 1-3 B times (with e.g. B = 100) and aggregate the B
p-values (separately for every hypothesis). The aggregated p-value of
any cluster G is computed by considering its empirical quantile:

PG = min{1, (1− log γmin) inf
γ∈(γmin,1)

QG(γ)} (7)

whereQG(γ) = min{1, qγ({pG,(b)adj /γ; b = 1, ..., B})}, γ ∈ (0, 1),
γmin = 0.05 and qγ(·) is the empirical γ-quantile function. Finally,
the hierarchically adjusted p-value of a cluster G is:

PGh = max
D∈T :G⊆D

PG (8)

The sample splitting in step 1 is made to avoid being over-optimistic when
performing variable selection and p-value construction on the same data-set.
The repeated sample splitting in step 4 helps to achieve much more reliable
results which do not depend in a sensitive way on how we split the sample
(Meinshausen et al., 2009, cf.). More details about the assumptions which
guarantee control of the familywise error rate are provided in Supplementary
Material Section S2.

This multi-sample splitting method is computationally fast since Lasso
in step 2 is rather cheap to perform and step 3 requires classical p-value
computations in low-dimensional models with fewer than n regressors only.
In terms of accuracy for type I error control, i.e., avoiding false rejections of
hypotheses, the multi-sample splitting approach has been found very reliable
in extensive simulations relative to other methods. This reliability comes at
the price of being slightly inferior in terms of power to detect true underlying
positive findings (Dezeure et al., 2015), see also Mandozzi and Bühlmann
(2015). However, this slightly more conservative scheme has the advantage
of limiting false positives.

3 RESULTS
3.1 Simulation studies
We used the WTCCC Crohn’s disease genotype data to create semi-
synthetic datasets. To generate the new genotype matrix, we kept all
the samples (n = 4682), but selected a block of 500 consecutive
SNPs from each of the 22 autosomal chromosomes, having in total
11000 SNPs. The phenotype data was generated from a logistic
regression model with the probability of having the disease as the
dependent variable and 10 causal SNPs as the independent variables.
We considered 3 designs for choosing the causal SNPs:

1. Randomly select a set of 10 consecutive SNPs from
chromosome 1. The regression coefficients are sampled with
replacement from the set {-2, -1.75, -1.5, -1.25, -1, 1, 1.25,
1.5, 1.75, 2}.

2. Randomly select a set of 5 consecutive SNPs from
chromosome 1 and 5 consecutive SNPs from chromosome 2.
The regression coefficients are sampled with replacement from
the set {-1, -0.75, -0.5, 0.5, 0.75, 1}.

3. Randomly select a set of 10 non-consecutive SNPs from
chromosome 1. The regression coefficients are sampled with
replacement from the set {-2, -1.75, -1.5, -1.25, -1, 1, 1.25,
1.5, 1.75, 2}.

To ensure that the number of cases and controls are not too
different, we required the ratio between cases and controls to
be within the interval [0.67, 1.5]. We kept the genotype matrix
constant, and generated 100 simulation runs for each design, using
new coefficients for every simulation run.

We chose to compare our method to three other algorithms. One
is the classic bivariate testing, implemented in PLINK (Purcell
et al., 2007). The other two are mixed model approaches: the FaST-
LMM (Lippert et al., 2011) and the GCTA (Yang et al., 2011)
algorithms. Both calculate a genetic relationship matrix (GRM) to
control for the effect of the other SNPs. There are many ways of
computing the GRM. One can use all the SNPs, or just a particular
subset. An approach that is computationally efficient is leave-one-
chromosome-out (LOCO) (Yang et al., 2014). With this option
when one tests the SNPs in a particular chromosome, the SNPs
from all the other chromosomes besides the one being tested are
used to compute the GRM. The main difference between mixed
models and our method is the way in which the effects of other SNPs
are modeled. While the mixed model uses a random component to
account for all the other SNPs, our method considers each SNP as a
fixed effect, and includes all of them in the model.

