
 

 

 

Adaptive, Reliable, and Accurate Positioning Model 

for Location-Based Services 

(Mobile Computing and Networking) 

 

 

 

 

A Thesis Submitted for the Degree of Doctor of Philosophy 

 

By 

Mohammad Mousa AL Nabhan 

 

 

 

 

 

 

 

 

 

School of Engineering and Design 

Brunel University 

November 2009



i 

                                                                                                                                                                                                   

 

PhD Thesis by Mohammad AL Nabhan                                                                 Brunel University  

Abstract 

 
 
This thesis presents a new strategy in achieving highly reliable and accurate position 

solutions fulfilling the requirements of Location-Based Services (LBS) pedestrians’ 

applications. The new strategy is divided into two main parts. The first part integrates 

the available positioning technology within the surrounding LBS application context 

by introducing an adaptive LBS framework. The context can be described as a group 

of factors affecting the application behaviour; this includes environmental states, 

available resources and user preferences. The proposed adaptive framework consists 

of several stages, such as defining the contextual factors that have a direct effect on 

the positioning performance, identifying preliminary positioning performance 

requirements associated with different LBS application groups, and introducing an 

intelligent positioning services selection function. The second part of this work 

involves the design and development of a novel positioning model that is responsible 

for delivering highly reliable, accurate and precise position solutions to LBS users. 

This new model is based on the single frequency GPS Standard Positioning Service 

(SPS). Additionally, it is incorporated within the adaptive LBS framework while 

providing the position solutions, in which all identified contextual factors and 

application requirements are accounted. 

 
The positioning model operates over a client-server architecture including two main 

components, described as the Localisation Server (LS) and the Mobile Unit (MU). 

Hybrid functional approaches were developed at both components consisting of 

several processing procedures allowing the positioning model to operate in two 

position determination modes. Stand-alone mode is used if enough navigation 

information was available at the MU using its local positioning device (GPS/EGNOS 

receiver). Otherwise, server-based mode is utilised, in which the LS intervenes and 

starts providing the required position solutions. At the LS, multiple sources of GPS 

augmentation services were received using the Internet as the sole augmentation data 

transportation medium. The augmentation data was then processed and integrated for 

the purpose of guaranteeing the availability of valid and reliable information required 

for the provision of accurate and precise position solutions. Two main advanced 



ii 

                                                                                                                                                                                                   

 

PhD Thesis by Mohammad AL Nabhan                                                                 Brunel University  

position computation methods were developed at the LS, described as coordinate 

domain and raw domain. 

 
The positioning model was experimentally evaluated. According to the reported 

results, the LS through the developed position computation methods, was able to 

provide position samples with an accuracy of less than 2 meters, with high precision 

at 95% confidence level; this was achieved in urban, rural, and open space (clear 

satellite view) navigation environments. Additionally, the integrity of the position 

solutions was guaranteed in such environments during more than 90% of the 

navigation time, taking into consideration the identified integrity thresholds 

(Horizontal Alert Limits (HAL)=11 m). This positioning performance has 

outperformed the existing GPS/EGNOS service which was implemented at the MU in 

all scenarios and environments. In addition, utilising a simulation evaluation facility 

the developed positioning model performance was quantified with reference to a 

hybrid positioning service that will be offered by future Galileo Open Service (OS) 

along with GPS/EGNOS. Using the statistical t-test, it was concluded that there is no 

significant difference in terms of the position samples’ accuracy achieved from the 

developed positioning model and the hybrid system at a particular navigation 

environment described as rural area. The p-value was 0.08 and the level of 

significance used was 0.05. However, a significant difference in terms of the service 

integrity for the advantage of the hybrid system was experienced in all remaining 

scenarios and environments more especially the urban areas due to surrounding 

obstacles and conditions. 
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Chapter 1: Introduction 

 

 

1.1 Introduction 

 

The past decade has witnessed dramatic growth in mobile telecommunications 

technology, in terms of network infrastructure, handset manufacturing, and even 

number of users. This was accompanied by the advancement and evolution of the 

Internet and satellite communications, which was motivated by the increasing demand 

to access more compressed data on the move and at any time. As a result, mobile 

technology became a medium not only for voice and Short Messages Services (SMS), 

but also for rich data transmissions such as video, web browsing, and other 

multimedia contents. Additionally, the arrival of broadband and multimedia mobile 

networks along with effective handsets embedded with location sensing technologies 

has produced a variety of new mobile services. Considerable attention was focused on 

location-dependent mobile services, also known as Location-Based Services (LBS). 

LBS exploit knowledge of a mobile device’s location for the service delivery. LBS 

incorporate several components such as position determination technology, mobile 

device and communication technology and application and data content providers. 

Several LBS applications have been implemented in broad range of areas such as 

transport, mobile guides, emergency services, tourism, business and even gaming 

(Hjelm, 2002; Kubber, 2005, Jonathan et al., 2007).  

 
Together with the development of communication services, the technology behind 

LBS has received a significant attention ranging from the improvement of positioning 

techniques, the widespread and development of geospatial databases, as well as Geo-

visualisations and data presentation methods. This also exploited areas of developing 

adaptive LBS architectures and context-aware computing. A number of position 

determination methods have been developed and divided into two main categories. 

The network-based positioning utilising short and wide range wireless networks, and 

the handset-based positioning such as the Global Satellite Navigation Systems 

(GNSS). GNSS, in particular the Global Positioning System (GPS), is the most 

promising and widely-deployed positioning method for LBS (Theiss, 2005; Filjar et 

al., 2008; Wirola et al., 2008). The positioning performance of GPS is a crucial 
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attribute for LBS Quality of Service (QoS). Therefore, it has become an accepted 

practice to continually develop new techniques augmenting the positioning services of 

GPS to advanced and sustainable levels.  

 
Generally, the augmentation techniques, also known as Differential GPS (DGPS) 

systems, operate over different coverage ranges, such as Local Area DGPS 

(LADGPS) and Wide Area DGPS (WADGPS). WADGPS can be implemented as 

Satellite-Based Augmentation Systems (SBAS), using Geostationary (GEO) satellites, 

or as network-based DGPS systems using a number of interconnected DGPS 

reference stations. Several empirical studies have examined the positioning 

performance achieved after utilising these differential systems (Wolfson et al., 2003; 

Filjar and Huljenić, 2003; Oh et al., 2005; Filjar et al., 2007). According to the 

reported results, the performance achieved was extremely compromised according to 

the environmental states and interrelated resources and settings (known as the 

surrounding context). Additionally, the performance can be considered sufficient or 

insufficient based on the associated LBS application requirements. 

 

1.2 Motivation and Background  

 

The demand for reliable and accurate position solutions to enable efficient 

deliverability of LBS to mobile users has increased after the proliferation of LBS in 

various important applications such as mobile guides, emergency tracking and 

localising, alerting and advertising. Furthermore, LBS becomes even more crucial 

when developed to aid and facilitate the mobility of pedestrian users with disabilities 

and special needs such as the blind, deaf, and even elderly people, this might also 

involve delivering on-time medical services in various locations and under different 

conditions. Hence, there is a continuous and essential need for guaranteeing 

alternative and improved positioning services delivering up-to-date and accurate 

information required to fulfil the requirements of these important applications.  

 
Studies into developing and investigating LBS applications as mobility aids for 

pedestrian users such as disabled and elderly people have been undertaken by various 

researchers (Helal et al., 2001; MoBIC, 2004; Jackson, 2006; Pressl & Weiser, 2006). 

Additionally, the Electronic System Research Group (ESRG) at Brunel University 
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was one of the pioneering research groups with its visually impaired guidance 

navigation project established in 1995 (Balachandran & Langtao, 1995). The idea was 

to investigate the possibility of using GPS to navigate and guide visually impaired 

pedestrians based on a client-server-based approach. Accordingly, a novel system was 

developed, described as Brunel Navigation System for the Blind (BNSB). The BNSB 

has undergone several development phases enhancing its usability, user localisation 

performance and communication quality (Liu, 1997; Shah, 1999; Jirawimut, 2001; 

Garaj et al., 2003; Hunaiti et al., 2005; and Hunaiti et al., 2006).  

 
On the same subject, an important summit was organised by phoneAbility and the 

Institute of Engineering and Technology (IET), in London in 2008. Participants 

included governmental departments, standard-setting organisations, commercial 

companies, research and academic organisations and user bodies. The aim was to 

address the needs for scientific solutions to simplify the life of disabled people and 

facilitate their mobility in urban and densely populated areas. The focus was on 

people attending the upcoming 2012 Olympic Games and Paralympic Games, and the 

2014 Commonwealth Games. The conclusions drawn were focused on the 

employment of a range of technologies involving mobile networks as a major means 

of communication, biometric systems for security purposes, and LBS as an 

information and guidance provision solution (Fuente, 2008).  

 
In most of these fundamental studies, satellite positioning based on GPS was 

considered the most widely deployed positioning method according to its service 

availability and coverage, along with its simple and free accessibility compared to 

other positioning techniques. However, satellite positioning is affected from the 

navigation environments and physical surroundings, which limits the availability of 

line-of-sight satellite signals required for fixing a position solution. A number of 

augmentation solutions were developed allowing users to achieve different levels of 

accuracy (Kaplan & Hegarty, 2006). These augmentation techniques are either 

complex, expensive to implement, or considered not to meet LBS applications’ QoS 

requirements in all circumstances. Accordingly, the need for a simple, adaptive, and 

reliable augmentation method which supports the required positioning performance 

for crucial and accuracy demanding LBS applications (e.g. blind guidance 

applications), established the necessity for this research work.  
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1.3 Research Aim and Objectives 

 
The aim of this research is to establish and develop a new positioning model 

improving the performance of GPS standard positioning services, and fulfilling the 

requirements of LBS applications, with a focus on pedestrian users and taking into 

consideration the instability of the surrounding LBS context. This aim was achieved 

by performing the following specific objectives: 

 
� An extensive literature review was conducted, in order to investigate LBS 

architectures, components, and contextual factors, along with a deep focus on 

the positioning technology, especially GPS and its augmentation techniques 

(see chapter 2). 

 
� Carrying out an inclusive investigation and a preliminary field experiments on 

the limitations and shortcomings of GPS and its augmentation services in 

various environments and scenarios. This was followed by identifying a set of 

contextual factors affecting the positioning technology performance (see 

chapter 3). 

 
� The establishment of an efficient positioning model that incorporates LBS 

components and augments GPS position solutions, fulfilling the identified 

positioning requirements (see chapters 4 and 5). 

 
� Utilising a comprehensive evaluation methodology that was designed for the 

purpose of testing the positioning model using several experimental field trials 

and simulation sessions. This also includes the development of several 

functions responsible for data processing and position correction and 

computation (see chapter 6). 

 
� Understand the future Galileo navigation systems and investigate its Open 

Services (OS) positioning performance (see chapter 6 and 7). 

 
� A detailed analysis and investigation of the results obtained during the 

system’s evaluation in order to measure the achieved positioning performance 

in several environments and measurements scenarios (see chapter 7). 
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1.4 Research Methodology 

 
This work was initiated following a secondary research methodology, in which a 

comprehensive review of literature resources and related materials such as journals, 

technical reports, and books was conducted (Malhotra & Birks, 2007). This provided 

the required understanding to critically investigative LBS components with a focus on 

the performance of satellite-based positioning technology.  

 

The subsequent primary research work involved performing preliminary experimental 

testing using off-the-shelf devices in order to provide an initial estimation of GPS 

positioning service limitations in various conditions. The outcomes of these tests were 

analysed to derive the applicable LBS contextual factors affecting the positioning 

performance.  

 
The second step of the primary research was evaluated the developed positioning 

model’s performance under different environments and conditions to measure the 

advances in the achieved position solutions. Extensive experimental trials were 

conducted for observing and collecting GPS data in various navigation environments 

(urban, rural and open space) and in different scenarios (dynamic and static) utilising 

several sets of equipments. In addition, a simulation study was conducted in order to 

investigate future Galileo OS positioning performance in contrast with the developed 

positioning model.  
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1.5 Contribution to Knowledge 

 
This doctoral thesis will contribute to knowledge in the following ways: 

 
� Identifying the limitations and shortcomings of utilising GPS and its 

augmentation techniques within the scope of LBS pedestrian applications 

in various environments and conditions. This was achieved by conducting 

preliminary experimental testing in different environments and scenarios.  

 

� The establishment of an adaptive LBS framework responsible for 

tailoring the available positioning technology within the surrounding 

contextual behaviour. This involved the following: 

 
1. Identifying the contextual factors having direct effect on the 

positioning performance.  

 
2. Classifying LBS applications into different groups, based on the 

sensitivity of the delivered service to the positioning performance 

(position error tolerance). 

 
3. Providing initial positioning performance requirements to each 

application group.  

 
4. Using the contextual factors along with the identified positioning 

requirements to design an initial intelligent selection function 

responsible for selecting the applicable positioning method providing 

the required position solution. Although this selection function was 

designed with reference to the positioning model presented in this 

work, however it can be used as an intelligent service selection 

function for different applications.  

 
� The design and development of a new efficient positioning model, which 

was incorporated within the adaptive framework, providing highly 

reliable, accurate and precise and position solutions satisfying the 

specified requirements of LBS applications. This involved the following: 
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1. The design and development of efficient hybrid functional approaches 

operating over client-server based architecture consisting of a 

Localisation Server (LS) and a Mobile Unit (MU). The functional 

approaches are mainly responsible for performing the following 

procedures:  

 
• Analysing and processing augmentation and navigation data. 

• Integrity monitoring and baseline estimations. 

• Error estimation and correction data generation. 

• Monitoring the availability of the navigation and augmentation 

information at the MU (user’s side) as the main factor of 

establishing a communication session with the LS. This implies 

that the positioning service is provided either in a standalone mode, 

based on the MU or on a server-mode, based on the LS. 

 
2. Guaranteeing the availability of valid augmentation data at the LS. 

This data was received via dedicated internet connections from 

multiple sources providing wide area DGPS services, such as SISNET 

and OS Net. 

 
3. The provision of accurate final position solutions utilising several 

positioning methods responsible for data correction and position 

calculation. Three methods were established: 

 
• The raw positioning domain, which mainly operates using user’s 

raw pseudo-ranges and time stamps measurements.  

• The coordinate positioning domain, which mainly operates using 

users’ standard positioning information. 

• The integrated positioning domain, where user-corrected pseudo-

ranges or coordinates are integrated with measurements from a 

Dead Reckoning (DR) module at the user’s side for continuous 

navigation even in indoor environments. Although this service has 

not been implemented, details of the integrated solution with 

reference to Kalman filtering have been described. 
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� The design and deployment of an inclusive evaluation methodology, which 

compromises experimental and simulation studies. The purpose of this 

methodology can be summarised in the following points:  

 

1. Evaluating the overall performance of the developed positioning 

model. This process took place in different navigation environments 

and measurement scenarios in order to quantify the effect of the 

identified contextual factors on the achieved performance. 

 
2. Weighing up the achieved positioning performance against proposed 

minimum performance requirements associated with LBS applications. 

 
3. Investigating the future Galileo Open Service (OS) positioning and 

comparing its achieved performance with the developed positioning 

model.   

 
Additionally, during the course of this PhD project, the research outcomes and 

achievements were disseminated to external audiences via a number of journal and 

conference publications, a complete list of which is provided in Appendix C. 
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1.6 Thesis Outline  

 
This thesis consists of eight chapters, the first of which is an introduction. The 

following is a brief description of the remaining chapters: 

 
Chapter 2 presents critical appraisal of literature associated with this study, and the 

technical background of the research.  

 
Chapter 3 details the preliminary investigation of GPS performance; this includes a 

summary of the results obtained. This chapter also presents an adaptive LBS 

framework which was built in order to increase the contextual awareness of the 

positioning technology utilised in LBS.   

 
Chapters 4 and Chapter 5 describe the positioning model developed, including its 

architecture, functional approaches and main processing procedures.  

 
Chapter 6 presents the evaluation methodology carried out based on experimental and 

simulation studies, in order to asses the developed positioning model. 

 
Chapter 7 investigates the results achieved in terms of the positioning performance in 

different navigation environments and measurement scenarios. 

 
Chapter 8 concludes this work, with recommendation for future research. 
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Chapter 2: Literature Review and Technical Background 

 
 
2.1 Introduction  

 

The concept of Location-Based Services (LBS) is used to denote services where 

location is an important parameter identifying where and when services are delivered. 

From a technical perspective, LBS are compounded systems consisting of several 

components such as position determination technology, mobile device and 

communication technology, and application service and data content providers, such 

as Geographical Information systems (GIS) and Geospatial databases. Hence, in order 

to investigate the development of LBS applications, it is necessary to understand each 

component and its associated limitations. In the history of LBS, satellite positioning 

has been considered to be a fundamental positioning technique. Therefore, it is 

important to focus on the development of this technology and its underlying 

limitations.  

 
This part of the thesis provides a detailed review of all required understandings 

regarding LBS and satellite positioning with a focus on the Global Positioning System 

(GPS). This chapter is divided into two interrelated main parts. The first part is 

described in Section 2.2 and presents details of LBS definitions, components, 

architectures, and QoS requirements as well as contextual adaptation. The second part 

is described in Sections 2.3 and 2.4, and provides details of satellite-based 

positioning, focusing on GPS and its augmentation and improvement systems. In 

Section 2.4 a detailed review of several up to date research studies regarding GPS 

augmentation system’s performance is presented. Finally, Section 2.5 concludes this 

chapter and summaries the current limitations of GPS services with reference to LBS. 

 

2.2 Location-Based Services (LBS) 

 

Location-Based Services (LBS) are information services providing position-related 

content to mobile users. An intersection of the technologies involved in LBS 

implementation is described in Figure 2.1 (Brimicombe, 2002).  
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Figure 2.1: LBS technologies’ intersection 

 
LBS are currently being deployed in different civilian applications such as business 

advertising, transport, billing, gaming, dynamic objects tracking, mobile guides and 

emergency services (Jonathan et al., 2007; Filjar et al., 2008a). LBS can mainly be 

implemented in two scenarios: standalone, in which the mobile devices are equipped 

with on board positioning devices and digital maps and are able inclusively to provide 

the user with required service without a remote connection; and client-server-based, in 

which services are remotely delivered to users (clients) from a remote service 

provider (application server), in this implementation implies a two-way 

communication between the client and application server is used. In both scenarios 

(continuous or infrequent), services are delivered to users based on their request (pull 

service) or it is not directly requested from the user (push service), (Kubber, 2005; 

Jonathan et al., 2007) 

 
The overall perceived Quality of Service (QoS) of LBS is determined by several 

factors related to its components, as described in Figure 2.1. This includes the 

positioning technology performance in terms of the achieved position accuracy, 

service integrity, and availability levels. The mobile network’s latency, available 

bandwidth, and data rates along with the mobile handset’s memory capacity and 

processing power also play a role. Additionally, LBS applications require having up-

to-date and accurate location-related information, such as maps, images, voice and 

video records, and any related background information (Leite & Pereira, 2002) 

Accordingly, LBS implementation represents a great challenge to its developers 

because of the complex and numerous technological infrastructures involved, with 
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high potential for serving a wide range of users. Furthermore, the overall LBS QoS is 

dependent on users preferences and is affected from the instability of available mobile 

and positioning resources which are subject to several environmental effects and 

factors, described as ‘LBS context’ (Reichenbacher, 2003). Therefore, LBS can be 

defined as context-sensitive or environment-directed applications. An appropriate 

description of LBS context and the ability of stable interoperation between LBS 

applications requirements and the surrounding context are manifestly required.  

 

2.2.1 LBS Definitions and Applications 

 

Several definitions for LBS have been made by different researchers, including the 

following: 

 
� ‘Information services accessible with mobile devices through the mobile 

network and utilising the ability to make use of the location of the mobile 

device’ (Virrantaus et al., 2001). 

� ‘The provision of geographically orientated data and information services to 

users across mobile telecommunication networks’ (Shiode et al., 2004). 

� ‘A set of applications that exploit the knowledge of the geographical position 

of a mobile device in order to provide services based on that information’ 

(Ratti & Frenchman, 2006).  

 
From a historical point of view LBS are well established, and the real exploitation of 

the concept goes back to the 1990s when the US Federal Communications 

Commission (FCC) required mobile network operators to provide a location-based 

service called ‘emergency 911’, in which mobile operators were asked to locate the 

users for emergency cases (Spinney, 2003). Since then, LBS have been widely 

deployed, providing broad range of different services to a wide range of users. Table 

2.1 gives an overview of the main categories of LBS applications. This table does not 

claim a complete listing; it only presents some application groups classified according 

to the delivered service type (Hengartner, 2006). 
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Application Type Example 

Navigation and 
Tracking 

Directions, route finding, mobile guides, people and vehicle 
tracking, product tracking. 

Information Shopping guides, travel planners, mobile yellow pages  

Emergency Emergency calls, automotive assistance, E112 

Advertisements Alerts, warnings and banners  

Transport  Fleet management and scheduling, Road tolling, location sensitive 
billing  

Games and leisure Mobile games, instant messaging, Geo-chatting  

Table 2.1: The extent of LBS applications (Hengartner, 2006) 
 

The OpenLS 1.1 specifications (Mabrouk, 2008), describe five core LBS services:  

� Directory Service (spatial yellow pages): this provides users an access to 

online information databases and directories. 

� Gateway Service: this presents an interface between the Geo-Mobility Servers 

(application and content) and a location server. 

� Location Utility Service: this is responsible for determining either a 

geographic position of an object or normalized place information (place name, 

street address or postal code) by having one of them as an input. 

� Presentation Service: this aims to deliver applicable geographic information 

for display on the mobile terminal.  

� Route Service: this identifies the route for the user.  

 
Further LBS applications’ classifications can be found in the studies of (Giaglis et al., 

2003; Tilson et al. (2004) and Jonathan et al. (2007). 

 

2.2.2 LBS Architecture and Components 

 

Generally, the most common LBS illustration is presented as a client-server-based 

architecture comprising a mobile device with a positioning capability, which is 

remotely attached via communication channels to the service providers, as described 

in Figure 2.2. 
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Figure 2.2: LBS architecture and main components 
 
In simple scenarios, the user initiates the application by sending his/her service 

request through the communication network to the application server (service 

provider); the mobile network is most likely to be the means of communication. The 

user request includes the user’s position coordinates, which are used by the 

application server to retrieve the required information from the databases (content 

providers) (Beaubrun et al., 2007; Steiniger et al., 2008). The internet can be included 

within the communication network and can also be used as a source of geographical 

information. Finally, a service reply is sent back to the user. The data flow between 

LBS components is presented in Figure 2.3.  

 

Figure 2.3: LBS client-server data flow 

 
The most common communication protocol used in such mobile environments is the 

Wireless Application Protocol (WAP), which enables the mobile device to access the 
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mobile web. WAP uses Wireless Markup Language (WML), which is based on 

eXtensible Markup Language (XML). WAP supports the use of standard Internet 

protocols such as TCP/IP, and Hypertext Markup Language (HTML) (IEC, 2007; 

Wirola et al., 2008). 

  
A detailed description of LBS main components is presented in the following 

sections:  

 

2.2.2.1 Mobile Device 

 
This is the tool utilised by the users allowing them to receive and request the required 

LBS services. Mobile devices can be either single- (e.g. car navigation tool boxes) or 

multi-purposed devices, such as the mobile phones, Personal Digital Assistant (PDA) 

or laptops. These devices are not only used for navigation but also for several 

communication services. Despite the rapid technological development of mobile 

devices, most of them still have small computing and memory resources compared to 

some calculations and operations that normally take place within LBS applications, 

such as acquiring and processing landscape and location information simultaneously 

(Mountain & Raper, 2002; Lee et al., 2005, Almasri et al., 2007). 