Our goal was to assess how good these methods are at detecting
the causal variants (which are known for simulated data), while
limiting the number of false positives: SNPs that are not truly
causal (but perhaps correlated with the causal variants). Assessing
the performance of the methods was done by considering several
criteria. The first is the FWER, which we expect to be controlled
at level α. This is equivalent to expecting 100∗α false discoveries,
when performing 100 simulations. As a less conservative criterion,
we also consider the k-FWER, a generalized version of the FWER.
The k-FWER is defined as P{V ≥ k}, where V is the total
number of false rejections. For our simulations, we are interested
in the value of k, under which the k-FWER is controlled at level
α = 0.05. In the case of our method, a rejection is considered
false only if the cluster does not contain any of the true causal
SNPs. The third assessment criteria is the power of the method. Also
here we consider two variants. The first is a ”naive” version, which
considers all findings where the true causal SNP is present in a
cluster, irrespective of the cluster size. The second metric penalizes
the size of the group with respect to the causal variants. This is
computed in the following way:

POWadaptive =
1

|S0|
∑

G∈Gsign

|S0 ∩G|
|G| , (9)

whereGsign is the set of groups declared significant by our method,
and S0 is the set of true causal SNPs. For the three comparison
methods, we declare significant SNPs that have a p-value below 5 ∗
10−8, and compute the power, FWER and k-FWER using this set.

The results shown in Table 1 are in line with our expectations.
In the first 2 designs, our method has a lower power compared to
the other three methods that behave almost identically. The cost of
a larger power is however a significant increase in the number of
false positives. While our method fails to control the FWER due to
the very complex correlation structure in the data, it does however
control the 2-FWER at level α. This means that the probability of
making more than 2 false rejections is below α. In comparison, the
other three methods do on average at least one order of magnitude
more false rejections. This has to do with the fact that they infer
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Table 1. Simulation results. Comparison of four methods for three different
scenarios. FWER: Familywise error rate; k: value of k such that k-FWER
≤ 0.05; POW: power; POWadaptive: adaptive power.

Design Method FWER k POW POWadaptive

1 hierGWAS 0.14 2 0.70 0.63
1 PLINK 1 44 0.89
1 GCTA 1 44 0.89
1 FaST-LMM 1 44 0.89
2 hierGWAS 0.29 2 0.72 0.66
2 PLINK 1 81 0.87
2 GCTA 1 93 0.89
2 FaST-LMM 1 93 0.89
3 hierGWAS 0.56 3 0.94 0.85
3 PLINK 1 130 0.94
3 GCTA 1 131 0.94
3 FaST-LMM 1 130 0.94

marginal associations, or associations which are partially adjusted
by random effects: many significant findings are spurious because
of high correlation between some of the SNPs. The lower power
of our hierGWAS procedure can be explained by the fact that it
aims to infer associations which are adjusted for other SNPs: our
method would detect some of them individually, some of them as
groups, and if the correlation among some SNPs is too strong (or
the signal too weak), it would miss some. This becomes apparent
also when we consider the two power measures: POWadaptive is
always smaller than POW, because some of the causal SNPs will
be grouped into clusters, due to their correlation structure. In the
case of the third design, our method has the same power as the other
three to detect the causal SNPs. If we assume that this is close in
spirit to the real life case of having one causal SNP surrounded
by many others that are in LD with the causal one, our method
has the power to detect it just as well as the marginal methods,
while providing a greatly reduced set of false positives, and a
much stronger interpretation of the findings. While the FWER is
the highest in the third design, due to the fact that there are many
more confounders around each SNP compared to the other two
designs, our method still performs much better, by controlling the 3-
FWER at level α. We note that GCTA and FaST-LMM have a slight
disadvantage regarding the control of false positives, because we
used the LOCO approach to compute the GRM. However, since this
is an established approach, and the strategy of eliminating only the
SNP being tested, and using all other SNPs to construct the GRM is
computationally infeasible (Yang et al., 2014), we believe that this
situation reflects reality.