 

2.2.2.2 Wireless Communication Networks 

 

This component is responsible for providing the communication means required for 

transferring and exchanging the user’s data, service requests and replies between the 

remote server and the mobile device. Based on the coverage area of the wireless 

networks, three network categories can be described; Wireless Wide Area Network 

(WWAN), Wireless Local Area Networks (WLAN), and Wireless Personal Area 

Networks (WPAN).  

 
WLAN, also known as Wi-Fi, is based on the IEEE 802.11 b/g/n standards. It is the 

most widely deployed wireless technology for home use and public businesses, such 

as coffee shops and malls. WLAN offers wireless internet access with coverage of 10 

to 150 meters indoors, and up to 300 meters outdoors. WLANs use a simple 

infrastructure whereby mobile devices are contacted via access points (hotspots) using 

network adapters or they can be connected directly together using an ad hoc approach. 
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On the other hand, WPANs can be available using technologies such as the Bluetooth, 

providing short-range connectivity covering an area of about 10 m radius 

(Krishnamurthy and Pahlavan, 2004).  

 
WWANs, also known as mobile networks, are considered to be the main 

communication backbone in LBS. Generally, mobile networks consist of a structured 

network of base stations, each covering a special area known as a cell. The first 

generation (1G) of mobile networks offered only voice communications with a data 

rate of 4.8 kbps. Since then several development phases were conducted achieving 

higher data rates. In the second mobile generation (2G) network, referred to as the 

Global System for Mobile (GSM), the available data rate was between 9.6 and 14 

kbps. Further developments referred to as 2.5G were also achieved, resulting in a 

number of network standards such as the General Packet Radio Service (GPRS) with 

data rates (20-115 kbps) and the Enhanced Data Rate for GPRS Evolution (EDGE), 

allowing data rates of up to 384 Kbps (Yaipairoj, 2004).  

 
The third generation (3G), was developed to overcome the shortcomings of previous 

generation, and increase the data transfer rates to be sufficient with respect to 

multimedia applications such as video streaming and conferencing, mobile gaming, 

and web access. In Europe these wideband systems are called the Universal Mobile 

Telecommunication System (UMTS) offering data rates up to 2 Mbps (3GPP, 2007; 

Holma & Toskal, 2002). The most common form of UMTS uses WCDMA 

(Wideband Code Division Multiple Access), which offers a great improvement in 

terms of connection speed compared to the 2G, which utilises narrowband TDMA. In 

addition, a new generation (3.5G) of mobile network standards have emerged, 

improving the performance achieved from UMTS, this is called High Speed Packet 

Access (HSPA). HSPA includes two protocols; High-Speed Downlink Packet Access 

(HSDPA) and High-Speed Uplink Packet Access (HSUPA). In theory, HSDPA 

allows up to 3.6 Mbps data rate for a Category 6 Mobile per user, and up to 14.4 

Mbps data rate for a Category 10 mobile per user. HSUPA offers high upload speeds 

up to 5.7 Mbps (NORTEL, 2005; Lescuyer & Lucidarme, 2008). Several research 

studies have been conducted measuring the mobile network performance in terms of 

the available band width and bit rates as well as the experienced delay and packet loss 

(Hunaiti et al., 2005; Sedoyeka et al., 2007, Alhajri et al., 2008, Almasri et al., 2009). 
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The latest wireless technology is known as Worldwide Interoperability for Microwave 

Access (WiMAX). WiMAX is based on IEEE 802.16 standard, offering high speed 

mobile internet access as an alternative to cable and DSL (WiMax Forum, 2006). 

WiMax is the first all-IP mobile internet solution. Its superior data rates (up to 144 

Mbps downlink and 35 Mbps uplink) and reduced network complexity and scalability 

allow delivering efficient and scalable data, voice, and video services to wide range of 

mobile devices, including notebook PCs, handsets and smart phones.   

 

2.2.2.3 Service and Content Providers 

 
The service provider, also described as the LBS application server, is responsible for 

processing and managing the service requests. This might include finding the best 

route, sending voice or video information, calculating user’s position and representing 

geographical information. The content provider, also known as the data server, is the 

source of information that can be requested by the users. It is a set of valid and 

reliable data bases and information stores, which might be either contained within the 

application server, or can be maintained at different locations such as mapping and 

survey agencies, traffic or weather controlling sites et cetera. An example of service 

and content provider technologies are GIS applications and Geospatial databases, 

which are responsible for managing, analyzing, and displaying data which is spatially 

related to the user’s location (Mabrouk, 2008). 

 

2.2.2.4 Positioning Technology  

 

Several positioning technologies are available and being unitised for different 

navigation and localisation areas such as LBS. A general classification of the 

positioning methods can be divided into two major groups. The first one is described 

as network-based positioning, where the computation of user’s position is performed 

using the network infrastructure. Accordingly, based on the network coverage, 

position determination can be performed either in short or wide ranges. The second 

positioning category is described as hand held-based methods, in which the mobile 

device is responsible for user’s position calculation after the reception of required 

measurement data.  
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With reference to network-based positioning, Wi-Fi networks offer a short-range 

positioning based on the Received Signal Strength Indicator (RSSI). The RSSI of the 

Wi-Fi signals are collected from surrounding access points using the mobile device, 

and then the user’s position is obtained by comparing these measurements to the 

information described in the RSSI pattern database, which holds the precise location 

of the access points. Additionally, short-range positioning can be obtained using 

Radio Frequency Identification (RFID). Basic RFID systems consist of transponders 

and readers. The transponders, also known as tags, can be either active or passive and 

are installed in known locations. The reader can be used to retrieve the information 

(e.g. position coordinates) stored in these tags within the coverage range. 

Accordingly, the user’s location can be triangulated from a group of these tags 

locations. Both Wi-Fi and RFID are primarily used for indoor environments and can 

be correlated with GPS signals for continuous and reliable positioning in such 

environments (Bahl, et al., 2000; Esmond, 2007) 

 
A number of techniques are commonly used for position calculation in network-based 

positioning. Cell Of Origin (COO), or cell ID method is used to obtain the position of 

the mobile user in a defined circle or cell around the base station or access point’s 

known coordinates. The accuracy of this approach is based on several factors such as 

the density of base stations, the cell size and its distribution. Time Of Arrival (TOA) 

is used to compute the user’s position utilising the distance between the base station 

and the mobile device. The distance is obtained after measuring the total time delay of 

the electromagnetic signals. Accordingly, in order to compute the final position 

solution, distances to at least three stations are required (Esmond, 2007). 

 
The Time Difference Of Arrival (TDOA) technique is similar to TOA, however it 

uses the signal’s arrival time delay from a handset to two stations instead of one 

station. Another approach is described as the Angle Of Arrival (AOA) based on 

detecting angles instead of distances. Using AOA, the position of the mobile device 

can be determined by triangulation techniques of the direction and angular 

information. This technique requires antennas with special characteristics capable of 

collecting orientations between stations and the mobile device (Esmond, 2007). 

However, the network-based positioning techniques are still not widely implemented 
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as stand-alone solutions because of their accuracy limitations, and network operators 

still do not consider LBS applications for general use by all mobile phone users.  

 
The Enhanced Observed Time Difference (E-OTD) technique, also referred as 

handset-based TOA, is an example of the handheld-based positioning techniques. In 

this method the handset measures the time from three geographically separate base 

stations or more. The difference from TOA is that the calculation is done at the 

handset, meaning that instead of using the uplink signals (mobile handheld to station), 

the downlink signals are used. Satellite-based positioning is the best known and most 

widely recognized handheld-based positioning system, in which satellite signals 

received by the handheld receivers are used to calculate user position based on 

triangulation techniques. This technology is known as the Global Navigation Satellite 

Systems (GNSS), examples of which include GPS, and the Global Orbiting 

Navigation Satellite System (GLONASS). Additionally, the European version of 

GNSS known as GALILEO is currently under development, and is expected to be 

operational by 2013 (GALILEO, 2008).  Further details of future GNSS systems are 

presented in Section 2.3.4 

 
GPS is the only fully operational GNSS and has been widely adopted worldwide for a 

variety of air, land and sea applications. GPS is considered the cornerstone of 

positioning in LBS applications because of its simplicity of use, successful 

implementation, and global availability (Filjar, 2003). However, the positioning 

performance provided by its standalone single frequency service has proved to be 

insufficient for some precision and accuracy demanding applications (Hughes, 2005; 

AL Nabhan et al., 2008; Almasri et al., 2009).  

 

2.2.4 LBS QoS Requirements  

 

As mentioned earlier, LBS applications’ (QoS) or performance is dependent on the 

components and technologies forming its structure. A set of LBS QoS requirements 

can be described as follows (Mabrouk, 2008; Steiniger et al., 2008): 

 
� Mobile device and communication network requirements: this is related to 

the mobile device and the communication capability. It can be identified by 
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available network data rates, experienced latency and packet loss, as well as 

the mobile device memory and processing power. 

� Software requirements: this includes any software tool implemented either 

on the client or server sides. The software should be user friendly, capable of 

answering all requests efficiently, and incorporated within the hardware 

components. 

� User requirements: this describes user’s characteristics and preferences 

(including privacy preferences). 

� Data requirements: this represents the availability of valid and reliable data 

contents with suitable representations for answering user’s requests. 

� Position information requirements: this is an important factor that plays a 

significant role in the overall LBS performance, because the core concept of 

delivering the services is dependant on the user’s location information. 

Incorrect and inaccurate information leads to erroneous decisions and 

conclusions. Therefore, the positioning technology used must provide 

continuous accurate and reliable position solutions.  

 
On the other hand, QoS requirements can be identified with reference to the overall 

LBS architecture, which can be expressed as the following (Lopez, 2004): 

 
� Performance and efficiency: this describes the ability to answer users’ 

requests efficiently, within the required time.  

� Scalability: this is the ability to handle a large number of users’ requests and 

data simultaneously. 

� Reliability: this is the competence of delivering continuous services, aiming at 

100% availability. 

� Current: this describes the capacity of receiving, processing, and delivering 

real-time and dynamic information. 

� Mobility: this is the potential of being accessible using any device and from 

any location. 

� Open: this expresses the capacity of supporting common standards and 

protocols such as the HTTP, WAP, and WML. 

� Security and information privacy: this is the ability to manage the security 

and privacy underlying issues being implied to the database, service reception 
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and provision. This also includes user’s privacy, which represents the user 

ownership and disclosure of their location information (Barkhuus & Dey, 

2003). 

� Interoperability: this is the facility to be integrated with different 

applications. 

 
All of the aforementioned requirements should be considered in the design and 

implementation of LBS applications. Another important aspect that affects the total 

perceived QoS is the surrounding context, described as available resources, 

environmental effects, user preferences and characteristics. Therefore, providing a 

suitable description of the overall LBS context with reference to the above 

requirements should be thoroughly investigated for LBS applications (Hodes, 2003; 

Reichenbacher, 2004; Ibach et al., 2004).  

  

2.2.5 LBS Context 

 

Several definitions for LBS contexts were proposed throughout the literature. Chen 

and Kotz (2000) described the context as “a set of environmental states and settings 

that either determines an application’s behaviour or in which an application events 

accurse and is interesting to the user”. Dey (2001) described the context as “any 

information that can be used to characterise the situation of an entity, where an entity 

means a person, place, or object which is relevant to the interaction between the user 

and an application, including the user and the application themselves”. A contextual 

description with reference to LBS applications was presented by Nivala and 

Sarjakoski (2003), which is summarised in the following list: 

 
� Location: this relates to the geo-referenced coordinates of the user-relative 

location information and physical surroundings. 

� Purpose of the service usage 

� System properties: this describes the available resources, including the 

bandwidth of the mobile link, the performance of the positioning services, the 

hardware and software infrastructure. 

� Time: this refers to the immediate time of day or even a wider description of 

when the service was requested  
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� User: this refers to the user’s identity, characteristics and preferences. 

� Navigation history: this holds the user’s previous navigation activities. 

� Orientation: describing user’s direction and heading.   

� Social and cultural situation: this is concerned about user’s social situation 

and his collaboration with the surroundings. 

� Physical surroundings: this is related to physical surroundings including the 

structure level, noise, temperature, traffic, etc. 

 
A contextual description that was focused on the geo-visualising side of LBS such as 

maps and user interfaces was defined by Reichenbacher (2004), in which the main 

contextual factors are described in Figure 2.4: 

 
Figure 2.4: Context elements (Reichenbacher, 2004) 

 
In Figure 2.4, the model includes specific elements, such as the user (identity and 

group), user activity, available technology (mobile device capabilities, network type 

and bandwidth) and the situation which is a function of location (exact position, place 

name, and address), and time (exact time or intervals). Accordingly, LBS context can 

be described in different levels using several parameters. The following section 

outlines some previous studies focusing on research work towards developing 

adaptive LBS architectures with reference to the surrounding context. 

 

2.2.5.1 LBS Adaptive Architectures  

 

Several LBS reference models were presented in the literature giving a general view 

of incorporating LBS components and its associated QoS requirements. Filjar et al. 

(2008b) presented a generic hierarchical architecture consisting of several layers and 
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compromising evolutionary information processing framework describing the concept 

and functionalities of LBS. This model was based on the development of initial 

research presented by Filjar et al. (2004) and Renato and Busˇic´ (2007). The 

developed reference model consists of four collaborated layers for adaptive service 

provision; Basic Positioning Layer (BPL), Advanced Positioning Layer (APL), 

Location Landscape Aggregation Layer (LLAL), and Application Layer (AL). The 

first two layers are responsible for providing the best available position solution for 

the client, after augmenting and enhancing his/her initial positioning measurements. 

Then, the LLAL layer prepares the location-related information (around the position 

solution) from available resources; finally, the application layer selects the necessary 

subset of location information required for the provision of the requested service, 

taking into consideration specific user and service profiles.  

 
Additionally, an Adaptive Location Based Services (ALBS) model was described in 

(Peter et al., 2005). The implementation of this model was based on the use of open 

web standards, such as the Web Services Description Language (WSDL). This model 

performs an adaptive selection between a set of identified subservices, such as 

position sensing methods and network connection types, in order to provide an 

efficient service. Conversely, in Yu et al. (2004), Shijun et al. (2005) and Qin et al. 

(2008) the process of LBS adaption was achieved through a set of parameters related 

to the user preferences and characteristics which were identified in particular user 

profiles. In these studies the user profile was considered as major contributor 

providing intelligent and personalised LBS. Similarly, Devlic and Jezic, (2005) 

identified that LBS services have to adapt their functionality to continuously updated 

user location and a set of user preferences. This was achieved by generating a specific 

profile for every user’s mobile device, which is then used to enable adaptation and 

applicable distribution of location-aware content. Each user profile consists of 

attributes concerning mobile device capabilities, location information, and 

subscription preferences.  

 
As the main component of LBS, the contextual adaptation of the positioning 

technology is a fundamental step towards ensuring a good level of LBS performance. 

This adaptation process is defined as maintaining the required level of positioning 
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performance, taking into consideration several factors such as the available 

positioning resources and navigation environments.  

 

2.2.5.2 Positioning Contextual Adaptation 

 
In Filjar et al. (2008c) an adaptive positioning sensors selection method was 

introduced in order to determine the most suitable position technique for the provision 

of LBS. This adaptive positioning method outlines the necessity of using basic 

profiles, described as user and service profiles. The user profile describes user 

preferences and provides a list of supported positioning sensors. The service profile 

determines the horizontal and vertical positioning accuracy levels. However, not 

enough detail of how to compromise between both profiles within the LBS 

architecture has been explained with reference to changing environments and 

conditions. Additionally, considering only the accuracy as the positioning 

performance identifier is not sufficient; other factors such as integrity, service 

availability and continuity should also be considered. 

 
An important parameter related to the positioning technology is described as a 

Position Response Rate (PRR), or position updating frequency. This simply represents 

a timely manner of reporting the LBS user’s changing location to the service provider. 

This parameter is responsible for describing the distribution of connected LBS users, 

and can be indirectly considered as one of the factors related to users’ positioning 

performance. The ideal knowledge of actual position details for every connected user 

at every time instant of time would greatly improve the general LBS perceived QoS. 

However, satisfying this requirement in some cases might overload both the 

communication channel and data servers. Thus, the PRR should be optimised in 

relation to both the available resources and required QoS. A general guidance of PRR 

determination was described by Busic (2005) and Busic and Filjar (2006). The 

guideline approaches were based on identifying common factors affecting the 

response rate, such as the number of service users, available bandwidth, and user 

dynamics, and the service time initiation and cost. Additionally, Xinying et al. (2006) 

presented an adaptive and asynchronous method responsible for managing 

continuously updated positions of moving objects’ and location-dependent replies 

from the server, considering cost and available resources optimisation.  
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Wolfson et al. (2003) explained a new location update policy aiming to efficiently 

maintain the current location for a number of moving users at the server side. This 

method is based on performing location prediction, in which an expected location at 

any point in time after each location update is obtained. The prediction is done at the 

server side and is based on the assumption that, following a location update, the 

moving user will continue at the current speed until the end of the route. A similar 

updating mechanism was described by Civilis et al. (2004), in which an update occurs 

when the deviation between the predicted and the actual location of an object exceeds 

a given threshold. However, the advantage of these prediction mechanisms depends 

on the accuracy of the updated location and on the identified uncertainty threshold. 

 
As can be seen from previous studies described in Sections (2.2.5.1 and 2.2.5.2), the 

adaptation between LBS components in view of its surrounding context is an 

important process that has been carried out using several generic methods. As can be 

seen from previous studies, the adaptation between LBS components in view of its 

surrounding context is an important process that has been carried out using several 

generic methods. Therefore, there is an increased demand on integrating the available 

position sensing technology within the described context taking into consideration the 

fulfilment of the application in question positioning requirements. 

 
As the backbone of LBS and the main focus of this research work, the following 

sections describe the satellite-based positioning with a focus on GPS operational 

methods, main limitations and augmentation solutions. 



Chapter 2: Literature Review and Technical Background                                                               26 

 

PhD Thesis by Mohammad AL Nabhan                                                                 Brunel University  

2.3 Global Satellite Navigation Systems (GNSS) 

 
GNSS, more particularly GPS, has received considerable attention in LBS 

applications. Simultaneously, several augmentation systems were developed for the 

purpose of improving the positioning performance achieved from this technology. 

Extensive efforts are currently being directed towards establishing and lunching new 

navigation systems such as future Galileo and the modernised GPS. 

 
2.3.1 The Global Positioning System (GPS) 

 

Navstar (GPS) is a space-based radio navigation system developed and operated by 

the US Department of Defence (DoD, 2004). GPS provides two positioning services: 

Standard Positioning Service (SPS) and Precise Positioning Services (PPS), for 

civilian and military users respectively. PPS is a highly accurate positioning service 

used for military purposes. SPS is a standard service provided to all users worldwide. 

GPS consists of three segments; control segment, space segment, and user segment. 

The space segment consists of a constellation of 24 satellites (and about six "spares") 

(see section 2.3.4.1 for updates on GPS satellite constellation). All satellites operate in 

6 circular orbits within a 12-hour period. The control segment is comprised of a 

Master Control Stations (MCS), Backup Master Control Station (BMCS), six 

monitoring stations, and four ground antennas with up-link capabilities. The user 

segment consists of receivers which are capable of receiving the satellite signals 

(DoD, 2004). 

 
GPS signals are transmitted in two frequencies, L1 (1575.42 MHz) and L2 (1227.60 

MHz). The carrier signals are modulated with a unique Pseudo-Random Noise (PRN) 

sequence for each satellite. Using CDMA technique, signals from each satellite are 

then separated by the GPS receiver. There are three PRN ranging codes in use: the 

Coarse/Acquisition (C/A) code, which is modulated into the L1 frequency and is 

freely available to the civil users; the Precise (P) Code, which is modulated into L1 

and L2 frequencies and usually encrypted and reserved for military applications; and 

the Y-code, which is used in place of P-code only if the anti-spoofing (A-S) mode is 

activated. Data modulated onto these codes and broadcasted from GPS satellites are 

called the navigation messages. The navigation message describes data which are 

unique to the transmitting satellite and data which are common to all satellites. This 
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includes the time of transmission of the message, a Hand Over Word (HOW) for the 

transition from C/Y-code to P(Y), clock corrections, ephemeris, almanac, health data 

for all satellites, coefficient for ionospheric delay model, and coefficients to calculate 

coordinated universal time (UTC). The almanac describes details of the satellites 

status including the orbital location and PRN numbers, this information is considered 

valid for up to 180 days. The ephemeris is an updated version of the almanac and 

allows the receiver to calculate the current position of the tracked satellite; this 

information is valid only for four hours (DoD, 2004).  

 
The GPS receiver estimates the distances to each of the tracked satellites, described as 

pseudo-range (the range to the satellite plus the receiver’s clock offset). The pseudo-

ranges are the basic GPS observable which is obtained utilising the C/A and/or P-

codes modulated onto the carrier signal. At an instance time, the receiver generates a 

similar C/A code which is then synchronised and compared to the incoming code. The 

time difference obtained while matching both codes, is considered to be the travelling 

time. Since the satellite signal travels at the speed of light, the pseudo-range is 

determined by multiplying the time difference by the speed of light. In order to 

compute a position solution, pseudo-ranges of at least four satellites are needed. The 

position calculations based on the pseudo-range measurements ( iρ ) are described as 

follows: 

( ) ( ) ( ) uuiuiuii ctzzyyxx +−+−+−= 222ρ                                                  (2.1) 

Where: 

� ),,( uuu zyx  are the unknown user receiver position coordinates. 

� ),,( iii zyx  are the known satellite coordinates. 

� ut  is the offset of receiver clock from the system time. 

� c  is the speed of light. 

 
At least four pseudo-ranges are required to obtain the unknown receiver’s coordinates:  

( ) ( ) ( ) uuuu ctzzyyxxP +−+−+−= 2
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The above non-linear equations can be solved either by iterative techniques (based on 

linearization closed form solution), or using least square techniques to find more 

accurate and sophisticated solution if more than four satellites are tracked (Kaplan & 

Hegarty, 2006). An alternative solution to calculate the distances to satellites is 

described by the carrier phase measurements. In which the idea is based on tracking 

the carrier signal instead of the modulated C/A code. Using carrier phase, the 

distances to the satellites are measured from the wavelengths plus the integer 

ambiguity determining the number of complete cycles which have occurred since the 

satellite has been locked. This method provides a high quality solution, however it is 

considered complex and provides some challenges in solving the integrity ambiguity.  

 
The performance of GPS-computed position is dependent mainly on the number of 

satellites being successfully tracked with good geometry. However, limited satellites 

visibility can be experienced at some locations and the pseudo-range measurements 

are affected by several error sources divided into three categories; satellite-based, 

signal-based and receiver measurement errors (Kaplan & Hegarty, 2006). Satellite-

based errors are described as satellite orbital shifting and clock errors. Signal-based 

errors are related to atmospheric delays and multipath effects. The receiver 

measurement errors are caused by the receiver noise, software resolution and stability. 

Signal-based errors are the major contributor in the total measurement errors, which 

even escalate in urban canyons and areas with high-rise surroundings. These 

environments lead to signal blockage, causing insufficient healthy satellites being 

successfully tracked for position calculation. The contribution of each error source in 

the calculated position error can be described in terms of User Data Range Error 

(UDRE) (see Table 2.2, below). 
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UDRE Error Sources 1 σ Error (m) 

Satellite Clocks 3.0 

Ephemeris (Orbital Errors) 4.2 

Ionospheric 5 

Tropospheric 1.5 

Multipath 0.6-2.5 

Receiver Measurements 1.5 

Table 2.2: Estimated pseudo-range measurement error model L1 C/A (Kaplan & Hegarty, 
2006). 

 
These values are not fixed and are dependent on the conducted measurements’ 

scenario and conditions.  