3.2 WTCCC data
We validate our method on data from The Wellcome Trust Case
Control Consortium (2007). The Wellcome Trust Case Control
Consortium study used 3000 subjects and 2000 shared controls
from the British population to examine 7 major diseases: bipolar
disorder (BD), coronary artery disease (CAD), Crohn’s disease
(CD), hypertension (HT), rheumatoid arthritis (RA), type 1 diabetes
(T1D), and type 2 diabetes (T2D). The subjects were genotyped
using the Affymetrix GeneChip 500K Mapping Array Set. Though
The Wellcome Trust Case Control Consortium (2007) reported

all SNPs with a p-value < 5 ∗ 10−4, the threshold for strong
association was set to 5 ∗ 10−7. Using the standard marginal
analysis, the WTCCC study identified 21 new SNPs strongly
associated to the phenotype. For BD rs420259 on chromosome 16,
for CAD rs1333049 on chromosome 9, for CD, the WTCCC study
identified 9 SNPs strongly associated to the phenotype: rs11805303
on chromosome 1, rs10210302 on chromosome 2, rs9858542 on
chromosome 3, rs17234657 and rs1000113 on chromosome 5,
rs10761659 and rs10883365 on chromosome 10, rs17221417 on
chromosome 16 and finally rs2542151 on chromosome 18. 2 SNPs
were found for RA: rs6679677 on chromosome 1 and rs6457617 on
chromosome 6. T1D was strongly associated to 5 SNPs: rs6679677
on chromosome 1, rs9272346 on chromosome 6, rs11171739 and
rs17696736 on chromosome 12 and rs12708716 on chromosome
16. Finally, for T2D 3 associations were found: rs9465871 on
chromosome 6, rs4506565 on chromosome 10 and rs9939609 on
chromosome 16. For HT, the WTCCC did not find any SNP strongly
associated to the phenotype.

Before applying our analysis, we have preprocessed the data, by
excluding some SNPs and samples, as well as imputing the missing
SNPs. Details about this procedure are given in the Supplementary
Material Section S4.1.

The output of our method is a list of SNP groups of different
sizes. These represent the smallest jointly significant groups in the
hierarchical tree of SNPs. We create a distinction between small (
< 10 SNPs) and large groups, and present the corresponding results
separately. The number 10 is somewhat arbitrary and determined
by notational simplicity to list at most 10 SNPs per group. We
identified small groups for 5 of the 7 diseases, and present them
below. Large groups have been identified for all of the diseases,
however we chose to present in detail the results for BD only. We
chose BD because it is the disease for which the WTCCC found
a single strongly associated SNP, which we did not identify using
our method. The large groups for the other 6 diseases are detailed
in the Supplementary Material Section S4. It is important to note
that these groups are not overlapping. For example, if in a specific
chromosome we find a small group of 4 SNPs, as well as 2 large
groups both containing thousands of SNPs, these 3 groups do not
share common SNPs and they belong to different regions of the
chromosome. This happens because our method finds the smallest
group of SNPs for which the null hypothesis can be rejected. Such
a result means that one region of the chromosome exhibits a strong
signal, while there are other regions exhibiting weaker signal. Thus,
the size of the group reflects the strength of associations: the weaker
these associations, the larger the significant groups.

Tables 2 and 3 report on individual SNPs or small clusters of
SNPs selected by our method for the seven diseases we analyzed.
We found a total of 20 such clusters, out of which 16 are individual
SNPs.

12 out of the 20 clusters contain at least one SNP that was found
to be strongly associated to the phenotype in the original WTCCC
study. The remaining 8 clusters contain SNPs that are either in LD
with the ones identified by the WTCCC, belong to the same gene
or genomic region, or have been identified as having a significant
effect in other studies. While it is informative to see if our findings
have been previously reported in other studies, it is important to
remember the distinction in terms of interpretation. Our method
makes the significance of previous findings much stronger, because
it does not simply compute the marginal correlation, but it instead
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Table 2. List of small significant groups of SNPs selected by our method
for coronary artery disease, Crohn’s disease and rheumatoid arthritis. a The
disease identifier for which the SNP group was selected. b The smallest
groups of SNPs whose null hypothesis was rejected. The SNPs in this group
are jointly significant. rsIDs of SNPs from dbSNP. c The chromosome to
which the SNPs in the group belong. d The gene to which the SNPs in the
group belong, if any. Gene symbol from Entrez Gene. e The p-value of the
group of SNPs, adjusted for multiple testing (controlling the FWER). f The
variance explained by the group of SNPs.

Disa Significant
group of
SNPsb

Chrc Gened P-valuee R2f

CAD rs1333049 9 intergenic 1.7 ∗ 10−3 0.013
CD rs11805303,

rs2201841,
rs11209033,
rs12141431,
rs12119179

1 IL23R 4.5 ∗ 10−2 0.014

CD rs10210302 2 ATG16L1 4.6 ∗ 10−5 0.014
CD rs6871834,

rs4957295,
rs11957215,
rs10213846,
rs4957297,
rs4957300,
rs9292777,
rs10512734,
rs16869934

5 intergenic 2.7 ∗ 10−3 0.016

CD rs10883371 10 LINC01475,
NKX2-3

2.4 ∗ 10−2 0.004

CD rs10761659 10 ZNF365 1.5 ∗ 10−2 0.007
CD rs2076756 16 NOD2 1.3 ∗ 10−3 0.017
CD rs2542151 18 intergenic 1.5 ∗ 10−2 0.005
RA rs6679677 1 PHTF1 5.9∗10−11 0.031
RA rs9272346 6 HLA-

DQA1
1.4 ∗ 10−6 0.017

tests whether the effect of a SNP or a group is still significant after
we have taken into account the effect of all other SNPs. In the
case of the small clusters, it restricts the confounders to a reduced
number of SNPs that are either introns in the same gene, or in close
proximity to each other. Besides these small significant groups,
our method also identified larger groups. Again, it is important to
keep in mind that these larger groups are not overlapping with the
smaller ones, and they are in other regions of the chromosome.
These clusters contain many of the SNPs that were identified to
have moderate associations in the original study. Because of their
size, they are given lower weight in terms of power, however, they
reflect the assumption that these diseases are highly polygenic, and
associations appear in many places throughout the genome. In the
following we will describe in more detail our findings for each
disease.

3.2.1 Coronary artery disease (CAD)

We replicated rs1333049, an intergenic SNP on chromosome 9,
the only finding from the WTCCC study. Our result however has

Table 3. List of small significant groups of SNPs selected by our method
for type 1 diabetes and type 2 diabetes. a The disease identifier for which
the SNP group was selected. b The smallest groups of SNPs whose null
hypothesis was rejected. The SNPs in this group are jointly significant. rsIDs
of SNPs from dbSNP. c The chromosome to which the SNPs in the group
belong. d The gene to which the SNPs in the group belong, if any. Gene
symbol from Entrez Gene. e The p-value of the group of SNPs, adjusted
for multiple testing (controlling the FWER). f The variance explained by the
group of SNPs.

Disa Significant
group of
SNPsb

Chrc Gened P-valuee R2f

T1D rs6679677 1 PHTF1 3.6∗10−11 0.03
T1D rs17388568 4 ADAD1 2.7 ∗ 10−2 0.006
T1D rs9272346 6 HLA-

DQA1
2.4 ∗ 10−3 0.17

T1D rs9272723 6 HLA-
DQA1

2.2 ∗ 10−4 0.17

T1D rs2523691 6 intergenic 6.04 ∗
10−5

0.004

T1D rs11171739 12 intergenic 1.3 ∗ 10−2 0.01
T1D rs17696736 12 NAA25 6.5 ∗ 10−4 0.018
T1D rs12924729 16 CLEC16A 3.4 ∗ 10−2 0.007
T2D rs4074720,

rs10787472,
rs7077039,
rs11196208,
rs11196205,
rs10885409,
rs12243326,
rs4132670,
rs7901695,
rs4506565

10 TCF7L2 1.7 ∗ 10−5 0.015

T2D rs9926289,
rs7193144,
rs8050136,
rs9939609

16 FTO 4.7 ∗ 10−2 0.007

a much stronger interpretation compared to the original finding,
because we control for all possible confounders. Thus, rs1333049
shows an association with the phenotype, even after taking into
account the effects of all other SNPs.