 
During recent decades considerable attention has been paid to developing Differential 

GPS (DGPS), allowing GPS error sources to be reduced or eliminated, achieving an 

advanced positioning performance. DGPS systems are available with different 

coverage ranges, various structures, differential data formats and several 

augmentation data deliverability means. On the other hand, methods of increasing the 

speed of position fixing were developed providing aided navigation information such 

as GPS ephemeris data from a remote assisted station to GPS users via a carrier 

network (e.g. mobile network), this is described as Assisted GPS (A-GPS) (Hjelm, 

2002). In addition, High Sensitivity GPS (HS-GPS) receivers are currently available 

in the market and being utilised in support of GPS positioning accuracy. This 

technology improves the positioning fixing rate and the overall GPS positioning in 

challenging navigation areas, by enabling the acquisition of weak GPS signals down 

to -190 dBW level. However, during conditions where the number of satellites 

available is constantly insufficient (<4 satellites) such as in heavy indoor 

environments, the problem of signals availability is not totally solved (Esmond, 2007; 

Lachapelle, 2007). 
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2.3.2 Differential GPS (DGPS) Systems 

 
DGPS is the basic concept of correcting and augmenting the GPS position solution. 

DGPS is based on the principle that all receivers in the same vicinity will 

simultaneously experience common errors (Loomis et al., 1995; Haider & Qishan, 

2000). DGPS simple architecture consists of a DGPS reference station and a rover 

receiver. The reference station is placed in a known location. By comparing the 

known coordinates with the calculated measurements, a correction vector can be 

generated at the reference station and then sent to the rover receiver to be integrated 

with its position solution. DGPS corrections are estimated and then applied in the 

code pseudo-ranges or to the carrier phase measurements domains. The latter process 

is described as Real Time Kinematics (RTK) (Lachapelle, et al., 2000). Kinematic 

DGPS are expensive and complex, and are usually used for surveying applications. It 

requires the continuous tracking of satellites, and is not well-suited for real time 

navigation, where signal obstructions are severe.  

 
With reference to the operational range of DGPS correction information, DGPS 

systems are divided into two main categories: Local Area DGPS (LADGPS) systems, 

with limited coverage from the single DGPS reference station (e.g. baseline <100 m); 

and Wide Area DGPS Systems (WADGPS), covering an entire region or country. 

WADGPS are normally developed offering augmentation services to a wide range of 

users regardless of their location and distances to the reference stations (baselines). In 

this work, the use of WADGPS for code pseudo-range corrections was considered. 

 

2.3.2.1 Wide Area DGPS (WADGPS) 

 

The concept of LADGPS can be extended to cover a wider area or region by linking a 

group of DGPS reference stations scattered over a certain geographic area and 

connecting them to a centralised point, forming a network of DGPS stations; this is 

described as a network-based DGPS system. In network-based DGPS the 

augmentation data is broadcasted to users within the coverage capacity via radio 

and/or wireless communication means; the mobile network is considered as the 

primary communication mean to deliver the augmentation data to the user with longer 
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baselines. The generic format for transmitting DGPS corrections is the Radio 

Technical Commission for Maritime (RTCM), (RTCM, 1994). 

 
An example of a network-based DGPS solution is the Ordnance Survey GPS Network 

(OS Net), which consists of more than 100 DGPS reference stations covering Great 

Britain (see Figure 2.5 for the network coverage). OS Net provides real time L1 

DGPS corrections and RTK corrections for carrier phase data (Ackroyd & Cruddace, 

2006). OS Net augmentation services can be delivered from the central processing 

station to the authorised user in real time via internet, mobile or radio 

communications. Alternatively, raw GPS data in the Receiver Independent Exchange 

(RINEX) format is available from OS Net RINEX data server for any user (free of 

charge). RINEX is a data format used to archive GPS navigation and observation data 

for post-processing purposes (Gurtner & Estey, 2007). 

 

Figure 2.5: OS Net coverage map (Ackroyd and Cruddace, 2006). 
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The increased capability of Internet technology has made it possible to use the 

network as an alternative mean for transmitting augmentation data. This allowed the 

development of the Network Transport of RTCM via Internet Protocol (Ntrip), 

enabling the delivery of RTCM corrections from an Ntrip caster to internet users 

(RTCM, 2004; Chen et al., 2004; Dammalage et al., 2006). The Ntrip Caster is an 

HTTP server program, which enables data streaming over mobile IP network because 

of using TCP/IP. Ntrip is utilised in the OS Net augmentation service delivery and in 

various surveying and navigation organisations such as Cartographic Institute of 

Valencia (Spain), Finnish Geodetic Institute (Finland) and the Institut Geographique 

National (France) (a full list of Ntrip providers can be found in RTCM, 2009). 

 
An additional implementation of WADGPS is in Satellite Based Augmentation 

Systems (SBAS) such as the European Geostationary Navigation Overlay Service 

(EGNOS) and Wide Area Augmentation System (WAAS). In SBAS geostationary 

satellites are used to broadcast differential data in Radio Technical Commission for 

Aeronautics (RTCA) format, (RTCA, 2006). EGNOS is the European version of 

SBAS, developed by the European Tripartite Group: the European Space Agency 

(ESA), the European Commission (EC) and EUROCONTROL. EGNOS is the 

European’s contribution to the first generation of GNSS (GNSS-1), and a primary step 

towards Galileo, European’s own GNSS. EGNOS aims to provide augmentation 

service for GPS, GLONASS and the future Galileo system.  

 
EGNOS infrastructure consists of four Mission Control Centres (MCC), six 

navigational Land Earth Stations (NLES), and thirty-one Reference Stations, 

described as Ranging and Integrity Monitoring Station (RIMS). Three EGNOS 

geostationary satellites (Inmarasat-3, IND-W, and ARTEMIS satellites) are 

successfully transmitting EGNOS signals consisting of GPS satellites orbits and clock 

corrections, as well as ionospheric delays and integrity information. EGNOS is still 

under development, and is subject to a modernization programme to comply with 

other GNSS projects (Gauthier et al., 2006; Toran-Marti, 2008) 

 
EGNOS RTCA correction messages are broadcast through GEO satellites to users on 

earth (in Europe). However, at particular areas with high latitudes and low elevation 

angles, such as urban canyons, it is difficult to receive GEO satellite signals. For this 

reason ESA launched (in 2001) a project to provide access to EGNOS signals through 
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non-Geo means. This was described as the EGNOS Data Access System (EDAS). 

EDAS is a collection of subsystems and interfaces, allowing EGNOS data to be 

transmitted from EGNOS Master Control Facility (MCF) to an EGNOS data server 

perimeter. Afterwards, the service provider directs this data to users in real time by 

different means such as internet, Radio Data System (RDS) and Digital Audio 

Broadcast (DAB) (Toran-Marti & Ventura-Travest, 2005). Signal In Space via the 

Internet (SISNet) is currently the only EDAS developed technology. SISNet allows 

internet users having required privileges to access EGNOS wide area pseudo-range 

corrections and integrity information in real time. As described in Figure 2.6, SISNET 

consists of three main components (Mathur et al., 2006): 

 

 

Figure 2.6: SISNET architecture (Mathur et al., 2006) 
 

� Base Station (BS): A computer device with a serial port connection to an 

EGNOS receiver. This component is responsible for passing EGNOS 

messages to the Data Server.  

� Data Server (DS): High-performance computers device running server 

applications allowing the connection of multiple users simultaneously. The DS 

functionality is implemented through a software application called SISNET 

Data Server (DS). This component is responsible for passing EGNOS 

messages from the Data Server to SISNET users using the Data Server to Data 

Client Protocol (DS2DC).  
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� User Application Software (UAS): A software application which is 

developed as described in (Mathur et al., 2006) and then utilised by the 

SISNET users. The UAS obtains EGNOS messages on the bases of 250 bit per 

second from the DS.  

 
Although, SISNET is still in the pre-operational stage (and has been available since 

2002), however it has shown its efficiency in providing enhancement to accuracy in 

areas with low visibility of EGNOS GEO satellites. However, the positioning 

performance achieved from SISNET depends on the capability of the deliverability 

mean, such as the mobile link QoS and the ability to process the data at the mobile 

end (Chen et al., 2003; Opitz et al., 2007). 

 

2.3.3 Inertial Navigation System (INS) 

 

Inertial Navigation System (INS) is a navigation facility that comprises several 

motion and orientation sensors (e.g. accelerometers and compasses) which are 

integrated using a computer application to sense and continuously calculate the 

position, speed and time. The integration of GPS positioning services and INS has 

been extensively demonstrated in real time navigation applications, especially after 

the development of low cost Micro-Electro Mechanical Sensor (MEMS) technology 

(Kappi et al., 2001). INS provides a reliable solution for positioning, with high short-

term accuracy that is reduced over time due errors related to the sensors drifting. GPS 

provides good position solution accuracy in the long-term, and reduced short-term 

accuracy due to several error sources related to the GPS measurements (Grewal et al., 

2007). Accordingly, the central task of GPS and INS integration is to provide a stable 

and continuous positioning accuracy solution in different navigation environments. 

GPS and INS data are blended together benefiting from the complementary 

characteristics of both systems in order to obtain optimum navigational solutions. The 

performance of this integrated solution is dependent on the efficacy of the 

navigational data fusion algorithms. One of the most widely deployed fusion 

algorithms is based on Kalman Filtering (KF), which can be presented as 

mathematical equations providing efficient recursive computational means to estimate 

a set of identified system states (sate vector), such as position, velocity and time 

(Welch & Bishop, 2007; Grewal & Andrews, 2008).  
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The KF determines the state of a dynamic system using two models known as the 

process and measurement models. The process model explains the behavior of state 

vector, and the measurement model creates the relationship between measurements 

and the state vector. If the measurement relationship is considered as non-linear, the 

Extended Kalman Filter (EKF) is used. More details of Kalman filtering approach and 

measurement models along with its utilising in pedestrian navigation applications can 

be found in: Jirawimut et al., 2003; Randell et al., 2003; Xiong et al., 2005; and 

Gewal and Andrews, 2008. 

 

2.3.4 Future GNSS 

 

The huge demand on existing GNSS systems has directed efforts to modernize the 

GPS system and introduce new systems such as Galileo.  

 

2.3.4.1 Modernised GPS  

 

GPS is continuously subject to revision and a modernization process in order to 

additionally improve positioning services performance for both civilian and military 

applications. GPS became fully operational in 1995, with constellation of 24 satellites. 

During the operation of GPS several generations of satellite have been built. In 2005 

the improvements to GPS infrastructure continued by disconnecting old satellites and 

adding new ones. At that stage, a new block of GPS satellites were launched, known 

as Block IIR-M satellites (Shaw, 2002; Hughes, 2005). During this period a new 

positioning signal described as L2C was introduced, however it has not yet been 

released for public use. Block IIR-M includes eight satellites; six of them were 

launched before March 2008. Hence, the GPS satellite constellation was increased to 

31 broadcasting satellites and the L5 safety-of-life civilian signal was introduced. The 

last satellite of this block series was successfully launched in August 2009. The 

civilian L5 signal is planned to be available for users with the complete launch of GPS 

IIF satellites in 2012. Block IIF is the last GPS block series that will finalise GPS 

modernisation process (GPS III) (DoD, 2008). This final phase will include twelve 

new satellites, providing new military code (M-code) and civil signal frequency 

(L2C).  
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2.3.4.2 Galileo 

 

Galileo is intended to be Europe’s independent navigation system, providing 

improved positioning services worldwide. Galileo is a civilian controlled system and 

operates similar to GPS and GLONASS. Accordingly, the advents of Galileo will 

double the GNSS infrastructure, allowing users to benefit from dual satellite 

constellations and hybrid position services. The availability of two or more 

constellations results in increasing the total number of available satellites in the sky. 

This will enhance the overall quality of the positioning services even in urban areas 

and/or indoor environments, and will significantly increase the number of navigation 

applications (Richard, 2008).  

 
The planned space segment of Galileo consists of 30 satellites (27 operational and 3 

on standby) in three Medium-Earth Orbit (MEO) planes at 23616 km altitude, with an 

inclination of 56 degrees. The Ground Segment consists of two control centres, five S-

Band TT&C Stations, nine C-Band mission up-link Stations, and 30 sensor stations. 

The ground segment is responsible for controlling the complete Galileo constellation, 

monitoring the satellite health, and uploading integrity data for subsequent broadcast 

to users. Galileo will provide 10 radio navigation signals allocated within the 

following frequency plans (Benedicto et al., 2000; Hein et al., 2001; Zimmermann et 

al., 2004): 

 
� Four signals in the E5a and E5b bands (1164-1215 MHz), including two 

navigation data signals (the data channels) and two signals carrying no data 

(pilot channels).  

� Three signals in the E6 band (1215-1300 MHz), including one split spectrum 

and one pair. 

� Three signals in the E2-L1-E1, also described as L1 band (1559-1592 MHz), 

including one split spectrum and one pair. 

 
The reason of having multiple signals in Galileo is to satisfy the requirements of all 

types of applications which are utilised in different environments and scenarios, such 

as indoor, outdoor, static and fast moving. This kind of optimisation is not currently 

available in GPS because only one civilian signal is available. However, this will be 

overcome during the modernisation of GPS. Since the ionospheric layer will induce 
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the same delay magnitude on the satellite signal, the use of multiple signals with 

different frequencies in Galileo or modernised GPS allows for the cancelation of the 

ionospheric delay after adding measurements obtained from at least two different 

signals.  

From the user perspective, the use of Galileo navigation signals makes it possible to 

provide the following services (Benedicto et al., 2000; Hein et al., 2001):  

1. Open Service (OS).  

2. Safety-of-Life Service (SLS).  

3. Commercial Service (CS). 

4. Public Regulated Service (PRS). 

5. Search and Rescue (SAR) Service. 

 
Generally, the Open Service (OS) data signals are allocated at E5a, E5b, E2-L1-E1 

(L1) bands for either data or pilot channels allowing several signal combinations for 

the single and dual frequency positioning services. The single frequency OS receiver 

is based on using signals which are in E2-L1-E1 and might receive the GPS C/A code 

signal on L1. For improved accuracy, signals in E5a and E5b bands might also be 

included. The GPS L5 signal is included in dual frequency services. The data carried 

by the OS signals are unencrypted and available for all users. The OS service does not 

offer integrity information, and no signal quality determination is guaranteed and it is 

left to the user. 

 
The safety-of-life (SoL) service is dependent on the data contained in the OS signals 

and also uses integrity data carried in a special channel. The Commercial Service (CS) 

is based on two additional signals within the E6 frequency band plus the capability of 

using the OS signals. This pair of signals is encrypted offering higher performance for 

commercial users only. The Public Regulated Service (PRS) operates at all times, 

even during crises, and will be used by governmental authorities such as the police, 

coast-guards and customs, et cetera. For this service two additional signals are 

allocated, one in E6 band, and the other in the L1 band. These signals are encrypted in 

order to have access control, so access is limited to PRS users. 

 
An additional planned Galileo service is the Search And Rescue (SAR), which is 

Europe’s contribution to the Medium Earth Orbit Search and Rescue system 

(MEOSAR). This service implies that Galileo satellites receive signals from ground 
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emergency beacons carried by different users, and then forward these signals to 

corresponding national rescue centres. Galileo uses a special modulation scheme in 

order to avoid the interference with other navigation systems signals sharing the same 

frequency band (e.g. GPS L1). The modulation adopted is called Binary Offset Carrier 

(BOC). The main difference between Galileo positioning signals to the currently 

produced GPS signals is the BOC modulation technique being used and the increased 

bandwidth available for most of Galileo signals. In addition, Quadrature Phase Shift 

Keying (QPSK) modulation technique is used to generate Galileo signals in E5a and 

E5b. The BOC signals normally expose low pseudo-range measurement errors 

comparing to QPSK signals (Benedicto et al., 2000; Hein et al., 2001): 

 
Galileo is designed to use signal structure standards which are interoperable and 

compatible with civil GPS signals and its augmentations. GPS and Galileo will not 

degrade the standalone service offered by the other system. A combined solution of 

both systems is expected to improve the performance positioning service. 

 
It is worth mentioning that the Galileo development program is currently behind 

schedule due to cost, time, and management challenges, therefore the focus now is 

towards the implementation of only the OS and deferring other positioning services, 

with the aim of having at least a functioning Galileo system by 2013 (Fylor, 2009).  

Galileo’s up-to-date programme includes the following accomplished tasks:  

 
1. User and mission requirements are established, and the system is defined in 

detail. 

2. International agreements establishing operations with GPS are investigated. 

3. Ground test bed completed (2006). 

4. Space test bed, GIOVE A, launched December 2006. 

5. Space test bed, GIOVE B, launched April 2008. 

 

2.3.4.3 GLONASS and Beidou 

 

GLONASS complements GPS; both systems share the same principles in receiving 

and computing positioning information. Many GPS receivers can receive signals from 

GLONASS satellites as well as from GPS, which is important in increasing the 

availability level at some locations (Miller, 2000). Only 18 satellites are in orbit, 13 
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are fully functioning, three are being repaired and two are to be phased out service. 

GLONASS currently offers only 66.2% availability in Russia and an average of 

56.0% availability in the rest of the world. The Russian Space Agency (RSA) is trying 

to improve GLONASS by joining with other partners such as the Indian space agency. 

This collaboration aims to repair and restore the whole system by 2010, and make it 

complementary to and compatible with the modernized GPS and future Galileo (RSA, 

2008).  

 
Beidou is China’s satellite navigation system. Currently, Beidou or Beidou-1 is still at 

the experimental and evaluation stages. Beidou has limited coverage within China, 

consisting of four geostationary satellites, the last one being launched in February 

2007. China is participating in the future Galileo project and it is also planning to 

develop its own system to be fully global, with an improved performance. The new 

system will be called Compass or Beidou-2, it will consist of 35 satellites in total, 

including 5 Geo-orbital and 30 Medium Earth Orbital (MEO) satellites. 
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2.4 GPS Positioning Performance 

 
2.4.1 Positioning Performance Parameters Definitions  

 
The positioning performance is measured by several factors such as the service 

coverage and availability, service integrity and reliability, and the positioning 

accuracy. All of these parameters are organised and achieved in successive layers of 

performance definitions. This means coverage must be provided before the service is 

considered to be available; service must also be available before considering its 

reliability and integrity. Finally, the positioning service must be reliable before 

estimating its accuracy (Hughes, 2005). 

 

2.4.1.1 Coverage and Availability 

 
The service coverage mainly describes the surface area or volume in which the 

satellites are operational and visible over the horizon in the sky. The global service 

volume of GPS SPS covers from the surface of the Earth up to an altitude of 3,000 

kilometres. The availability is the percentage of time over a specified interval in 

which a position can be obtained within the service volume. At least four healthy 

satellites transmitting usable ranging information should be in the view of the receiver 

in order to obtain a 3D position fix. Theoretically, GPS SPS service provides a global, 

four-satellite coverage of more than 99% and a global average of 95.87% in the worst 

24-hour interval. However, constraints around the GPS satellites’ geometry limit the 

availability of GPS satellites. Additionally, signals from satellites with good geometry 

(i.e. below identified elevation mask threshold) might be blocked due to buildings, 

trees, and difficult terrain, limiting the number of satellites being used in the position 

solution calculation. Accordingly, the number of tracked satellites and the 

corresponding Dilution Of Precision (DOP) quantifier contributes to the error in the 

positioning solution. 

 

2.4.1.2 Integrity and Reliability 

 
Giving service coverage and availability, reliability describes the trust that can be 

placed on the correctness of the positioning information and describes how 

consistently the system can provide its service within a specified error tolerance. 
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Integrity includes the reliability definition and also describes the ability of the 

navigation system to produce specified warning to the users when the system is not 

reliable. The integrity requirement is that the Positioning Error (PE) must be no 

greater than the maximum allowable error (error bound), known as the Alert Level 

(AL), within the specified probability (integrity risk). The integrity risk is the 

probability of system being unavailable according to PE exceeding the alert limit. PE 

is the difference between the true position and the estimated one. However, normally 

there is no access to the true position; hence an alternative approach needs to be 

followed. This is described as the calculation of Protection Levels (PL), which are 

statistical boundaries for each position solution. This includes Horizontal Protection 

Levels (HPL) and Vertical Protection Levels (VPL). HPL is defined as the radius of a 

circle in the horizontal plane (with its centre being the true position), and describes a 

certain region containing the measured horizontal positions. VPL is defined as half the 

link of a segment being at the vertical axis, with its centre being at the true position 

describing a certain region, indicating the measured vertical position (RTCA, 2006). 

The integrity assessments are based on comparing the protection levels along with the 

alert levels. If PL>AL this implies a Hazardous Misleading Information (HMI) 

situation, and an integrity alert is triggered (RTCA, 2006). Figure 2.7 illustrates the 

horizontal integrity factors using a circular position sample scatter within a confidence 

area identified using the HAL. True and estimated pedestrian paths are described with 

reference to the integrity factors HPL and HAL.  

 

 

Figure 2.7: Integrity monitoring factors 
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Monitoring the integrity of the obtained position solutions supplies the required level 

of accuracy achieved from using the navigation and augmentation systems. The 

integrity monitoring process being carried out in this work follows the SBAS 

Minimum Operational Positioning Standards (MOPS) described by RTCA (2006), 

more details of which are found in chapter five.  

 

2.4.1.2 Accuracy and Precision 

 
Giving service coverage, availability, and integrity, the accuracy and precision 

describes the quality of the obtained GPS position. Accuracy is the statistical 

difference between position measurements and a surveyed position (exact position) 

with respect to an accepted coordinate system. Precision is the degree of closeness of 

covariance in the position measurements to their mean. The precision of 

measurements must be considered when discussing the accuracy, because it assesses 

the ability to constantly estimate position samples with similar error budgets during 

the overall measurement time. Both factors are illustrated in Figure 2.8.  

 

Figure 2.8: Accuracy and precision levels description 
 
Generally, the accuracy of a GPS system is composed of two quantities: the User 

Equivalent Range Error (UERE) and DOP. The total UERE measures the horizontal 

position accuracy and can be obtained from the satellite, signals, and user error 

budgets combined into a single quantity measuring the error in the user-satellite range. 

Therefore, this quantity can be calculated as sum of errors resulting from atmospheric 
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effects, receiver noise, ephemeris and satellite clocks, and multipath error 

contributions. The UERE is computed by taking the square root of the sum of the 

squares of the measurements errors’ standard deviations, which is expressed as 

follows: 

∑=
i

iUERE
2σ                                                                                                        (2.3) 

Where iσ  is the standard deviation of the  thi  error budget. 

 
The DOP provides a simple characterization of user to satellite geometry. It refers to 

where the satellites are in relation to each other with respect to the user. DOP can be 

expressed in different quantities, such as Position DOP (PDOP), which indicates the 

error in the satellites coordinates being used to triangulate the calculated position. 

PDOP includes two quantifiers, the Horizontal position DOP (HDOP) and Vertical 

position DOP (VDOP). A clock offset quantifier is described as a Time DOP (TDOP). 

Both TDOP and PDOP form the Geometric Dilution of Precision (GDOP), which is 

used to represent the geometric strength of the position solution. The higher the 

GDOP value the greater the possible error in the obtained position.  

 
Additionally, since most receivers allow the determination of a threshold level of 

GDOP (e.g. PDOP mask, satellite elevation angle mask etc.) above which the receiver 

will not collect data, GDOP quantifiers can be used as measures of system 

availability. In this work, HDOP is considered a measure of availability and accuracy, 

because it is the only dilution of precision value associated with the horizontal 

positional portion of the navigation solution. VDOP values were also displayed as a 

measure of satellite elevation errors, lower VDOP implies smaller elevation errors. 

The standard deviation of the horizontal error in the position solution is computed by 

multiplying HDOP by the standard deviation of the UERE.  