3.2.2 Crohn’s disease (CD)

On chromosome 1 we identified a small significant cluster of
5 SNPs: rs11805303, rs2201841, rs11209033, rs12141431 and
rs12119179. Two of them: rs11805303 and rs2201841 are introns in
the IL23R gene, while the last 3 SNPs are up to 22-kb downstream
from IL23R. Though rs11805303 showed strong association in the
WTCCC study (The Wellcome Trust Case Control Consortium,
2007), our result has a different and much stronger interpretation.
Our finding is a group of 5 SNPs that are jointly significant, though
none of them is significant individually. Because this significance
results from a joint model of all SNPs, it means that our group
is jointly significant while controlling for all other SNPs in the
study. The interpretation of this finding is that we limit the set
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of confounding SNPs to 4 other SNPs. When a SNP is declared
significant by computing the marginal correlation, like in The
Wellcome Trust Case Control Consortium (2007), the set of possible
confounders that produce this correlation is the set of all other SNPs.
Thus, if the correlation turns out to be a spurious one, there could
be hundreds of other SNPs that produce it. In contrast, our method
not only drastically reduces the number of confounders, but gives
a small set of much more plausible ones, that are in a narrow
region of the chromosome, often clustered around a gene. On
chromosome 2 we identified an individual SNP, rs10210302, which
showed strong association in the WTCCC paper (The Wellcome
Trust Case Control Consortium, 2007). This SNP has by far
the lowest p-value (4.6 ∗ 10−5) in CD, and it also explains a
relatively large proportion of the variance attributed to chromosome
2: 0.014 compared to 0.05 explained by all the selected SNPs in
the chromosome. On chromosome 5 we identified a group of 9
SNPs: rs6871834, rs4957295, rs11957215, rs10213846, rs4957297,
rs4957300, rs9292777, rs10512734 and rs16869934. They are
all intergenic, 85 kb apart and located in the 40.4M region of
the chromosome. rs16869934 is 4kb downstream from the SNP
rs17234657 showing strong association to CD in The Wellcome
Trust Case Control Consortium (2007). On chromosome 10 we
found 2 significant SNPs. The first is rs10883371, a 2-kb upstream
variant both for LINC01475 and NKX2-3. rs10883365, found to be
strongly associated to CD in the WTCCC study is a 2-kb upstream
variant in LINC01475. Our second finding on chromosome 10 is
rs10761659, a non-coding intergenic SNP mapping 14-kb telomeric
to gene ZNF365 and was identified first by the WTCCC (The
Wellcome Trust Case Control Consortium, 2007), followed by a
meta-analysis (Franke et al., 2010), and later a study of a southern
european population by Julia et al. (2013). On chromosome 16, we
found an individual SNP, rs2076756, which is an intron in NOD2.
Interestingly, this SNP was not found to be significant in the original
WTCCC study, while our approach shows that it is even significant
when we control for all other SNPs. This SNP has been confirmed
by several studies (Franke et al., 2010; Julia et al., 2013; Rioux
et al., 2007; Kenny et al., 2012). Finally, on chromosome 18, we
identified a single intergenic SNP: rs2542151. This finding was
reported by The Wellcome Trust Case Control Consortium (2007),
as well as by Parkes et al. (2007).

3.2.3 Rheumatoid arthritis (RA)

We identified two SNPs, both individually significant. The first,
rs6679677 is located on chromosome 1 and is a 2-kb upstream
variant in the PHTF1 gene. This finding was reported by The
Wellcome Trust Case Control Consortium (2007). The second SNP,
rs9272346, is located on chromosome 6 and is also a 2-kb upstream
variant in the HLA-DQA1 gene. This SNP belongs to the MHC
region, just like the WTCCC finding.