 
With reference to the horizontal integrity definition presented earlier, the horizontal 

accuracy can be described as a circle of radius centred at the true position, and 

containing observed positions in a horizontal scatter having an error probability or a 

confidence level as specified in the statistical accuracy method utilised. For example, 

a confidence level of 95% is obtained using R95 or 2DRMS statistical methods. The 

Distance Root Mean Square (DRMS) can be expressed by the following: 
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2DRMS = ( )222 yx σσ +                                                                                            (2.4) 

Where xσ  and yσ  are the standard deviation of the error along the x  and y  axes.  

 
Accurate statistical methods require a sufficient amount of observations over a long 

period of time, in order to form a probability density curve or distribution known as 

Gaussian distribution. This distribution is then quantified using standard deviation 

techniques in order to calculate the error budgets and accuracy levels. A 3D position 

accuracy level describes the horizontal accuracy and vertical accuracy components. 

The vertical components are considered as the height or altitude values, for land 

navigations usually the last calculated vertical value are used and only infrequently 

updated. 

 

2.4.2 GPS Augmentation Systems Positioning Performances 

 
Several navigation applications have utilised the above described GPS augmentation 

and complementary systems in order to achieve enhanced positioning performance. 

The evaluation of such systems has been carried out by various researchers under 

different conditions and scenarios. The following sections present a number of 

evaluation studies, as well the reported positioning performances results, taking into 

consideration two main augmentation systems: the use of GPS/EGNOS incorporated 

with SISNET and/or INS; and the use of a Network-based DGPS.  

 

2.4.2.1 GPS/EGNOS incorporated with SISNET and/or INS 

 
Abousalem et al. (2000) assessed the achievable positioning accuracy using EGNOS 

corrections. Several experimental tests were conducted collecting GPS measurements 

with the support of EGNOS. In worst scenarios, horizontal and vertical accuracy 

levels of more than 4 and 6 meters respectively were achieved at a 95% confidence 

level. Additionally, in Chen et al. (2003) a prototype for a handheld receiver utilising 

EGNOS/SISNET was demonstrated using a PDA device. In best scenarios, a 

horizontal positioning accuracy of about 1 to 2 m was achieved. However, due to the 

variable performance of the wireless connection, a loss of 10–30% in the EGNOS 

message was experienced. This degrades the accuracy level to about 0.5 meters.  
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Similarly, an evaluation of EGNOS along with SISNET was also described by Úbeda 

et al. (2003). A prototype combining GPS/EGNOS receiver with SISNET capability, 

and a mobile GPRS connection was utilised for testing purposes in urban areas around 

Spain. They obtained static and dynamic measurements to draw conclusions on the 

performance of EGNOS in the selected areas. The reported results illustrated that the 

use of EGNOS with the support of SISNET improves the availability and precision of 

the positioning services, especially when the mobile link QoS was guaranteed. The 

mean of the horizontal position error was 1.5 m, with good precision (standard 

deviation σ =0.56 m). Additionally, the median integrity parameter, (HPL) was 12 m 

during 50% of the measurements.  

 
Pringvanich and Satirapod (2007) described a test-bed developed in the Asian-Pacific 

region providing hybrid architecture between SBAS and Ground-Based Augmentation 

System (GBAS). The test-bed utilised SBAS concepts in the calculations and 

application of the correction messages. All performance parameters were assessed 

using data observed from a set of reference stations situated in Tainan, Kuala Lumpur, 

Manila and Bangkok. At each reference site a minimum of seven healthy GPS 

satellites were tracked, and the highest PDOP value was 3.1; additionally, the standard 

deviations of horizontal and vertical errors were 0.92 and 2.85 metres, respectively. 

According to ICAO (2002), such accuracy results fulfil the positioning performance 

required for Approach with Vertical Guidance-II (APV-II) operations. Integrity 

factors such as the HPLs and VPLs were also calculated and then compared to the 

horizontal and vertical errors. The integrity of the horizontal position component has 

failed during short periods due to multipath effects or ionospheric delay. Therefore, 

utilising SBAS ionospheric delay information for modelling the ionospheric error is 

an important step towards improving the system’s integrity performance. 

 
The study of Toledo et al. (2005) described a positioning system based on GPS and 

improved by the EGNOS/SISNET augmentation service, and integrated with an INS 

module. This system was developed in order to guarantee complete positioning 

information to autonomous vehicles’ tracking for road pricing applications. The INS 

module was used to obtain accelerations and rates of turn measurements in three 

coordinate axes. This integrated solution guaranteed reliable and accurate positioning 

during the periods of GPS lack of coverage and EGNOS visibility limitations. 
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However, the drifts in the INS module caused by the installation of low cost inertial 

navigation unit based on MEMS technology resulted in deficient position solutions. In 

a similar vein, Santa et al. (2006) and Toledo et al. (2007) focused on developing 

transport applications utilising the availability and integrity of GPS positioning 

service augmented by EGNOS and complemented using an INS solution.  Santa et al. 

(2006) considered the integrity to be the main estimator playing a significant role in 

defining the confidence level in road pricing systems. In their study, embedded 

software for monitoring the integrity of the positioning solution was described. The 

main integrity indicator was HPL calculated from EGNOS messages. Static and 

dynamic observations were carried out to measure the behaviour of the integrity 

parameters in different scenarios, taking into consideration that the receiver obtains 

EGNOS messages directly from the geostationary satellite, or from SISNET server 

using a mobile (GPRS/UMTS) internet connection. During 24 hours of static 

measurements, most of the HPL values ranged from 5 to 15 meters and 0.27% of the 

values in the system were considered within the unavailability zone (HAL=12 m). In 

dynamic environments, it was observed that the surrounding buildings not only 

decreased the visibility of GPS and EGNOS satellites but also they have increased the 

latency in the mobile network. As a result, the availability of SISNET data was 

degraded. This has caused the HPL values to increases due to the degradation and 

latency in the corrections (12% of the values were nearby the 20 meters).  

 

2.4.2.2 Network-Based DGPS (Multi-reference DGPS Solutions) 

 
Several regional DGPS networks are operational worldwide, providing pseudo-ranges 

corrections estimation based on multi-reference DGPS stations being interconnected 

together forming a wide area DGPS solution. The network-based DGPS provides a 

number of advantages over the standard single-reference DGPS station approach, such 

as the advanced reliability of the differential positioning service, increased robustness, 

and higher positioning accuracy levels. These advantages are achievable for code-

based DGPS and RTK measurements (Lachapelle et al., 2000; Park et al., 2003; 

Raman and Garin, 2004; Oh et al., 2005).  

  
A regional navigation system consisting of a medium-range DGPS network developed 

in Taiwan was described by Chang and Lin (1999). The goal of this network was to 
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provide sufficient positioning accuracy using GPS observations based on C/A pseudo-

ranges collected from a set of reference stations and then processed at the central 

station obtaining a weighted average of the differential corrections. As it was reported 

from the testing results, the developed medium-range DGPS based positioning service 

has achieved an improvement of 35% in terms of Root Mean Square (RMS) error 

comparing to the single reference station. The use of single reference-based DGPS 

was highly dependent on the baseline lengths; the horizontal accuracy ranged from 3.1 

to 5 meters. However, an average of 1.3 meters’ accuracy was achieved when utilising 

three reference stations. These measurements were conducted only in static scenarios 

without an indication to the surrounding environment. 

 
Raman and Garin (2005) evaluated the performance of the Global Differential GPS 

(GDGPS) system, provided by NASA’s Jet Propulsion Laboratory (JPL), for single 

frequency C/A GPS receivers. This system utilises a group of DGPS reference 

stations which are continuously observing GPS measurements. The Ntrip protocol 

was used to send these measurements to central processing stations and then to 

forward the correction messages to the users. At the processing stations data is 

analyzed to produce measurement corrections of ionospheric delay and satellite state 

(orbit + clock corrections). The corrections are then provided as an information vector 

dependent on the user’s location. The improvements in terms of horizontal position 

accuracy using GDGPS augmentation services were quantified in open space 

conditions. A horizontal accuracy average of 1.5 meters using GDGPS was achieved, 

compared to 4 meters using standards local DGPS. However, such accuracy levels 

were degrading within the distance from the reference stations and when the 

availability of corrections was reduced at the user side. Additionally, a linear 

combination algorithm was developed by Oh et al. (2005) in order to generate 

interpolated Pseudo-Range Corrections (PRC), which was then applied to improve the 

DGPS positioning accuracy. The combination algorithm takes into account PRC 

values from multiple DGPS reference stations sharing the same satellites. The 

achieved DGPS positioning accuracy was improved over standard DGPS by 40% in 

static scenarios. A position accuracy of 1.8 meters was achieved when using PRC 

measurements from two DGPS stations, and around 1.5 meters when three or more 

DGPS reference stations where used.  
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The Virtual Reference Station (VRS) is an additional approach which is implemented 

based on the use of Network-based DGPS. VRS is a method of transmitting network 

correction to the users without the need for establishing an actual physical DGPS 

reference station. Alternatively, it permits the user to access data from a virtual DGPS 

station at different locations within the network coverage capacity without any update 

to their current receiver’s hardware and software components (Vollath et al., 2000; 

Cannon et al., 2001; Hu et al., 2003). VRS data is resembled from correction data 

received from several real (physically existed) DGPS stations, hence measurement 

error tends to average out introducing an efficient position solution.  

 
As described by Chen and Li (2004) and Gon et al. (2004), the concept of VRS was 

utilised for delivering code-based pseudo-range corrections such as EGNOS messages 

to mobile users. This approach improved the availability of EGNOS augmentation 

service within areas experiencing limited GEO satellites coverage. This was achieved 

by converting EGNOS RTCA messages to RTCM messages, which were then 

broadcasted to the users over the wireless Internet. As explained in Chen and 

Li (2004), a preliminary driving test of 6,100 km in an urban path in Finland was 

conducted.  It was observed that only during 51.8% EGNOS GEO satellites were 

visible. This initialised the use of the VRS EGNOS service, which increased the 

availability of EGNOS to 98.6%, only while having a good wireless connection. 

 

2.4.2.3 GPS Augmentation Systems in LBS Pedestrian Applications 

 
The use of GPS/EGNOS positioning systems and even INS has been widely 

implemented in LBS applications tailored for pedestrians. Dominici et al. (2006) 

described a rescue and operations system for pedestrian users utilising a positioning 

model based on EGNOS and supported with SISNET. This system was developed 

based on standalone GPS positioning in order to ensure a suitable level of positioning 

accuracy required by the users (rescuers). Several testing procedures were conducted 

in order to evaluate the effectiveness of the developed positioning system. As 

described in the reported results, the 2D error was around 2 meters. Additionally, the 

positioning performance achieved by EGNOS was advanced in about 25% from the 

standalone GPS within low masking angles (5 and 20o).  
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Taking into consideration the performance of GNSS and its augmentation methods for 

pedestrian users in densely urban and indoor environments, a pedestrian navigation 

project was defined and described by Abwerzger et al. (2004) and Ott et al. (2005). 

This project was called “Definition and Demonstration of Special Handheld based 

Applications in Difficult Environment” (SHADE), and was supported by the 

European Space Agency (ESA) for the purpose of investigating different sets of 

navigation technologies utilised for pedestrian applications within difficult 

environments. Three independent navigation prototypes were developed and tested in 

the SHADE project. The first prototype was formed of an A-GPS receiver including 

EGNOS functionality. The second prototype consisted of an INS module, for 

pedestrian purposes (a dead reckoning module), as well as GPS/EGNOS receiver. The 

last prototype was encapsulated of an Integrated GPS/Loran-C with EGNOS facility. 

The Long Range Aid to Navigation (LORAN) is a terrestrial radio navigation system 

utilising low frequency radio transmitters. The current development of this technology 

is described as Enhanced LORAN (E-LORAN) (Abwerzger &Lechner, 2002; Narins 

et al., 2004). The operational architecture of SHADE was designed to evaluate and 

develop the availability of several positioning solutions to operate even in dense urban 

and indoor environments. During the evaluation of the first prototype, field 

measurements were conducted under good GPS visibility conditions, and then under 

light in-doors (partly covered areas) with a sampling rate of one sample per second. 

Using the first prototype, an accuracy level of 1.5 meters at a 95% confidence was 

achieved in open space areas. The worst scenario was experienced during indoor 

measurement, in which the achieved accuracy reached 39.22 m at a 95% confidence 

level. This positioning performance is considered four times higher than GPS SPS 

horizontal accuracy levels (7.8 m - 12.8 m) described by Hughes, 2005. Therefore, it 

was concluded that the first prototype is not suitable for navigation applications taking 

place indoors.   

 
Additionally, the second prototype was evaluated allowing position determination to 

occur in GPS difficult environments, in which an initial absolute position was 

determined by the GPS/EGNOS receiver, and continuous position samples were 

compromised from both the dead reckoning module and the GPS/EGNOS receiver 

using Kalman filtering. However, one of the main drawbacks of the second prototype 

was the position drift due to the attached magnetometer. The third prototype has 
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shown its ability to increase the availability of position solutions and overcome the 

blockage of GPS service in densely urban area. However, the accuracy of the position 

solutions obtained from the integrated Loran-C service was below the expectations. 

Also, upon entering the buildings, the signal strength from all Loran-C stations 

decreased dramatically. Hence, the Loran-C receiver was no longer considered 

reliable. Within the scope of SHADE project suitable integrity levels for pedestrian 

applications were described1; in which the applicable integrity risk was set to 

310*1 − per 60 seconds. Further pedestrian navigation projects can be found in 

(Mezentsev et al. 2005; Lachapelle, 2007). Additionally, the following section 

describes important studies with reference to visually impaired pedestrian users. 

 

2.4.2.4 Visually Impaired LBS Guidance Applications 

 
Several studies have been conducted to develop LBS applications customized towards 

delivering guidance and emergency services to visually impaired and disabled people. 

Due to the sensitivity and importance of the delivered service, these applications are 

considered very demanding in terms of the positioning performance.  

 
GNSS have played a significant role in such applications for the purpose of localising 

the users in order to facilitate and improve their mobility. This research was initialised 

at the University of California, Santa Barbara (UCSB) in 1985 by using the satellite 

positioning in order to navigate and determine the position of the blind (Collins, 

1985). Afterwards, a prototype of a guidance system described as Personal Guidance 

System (PGS) was developed (Brusnighan et al., 1989). At initial phases of PGS, the 

guidance information was imparted to users via headphones using synthesized speech. 

The PGS project was developed along with the technological improvements. 

Generally, the performance of this system is dependent on GPS positioning accuracy 

improvement, the geographic database contents, and the design and flexibility of the 

system (Golledge et al., 1998). During the same period of PGS development, another 

guidance system for blind and elderly people was developed by a British-Swedish-

German consortium. The system was called Mobility of Blind and Elderly People 

Interacting with Computers (MoBIC), and was intended to help blind, partially 
                                                           

1
 These integrity factors were adopted in this work. 
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sighted and elderly people to travel around (Strothotte et al., 1995). MoBIC prototype 

was constructed from a personal computer with a digital map, DGPS receiver and 

speech synthetic output. The system reads the GPS receiver’s location on the digital 

map into speech guidance messages, in order to be heard by the targeted users. 

 
A wireless navigation system for visually impaired pedestrians was developed by 

University of Florida (UF), (Helal et al., 2001). The system was called Drishti, which 

means Vision in an ancient Indian language. Initially, Drishti consists of a position 

determination technology (GPS), a wearable portable computer, and a voiced 

communication interface. The wearable computer contains an up-to-date GIS 

database, in which all required information was provided to guide the blind user and 

ease their mobility in unfamiliar environments. In addition, Secure and Safe Mobility 

Network (SESAMONET) was proposed and developed by a group of scientists at the 

European Commission's Joint Research Centre (EC-JRC, 2007). The main concept of 

the system was based on utilizing a group of RFID micro-chips which were installed 

in a specified area where visually impaired users are guided. Basically, the system 

consists of a special walking cane with RFID reader which sends the location signals 

of the RFID tags to a smart mobile phone. The mobile phone contains information 

about the location and provides the user with synthesized voice guidance via a 

Bluetooth headset.  

 
In Pressl and Weiser (2006) a new navigation system was presented for visually 

impaired guidance, described as Positioning and Navigation of Visually Impaired 

Pedestrians (PONTES). This system utilised an INS module consisting of a 

gyrocompass, accelerometer triad, and barometric altimeter along with GPS to 

determine the location of the user. PONTES prototype also included digital maps, 

routing and guidance algorithms, and an object recognition function was installed 

utilising a head mounted camera alerting the users of surrounding objects. 

Additionally, since September 2005, GMV Sistemas and ONCE (the Spanish 

organization for blind) under ESA contract have worked on a project called MOMO, 

which demonstrates a mobile phone that could be utilised as a stand alone tool for 

blind pedestrian navigation. This navigation system uses EGNOS positioning data 

supported with SISNET technology to ensure improved accuracy (ESA, 2006).  
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The Electronic System Research Group (ESRG) at Brunel University was one of the 

pioneering research groups, initiating its visually impaired guidance navigation 

project in 1995 (Balachandran & Langtao, 1995). The aim was to investigate the 

possibility of using the GPS to navigate visually impaired pedestrians using a 

centralised approach. The system is known as Brunel Navigation System for Blind 

(BNSB). Generally, BNSB consists of two main components; the Navigation Service 

Centre (NSC) and Mobile Navigation Unit (MNU). The NSC describes the remote 

centralised side where all users are connected, and the MNU is the mobile device 

carried by the user. The NSC consists of a DGPS reference station, digital maps, 

routing algorithms managed by a computing facility, and a communication interface 

to send and receive data to and from the MNU. Trained staff was also recommended 

to be located at the NSC in order to monitor the voice guidance information. The 

MNU was simplified for the use of blind pedestrians; they only need to understand 

voice communication which is either automated or provided from trained staff at the 

NCS.  

 
A simplified prototype of MNU consisted of a GPS receiver, and an electronic 

compass with microphone and a speaker, which were fitted together using a mobile 

device. The use of mobile channels was investigated for the communication between 

the MNU and NSC (Hunaiti et al., 2004; Hunaiti et al., 2006). In addition, the use of a 

video camera was introduced as part of the MNU (Garaj et al., 2003), which allows 

the system to provide information about obstacles and objects surrounding the user. 

The positioning performance was the main challenge and limitation experienced while 

implementing the BNSB. Therefore, position augmentation and improvement based 

on Local DGPS methods were introduced along with the use of a dead reckoning 

module throughout the development stages of the system (Shah et al., 1999; Jirawimut 

et al., 2001; Ptasinski et al., 2002). However, the achieved accuracy levels and the 

capacity and coverage of the developed methods were not efficient enough according 

to the application performance requirements. This has identified the need for 

introducing new methods utilising WADGPS such as EGNOS for advanced 

positioning performance especially while navigating at urban environment. 

According to the above studies, GPS has been utilised as the main positioning 

component in various LBS applications focused on delivering crucial navigation 

services to pedestrian users. Additionally, the use of GPS augmentation techniques 
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such as EGNOS/SISNET and INS were widely implemented, however the achieved 

accuracy level is still considered insufficient, especially while navigating in urban and 

indoor environments.  

 

2.5 Summary 

 
This chapter presented detailed description of all technological aspects involved in 

LBS components, with a focus on the positioning technology. The first part of this 

chapter was concerned about LBS architecture, QoS requirements and contextual 

adaption approaches. Afterwards, the focus was driven into the positioning 

technology more especially on GPS, which is considered as the backbone of 

successful LBS implementations. A detailed review of GPS, along with its most 

widely implemented augmentation technologies such as network-DGPS and EGNOS 

was presented. Additionally, recent augmentation systems evaluation studies 

conducted by previous researchers were reviewed, showing the achieved positioning 

performance. 

 
Several conclusions were drawn from this extensive literature review in order to 

justify the need for the research solution presented in this work. These are 

summarised as follows: 

 
� A successful implementation of LBS, with a guaranteed QoS, requires the 

correct identification of its components and an appropriate description of its 

context (navigation environment, available resources and user preferences 

etc.). A stable and coherent adaptation of each component within the described 

context is required. 

 
� Each LBS application implies a certain QoS level dependent on the services 

sensitivity and user types. Therefore, there is a need to categorise LBS 

applications into different groups based on these two factors and provide an 

initial performance requirement for each group. 

 
� The positioning technology is the most important component affecting the 

performance of LBS applications. Satellite-based positioning; in particular 

GPS, is the most widely deployed positioning system. However, the available 
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GPS positioning services needs to be tailored within the surrounding LBS 

context in order to sustain the achieved positioning performance and fulfil the 

requirements of the corresponding LBS application. 

 
� The use of GPS was included in crucial LBS pedestrian applications, such as 

delivering guidance services to visually impaired and disabled pedestrians. 

However, still the positioning performance achieved from GPS is considered 

not sufficient to these applications.  

 
� GPS positioning performance depends on the capacity and efficiency of the 

associated augmentation techniques. Currently, WADGPS systems such as 

EGNOS and network-based DGPS are the most successful augmentation 

techniques according to their advanced performance levels and increased 

coverage capacity. However, this positioning performance is based on the 

availability of up-to-date corrections, which is affected by the data 

deliverability means, measurement scenario and navigation environments.  

 
� EGNOS signal availability is proved to be limited in densely urban locations, 

difficult terrains, and areas with high latitudes (low elevation angles to the 

GEO satellites). Therefore, at these environments the achieved accuracy levels 

from using EGNOS were dramatically degraded. This has introduced the use 

of SISNET messages, however using this technology in the field directly 

implies a stable internet connection along with a sufficient level of processing 

power to decode and apply these messages. Therefore, there is a need to 

establish a new strategy to maintain the availability of up-to-date and reliable 

EGNOS-SISNET data. 

 
� Network-based DGPS systems have not yet been addressed and utilised for the 

support of using GPS in crucial pedestrian applications. 

 
In this work, an adaptive LBS framework was designed taking into consideration a set 

of contextual parameters affecting the positioning performance. The adaptive 

framework is responsible for integrating the available positioning methods within the 

surrounding context. This framework was demonstrated within an efficient 

positioning model that was designed and developed based on GPS standard services 
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ensuring the availability of reliable, highly accurate and precise position solutions for 

pedestrian applications in different environments. This new positioning model was 

implemented as a client-server-based architecture incorporating both the user side, 

described as the Mobile Unit (MU) and the remote side, described as the Localisation 

Server (LS) in the position determination process. 
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Chapter 3: Adaptive LBS framework and Positioning 

Contextual Awareness 

 

 

3.1 Introduction  

 
This work focuses on LBS applications related to pedestrian use. The intention was to 

improve the positioning performance and ensure the availability of reliable and highly 

accurate position solutions, as well as tailor the available positioning technology 

within the associated LBS context. The initial stage towards achieving this was 

introducing an adaptive LBS framework allowing the selection of appropriate 

positioning method based on two main factors: 

 
1. Contextual parameters affecting the positioning performance. 

2. Specification of available advanced positioning methods. 

 
The framework utilizes predefined and continually updated profiles for the user of the 

application, application itself and advanced services. The user profile includes the 

user type, user-positioning device, user activity and navigation environment. The 

application profile comprises LBS application types and the associated positioning 

performance requirements. The advanced services profile describes details of 

available augmentation and improvement of positioning methods. The general 

functional description of the adaptive LBS architecture is shown in Figure 3.1 (AL 

Nabhan et al., 2009b). 
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Figure 3.1: Functional description of the adaptive LBS architecture 

 
For any LBS architecture, a standard position solution is initially obtained. However, 

if an advanced positioning method is available, there is a need to adapt it within the 

surrounding LBS context for sustainable performance. As described in Figure 3.1, the 

information included in the application and user profiles are used to generate a set of 

contextual parameters having a direct effect on the positioning technology. These 

parameters are described as the navigation environment, user activity type, available 

positioning resources, and application positioning requirements. Afterwards, the 

contextual factors and the information described in the advanced service profile can 

be used in the selection of the applicable advanced positioning method providing an 

improved position solution.  

 
Generally, user and application profiles are constructed and then updated from the 

navigation history and feedback information, such as user’s usual navigation 

environments and his/her mobile device’s capability as well as the application 

performance degradation while moving in the user associated environments. The 

advanced service profile is linked with the development of the positioning service 

augmentation and improvement methods. All of these profiles can be implemented as 

database tables, which are interrelated and stored at the application server. In order to 

obtain an initial description of the information included in the application and user 

profiles, such as the navigation environments, as well as an approximation of the 

positioning requirements, a number of preliminary experimental investigations were 

conducted. 
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A summary of the preliminary experiments is described in Section 3.2. In Section 3.3, 

the structure of the user profile is presented. Afterwards, Section 3.4, a new LBS 

application classification is described based on the delivered service sensitivity and 

tolerance to the position solution error. The new LBS applications categories were as 

explained in the application profiles. Section 3.5 describes a set of contextual factors 

generated from the above profiles. These factors were utilised in order to increase 

awareness within the navigation environment and available resources. Finally, Section 

3.6 summarises this chapter. 

 

3.2 Contextual Factors and Positioning Requirements Description: 

Preliminary Experimental Investigation 

 

Addressing the limitations of LBS components enables a full understanding of issues 

affecting its QoS. Several research studies investigated LBS limitations to gain an 

understanding of GPS performance, wireless networks, and mobile devices 

capabilities, utilised in macro and micro navigation environment (Mountain and 

Raper, 2002; Benford, 2005; Mohr, 2008; Almasri et al., 2009). The aggregated 

outcome of these studies shows that LBS applications are still experiencing several 

challenges related to the availability of optimal positioning solutions, mobile devices 

processing, visualising capabilities, and network resources.  

 
At early stages of this work, preliminary experimental investigations were conducted 

to understand the shortcomings of LBS components, with a focus on the positioning 

technology (AL Nabhan et al., 2008; AL Nabhan et al., 2009a; Almasri et al., 2009). 

The experimental studies were performed with reference to pedestrian LBS 

application conditions, taking into consideration scenarios experienced with the 

Brunel Navigation System for Blind (BNSB). The main goal was to evaluate GPS 

standard positioning services in various navigation environments and conditions, as 

well as using different hardware settings. In summary, three preliminary evaluation 

studies were conducted for the following purposes:  

 
� Measuring the availability of GPS satellites.  

� Assessing the achived positioning performance using standard GPS and DGPS 
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� Measuring the achived positioning performance using GPS supported with 

EGNOS.  

 
In the experimental setup used by Almasri et al. (2009) an off-the-shelf mobile device 

(HTC P3300 PDA) with a built-in GPS receiver was used. This receiver uses SiRF 

star III GPS protocol (SiRF Technology, 2008), with 20 parallel satellite channels and 

an internal GPS antenna (HTC, 2008). The setup also included a Toshiba Equium 

laptop, which was connected to a HOLOX BT-321 receiver via a Bluetooth 

connection. This receiver acquires 32 satellite tracking channels (Holox, 2008). As 

described in Almasri et al. (2009), satellites’ availability measurements were 

conducted in three different sites in London. The sites were located in Canary Wharf, 

London Bridge, and Stratford, to test different kinds of built-up environment. Canary 

Wharf represented a densely urban area, whereas at London Bridge and Stratford, 

semi-urban and open-space (clear satellite view) areas were selected.  

 
Throughout the experiments, several measurement trials took place in dynamic and 

static scenarios during different periods of the day (morning, afternoon, and night). As 

shown in Figure 3.2, the results obtained clearly show that the number of satellites at 

the densely urban environment (Canary Warf) was very limited, in which an average 

of four satellites were observed during the whole measurements. However, at the 

semi-urban and open space areas the average number of tracked satellites was 6 and 8 

satellites respectively.  
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Figure 3.2: GPS satellites availability measurements at three observation sites in London 
(Almasri et al. 2009) 
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In the second experimental study by AL Nabhan et al. (2008), the focus was on 

evaluating the achieved GPS performance levels using standard DGPS corrections 

obtained from a single OS NET reference station. According to the location of the 

measurements field, the nearest OS NET station used to obtain GPS observations was 

called “SOHE”. In which, the average baseline to this station was 20 kilometres. The 

hardware setup in this evaluation study included a HOLOX BT-321 GPS receiver 

connected via Bluetooth connection to an Intel Centrino Fujistu Siemens laptop. 

Vodafone 3G PCMCIA data card was attached to the laptop, establishing a mobile 

internet connection in order to download the GPS corrections from the selected 

reference station in RINEX format. As shown in Figure 3.3, the worst position 

solutions were experienced during extreme signals visibility blockage (at sites 1 and 

4), and the best results were obtained with increased satellite availability (at sites 2 

and 3). Detailed description of each site is presented in (AL Nabhan et al., 2008). The 

average of position accuracy achieved at all sites using standalone GPS was around 

seven meters. However, using the standard DGPS corrections a position accuracy 

average of three meters was achieved.  
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Figure 3.3: GPS Position accuracy achieved using standard GPS and DGPS (AL Nabhan et 
al., 2008)  

 
In AL Nabhan et al. (2009a), advanced experimental evaluation of GPS positioning 

performance was discussed. This evaluation study was based on calculating the 

horizontal accuracy levels achieved from GPS/EGNOS and GPS/EGNOS-SISNET 

solutions. The horizontal protection level ( SBASHPL ) was computed using EGNOS 

data, received from the GEO satellites, for each position sample at the mobile device. 

The mobile device was implemented using an Intel Centrino Fujistu Siemens laptop. 
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The GPS receiver used was U-blox ANTARIS 4 GPS module with LEA-4T sensor for 

precision GPS timing, raw measurement output and EGNOS functionality. This is a 

16-channel receiver, which is highly sensitive, enabling GPS timing with only one 

visible satellite. The U-Blox receiver was connected to the mobile device via a USB 

connection. A pedestrian’s trajectory at Brunel University (UK) was chosen to 

conduct dynamic field measurements. The testing route was carefully selected to 

simulate a typical urban area. From the reported results, it was noted that the testing 

route’s surrounding environments significantly degraded the availability of EGNOS 

GEO satellites. Accordingly, the average of the position accuracy at the mobile 

device, using GPS/EGNOS, was 3.5 meters. However, at the server the average of 

position accuracy was 2 meters, using GPS/EGNOS-SISNET solution (see Figure 

3.4). In addition, the calculated HPL values at the mobile device exceeded the 

identified Alert Limit (AL=11 meters) during 15% of the measurements. It was also 

noted that using U-Blox LEA-4T GPS sensor, allowed the calculation of advanced 

position solutions to be more accurate compared to the HOLOX BT-321 GPS receiver 

used previously in (AL Nabhan et al., 2008).  
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Figure 3.4: GPS Position accuracy achieved using GPS supported with EGNOS and SISNET 
(AL Nabhan et al., 2009a) 

 
The outcome of these preliminary experimental studies confirmed that the availability 

of GPS and EGNOS satellite signals was subject to the navigation environments 

(urban, rural, open-space and indoor) and physical surroundings. These environments 

and conditions are the main factors inducing multi-path and atmospheric errors on the 

received signal. This agreed with the previously explained literature and identifies the 

need for further evaluation and development studies. In addition, the measurement 
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scenarios, also known as user activity (dynamic and static), and the available 

hardware resources (receiver sensitivity, data input/output formats, and DGPS 

capability), were considered to be contextual factors, having a direct effect on the 

positioning performance. Moreover, given that each LBS application implies a certain 

level of the positioning performance, therefore, the positioning requirements can also 

be considered as part of these factors. 

 

3.2 User Profiles 

 

The first step towards the adaptive LBS framework is the description of the user 

profile. A valid initial description approach was performed based on the conclusions 

obtained from the experimental studies presented in Section 3.2. A list of the 

information that can be included in the user profile is shown in Table 3.1 

 

Positioning Device 

Specifications 

Navigation 

Environment 

User Activity 

Type 

User Type 

DGPS Capability Urban Dynamic   Public 

Data input and output 
formats (Raw and/or 

standard data) 

Rural Static  Disabled 

Receiver sensitivity 
(number of channels, 

Time to first fix (TTFF)) 

Open space  Commercial  

 In-door  Governmental 

Table 3.1: User profile parameters (AL Nabhan et al., 2009b) 
 

As can be seen in Table 3.1, user profiles describe the navigation environment and 

user activity type; these two are dependent on the reported user location and time. In 

addition, the user profile consists of independent parameters, such as user types; and 

the positioning device specifications, including the data input and output formats, 

DGPS supported functionality, and receiver sensitivity. In this work, two data output 

formats were considered: the standard position data in National Marine Electronics 

Association (NMEA) format or raw measurements describing the code pseudo-ranges 

and time stamps, the format of the raw measurements is dependent on the receiver 
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type. On the other hand, the user profile can also be used to describe additional details 

related to user’s preferences and privacy settings. 

 

3.3 LBS Selected Application Groups and Associated Positioning 

Requirements 

 
The second step in the adaptive framework was to specify each application’s 

positioning requirements. LBS applications were divided into two main groups; 

generic and specific applications, described as position-error and non position-error 

tolerance applications respectively. This classification was based on the assumption 

that specific applications offer sensitive and primary services, comparing to secondary 

and complementary services being offered by the generic application group. The 

specific applications deliver crucial services taking into consideration the user’s type 

and their special needs. An example of such crucial services can be visually impaired 

and elderly pedestrians guidance or emergency tracking services. Both applications 

are grouped under associated user types as shown in Table 3.2. 

  

LBS Application 

Group 

User Type Examples of Applications in Consideration 

Generic  

(error tolerance) 

All Points of interest information, traffic 
information, weather alerts etc. 

specific  

(non-error tolerance) 

 

Disabled 

Commercial  

Governmental 

Patients and doctors tracking, disabled people 
guidance, mobile advertisements, e-tolling, 
congestion charges etc. 

Table 3.2: LBS Application Groups (AL Nabhan et al., 2009b) 
 

It is difficult to include any LBS application or user type within one of the 

aforementioned classifications. However, the goal was to demonstrate a basic 

prioritizing approach between different application groups with reference to the 

implied positioning performance levels. As described in Table 3.3, the application 

profile consists of several information fields, such the required positioning 

performance, service response and the client-server connectivity type.  
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LBS Application 

Group 

Positioning 

Performance levels 

Service 

Response type 

Client-Server 

Connectivity 

 (sampling interval) 

Generic  Moderate level/ Low 
level 

Delayed/real-
time 

Limited (for one hour, 
one day etc.) or 

continuous 

Purposed High level Real-time Continuous (while 
running the service) 

Table 3.3: LBS Applications Profile (AL Nabhan et al., 2009b) 
 
According to the importance of the services delivered, different positioning 

performance levels (high, medium or low) were assigned to the generic and specific 

application groups. The service response type is dependent on the sensitivity of 

service reply to the user’s current situation (location and time). Hence, the services 

obtained from the specific group are considered to be delivered in real-time. The 

client-server connectivity mode quantifies the awareness level between the client and 

server while running the application. This parameter is described as the sampling 

interval and is required in the assignment of the applicable Position Reporting Rate 

(PRR). On the other hand, the application profile can also be used to describe 

additional details related to the mobile device capability (e.g. memory capacity and 

processing power) and the available network connectivity type.  

 

3.3.1 Positioning Performance Levels 

 

It is difficult to define specific values for each positioning performance level. 

However, approximate thresholds were used to define the requirements of each 

performance level, taking into consideration the reported results described in Section 

3.2, and some cited studies (Abwerzger et al., 2004; Ott et al., 2005). With reference 

to each application group, several positioning performance factors were described and 

appointed for each performance level as summarised in Table 3.4. 
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Positioning 

Performance 

Levels 

Position 

Error 

(95%) 

Service Availability Integrity 

Risk 

Probability 

(95%) 

Integrity 

Protection 

level (24 

Hours) 

Position 

Reporting Rate 

(PRR) 

 

High level 

 

<=2 m 

 

Number of 
Satellites>=7 

HDOP<=2m 

VDOP<=2.5m 

EGNOS GEO> 80 % 

<= 4105.2 −×  
HAL<=11 

m 

 

high frequency 

Moderate/Low 

level 

Variable Variable Variable Variable regular/low 
frequency  

Table 3.4: Positioning performance requirement level (AL Nabhan et al., 2009b) 
 

It is worth mentioning that the above values are not compulsory for all applications, 

and only demonstrate a basic method providing initial parameters for evaluation 

purposes. The high performance level was assigned with specific thresholds that were 

extracted from the best achievable values utilising stand-alone GPS and DGPS 

services. Conversely, the moderate and low performance levels were assigned 

variable thresholds because of their flexibility to accommodate different performance 

values. The following positioning performance factors are described in Table 3.4, (AL 

Nabhan et al., 2009b):  

 
� Position accuracy: this factor measures the required degree of correctness in 

the estimated position samples. An initial applicable error threshold (<=2 

meter in 95 % confidence) was determined for the high performance level. 

However, it was left variable for the moderate and low levels.  

 
� Data integrity levels: this is an important component responsible for 

determining the overall positioning performance. This includes specifying the 

required integrity factors such as the probability risks and the maximum 

allowable position errors (alert limits). The probability of an integrity failure 

to occur must be at or below the identified integrity risk during the time were 

services are claimed to be available.  

 
In order to establish a link between the applicable integrity risk probabilities 

and the corresponding LBS application group, it is necessary to observe the 
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position error in a number of independent position samples per application and 

per time unit interval. The difficult aspect of applying this methodology is 

defining common user conditions and risks, and then determining the error 

distributions. The specific application group has the most accuracy and 

precision constrains, as well as the highest level of risk among other 

applications, hence integrity requirements for this group was investigated. The 

SHADE project, as described in Abwerzger et al. (2004), describes several 

pedestrian positioning approaches aiming to achieve an advanced position 

performance in various environments. Therefore, integrity risks identified in 

SHADE was adopted in this work. Subsequently, a set of measurements were 

conducted, in which protection levels were computed for each position solution 

and then compared with a corresponding identified alert limits (AL Nabhan et 

al., 2009a). As a result, the best achievable integrity factors were initially 

assigned as integrity thresholds in the view of high performance applications 

(the purposed application group).  

 
� Service Availability: this factor is used to describe either the augmentation 

service (e.g. EGNOS) or the positioning service availability during the course 

of the navigation. As described in Section 2.4.1.1, the GPS service availability 

can be described by the number of satellites being tracked and the DOP 

quantifier. In addition, this performance factor also includes the visibility of 

EGNOS satellites during GPS service availability. Generally, the service 

availability is dependent on the coverage limitations in particular navigational 

areas, which plays an important role in affecting the quality of the computed 

position. Hence, initial approximations of the required availability thresholds 

were derived, allowing the calculation of a position solution with a resulting 

error that does not exceed the specified high accuracy limits, as explained in 

Table 3.4. In the measurement scenarios explained earlier in Section 3.2, it 

was noticed that while using standard GPS positioning services, error margins 

were exceeding two meters if less than 7 satellites were tracked with an HDOP 

and VDOP higher than 2 and 2.5 respectively. This should be accompanied 

with at least 80% of augmentation service availability (EGNOS GEO 

satellites) during the entire measurement period for improved positioning 

performance. It is not claimed that these availability thresholds are generic for 
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all applications and situations, but they present an example of assigning 

availability constraints satisfying specific application’s accuracy requirements.  

 
� Position Response Rate (PRR): this parameter describes the updates of 

users’ position samples at the remote server, which is responsible for 

providing LBS. PRR plays an important role in the positioning performance 

and its contextual adaptation. After establishing the communication session 

with the server, PRR is assigned depending on two variables, described as the 

sampling interval and sampling frequency. The sampling interval describes the 

client-server connectivity mode (see Table 3.3). Three main sampling 

frequencies are considered (AL Nabhan et al., 2009b):  

 

1. High frequency: this describes a very short time distance between each 

successive position report. This frequency is used with users acquiring 

high priority applications in which continuous update of the position 

information is needed to ensure services are accurately delivered.  

2. Regular frequency: this describes a longer time distance between each 

successive position report. This frequency is used with moderate or low 

priority applications (e.g. generic application group).  

3. Low frequency: this frequency is used with applications involving static 

measurements and with low priority applications requiring very limited 

awareness of the users’ changing locations. 

 
The sampling interval is used to describe the overall duration through which these 

sampling frequencies are taking place. The PRR can be expressed as a function of 

sampling frequency ( F ) and sampling interval length ( L ) as follows: 

L

F
PRR =  , ( F  and L R∈ )                                                                                     (3.1) 

 
The PRR value remains constant over a period of time equal to L . The PRR is used to 

report the position in a number of measurement steps. The time of each step ( k ) can 

be derived as follows: 

nFtk += 0                                                                                                               (3.2) 

Where:  
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� 0t  is the initial time of measurement,  

� n  is the number of steps ),....1(
F

L
n = . 

 

3.4 Advanced Positioning Contextual Adaptation  

 

The last step in the adaptive LBS framework is to derive the final contextual 

parameters with reference to the positioning technology. These parameters are 

obtained by harmonising the information contained in the user and application 

profiles, this is described in Figure 3.5 (AL Nabhan et al., 2009b).  Afterwards, these 

parameters are utilised by an intelligent selection function that is designed for the 

purpose of deciding on the applicable advanced positioning method providing the 

required position solutions. 

 

Figure 3.5: Positioning contextual parameters determination (AL Nabhan et al., 2009b) 

 
The application profile described in Table 3.3 only considers the positioning 

requirements. However, as shown in Figure 3.5, details regarding the remaining LBS 

components, such as the mobile device, communication network and contents 

providers, can also be extracted from the application profile. User information is all 

referenced from the user profile. The navigation environments and user activity are 

function of the changing situation (location and time). The available resources are 

used to describe the specifications of the positioning device, such as the supported 

data output formats and augmentation capability (SBAS or DGPS). All the 
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information described in the user and application profiles are embedded together to 

generate the following position related contextual parameters, which is considered the 

output of the profiles integration as shown Figure 3.2: 

 
1. Service resources: this parameter describes the specifications of the 

positioning device. In this work, the GPS receiver is concerned. The 

information provided by this parameter is very crucial for the position 

correction and calculation methods, this is described in more details in Chapter 

5.  

2. Service area: this parameter describes the user’s associated navigation 

environment. The availability of the position information from any positioning 

technology is significantly dependent on this parameter. 

 
3. Service performance (Accuracy, Availability and Integrity): this parameter 

explains the required positioning performance for each application in progress. 

This is mainly responsible for mapping each application with the applicable 

positioning method.  

 
4. Service interaction: this parameter describes all quantifiers required to 

determine the PRR; this includes client-server connectivity (sampling 

interval), and the sampling frequency. 

 
The last part of the adaptive LBS framework was the design of an intelligent function 

responsible for selecting the applicable positioning method that operates based on the 

above contextual parameters. This is described in Figure 3.6. 
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Figure 3.6: Intelligent Selection Function 
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The selection function presented in Figure 3.3, was designed with reference to the 

developed positioning model described in Chapters 4 and 5. However, it can be 

modified and utilised for different application settings. The developed positioning 

model performs the position correction and calculation based on two advanced 

methods, known as Coordinate Domain and Raw Domain. Both methods operate 

based on the GPS measurements format, which are received from the user. The 

coordinate domain operates utilising standard position observation in NMEA formats, 

and the raw domain operates on raw GPS pseudo-ranges. An additional positioning 

method, known as Integrated Domain was described based on GPS and Dead 

Reckoning (DR) measurements for indoor environments. The specifications of these 

advanced positioning methods are described in terms of the contextual parameters as 

summarised in Table 3.5. The use of the contextual parameters in the selection 

function with can be summarised as follows (AL Nabhan et al., 2009b): 

 
� The service resources parameter determines the existence of the advanced 

positioning methods. For example, if both NMEA and raw GPS data were 

available, then there is a need to carry on with the positioning methods 

selection process. However, if only one data type is available, this implies that 

only one positioning method is operational. 

 
� The service area parameter identifies the suitability of the positioning methods 

in the corresponding navigation environment. For example, the raw and 

coordinate domains methods are not suitable and considered not reliable 

within indoor environments. 

 
� The service performance parameter describes the required positioning 

performance. Hence, it is used to finally select the applicable positioning 

methods based on the specifications described in the service profile. More 

details of the specification presented in Table 3.5 are explained in Chapter 5. 

 
� The service interaction parameter is utilised in order to assign the PRR values 

during the operation of the selected positioning method. 

 
The selection function (S) can be described using the contextual parameters as 

follows: 



Chapter 3: Adaptive LBS Framework and Positioning Contextual Awareness                              72 

 

PhD Thesis by Mohammad AL Nabhan                                                                 Brunel University  

 ),,( par SSSfS =                                                                                                   (3.3) 

Where  

� rS , aS , and pS  denotes the service resources, service area and performance 

parameters respectively. 

),( tlfSa =                                                                                                                (3.4) 

Where: 

� l  is the location (position coordinates). 

� t  is the time (exact time, time interval, daytime). 

 
 

Service 

Parameter 

 

Raw Domain 

 

Coordinate Domain 

 

Integrated Domain 

 

Accuracy 

 

 

 

 

 

Integrity 

 

 

 

 

Availability 

 
Very accurate, especially 

if enough raw 
measurements were used 
in the position solution 

calculation 
 

Standard integrity 
performance 

 
 

Based on the navigation 
environment and 

navigation data received 
at the server 

 

 
Accurate if enough 

satellites were tracked at 
the user side and 

correction data are being 
filtered 

 

Standard integrity 
performance 

 
 

Based on the navigation 
environment 

 

 
Accurate depending 

on the GPS 
measurements, DR 

sensors drift and data 
fusion efficiency 

 
Standard integrity 

performance 
 
 

Based on the 
navigation 

environment and 
interior sensors 

operation 

 
 

Service Data 

(input) 
  

 
Raw pseudo- ranges and 

time stamps 
 

 
Standard position output 

(NMEA GGA data 
format) 

 
Raw and standard 
positioning data/ 
sensors readings 

 

Service 

interaction  

 

 
Operates within any 

interval frequency and 
interval length 

 

 
Operates within any 

interval frequency and 
interval length 

 

 
Operates within any 

interval frequency and 
interval length 

 
 

Service Area 

 

 
Operates within outdoor 
navigation environments 
(Urban, Rural, and Open 
Space). Does not work 

for Indoor environments. 
 

 
Operates within outdoor 
navigation environments 
(Urban, Rural, and Open 
Space), however highly 
affected in urban areas 
and does not work for 
Indoor environments 

 

 
Operates during 

outdoor and indoor 
environments 

Table 3.5: advanced positioning methods specifications (advanced services profile) 
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3.5 Summary 

 

This chapter started by explaining the preliminary experimental studies being 

conducted at early stages of this work. The reported results and experienced 

conditions were used to define contextual factors and identify some initial position 

performance thresholds. Subsequently, an adaptive LBS framework was presented 

introducing four new components for increased contextual awareness with reference 

to the positioning technology. The new components were described as user profile, 

application profile, advanced services profile and an intelligent selection function. 

The application profile described two main groups of LBS applications and the 

associated performance requirements.  

 
Information described in the application and user profiles were used to generate a set 

of contextual parameters having a direct effect on the positioning performance. These 

parameters were then utilised by the selection function in order to determine the 

applicable positioning methods providing the required solution. The selection function 

was designed in terms of the advanced position correction and calculation methods 

being offered by the developed positioning model; the raw domain, coordinate 

domain and integrated domain methods.  
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Chapter 4: The Design and Development of a Reliable and 

Accurate Positioning Model  

 

 

4.1 Introduction 

 

In this chapter, the integration of augmentation services from SBAS/EGNOS and 

network-based DGPS systems are investigated. The main objective is achieving an 

improved GPS single frequency positioning performance, to be utilised in LBS 

applications covering wide ranges of users. Accordingly, a new hybrid positioning 

model was designed and developed as a multi-thread client-server based approach. 