3.2.4 Type 1 diabetes (T1D)

8 individual SNPs were declared significant by our method. 5
of these are the 5 associations found in The Wellcome Trust Case
Control Consortium (2007). These are: rs6679677, a 2-kb upstream
variant in the PHTF1 gene on chromosome 1, rs9272346, a 2-
kb upstream variant in the HLA-DQA1 gene on chromosome 6,
rs11171739, an intergenic SNP on chromosome 12, rs17696736,

an intron in the NAA25 gene on chromosome 12 and rs12924729,
an intron in the CLEC16A gene on chromosome 16. Additionally,
our method identified 3 new associations. Two of them are located
on chromosome 6: rs9272723 is an intron in the HLA-DQA1 gene
and rs2523691 is intergenic. The third new finding, rs17388568, is
located on chromosome 4 and is an intron in the ADAD1 gene. It did
not reach the genome wide significance threshold in the WTCCC
study, however it showed moderate association with a p-value of
3 ∗ 10−6. It also showed moderate association in an independent
study by Plagnol et al. (2011).

3.2.5 Type 2 diabetes (T2D)

We identified two small SNP clusters, one on chromosome 10 and
the other on chromosome 16. The first cluster contains 10 SNPs:
rs4074720, rs10787472, rs7077039, rs11196208, rs11196205,
rs10885409, rs12243326, rs4132670, rs7901695, rs4506565, all
introns in the TCF7L2 gene, spanning a 62KB region. One of them,
rs4506565, was originally identified by The Wellcome Trust Case
Control Consortium (2007), while rs7901695 showed a significant
association in a replication study by Zeggini et al. (2007). The
second cluster is comprised of 4 SNPs: rs9926289, rs7193144,
rs8050136, rs9939609, all introns in the FTO gene spanning 10KB.
rs9939609 was significantly associated to the phenotype in The
Wellcome Trust Case Control Consortium (2007). Additionally,
rs8050136 was found to have strong significance in Zeggini et al.
(2007) and Scott et al. (2007).

3.2.6 Bipolar disorder (BD)

For BD, the WTCCC identified only one SNP strongly associated
to the phenotype: rs420259. While we did not identify it in a small
group, it is present in the large group found to be significant on
chromosome 16. Furthermore, as can be seen in Table 4, we found
clusters in many of the chromosomes. Table 4 shows the group size,
both in terms of number of SNPs, as well as in terms of percentage
of the total SNPs in that particular chromosome. Additionally, we
investigate whether the SNPs identified using the standard analysis
with PLINK (Purcell et al., 2007) map into our groups. The size
of the group is in a way inversely proportional to the strength of
associations. If a certain chromosome contains SNPs with large
effects, we will be able to find them in very small clusters, or
maybe even individually. If however the signal is weak, we can only
identify larger regions. For example, on chromosomes 4,6,7,8,10
and 15 the signal is so weak that we can only report that the joint
effect of all SNPs in these chromosomes is significant, but we cannot
further localize the signal. On the other hand, on chromosome 3 we
were able to identify a much smaller group containing only 6 % of
the SNPs.

Our method returns the smallest number of SNPs for which we
can find a significant effect, while controlling for all other SNPs.
The fact that we cannot disaggregate the signal to small clusters,
or single SNPs does not mean that genetics plays no role in BD,
but rather that the signal is very dispersed and the effect sizes are
very small. This explains why our groups are so large, and why we
cannot attribute the signal to narrower regions. Figure 3 shows the
variance in bipolar disorder explained by the SNPs on individual
chromosomes. We only consider the SNPs selected by the Lasso,
in step 2 of Section 2.4.2, as these SNPs are a proxy for the truly
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relevant SNPs. The total variance explained by all the SNPs is
0.5, and Figure 3 describes how this variation is distributed across
the chromosomes. The fitted line corresponds to a linear model,
where the predictor is the chromosome length, and the response
is the explained variance.The plot gives weight to our previous
statement, as the variance is homogeneously distributed across
the chromosomes. The plot shows an excellent fit (R2 ≈ 0.91),
meaning that the length of a chromosome is a very good predictor
for the amount of variance that a particular chromosome explains.