This model incorporates the position determination process between two main sides of 

the LBS architecture; the mobile side (users) and the stationary side (remote servers).  

 
At the stationary side, a new component was introduced; it is described as the 

Localisation Server (LS). The availability of WADGPS correction information from 

EGNOS and Networked-DGPS system (e.g. OS NET) was guaranteed at the LS. This 

was achieved by using wired dedicated communication channels for the 

corresponding augmentation sources such as SISNET and OS Net data servers. The 

use of the LS and the dedicated channels discards the effect of navigation 

environment and wireless network vulnerability on the reception of valid and reliable 

augmentation services.  

 
At the mobile side, the Mobile Unit (MU) utilises its locally attached receiver 

(GPS/EGNOS receiver) for position sensing. The positioning model is constantly 

responsible for monitoring the availability of navigation and augmentation data 

acquired by the MU positioning unit. If augmentation data at the MU is not available, 

the LS handle the position determination role and starts providing accurate solutions, 

after efficiently correcting the data received from the MU.  

 
The following section describes the positioning model’s architecture and components. 

Section 4.3 presents the main systematic levels involved in the positioning model. The 

functional approaches implemented at both the MU and LS are presented in Section 

4.4. Afterwards, Section 4.5 summaries this chapter. 
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4.2 Positioning Model Architecture 

 
The new positioning model presented in this work consists of two main components, 

the Localisation Server (LS) and the Mobile Unit (MU). The model’s operational 

architecture showing its main components, communication links and data 

transmissions is described in Figure 4.1 (AL Nabhan et al., 2009b and 2009c). 

 

 

Figure 4.1: Positioning model operational architecture. 
  

As described earlier, the LS maintains dedicated internet connections with two GPS 

augmentation data sources. The first source is SISNET data server, providing EGNOS 

real-time correction messages in RTCA format. The second source is the OS NET 

Ntrip caster, providing network-based DGPS corrections in the RTCM format. The 

communication channels to both sources are handled using TCP/IP connections to the 

assigned IP addresses and port numbers. The LS acts as an Ntrip-client requesting 

data from the Ntrip caster using HTTP messages (RTCM, 2004). The LS 

communicates with SISNET data server using SISNET UAS, which operates over the 

DS2DC protocol (Mathur et al., 2006). 
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 A GPS receiver mounted in good satellite view location is also connected to the 

server side using a serial connection. This receiver is used to continuously download 

up-to-date navigation messages from all tracked satellites. This information is used in 

the position estimation process and can also be sent to the MU implementing an 

Assisted GPS (A-GPS) service. Components such as user and application profiles are 

also attached to the LS. As explained in Chapter 3, these profiles are responsible for 

the positioning model contextual adaptation.  

 
The LS acts as a middleware component between the MU and the service sources 

(application and data content servers). This allows the application server to directly 

utilise users’ position information, which are available at the LS. This scenario is 

mostly implemented when accurate positioning information is urgently required by 

the application server to provide critical remote services (e.g. visually impaired 

pedestrian’s guidance, emergency patients’ tracking etc.).  

 
The hardware and software components of MU vary between different users. The user 

profile is used to identify the specifications of the positioning unit, which is either 

attached or embedded in the MU. Currently, the most commonly used distinguishing 

features of GPS positioning devices are the augmentation functionality, number of 

channels, data output formats, Time To First Fix (TTFF) and tracking sensitivity. In 

this work, the main focus is on single frequency GPS receivers supporting either 

SBAS/EGNOS or standard DGPS capability. The receiver data outputs being 

considered are raw measurements and/or standard positioning format (NMEA). A 

Dead Reckoning (DR) module can also be attached to the MU for extended 

positioning service within indoor environments. Depending on the type of LBS 

application, the MU might also include digital maps and GIS resources. The 

communication side between the MU and LS follows the same pattern as described in 

Figure 2.2 (see Section 2.2.2). The MU transmits the position information via the 

mobile communication link to the LS which is connected to an IP-based network, 

such as the internet. Afterwards, the LS replies to the MU with the accurate corrected 

coordinates. In other words, this communication scenario can be described as an 

Inverse DGPS (IDGPS) (Ptasinski et al., 2002). Conversely, the accurate coordinates 

can be forwarded directly to the application server providing the services remotely.  
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4.3 Positioning Model Systematic Levels 

 
Generally, the positioning model consists of two main systematic levels; data 

communication and data processing and computation. This is shown in Figure 3.2  

 

 
Figure 4.2: Positioning model systematic levels. 

 
The data communication level describes a bidirectional mobile communication link 

between the MU and the LS. The bidirectional channel is initiated based on data 

availability constraints at the MU; this is described in more detail in Section 4.4. The 

LS understands user and application requirements from the attached profiles and starts 

computing the required positioning solution. Two advanced positioning methods are 

performed at the LS, raw domain and coordinate domain. If the raw domain method 

was performed, then the server can either transmit corrected coordinates (e.g. NMEA 

data) or corrected code pseudo-ranges. The coordinate domain provides only 

corrected GPS coordinates. The processing and computation level summarises all the 

different procedures that are taking place at the MU and LS. These procedures are 

required for implementing the overall positioning model functionality. At the MU, 

this includes data acquiring and availability checking, data transmission and 

reception. Also, if a Dead Reckoning (DR) module was used at the MU, then GPS/DR 
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navigation data fusion is performed. Finally, the MU is responsible for the LBS 

service provision to the user. At the LS, several procedures are performed in order to 

efficiently estimate users’ measurement errors and compute accurate position 

solutions. This mainly includes messages decoding and filtering, data validity 

checking and integrity monitoring, correction data processing and estimation, 

correction data interpolation and integration, and finally position correction and 

computation. More details of these procedures are described in Chapter 5, (AL 

Nabhan et al., 2009c). 

 
4.4 Positioning Model Functional Approaches 

 
The positioning model consists of two main functional approaches that have been 

designed and implemented at both the MU and LS components. These approaches are 

responsible for incorporating both components in order to obtain the best position 

solution. 

 

4.4.1 Mobile Unit (MU) Functional Approach 

 
The Mobile Unit (MU) mainly depends on its attached or embedded GPS receiver 

with DGPS or EGNOS capability in determining the user’s coordinates. However, if 

the navigation data and/or the augmentation data at the MU are not available then an 

alternative source of positioning is utilised, this includes the LS or the integration with 

an INS module (e.g. DR). A flowchart diagram of the MU functional approach is 

presented in Figure 4.3. The diagram presents the sequence of procedures taking place 

at the MU in order to determine the required position samples (AL Nabhan et al., 

2009c). 
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Figure 4.3: Mobile Unit (MU) functional approach  
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As shown in Figure 4.3, the functional approach implemented at the MU consists of 

several procedures, beginning with data acquisition and reception, which is 

responsible for receiving the navigation and augmentation data from the GPS 

receiver. As discussed earlier, two types of GPS navigational data (position 

observations) are received based on the MU GPS receiver capability: standard 

position fixes, which are normally presented in NMEA formats; and raw 

measurements including code pseudo-ranges and the associated time stamps. These 

data types are stored in the MU’s memory and then retrieved on the biases of the 

augmentation data (correction messages) update time intervals. The correction 

messages are received in RTCM SC-104 format for DGPS and in RTCA formats for 

SBAS/EGNOS-enabled receivers (AL Nabhan et al., 2009c). 

 
The availability thresholds described in Table 3.4 identify situations where enough 

GPS and augmentation data are available. If insufficient navigation data is available, 

the system considers an alternative position fixing solution based on DR 

measurements. This is referred to as the integrated domain positioning method, which 

is the third position calculation method being offered by the positioning model. An 

Extended Kalman Filtering (EKF) approach is proposed to be used in order to fuse 

GPS and DR measurements. The use of the integrated domain method is not restricted 

on the availability constraints, however it can be utilised for reliable and continuous 

positioning if the user profile continuously indicates in-door or densely urban 

environments. 

 
If the augmentation data was not available at the MU (GEO satellites were not visible 

or no applicable DGPS stations were available), then the MU would operate in a 

server-based positioning mode, in which a bidirectional communication session is 

opened with the LS to transmit the locally observed measurements for correction and 

position calculation. Accordingly, the final position solution used in LBS provision is 

obtained either locally from the MU using the GPS/EGNOS receiver and integrated 

domain method, or remotely from the LS using raw domain and coordinate domain 

positioning methods. 

 

 

 

 



Chapter 4: The Design and Development of a Reliable and Accurate Positioning Mode               81 

PhD Thesis by Mohammad AL Nabhan                                                                 Brunel University  

4.4.2 Localisation Server (LS) Functional Approach 

 

The LS is the main component of the positioning model’s operational architecture. It 

is mainly responsible for the user’s position augmentation and computation process, 

which is carried out after the reception of the user’s navigation data. As described 

earlier, the availability of valid correction information is guaranteed at the LS utilising 

multiple augmentation sources (EGNOS via SISNET and networked-DGPS via OS 

NET) (AL Nabhan et al., 2009c).  

 
The navigation messages for all tracked satellites are downloaded from the attached 

GPS receiver. All of these data types undergo several processing steps in order to 

compute the optimal position solution using the applicable positioning method. Figure 

3.4 depicts a flowchart diagram of the LS functional approach (AL Nabhan et al., 

2009c). 

 



Chapter 4: The Design and Development of a Reliable and Accurate Positioning Mode               82 

PhD Thesis by Mohammad AL Nabhan                                                                 Brunel University  

 

Figure 4.4: Localisation Server (LS) functional approach
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The first procedures in the LS functional approach are responsible for data acquiring 

and sorting. This involves the reception of user data, navigation messages and 

augmentation data (correction messages in RTCA and RTCM formats). This 

information is then sorted into different corresponding files. The message decoding 

process is responsible for extracting the required data fields from each file. In which, 

fast and long term pseudo-range corrections, integrity information, ionospheric delay 

corrections and Ionospheric Grid Points Mask (IGPs) are obtained from RTCA 

messages. In addition, pseudo-range corrections and DGPS reference station 

coordinates are obtained from the RTCM messages. At the same time, several data 

fields are extracted from the navigation messages, including Satellite Vehicles (SVs) 

clock and group delay corrections as well as the ephemeris parameters and 

ionospheric delay coefficients (AL Nabhan et al., 2009c).  

 
After getting hold of all data fields, an initial estimate of the user’s position is 

obtained. Subsequently, two important procedures are performed in order to check the 

validity and integrity of the augmentation data and select the applicable DGPS 

reference stations, based on the user’s initial estimated position. These procedures are 

summarised as EGNOS integrity monitoring and multi-DGPS baseline estimation. 

This allows only valid and reliable augmentation data to be utilised in the pseudo-

range corrections integration and interpolation. Accordingly, new pseudo-range error 

estimations are generated, which are then used in the data correction and position 

computation step. As described before, the LS performs the position calculation by 

two advanced methods; raw domain and coordinate domain positioning. The 

operation of both methods is dependent on the MU navigation data output. A detailed 

description of all processing procedures presented in Figure 3.4 is explained in the 

following chapter. 
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4.5 Summary 

 

This chapter has introduced a new efficient positioning model for increased GPS 

positioning accuracy and reliability for the intention of LBS applications. The 

operational architecture of the positioning model included two main components, the 

Localisation Server (LS) and the Mobile Unit (MU). The new model has incorporated 

two functional approaches responsible for switching the MU from standalone position 

determination to server-based positioning mode in case of augmentation data 

unavailability. In this scenario, the LS intervenes and starts providing accurate 

position solutions to the MU after the reception of users GPS navigation data. The 

position augmentation at the LS is performed using a set WADGPS correction 

messages received from two sources; EGNOS via SISNET and network-DGPS via 

OS NET. Also, if the navigation data at the mobile device was not available due to 

complete signal blockade, the functional approach at the MU has offered the 

possibility of having a GPS/DR-integrated position solution. Accordingly, the 

proposed positioning model offers and maintains an optimal position solution taking 

into consideration all LBS architectural components and surrounding conditions. 
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Chapter 5: Positioning Model: Main Processing 

Procedures 

 

 

5.1 Introduction 

 
As described in the functional approaches, the positioning model involves a number 

of procedures in order to achieve accurate and reliable position solutions under 

different conditions and navigation environments. The core procedures are 

summarised as follows: 

 
� Message decoding: this process handles all received data types and extracting 

the data fields required for conducting the remaining procedures.  

 

� EGNOS integrity and time validity monitoring: this is responsible for 

inspecting the time validity of the obtained EGNOS RTCA messages. This 

also includes investigating the initial position solution’s integrity based on 

EGNOS data. 

 
� Multi-DGPS stations’ baseline estimation: this involves measuring the 

baseline length between the user’s initial position and the available DGPS 

reference stations coordinates. If the computed baseline length is less than or 

equal to the specified threshold (<= 100 km)2, then RTCM messages from the 

corresponding DGPS reference station are utilised, otherwise the reference 

station is discarded. Accordingly, this process correlates user’s data and the 

reference station’s RTCM messages by utilising stations sharing the same 

satellite view and tropospheric effects with the MU.  

 
� Correction data processing and estimation: this is responsible for estimating 

the pseudo-range errors using both EGNOS and network-based DGPS data. 

Based on the availability and applicability of the received correction data, 

                                                           

2
 This baseline length might differ based on the application requirements and DGPS system setup 
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either a number of individual pseudo-range corrections are obtained for each 

error source or a scalar pseudo-range correction is computed.  

 
� Correction data interpolation and integration: this is responsible for 

generating the final pseudo-range correction used in the data correction and 

position computation. 

 
� Data correction and position computation: this involves applying the 

pseudo-range corrections obtained from previous steps to the user’s data and 

then computing the final position solution.  

 
� Navigation and augmentation data availability monitoring: this process 

checks the number of GPS and GEO satellites contained in the user’s 

measurements, and then computes the corresponding HDOP values for each 

GPS epoch. This process takes place at the MU and is mainly responsible for 

checking the available navigation and augmentation data against the identified 

availability thresholds described in Table 3.4. This process was implemented 

using the U-BLOX U-mobile application software described in Section 

(6.2.1.2). 

 

5.2 Message Decoding 

 
The message decoding deals with each data type independently and then start 

retrieving and synchronizing the required data fields, taking into consideration the 

GPS time of user’s received measurements. These measurements are the user’s 

position observations, which are either received as raw code pseudo-ranges or as 

standard position solutions in NMEA format. The message decoding process includes 

three independent decoding tasks: 

 
� The RTCA message decoding, which handles EGNOS RTCA messages 

received from SISNET server. 

  
� The RTCM message decoding, which handles DGPS RTCM SC-104 

messages received from OS Net server.  
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� User and navigation data decoding, this handles satellite ephemeris 

information and user’s measurements.  

 
The overall length of the EGNOS messages being transferred is around 67 bytes. 

SISNET messages encompass compressed EGNOS messages and a SISNET message 

header. These messages are formed using the SISNET Compression Algorithm 

(SINCA) as described in (Mathur et al., 2006). The SINCA algorithm reduces the data 

to around 20% of the original size. RTCA message decoding involves decompressing 

and parsing SISNET data in order to extract EGNOS messages conforming to the 

Minimum Operational Performance Standard (MOPS), referred to as RTCA message 

formats (RTCA, 2006). As shown in Figure 5.1, the RTCA message is a stream of 250 

bits, starting with 8-bits preamble, 6-bit message type identifier, and following with 

212-bit data field. The final 24 bits, are used for cyclic redundancy check (CRC) 

parity.  

 

Figure 5.1: EGNOS/RTCA message format (RTCA, 2006). 
 
The 6-bit message type identifier describes the contents of the payload, which can be 

integrity information or different types of correction messages such as fast 

corrections, long-term corrections for satellite ephemeris data, and ionospheric 

corrections. Table 5.1 summarises different types of RTCA messages with the 

associated validity time constrains. 
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Message Type Content  Validity Time(Seconds) 

1 PRN mask assignment 600 

2-5 Fast corrections Variable (12-120) 

6 Integrity information 12 

7 Fast correction degradation 
factor 

-- 

8 Reserved -- 

9 GEO navigation Message 240 

10 Degradation parameters 240 

11 Reserved -- 

12 SBAS network time/UTC offset 
parameter 

86400 

13-16 Reserved -- 

17 GEO satellite Alamance -- 

18 Ionospheric grid points mask 1200 

19-23 Reserved -- 

24 Mixed fast /long term 
corrections 

Variable/240 

25 Long term satellite error 
correction 

140 

26 Ionospheric delay corrections 600 

27 EGNOS service message -- 

28 Clock ephemeris covariance 
matrix 

140 

29-61 Reserved -- 

62 Internal test message -- 

63 Null message -- 

Table 5.1: RTCA message types and time validity constrains (RTCA, 2006). 
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All of these RTCA message types are received from EGNOS or any other SBAS 

system such as WAAS. However, only the following message types are considered 

while decoding the RTCA messages:  

 
� Message Type 1 (MT-1): contains a mask of satellites Pseudo Random Noise 

(PRN); this mask is used for assigning the corrections to the corresponding 

satellites. 

 
� Message Types 2-5 (MT 2-5): described as fast corrections carrying fast 

pseudo-range corrections and User Differential Range Error (UDRE) values 

and corresponding UDRE variances for each satellite. Each fast correction 

message type corresponds to a block of satellites identified by the PRN value 

in each message; MT-2 for satellites with PRN 1 to 13, MT-3 for satellites 

with PRN 14 to 26, MT-4 for satellites with PRN 27 to 39 and MT-5 for future 

planned satellites with PRN 40 to 51. 

 
� Message Type 6 (MT-6): consists of integrity information and all UDRE’s 

transmitted in case of a system alarm. 

 
� Message Type 6 (MT-7): contains the fast correction degradation factor 

indicator, user time outs intervals and system latency times.  

 
� Message Type 18 (MT-18): holds the Ionospheric Grid Point’s (IGP) mask. 

 
� Message Type 24 (MT-24): includes a mix between fast and slow correction 

messages. 

 
� Message Type 25 (MT-25): consists of the long-term corrections providing 

error corrections for slow varying satellite data (ephemeris and clock) errors. 

 
� Message Type 26 (MT-26): contains ionospheric correction information, the 

Grid Ionospheric Vertical Error (GIVE) and the corresponding GIVE variance 

for each Inospheric Grid Point (IGP). 

 
After the decoding the RTCA messages, a number of wide area differential 

corrections (pseudo-range, rate range and ionospheric corrections) for each satellite as 

well as the integrity information are made available.  
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While decoding the RTCM messages, only three message types are considered; 

Message Type 1 (RTCM MT-1) and Message Type 2 (RTCM MT-2) containing 

pseudo-range corrections (PRC), along with the rate of change for the pseudo-range 

corrections (RRC) for visible healthy satellites observed at the corresponding DGPS 

reference station. In addition, RTCM MT-3 is considered for obtaining ECEF 

coordinates of the corresponding DGPS station. RTCM messages are composed of a 

number of blocks known as RTCM words, each word is 30-bit length (five RTCM 

bytes), containing 24 data bits and 6 parity bits (see Figure 5.2).  

 

 

Figure 5.2: RTCM words format (RTCM, 1994) 
 

Each RTCM message comprises a header and a body. The body holds data for every 

corresponding message type. The header is contained in the first and second RTCM 

words; it consists of message type, reference station identification, reference time, and 

length of message (see Figure 5.3).  

 

Figure 5.3: RTCM header format (RTCM, 1994) 
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The total length of an RTCM message is based on the number of satellites being 

covered and corrected. However, an integer value in the second RTCM word (Length 

of Frame) always indicates the total number of RTCM words that compiles the 

message. There have been several versions of RTCM SC-104 data format; these can 

be summarized as follows: 

 
� RTCM 2.0: is only used for DGPS applications (without RTK). 
 
� RTCM 2.1: is similar to version 2.0 but it also includes new messages for 

carrier phase data and RTK corrections. 

 
� RTCM 2.2: in addition to the above, it consists of GLONASS data and 

associated information which is carried by newly added messages 31-36. 

 
� RTCM 2.3: also includes the Antenna types in message 23 and ARP 

information in message 24. 

 
� RTCM 3.0: is the most recent version that holds network RTK messages and 

also accommodates message types for new GNSS systems that are under 

development, such as Galileo. 

 
The message types described in RTCM 2.3 and following versions are described in 

Table 3.3. 

 

Message Type Content  

1 Differential GPS corrections  

2 Delta differential GPS 
corrections 

3 Reference station parameters 

18 RTK uncorrected carrier phases 

19 RTK uncorrected pseudo-
ranges  

20 RTK carrier phases corrections 

21 RTK high precision pseudo-
ranges corrections  
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31 Differential GLONASS 
corrections 

32 Differential GLONASS 
reference station parameters 

37 GNSS system time offset  

59 User-defined 

Table 5.2: RTCM Message Types  
 

As described earlier, users’ measurements obtained from the MU are either in NMEA 

or in raw data formats (based on the GPS receiver output format). In the case of 

NMEA data, the message decoder only considers the GGA messages, which contain 

the GPS essential time and position fixing information. This message also includes the 

list of satellites being tracked and used for computing the GPS coordinates at the MU. 

In the case of raw measurements, the code pseudo-ranges for each tracked satellite 

along with the GPS time within each epoch are extracted.  

 
The last message decoding task is responsible for analyzing the navigation messages 

downloaded from the GPS receiver attached to the LS. The navigation message 

consists of a number of data pages; each page holds five sub-frames. Each sub frame 

holds two data words of 30 bits each. The following sub-frames are considered in the 

decoding process, in order to extract relevant information about each observed 

satellites with respect to the user’s measurement: 

 
� Sub-frame 1, containing the Satellite Vehicles (SVs) clock parameters. This 

information is used to correct the code phase time received from the SVs, 

taking into consideration the relativistic effects. This also permits the 

compensation of the SVs’ group delay effects. 

 
� Sub-frames 2 and 3 consist of ephemeris parameters which are used to 

determine the SVs orbits within two hours interval. This information is used to 

compute the satellites’ positions in relation to the time stamps of the user’s 

measurements.  
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� Sub-frame 4 holds the ionospheric delay coefficients required for calculating 

the ionosphere delay at the time of measurements using an embedded 

ionospheric model.  

 
The information obtained form the message decoding procedure is used to estimate an 

initial position for the user. Afterwards, the decoded correction information passes 

through the integrity monitoring and baseline estimation procedures for reliability and 

validity checking, before being used in the data correction and final position 

computation. As shown in Figure 4.4, the initial position coordinates are updated from 

a feedback obtained from the Data Correction and Position Computation process. 

 

5.3 EGNOS Integrity Monitoring  

 
As described in the previous section, utilising an SBAS service such as EGNOS or 

WAAS allows the user to obtain several types of messages carrying the information 

required to augment the user’s position. The augmentation information is summarised 

as follows: 

 
� Satellite geometry information such as the ephemeris data of the tracked 

satellites and associated corrections.  

 
� Ranging information, including GPS satellite clock and ephemeris error 

corrections, and ionospheric corrections.  

 
� Measurement integrity information, provided in the form of variances related 

to two types of error corrections; the UDRE for the satellite clock corrections 

and ephemeris, as well as the variance for GIVE. This information is carried 

through RTCA MT 2-5 and MT-26, respectively. 

 

The GPS receiver combines satellite geometry information with the pseudo-ranges’ 

corrections (ranging information) to compute the user’s position. Moreover, the 

integrity information is used to calculate useful integrity factors to protect the user 

from receiving Misleading Information (MI) due to data corrupted by noise caused by 

measurement errors, algorithmic process faults and systematic failures. Generally, this 

process is described as integrity monitoring (RTCA, 2006). In this work, it is referred 
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to as EGNOS integrity monitoring, in which EGNOS data is used to calculate a 

Horizontal Protection Level ( EGNOSHPL ) and a Vertical Protection Level 

(
EGNOSVPL ) for each position solution, these values are then compared with the 

previously identified Alert Limit (AL). An integrity failure event is detected if the 

EGNOSHPL  or EGNOSVPL  is greater than the identified AL. If this happens, the 

system is said to be unavailable and forwarding MI to the user (Walter et al, 2003; 

RTCA, 2006). 
 

5.3.1 Calculation of EGNOS Integrity Factors  

 
Originally, integrity calculations are based on the mathematical expressions which 

were introduced for aviation navigation purposes, in which the actual pseudo-range 

errors can be predictably bounded at and beyond 10-7, probability by a zero mean 

Gaussian distribution. This probability is also described as the integrity risk 

requirement that is applied in principle to each aviation approach (Walter, 2003; 

RTCA, 2006). EGNOS integrity equation describes the position error distribution 

obtained by using differentially corrected measurements in which the validity has 

been checked. It allows the user to assess the integrity performance. The general 

equation can be expressed as follows:  

),0( 2
pospos Ne σ≈                                                                                                    (5.1)

 

Where: 

� pose  is the positioning error which is assumed from the position variance 2
posσ . 

This variance is a function of satellite geometry and variances of the corrected 

pseudo-ranges.  

 
The first step of integrity calculation is the estimation of pseudo-range variances for 

all tracked satellites; this can be presented by the following equation (Walter, 2003; 

RTCA, 2006): 

=2
iσ +2

,UIREiσ +2
, tropoiσ +2

, flti
σ 2

, airiσ
                                                        (5.2)    

Where: 
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� 
2
iσ  is the total error variance in the pseudo-range measurements domain and i  

is the corresponding satellite number.  

 

The quantity 2
UIREi,

σ  indicates the variance in the residual User Ionospheric Range 

Error (UIRE) after applying the ionespheric corrections. This quantity is derived from 

the variance in the User Ionospheric Vertical Error ( 2
UIVE

σ ), which is then multiplied 

by the obliquity factor ( ppF ), which can be expressed as follows3: 

22
, UIVEFppUIREi σσ ⋅=

                                                                                           (5.3)
 

The 2
tropoi,σ   quantifier indicates the variance in the residual tropospheric delay, 

which is computed as follows:
 

))((2
, iTVEtropoi Em⋅= σσ

                                                                                        (5.4) 

Where:  

� TVEσ  is the Tropospheric Vertical Error (TVE) 

� )( iEMF is the tropospheric correction mapping function for satellite i  with 

elevation angle equal to iE .  

This mapping function is expressed as follows: 

)(sin002001.0

001.1
)(

2
i

i

E

EMF

+
=                                                                            

(5.5) 

The variance 2
, flti

σ  is caused by the ambiguity in slow and fast corrections. This 

parameter can be determined from the variance ( 2
,UDREi

σ ), which describes the 

UDRE with respect to satellite i , after applying the fast and long term correction 

messages. If the long term and fast range rate corrections are applied to the satellite 

                                                           

3 Details of EGNOS ionospheric corrections calculation is described in section (5.5.2). 
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data and the degradation data contained in MT-7 and MT-10 are not used, then 2
, flti

σ
 

can be calculated as follows (RTCA, 2006): 

( ) ( )[ ]
2

8)(2
, , mUDREflti UDERi +⋅= δσσ

                                                                  (5.6)
 

Where: 

� )(UDREδ  is included only if EGNOS MT-27 and MT-28 are received, 

otherwise )(UDREδ  equals 1.  

 

The airborne variance ( 2
, airiσ ) estimates the pseudo-range residual error caused by 

the receiver’s noise and multi-path effects error with respect to satellite i , this 

variance is derived from the following equation (RTCA, 2006): 

2

1
2
,

2
,

2
,

2





 ++=

divgimultipathinoiseiair σσσσ
                                                      (5.7)                                                                     

Where: 

� noisei,σ  represents the error distribution caused by the GPS receiver including 

receiver’s noise, thermal noise, interference, processing errors etc.  

� multipathi,σ  estimates the multipath error distribution for the GPS receiver. 

� divgi,σ  estimates the error distribution caused by the receiver filter causing an 

ionospheric divergence.  

 
These airborne variance components can be estimated independently based on the 

GPS receiver that is used, and are normally described in the receiver specifications. 

The second step of integrity calculations yields the variances in position domain. The 

general least-squares position coordinate solution is expressed in the following matrix 

notation (Walter et al, 2003; RTCA, 2006): 

PHHHXX
TT δ1

0 )( −+=                                                                                      (5.8) 

Where: 

� X  is the vector including estimated least-squares position coordinate solution 

and receiver clock bias. 
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� H  is the observation matrix computed from the satellite positions and the initial 

receivers’ position. 

� 0X  contains the approximate initial values of the user’s coordinates and clock 

bias.   

� Pδ  is the vector of pseudo-range corrections. 

 

The pseudo-range variances ( 2
iσ ) are used to compute a weight matrix W , which 

can be included as part of the position computation process. Accordingly, equation 5.8 

can be rewritten as:  

PWHHWHXX
TT δ⋅⋅⋅⋅+= −1

0 )(                                                                      (5.9) 
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Where: 

� S  is the projection matrix of the weighted least square position solution.  

� ieastS ,  inorthS , , and iUS ,  are the partial derivatives of the position errors in the 

easting, northing and vertical directions, with respect to the pseudo-range error 

to the satellite i .   

� itS ,  is the partial derivatives of the time bias corresponding to the pseudo-range 

error to the satellite i .  

� iw  is the weight assigned for each pseudo-range measurement error, for 

example in the aviation Precision Approach (PA), the weights are equal to 
2

1

iσ
.  

The quantity 1)( −⋅⋅ HWH T  is described as the position estimate covariance matrix, 

which represents cofactors matrix corresponding to the estimated position parameters, 

described as follows:   
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Knowing the position estimate covariance matrix leads to following equations for 

computing the horizontal protection levels (RTCA, 2006): 





⋅

⋅
=

majorPAH

majorNPAH
EGNOS dK

dK
HPL

,

,
                                                                          (5.13) 

Where:  

� NPAHK ,  and PAHK ,  are constant horizontal and vertical integrity multiplier 

factors.  

 
For aviation navigation purposes NPAHK ,  and PAHK ,  can be 6.18 and 6.0 for PA 

and NPA approaches respectively. majord  is the horizontal position variance 

expressed as follows (RTCA, 2006): 

2
22222
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+
=                                        (5.14) 

Where:  

� 
2
eastd  and 2

north
d  represents the variance of the estimated position distribution 

that bounds the true error distribution in the easting and northing directions 

(variance in the protection levels). 

� 
2
EN

d  is the variance of the estimated position distribution in the easting and 

northing directions. These quantities are computed using the following: 

2
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On the other hand, the Vertical Protection Level ( EGNOSVPL ) is computed as follows 

expressions (RTCA, 2006): 

UvEGNOS dKVPL .=                                                                                               (5.18) 

2

1

2
,

2
i

N

i
iUU Sd σ∑=

=
                                                                                                      (5.19) 

Where: 

� 
2
Ud  is the variance of the estimated position distribution that over bounds the 

true error distribution in the vertical direction and vK  is the vertical integrity 

multiplier.  

 
The integrity multipliers (K-factors) should be adjusted according to the application 

requirements. As previously mentioned in Chapter 3, the integrity multipliers adopted 

in this work were determined based on pedestrians’ applications requirements 

described in (Abwerzger et al., 2004). The horizontal and vertical multipliers ( PAHK ,  

and PedVK . ) were 4.6 and 4.2, with an integrity risk probability less than or equal to 

( 4105.2 −× /60 seconds).  

 

5.3.2 EGNOS Data Correlation and Time Validity Monitoring  

 
This process is considered as a part of the EGNOS integrity monitoring procedure, in 

which it is responsible for ensuring the validity of EGNOS correction information. 

Accordingly, this process evaluates the RTCA message relationships (see Figure 5.4). 

It also considers the messages’ validity times constraints explained in Table 5.1. The 

validity times are different for each RTCA message with reference to the user’s GPS 

epoch time.  
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Figure 5.4: RTCA messages interrelationships (RTCA, 2006) 
 

As shown in the above Figure, the main factors used to correlate EGNOS RTCA 

messages are described as Issue of Data (IOD), this is summarised in the following 

Table: 

 

IOD Parameter Description  

IODCk IOD Clock (k indicates satellite number) 

IODEk IOD Ephemeris (k indicates satellite number) 

IODP IOD PRN mask 

IODFj IOD Fast corrections (j is the message type 
indicator) 

IODI IOD Ionospheric Grid Point (IGP) mask 

IODS IOD Service Message (MT-27) 

Table 5.3: EGNOS IOD parameters (RTCA, 2006) 
 

Each satellite is assigned an IOD parameter, which is then updated by EGNOS system 

independently. The use of IODs allow the correlation between EGNOS messages by 

referring all broadcasted data to one PRN mask contained in MT-1, one IGP mask and 

one active set of service messages. The PRN mask consists of 51 bits identifying 

satellites from 1 to a maximum of 51.  
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The PRN mask Issue of Data (IODP) is a 2-bit identifier which ranges between 0 and 

3 and appears on all applicable MT 2-5, 6, 24, 25, and 28. For example, if the IODP 

of the most recent mask (MT-1) does not match the IODP in the current correction 

message (e.g. MT-2); the correction message is discarded. This means that the 

correction information in MT-2 does not correspond to the first 13 satellites described 

in the recent PRN mask. The same process applies for all fast correction messages. 

The IODP is also used to determine the satellites mask’s applicability to the long-term 

correction messages in MT-25 and MT-24 and ephemeris covariance matrix data in 

MT-28.  

 
In addition, MT 2-5 and 24 contain 2-bits of Fast corrections Issue of Data (IODFj), 

which is used to link the 2
UDREσ  values contained in fast correction messages with 

the corresponding integrity information in MT-6. The IODF ranges from 0-2 (in case 

of no alerts) or equals to 3 when an alert occur in one or more satellites. Each fast 

correction message is assigned an IODFj value, where j is the message type indicator 

(IODF2 for MT-2, IODF3 for MT-3, IODF4 for MT-4 and IODF5 for MT-5). For 

example, if IODF3 = 1, this means that the 2
UDREσ  for satellites 14 to 26 contained in 

MT-6, apply and correlate to the corrections provided in the most recent broadcasted 

MT-3 with an IODF3 = 1.  

 
Moreover, the Ionospheric mask Issue of Data (IODI) ranges from 0 to 3, taking a 

different value each time the IGP changes. IODI is used to apply the applicable 

vertical ionospheric delay corrections by matching the IODI in MT-18 with 

corresponding IODI in MT-26. 

 

5.4 Multi-reference DGPS Stations’ Baseline Estimation 

 
A network-based DGPS solution consisting of multi-reference DGPS stations is the 

second source of augmentation data being utilised at the LS. Based on the location of 

each reference station, different satellites are tracked and different tropospheric delays 

are experienced. Therefore, up-to-date RTCM messages needs to be obtained from the 

applicable reference station sharing the same satellite view and error sources with the 

MU. This is achieved by computing a baseline between the MU and each reference 

station continuously.  
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The baseline is computed from the user’s initial position coordinates obtained as 

described in Section 5.2, and the DGPS stations’ coordinates received from RTCM 

MT-3. At each time step t , a baseline is computed for all available reference stations. 

A scenario of calculating baseline lengths between a set of users and reference 

stations is illustrated in Figure 5.5. 

 

 

Figure 5.5: Multi-Reference DGPS baselines estimation 

 
The baseline estimation process can be formulated as follows: 
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Where:  

� )(tβ  is the baseline matrix for each user and reference station at time step t .  

� u  is the number of users and n  is the number of reference stations. 

Each component of the baseline matrix is computed from the difference between the 

user and reference stations coordinates, this is described as follows: 
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Where:  

� i  and j  indicate the user and the reference station, i =1… u  and j =1… n  

� 
jRiU

x
,

∆ and 
jRiU

y
,

∆  represent the horizontal difference and 
jRiU

z
,

∆ is the 

vertical difference. 

The calculated baselines are compared with the identified baseline threshold for 

obtaining a high correlation of pseudo-range measurement error between the MU and 

the selected reference stations. A standard DGPS baseline threshold is 100 km (Kee, 

2008). The time validity of the received RTCM messages is variable and depend on 

the calculated baselines. The time validity is considered longer if the messages were 

received from closer reference stations (RTCM, 2004). 

 

5.5 Correction Data Estimation and Modelling 

 
This process handles the correction information being approved from previous steps, 

in order to prepare the pseudo-range correction components required for correcting 

users’ measurements and computing the final position solution. This process involves 

the following tasks: 

 
� Determining SVs clock polynomial coefficients, such as the clock bias ( 0fa ) 

in seconds, clock drift ( 1fa ) in sec/sec, the frequency drift 2fa  in 1/sec2 and 

clock data reference time ( oct ) in seconds. These coefficients are required for 

SV clock corrections and can be found in sub-frame 1, extracted from the 

decoded navigation message. More precisely, this information is included in 

bits nine through 24 of word eight, bits one through 24 of word nine, and bits 

one through 22 of word ten.  

 
� Estimating the group delay correction ( GDT ) using the information obtained 

from bits 17 through 24 of word seven in the decoded sub-frame 1. 

 
� Estimating the SV’s clock errors using EGNOS long-term correction 

information contained in RTCA MT-25. 
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� Calculating SVs position coordinates with respect to the pseudo-ranges 

received from the user at the same epoch time. This task is conducted using 

the ephemeris parameters obtained from words three through ten of sub-frames 

2 and 3 (as described in DoD, 2000). Satellite coordinates are calculated in 

Earth-centred Earth-fixed (ECEF) coordinates ),,( svsvsv zyx . 

 
� Estimating the SV’s coordinate errors ),,( svsvsv zyx δδδ  using EGNOS long-

term correction information contained in RTCA MT-25. 

 
� Estimating ionospheric delay coefficients from the information in page 18 of 

the decoded sub-frame 4 

 
� Estimating the ionospheric delay corrections at user’s location using 

information available in RTCA MT-26.  

 
� Estimating the tropospheric delay.  

 
The above tasks can be conducted using a pseudo-range corrections estimation 

model based on the differential correction approach presented in (DoD, 2000). 

This approach is depicted in Figure 5.6. 
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Figure 5.6: Pseudo-range corrections estimation 

 

The above Figure describes an iterative model for estimating and applying the 

pseudo-range correction components. The model describes three main stages which 

are responsible for determining the major pseudo-range correction components. This 

includes the estimation of satellite clock and ephemeras errors, and estimating 

ionospheric and tropospheric delays.  

 

5.5.1 Estimation of Satellites Vehicles’ (SV) Clock Errors  

 

Generally, the satellites’ clock time is computed as follows:  

svsv ttt ∆−=                                                                                                           (5.22) 

Where: 

� t  is the GPS time in seconds.  
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� svt  is the SV code phase time while transmitting the GPS signal, and svt∆  is the 

SV code phase time offset from the system time, which is given by the 

following equation (DoD, 2000): 

rocfocffsv tttattaat ∆+−+−+=∆ 2
210 )()(                                                    (5.23) 

Where: 

� 0fa , 1fa  and 2fa  are the clock polynomial coefficients. 

� oct  is the clock data reference time in seconds.  

� rt∆  is relativistic effects correction term which is described as follows (DoD, 

2000): 

kr EAeFt sin⋅=∆                                                                                               (5.24) 

Where: 

� e , A and kE  are orbital parameters extracted from sub-frames 1 and 2  

� F  is a constant which is calculated as follows: 

meterc
F

sec
)10(442807633.4

2 10
2

−−=
−

=
µ

                                                       (5.25) 

Where: 

� 
2

3
14

sec
10986005.3

meters
×=µ , which is the value of earth’s universal 

gravitational parameter. 

 

Slow varying satellite ephemeris and clock errors correction with respect to ECEF 

coordinates are obtained from EGNOS MT-25. The content of MT-25 is dependent on 

an indicator value known as the velocity code (as described in RTCA, 2006). If the 

velocity code equals 1, then each half of MT-25 will consist of error estimates for 

long-term varying satellite positions ( svxδ , svyδ and svzδ ), clock offset ( 1afδ ) and 

clock drift ( 0afδ ) error corrections, and velocity components ( svx&δ , svy&δ and svz&δ ) 

corrections for only one satellite. Otherwise, if the velocity code equals 0, then each 

half of MT-25 will contain long term satellite positions and clock offset error 

corrections for two satellites. As described in Figure 5.4, these error estimates are 
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accompanied by the IODP, which must agree with the IODP of the PRN mask in MT- 

1. The long-term correction parameters extracted from MT 25 are used to compute the 

clock time offset error estimate as follows: 

( ) 0010)( fGffsv attaatt δδδδ +−+=∆                                                                  (5.26) 

Where: 

� t  is the GPS time in seconds and 0t  is the time applicability of the day.  

� 0fGaδ  is an additional correction used for the GLONASS satellites.  

This time error correction is added to the time phase offset svtδ  obtained from 

equation 5.23. The group delay differential correction ( GDT ) is also applied to correct 

the time offset as follows (RTCA, 2006): 

GDsvsv TtLt −∆=∆ 1)(                                                                                            (5.27) 

Where: 

� 1)( Ltsv∆  is the satellite clock offset used for L1 signal users. 

 

5.5.2 Estimation of Ionospheric Delay  

 

The ionosphere is a dispersive medium of the earth atmosphere. The speed of GPS 

signals is affected while passing through the ionosphere; this is described as 

ionospheric delay. The induced delays are smaller when the satellites are directly 

overhead the user and become greater for satellites near to the horizon, due to 

extended travelled distances (signals are affected for a longer time). Ionospheric delay 

affects the speed of GPS signals with magnitudes equal to signal frequency; hence 

using dual frequency GPS measurements significantly reduces this error.  

 
In this work, only single frequency measurements are considered. Therefore, the 

ionospheric delay is estimated and compensated using single frequency models 

utilising EGNOS data. The EGNOS ionospheric model is described in Figure 5.7:  
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Figure 5.7: EGNOS ionospheric model 
 

EGNOS ionospheric related information is included in RTCA MT-18 and MT-26. 

The latter contains the Grid Vertical Ionospheric Error (GIVE) corrections and 

associated variances ( 2
GIVEσ ) at a predefined geographical Ionospheric Grid Point 

(IGP). All IGPs are contained in 11 data bands (numbered from 0 to 10) (RTCA, 

2006). Each data band consists of one mask describing the latitude and longitude of 

the IGPs. This information is broadcasted in several RTCA MT-18. Each MT-18 

consists of one IGP, a band number and a block ID which is used to identify the 

location of the IGP in respect to the band. In addition, the IODI is used to correlate the 

IGP bands carried by MT-18 with the ionospheric corrections in MT-26. 
 

After obtaining the IGPs mask and associated ionospheric vertical error estimations 

(GIVE), the Ionospheric Pierce Point (IPP) coordinates are determined. IPP is defined 
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as point of intersection of the line segment from the receiver to the satellite within an 

ellipsoid with constant height of 350 km (above the WGS-84 ellipsoid). The following 

equations are responsible for computing the IPP latitude ( IPPφ ) and longitude ( IPPλ ) 

coordinates in radiance (RTCA, 2006):  

( )AIPPuIPPuIPP cossincoscossinsin 1 ψφψφφ += −                                             (5.28) 










+
−−= −

E
hR

R
E

Ie

e
IPP cossin

2
1π

ψ                                                                  (5.29) 









−+= −

IPP

IPP
uIPP

A

φ

ψ
πλλ

cos

sinsin
sin 1                                                                 (5.30) 

Where: 

� IPPψ   is the earth’s central angle between the user position coordinates ( uφ  is 

the latitude and uλ  is the longitude) and the earth’s projection of the pierce 

point.  

� A   and E  are the azimuth and elevation angles between the satellite and user’s 

location ( uφ , uλ ). 

� eR   is the earth’s ellipsoid radios (6378.1363 km)  

� Ih  is the height of the maximum electron density (350 km).  
 

A linearly interpolated GIVE, denoted as ( vτ ), is computed for each satellite from at 

least 3 or 4 GIVE values. Subsequently, the vertical ionospheric delay at the user to 

satellite IPP is computed. This is described as follows:  

ivIGPIGP
i

iIPPIPPvpp yxW τλφτ ),(),(
3

1
∑
=

=                                                                (5.31) 

Where: 

� vppτ  is the interpolated vertical ionospheric delay at the user to satellite IPP, 

also described as the User Ionospheric Vertical Error (UIVE ).  

� i  is the IGP number and ),( IGPIGP yx  is its associated coordinates.  

� iW  is a weighting function described in terms of the IGP coordinates as follows: 

IGPIGPIGPIGP yxyxf =),(                                                                                   (5.32) 



Chapter 5: Positioning Model Main Processing Procedures                                                 110 

PhD Thesis by Mohammad AL Nabhan                                                                 Brunel University  

The interpolated vertical delay ( vppτ ) is then multiplied by an obliquity factor ( ppF ) 

with respect to satellite elevation angle ( E ) in order to obtain the final ionospheric 

correction ( iIC ), also known as the User Inospheric Range Error (UIRE). This 

quantity is then added to the pseudo-range measurements to account for the inospheric 

delay. This process is described as follows:  

)( IPPIPPvppPPi FIC φλτ⋅−=                                                                                (5.33) 

2
1

2

1

cos
1

−
























+
−=

hR

ER
F

e

e
pp                                                                                    (5.34) 

Where: 

� iIC  is the ionospheric correction for satellite i  .  

 

An additional ionospheric model used to estimate the single frequency ionospheric 

delays is known as the Klobuchar model (Kaplan & Hegarty, 2006). This model 

measures the day-time ionospheric zenith delay as the middle part of the cosine wave, 

and the night-time delay as a constant term. Similar to EGNOS model, the first step 

required for calculating ionospheric zenith delay is the determination of the IPP 

coordinates (
IPP
φ , IPPλ ) in terms of the azimuth, zenith and ionospheric height. In 

Klobuchar model, the vertical ionospheric delay, denoted as v
ionT∆ , is obtained as 

follows: 

( )
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Where:  

� 1A is the night time constant sec)105( 9−×=  , 

� 2A  is the amplitude term of cosine function,  

� 3A  is the phase term of cosine wave )14( n= .  

� 4A  is the period term of cosine wave. 

3
3

2
2

1
102 IPPIPPIPPA φαφαφαα +++=                                                                   (5.36) 
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Where: 

� The eight coefficients ( 0α , 1α , 2α , and 3α ) and ( 1β , 2β , 3β , and 4β ) are 

ionospheric parameters obtained from the broadcasted navigation message (Sub-

frame 4).  

 

Afterwards, v
ionT∆  is then mapped using the obliquity factor ppF  described in 

equation 5.34, in order to obtain the user slant ionospheric delay ( ionT∆ ). 
 

The Klobuchar ionospheric model is mostly used if there is no EGNOS data available 

at the LS. Otherwise, the EGNOS model is utilised for the ionospheric delay 

estimation. 

  
5.5.3 Estimation of Tropospheric Delay  

 
The second source of atmospheric errors is caused by the troposphere layer. This layer 

is located in the lower part of the atmosphere and it is a non-dispersive medium for 

signals with frequencies up to 15 GHz, such as GPS radio signals (Kaplan & Hegarty, 

2006). Unlike the ionosphere, the effect caused by the tropospheric delay is not 

frequency dependent. The arrival of both L1 and L2 signals are equally delayed with 

respect to the free space propagation. Tropospheric delays are not transmitted within 

the RTCA and RTCM messages. Therefore, the estimation of tropospheric delay is 

achieved by independent modelling techniques (Hofmann et al., 2001; Kaplan & 

Hegarty, 2006). 