3.2.7 Hypertension (HT)

Hypertension was the only disease where The Wellcome Trust
Case Control Consortium (2007) did not find any strongly
associated SNPs. We also haven’t found small clusters or individual
SNPs, but we did find larger clusters on 13 of the chromosomes.
The results are shown in the Supplementary Material Section S4.7.

Table 4. List of large significant groups of SNPs selected by our method for
bipolar disorder. a The size of the SNP group is the number of SNPs that
belong to the group. In parenthesis: size as percentage of total genotyped
SNPs on the chromosome. b The chromosome to which the SNPs in the
group belong. c The p-value of the group of SNPs, adjusted for multiple
testing (controlling the FWER). d The variance explained by the group of
SNPs. e We counted the number of SNPs with p-values< 5∗10−4 identified
using PLINK (Purcell et al., 2007). We looked at how many of those SNPs
are present in the groups selected by our method. The numbers refer to the
SNPs on individual chromosomes.

Size of significant SNP
groupa

Chrb P-
valuec

R2d Hitse

6695 (22 %) 1 0.027 0.014 3 out of 10
12134 (40 %) 1 0.047 0.019 5 out of 10
14451 (45 %) 2 0.016 0.022 8 out of 18
7338 (23 %) 2 0.036 0.014 9 out of 18
1649 (6 %) 3 0.021 0.009 6 out of 15
24832 (100 %) 4 0.008 0.029 5 out of 5
14040 (55 %) 5 0.030 0.018 1 out of 5
24193 (100 %) 6 0.041 0.026 7 out of 7
20643 (100 %) 7 0.013 0.028 5 out of 5
21594 (100 %) 8 0.027 0.023 6 out of 6
11929 (65 %) 9 0.009 0.020 10 out of 12
22517 (100 %) 10 0.021 0.024 6 out of 6
15269 (77 %) 12 0.038 0.016 1 out of 2
4389 (36 %) 14 0.048 0.012 3 out of 11
11055 (100 %) 15 0.032 0.017 4 out of 4
10382 (88 %) 16 0.047 0.018 16 out of 16

4 DISCUSSION
We have presented a new method for assigning statistical
significance in GWAS. Our approach goes beyond the bivariate
testing of individual SNPs that looks only at marginal associations.
Instead, we use a multivariable approach which includes all the
SNPs and controls the familywise error rate. We propose to assign
p-values in a hierarchical manner: first for chromosomes, and then
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Fig. 3. Variance in bipolar disorder that is explained by individual
chromosomes. The variance on the vertical axis is given by the R2 value of
all the selected SNPs in a chromosome, as described in the Supplementary
Material Section S3. The total variance explained by all the selected SNPs
on all the chromosomes is 0.5.

in a top-down fashion from larger to smaller groups of SNPs.
Such an approach addresses several issues. First, since regression
parameters of an individual SNP are typically very small, due to
their interpretation and meaning in the model, it is much more
likely to detect significant groups of SNPs. Second, because we
proceed hierarchically, the problem of multiple testing is much less
severe than for the classical one-SNP-at-a-time approach: roughly
speaking, one has to adjust only for the number of tests which
are considered, and this number is typically much smaller than the
entire number of SNPs in the study. Our method is data-driven in
the sense that its resolution for the groups of SNPs depends on the
strength of the signal present in the data: how much we proceed in
the hierarchy and refine the clusters of SNPs depends on how strong
the associations are. If the signal is strong and well-localized, we
find small clusters or individual SNPs, whereas if the signal is weak,
we identify larger regions.

We demonstrate our method on the WTCCC data (The Wellcome
Trust Case Control Consortium, 2007), where we analyze the
seven diseases. Though it is interesting to conceptually validate our
findings by comparing them with a measure of marginal association,
our method is different and allows for a more powerful interpretation
of the findings than testing only marginal association between a SNP
and the phenotype. This is because we test whether or not SNPs
in a cluster carry any additional information about the phenotype,
beyond that available through all the other SNPs. That is, we adjust
for the effect of all other SNPs that are not part of this cluster, which
translates to a very strong interpretation of the significant clusters.
This can be related to causal statements when making additional
assumptions (see last paragraph in Section 2.1). Due to the fact that
we control for all other SNPs, often we can reduce the number
of possible confounders from hundreds or thousands of SNPs to
less than 10. Moreover, our possible confounders are desirable
candidates, as they are usually part of the same functional unit. This
is a favorable outcome because in most cases it is unclear which is
the causal SNP, and in many contexts the gene might be the more
meaningful biological unit. Even for phenotypes with weaker and
more dispersed signal, such as BD and HT, we could still identify
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larger regions. While these clusters might be too large to identify
specific genes, we can still gain insights into the joint influence
of all selected SNPs, or the distribution of the variance across the
chromosomes. This case is the one which motivated our approach.
For distant, non-disease related phenotypes it is perhaps more useful
to identify the chromosomes, or the regions that drive the signal,
and their contribution to the total explained variance. In such cases
identifying single SNPs is most likely impossible, and due to their
low predictive power, not very useful.

It is difficult to directly compare our results to other marginal
methods because we assign significance with respect to a
generalized multiple regression parameter, and not only for
individual but also for groups of SNPs. Nevertheless, we performed
a small simulation study in which we compared the results for our
method to the standard marginal approach, as well as two mixed
model algorithms. The findings were in line with our expectations:
while our method had slightly reduced power in two of the settings,
it compensated by producing a significantly reduced number of false
positive selections. In the third design our method had the same
power as the mixed model and marginal testing approaches, while
still having a superior control of the false positives.

One direction for improving the method would be to change the
clustering, which could be performed through the use of more in-
depth biological knowledge. For instance, if we would cluster the
SNPs into genes, and then into pathways, even for a weak signal we
would potentially identify larger pathways, which would be useful
in terms of biological meaning.

Funding: This work was supported by the Advanced Investigator
European Research Council Grant on the ”Foundations of Economic
Preferences” [295642 to L.B. and E.F.]; and the German National
Science Foundation [SCHU 2828/2-1 to D.S.].

Conflict of interest : none declared.

REFERENCES
Abraham, G., Kowalczyk, A., Zobel, J., and Inouye, M. (2013). Performance

and Robustness of Penalized and Unpenalized Methods for Genetic Prediction of
Complex Human Disease. Genet Epidemiol, 37(2), 184–195.

Alexander, D. and Lange, K. (2011). Stability Selection for Genome-Wide Association.
Genet Epidemiol, 35, 722–728.

Barrett, J., Fry, B., Maller, J., and Daly, M. (2005). Haploview: analysis and
visualization of LD and haplotype maps. Nat Rev Genet, 21, 263–265.
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Mandozzi, J. and Bühlmann, P. (2015). Hierarchical testing in the high-dimensional
setting with correlated variables. J Am Statist Assoc (published online DOI:
10.1080/01621459.2015.1007209).

Manolio, T. et al. (2009). Finding the missing heritability of complex diseases. Nature,
461, 747–753.

McCarthy, M., Abecasis, G., Cardon, L., Goldstein, D., Little, J., Ioannidis, J.,
and Hirschhorn, J. (2008). Genome-wide association studies for complex traits:
consensus, uncertainty and challenges. Nature Rev Genet, 9, 356–369.

McCullagh, P. and Nelder, J. A. (1989). Generalized linear models. Chapman & Hall,
London.

Meinshausen, N. (2008). Hierarchical testing of variable importance. Biometrika, 95,
265–278.
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