 
Generally, the tropospheric delay is estimated as a function of tropospheric refractive 

index, which is dependent on the local temperature, pressure and relative humidity. 

The refractivity is often modelled using dry and wet components which arise from the 

dry air and water vapour suspended in different heights within the troposphere. The 

dry component extends to a height of up to 40 km, forming about 90% of the delay. 

The wet component extends to a height of about 10 km. The Hopfield tropospheric 

model is often used to model tropospheric delays. The tropospheric zenith delay 

( tropτ ) is expressed with respect to the dry and wet components as follows:  

)(102.155 7
, sddtrop hh

T

p
−××= −τ                                                                        (5.38) 
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)(
4810

102.155
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, swwtrop hhe

T
−××= −τ                                                               (5.39) 

Where: 

� dtrop,τ  and wtrop,τ  are the tropospheric zenith delay for the dry and wet 

components respectively.  

� sh  represents the height of the observation station on earth which might be 

correspondent to a user or a reference station height.  

� p , T  and e  are the refractivity index factors (metrological parameters) 

indicating pressure, temperature and water vapour pressure (relative humidity), 

respectively.  

� dh  and wh  are the height of the dry and wet troposphere layer respectively, 

these quantities are obtained as follows: 

)16.273(72.14840136 −+= Thd Metres (m)                                                        (5.40) 

11000=wh  Metres (m)                                                                                          (5.41) 

The overall slant tropospheric delay ( dt ) is computed from multiplying the dry and 

wet zenith delays by a correspondent mapping function as described below: 

)()( ,, EMFEMFTd wwtropddtrop ⋅+⋅= ττ                                                              (5.42) 

Where: 

� )(EMFd  and )(EMFw  are the mapping functions correspondent to the dry and 

wet zenith delays. 

� E  is the satellite elevation angle.  

 
The mapping functions are computed as follows: 
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On the other hand, the EGNOS guidelines described by Nigel et al. (2001) and RTCA 

(2006) recommended the estimation of total tropospheric zenith delay based on five 

meteorological parameters. The total pressure, temperature and water vapor, pressure 

at mean sea level, and temperature and water vapor lapse rates. Using these 

parameters, the tropospheric zenith delay for dry ( dtrop,τ ) and wet ( wtrop,τ ) delays is 

computed as follows:  
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Where: 

� g = 9.80665 2sm . 

� mh  is the height of the receiver above mean sea level (m). 

� mT  is the temperature at mean sea level (K). 

� mp  is the pressure at mean sea level (K/m) 

� dR = 287.054 KkgJ // . 

� λ  is the water vapor lapse rate. 

� dryz  is the zenith dry delay at mean sea level. 

� wetz  is the zenith wet delay at mean sea level. 

 
Similar to equation 5.42, the total tropospheric delay at elevation angle E  is then 

calculated as follows:  

( ) )(,, EMFTd wettropdtrop ×+= ττ                                                                          (5.47) 

Where: 

� )(EMF  is the mapping function at elevation angle E  (where E >=50), and is 

expressed as the following:  

E
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=                                                                              (5.48) 
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5.5.4 Multi-path Delay 

 

Multipath errors, also known as non-common GPS errors, are caused by reflected 

satellite signals from surfaces alongside the path to the receiver. The reflected signals 

simply cause a distortion in the receiver correlation process, causing erroneous 

pseudo-range measurements. The multipath error affects the performance of GPS in 

both stationary and mobile scenarios, resulting errors between 0.1–3.0 meters 

depending on different meteorological conditions (snow, rain, ice), and physical 

surroundings. 

 
Modelling and prediction of multipath errors is considered an unfeasible task due to 

the unknown characteristic of signal paths. Several mitigation techniques have been 

developed in order to reduce multipath effects. Most of these methods focused on 

various design aspects of the antenna sitings factors, such as the antenna’s height, 

choke ring and correlator technologies (Hoffman et al., 2001; Farrell & Givargis, 

2000; Kamarudin & Zulkarnaini, 2004). In this work, multipath error mitigation was 

performed while using a highly sensitive GPS receiver (UBlox-ANTRAS 4 GPS 

module). This receiver has a dedicated acquisition engine with over 1 million 

correlators which are capable of massive parallel time frequency space searches. This 

enables the suppression of jamming sources and mitigates multipath effects. 

 

5.6 Correction Data Interpolation and Integration 

 
As described in the previous section, error sources are individually modelled 

obtaining a group of pseudo-range error estimates, which are then incorporated to 

correct the user’s received measurements. This approach is more applicable when 

only EGNOS information is available at the LS. Additionally, a vector of pseudo-

range corrections is also obtained from several DGPS reference stations via OS NET. 

Therefore, there is a need to obtain an integrated pseudo-range correction covering all 

error sources from EGNOS and OS NET. Three main scenarios of pseudo-range 

corrections generation are available at the LS:  

 
� If only RTCA messages from EGNOS/SISNET are available, several pseudo-

range correction components are generated by modelling each error source 

independently. Afterwards, these corrections are combined in order to 
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determine the position solution. In this scenario, the differential corrections are 

estimated independently from the baselines between the reference stations and 

the MU (covering wide ranges).  

 
� If only RTCM messages were available from the networked-DGPS solution 

(OS NET), a scalar pseudo-range correction is generated by linearly 

interpolating the pseudo-range corrections obtained from the applicable 

reference stations. The main disadvantage in this scenario is that the 

positioning accuracy gets worse depending on the distance between the user 

and the interpolated point.  

 
� If both previous scenarios were available, a weighted average of the pseudo-

range corrections obtained from EGNOS and OS NET is computed, in order to 

generate an integrated correction solution.  

 
The above pseudo-range corrections generation scenarios are summarised in Figure 

5.8: 
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Figure 5.8: Pseudo-ranges’ corrections determination 
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As shown in Figure 5.8, only Pseudo-Range Corrections (PRC) and Range-Rate 

Corrections (RRC) are extracted from the RTCM messages (MT-1 and MT-2), which 

are received from the applicable DGPS reference stations. Afterwards, PRCs for 

common satellites between the reference stations and the user’s view are selected. 

PRC values for at least four common satellites should exist and the UTC time of the 

PRC values should match with the user’s measurements time. If both these conditions 

are not achieved then the current PRC values obtained from the DGPS reference 

station are discarded and the next epoch of data is used.  

 
The linearly interpolated PRC is computed based on the user’s changing location, in 

which different satellite views are experienced and different DGPS reference stations 

are used. Assuming that the number of applicable DGPS reference stations is n , and 

the number of common satellites is s , i,jPRC  can be obtained for satellite i  from 

reference station j , where ( n,j K21= ) and ( s,i K21= ). The small variations in the 

corrections for each satellite allow the prediction of a linear PRC taking into 

consideration the DGPS reference station. A 2D linear model was used to compute the 

linearly interpolated PRC, denoted as (
ji

PRC
,∇ ). This linear model is expressed as 

follows:  

)(
,1,2,1 iiii

PRCPRCaPRCPRC −+=∇                                                              (5.49) 

Where:  

� 
i

PRC
,1

 and 
i

PRC
,2

are the PRC values obtained from the first and second 

reference stations. 

� Parameter a  holds the coefficients of the plane containing all DGPS reference 

station coordinates, and is used as a weight assigned to the distance biases 

dependent on the user’s location. This parameter is expressed in the following 

matrix notation considering three or more reference stations: 
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Where: 
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� jx∆  and jy∆  are the plane coordinate differences.  

� xxx jj −=∆ and yyy jj −=∆ , n,j K21=     

� x  and y  are the user’s initial coordinates.  

� jx  and jy  are the reference station horizontal coordinates. 

 
On the other hand, from the RTCA messages several PRC components corresponding 

to each error source are obtained. Afterwards, PRCs for common satellites are 

extracted, taking into consideration users’ measurements. A scalar PRC solution, 

denoted as ( PRCsc ), is computed from all PRC components with reference to 

satellite i , as follows:  

iclocktropoionoifastsc PRCPRCPRCPRCPRC
iii

++−=                                 (5.51) 

Where: 

� fastPRC , ionoPRC , tropoPRC , clockPRC  are pseudo-range corrections 

corresponding to the atmospheric delays and satellite clocks. 
 

In case both PRC values ( ∇PRC   and scPRC ) from equations 5.51 and 5.49 are 

available, an integrated PRC solution is computed as a weighted average, as follows:  

( )
2

)()(
)( ,

tPRCtPRC
wtPRC

iji sc

iiIntegrated

+
=

∇
,                                                (5.52) 

Where:  

� t  is the GPS epoch time.  

� iw  is the weight assigned for the pseudo-range measurement errors as described 

in the precision approaches and can be expressed as follows: 

2

1

i

iw
σ

= .                                                                                                               (5.53) 

As a result, based on the augmentation data availability, either interpolated ( ∇PRC ), 

scaled )( scPRC  or integrated )( IntegratedPRC  pseudo-range corrections are 

generated. However, according to the guaranteed availability of RTCM and RTCA 

messages at the LS, the integrated )( IntegratedPRC  is the mostly utilised correction 
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component. This new pseudo-range correction component is then used in user’s data 

correction and position computation. 

 
5.7 Data Correction and Position Computation  

 

As described in Chapter 4, the final position solution is provided to the user either 

directly from the MU using the GPS/EGNOS positioning service, or remotely from 

the LS using the raw or coordinate domain positioning methods. In the latter, the 

generated integrated pseudo-range correction component, as described in Section 5.6, 

is utilised in the augmentation and computation of the user’s coordinates.  

 
The type of data received from the MU decides which positioning method is 

implemented at the LS. If raw code pseudo-range measurements were received, then 

the data correction and position computation is performed in the raw domain. This 

entails that the pseudo-range corrections are applied to the user’s measurements, and 

afterwards the position is computed. However, if only standard position solutions 

were received, coordinate corrections would be established from the pseudo-range 

corrections and applied directly to the user’s received position solution; this is 

described as the coordinate domain positioning. 

 

5.7.1 Raw Domain Positioning 

 

The basic observation equation for pseudo-range is represented as follows (Kaplan & 

Hegarty, 2006): 

iiiuii ICTdttcP ++−+= )(ρ                                                                            (5. 54) 

Where: 

� iP  is the pseudo-range measurement to satellite i . 

� iρ  is the geometric range between the satellite and receiver. 

� c  is the speed of light.  

� ut  is the offset of the receiver clock from the system time. 

� it  is the offset of the satellite clock from the system time. 

� Td  is the tropospheric delay (computed as in equation 5.42). 

� IC  s the ionospheric delay (computed as in equation 5.33). 
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   ( ) ( ) ( )222
uiuiuii zzyyxx −+−+−=ρ                                                      (5. 55) 

Where: 

� ),,( uuu zyx are the unknown user receiver position coordinates. 

� ),,( iii zyx  are the known satellite coordinates. 

 
Considering that the satellite clock offset, tropospheric and ionospheric delays are 

compensated, as described in Section 5.5, equation 5.54 can be described as: 

( ) ( ) ( ) uuiuiuii ctzzyyxxP +−+−+−= 222                                                (5.56) 

 
In order to compute the user’s unknown coordinates ),,( uuu zyx  and time base ut  

using least-square techniques, the above equation needs to be linearised. Assuming 

that an approximate (initial) position of the receiver )ˆ,ˆ,ˆ( uuu zyx  and a time bias 

estimate ut̂  were known, an offset to the user’s final unknown coordinates can be 

described as a displacement ),,( uuu zyx ∆∆∆ . Hence, the unknown user coordinates 

and time offset is computed as following: 

uuu xxx ∆+= ˆ  

uuu yyy ∆+= ˆ                                                                                                         (5.57) 

uuu zzz ∆+= ˆ  

uuu ttt ∆+= ˆ  

Therefore, the following can be obtained: 

( ) ( )uuuuuuuuuuuu ttzzyyxxftzyxf ∆+∆+∆+∆+= ˆ,ˆ,ˆ,ˆ,,,                              (5.58) 

Using a Taylor series, equation 5.58 can be expanded about the approximate 

coordinates, and then using partial differentiation yields the following expressions 

(Kaplan and Hegarty, 2006): 
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( ) ( ) ( )222 ˆˆˆˆ uiuiuii zzyyxx −+−+−=ρ                                                         (5.60) 

Substituting equations 5.59 and 5.60 in to 5.58, the completely linearized observation 

equation is obtained as following: 
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By rearranging equation 5.61: 
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By introducing the following definitions:  
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� H  is the observation matrix calculated from the satellite coordinates and the 

user’s approximate position. 

� X∆  is a unit vector holding the position coordinate offsets. 

� 0X  is a unit vector holding the estimated values of the GPS receiver coordinates 

and clock bias.  

 
Accordingly, equation 5.62 can be presented in a matrix notation as follows: 

PHHHX TT ∆=∆ −1)(                                                                                           (5.63) 

Where:  

� P∆  is a unit vector consisting of the pseudo-range measurements.   

 
From equations 5.57 and 5.63, the final position solution ( X ) holding the position 

coordinates and the receiver’s clock bias solution is presented by the following:  

PHHHXX
TT ∆+= −1

0 )(                                                                                  (5.64) 

If Pδ  is a unit vector holding pseudo-range corrections ( PRC ), the corrected position 

solution ( X
~

) can be described as follows: 

)()(
~ 1

0 PPHHHXX
TT δ+∆+= −                                                                       (5.65) 

The correction vector ( Pδ ) is obtained as described in Section 5.6; it consists of the 

integrated, scaled or interpolated PRC quantity covering ionospheric, tropospheric and 

the satellite clock bias errors. The receivers’ clock bias is obtained by differencing 

two simultaneous range measurements obtained by the same receiver. This parameter 

is already included in P∆ . Using the raw-domain positioning allows the LS to include 

pseudo-ranges which are downloaded using the internal receiver in the approximate 

calculation of the user’s position, taking into consideration the receivers’ baseline. 

This process becomes more favourable when the user’s receiver is not able to measure 

pseudo-ranges to enough satellites (below 4); this is more likely to occur in urban 

areas.  

 

5.7.2 Coordinate Domain Positioning 

 

The MU’s GPS receiver might only provide standard position fixes in NMEA format. 

In this scenario, a coordinate correction vector ( X
~

∆ ) is estimated from the pseudo-
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range corrections ( Pδ ) and then directly added to the user’s received position 

solution. This is achieved as follows: 

 
From equation 5.65 the following is obtained: 

( ) ( )PHHHPHHHXX
TTTT δ11

0 )()(
~ −− +∆+=                                                    (5.66) 

( )PHHHX TT δ1)(
~ −=∆                                                                                          (5.67) 

By substituting equations 5.65 and 5.67 in to 5.66, the following is obtained: 

XXX
~~

∆+=                                                                                                            (5.67) 

While X  is already extracted from the NMEA GGA messages, X
~

∆ is the coordinate 

corrections obtained by multiplying the pseudo-range correction vector ( Pδ ) with the 

components of the observation matrix H .  

 
There are two main points to be considered while implementing the coordinate 

domain positioning method:  

 
� The coefficient matrix H  has to be continuously updated. Thus, the satellite 

ephemeris should be available and up-to-date in order to calculate the tracked 

satellites’ coordinates. 

 
� The standard position solutions contained within the NMEA GGA messages 

can be already corrected at the MU using the receiver internal single-frequency 

ionospheric filters. Hence, these values have to be removed before applying 

the final ionospheric corrections at the LS. This is performed by subtracting 

the single-frequency ionospheric delays estimated from EGNOS and from the 

Klobuchar ionospheric model, as follows: 

iionii TICI ,∆−=∆                                                                                      (5.68) 

Where  

� iI∆  is a vector of absolute filtered ionospheric delay used within X∆  

for satellite i .  

� IC  is the ionospheric delay estimated from using the EGNOS 

ionospheric model as described in equation 5.33.  
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� ionT∆  is the ionospheric delay estimated using the Klobuchar 

ionospheric model as described in equation 5.35. This quantity 

estimates the ionospheric correction that was applied at the receivr 

side. 

 

5.7.3 Integrated Domain Positioning: GPS/INS position solution 

  
The integrated domain is the third positioning service offered by the positioning 

model. This service is planned to be implemented at the MU in order to deliver 

continuous positioning solutions to the user, in situations where extremely limited 

satellite visibility is experienced, such as the indoor environments4. The central task 

of the integrated positioning is the fusion of GPS and INS navigation data. Kalman 

Filtering (KF) is one of the most widely deployed and efficient navigational data 

blending approaches. Generally, KF estimates the state of a dynamic system using 

process and measurement models. GPS and INS measurements are considered to have 

non-linear dynamic models; therefore the Extended Kalman Filter (EKF) is used. The 

general non-linear process model related to EKF can be written as follows (Welch & 

Bishop, 2007; and Gewal & Andrews, 2008): 

111 )( −− += kkk wxfx                                                                                              (5.69)  

Where:  

� kx  is the process state vector at time step k , which contains the final integrated 

position solution. 

� 1−kw  is the process noise vector which is described as a zero mean white 

Gaussian process with a covariance kQ , ),0( QNwk ≈ .  

� 1f  is the nonlinear function that relates the process states 1−kx  at the previous 

time step 1−k  to the states at the current time step k . 

 
The general nonlinear measurement model equation is: 

kkk vxfz += )(2                                                                                                     (5.70) 

                                                           

4 This implementation of this service was left for future work.  
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Where: 

� kz  is the measurement vector, which holds the updates of the integrated 

position solution component. 

� kv  is the measurement-noise vector. 

� 2f  is the nonlinear function that relates the state kx  to there corresponding 

measurements kz  at time step k . 

 
A suitable INS approach for pedestrian applications is to use Dead Reckoning (DR) 

(Jirawimut et al., 2003; Randell et al., 2003). An example of DR is a digital compass 

for direction sensing and an electronic pedometer using 3D accelerometer sensor for 

distance determination (Jirawimut et al., 2003). Accordingly, the inputs of EKF can 

be the step period, step size and heading measurements from the DR module along 

with GPS position and velocity measurements received locally from the MU’s GPS 

receiver or remotely from the LS 

 
Generally, in order to locate the position of a pedestrian user using a DR module, the 

headings have to be obtained from a known origin with an acceptable level of 

accuracy (Leppakoski et al., 2002; Randell et al., 2003). A conventional pedestrian 

pedometer can be used to count the number of steps, which is then combined with the 

step size to obtain the travelled distance. An appropriate step size can be 

predetermined (experimentally measured) and then updated continuously during the 

walking process. The step size is based on the walking velocity, step frequency and 

acceleration magnitude. The step frequency can be measured as the reciprocal of step 

period, and the step period can be calculated from the average period of a number of 

successive steps being detected. A number of methods have been developed to detect 

the human’s step. One such method is to determine the peaks of acceleration in the 

vertical direction. This acceleration corresponds to the step occurrences because the 

vertical acceleration is generated by the impact when the foot hits the ground 

(Jirawimut et al., 2003; Dippold, 2006; and Beauregard & Haas, 2006).  

 
The performance of the integrated system is affected from errors related to both the 

DR and GPS measurements such as compass bias errors and the GPS pseudo-range 

errors (Grewal et al., 2007; Jirawimut et al., 2003). The compass bias is a result of 

several errors such as and body offset and magnetic declination. As described before, 
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GPS measurements are affected by several major error sources such as the 

atmospheric delays, satellite orbital drifting and satellite and receiver clock errors.  

 

5.7.3.1 GPS and DR Integration Modes and Architectures  

 

The integration between the GPS and DR navigation systems can be drawn from 

various coupled modes according to the information available from both systems 

(Farrell & Barth, 1999). The first integration mode can be described as uncoupled 

integration mode, referring to an independent navigation output from each system. In 

this mode, the final integrated solution has no feedback or any effect on both the GPS 

and DR sensors. The second integration mode is described as loosely-coupled, in 

which the GPS data are fused directly in the update stage of the EKF and are used as a 

feedback to predict and correct the DR sensor errors. Hence, in this mode the GPS 

measurement accuracy determines the accuracy of the integrated solution. The last 

integration approach is known as a tightly-coupled approach, in which the DR 

solution is fed back to the GPS receiver to aid its carrier tracking loops. This mode is 

considered as the most complicated integration method, because it requires accessing 

and modifying the set of hardware and software resources used to implement the GPS 

carrier tracking loops (Farrell & Barth, 1999). 

 
The integration modes are implemented based on the selected EKF operational 

architecture. Two main architectures are available, centralised and decentralised. In 

the centralised architecture the measurements from GPS and DR are fed into a single 

EKF which is responsible for estimating and updating the state vectors (integrated 

position solutions). In the decentralised architecture, each navigation system (DR and 

GPS) has its own local EKF to independently predict and update its local states, and a 

master EKF is used to predict the integrated position solution. The decentralised 

approach is considered reliable, because if one of the navigation systems happens to 

fail, the master filter can still provide the integrated solution using state vectors 

updated by measurements from the remaining system. However, the decentralised 

approach is more complex to implement and its performance might be degraded in 

some scenarios due to data incompatibility between the estimated local state vectors 

(Farrell & Barth, 1999);  
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Two centralised EKF architectures using a loosely-coupled integration mode are 

shown in Figures 5.9 and 5.10.  

 

 

Figure 5.9: Loosely coupled centralised EKF in coordinate domain (Farrell & Barth, 1999). 
 

 
Figure 5.10: Loosely coupled centralised EKF in raw domain (Farrell & Barth, 1999). 

 
In Figure 5.9, GPS measurements are described in the coordinate domain, in which 

the EKF carries out the GPS position ( GPSPos ) and velocity ( GPSV ) coordinates 

along with DR calculated position ( DRPos ) and velocity ( DRV ) solutions. 

Afterwards, the DR errors are fed back to the DR module and the associated state 

vector covariance xδ  is used in the final integrated position solution output X . GPS 

measurements are used to calculate the origin for DR and correct the step size and 

compass bias errors. However, if there was no GPS data available, the estimation of 

the position coordinates are derived from the DR velocity estimates and the measured 

heading. In Figure 5.10, GPS measurements are described in the raw domain, in 

which the GPS pseudo-range measurement ( P ) and predicted DR pseudo-ranges 

( DRP ) are considered as inputs of the EKF for estimating and updating the system 
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states providing the integrated position solutions. Accordingly, the architectures 

explained in Figures 5.9 and 5.10 allow blending all types of GPS data available from 

the positioning model along with DR navigation data, in order to provide continuous 

and reliable position solutions. 

 

5.8 Summary 

 

This chapter has presented a detailed explanation of the main procedures involved in 

the position model’s functional approaches. The message decoding is the initial 

process responsible for extracting the required data fields from the user’s 

measurements and correction messages. The EGNOS integrity mentoring and multi-

DGPS baseline estimation procedures are in charge of ensuring the integrity and 

validity of the correction information, before being used in the correction data 

estimation process. All GPS measurement errors are estimated; afterwards an 

integrated PRC is computed from the interpolated ( ∇PRC ) obtained from RTCM 

messages, and the scaled )( scPRC  obtained from RTCA messages. As described in 

the data correction and position computation process, this integrated correction 

component is used to correct the user’s measurements and compute the final position 

solution based on the raw domain or coordinate domain positioning methods. At last, 

the integrated domain positioning method was also described using a conventional 

Kalman filter approach.  
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Chapter 6: Positioning Model Performance Evaluation   

Methodology 

 
 
6.1 Introduction 

 

This chapter provides a detailed description of the evaluation methodology used to 

validate the developed positioning model presented in Chapters 4 and 5. The 

methodology was divided into two parts. The first part was described as experimental 

work, in which field measurement trials were conducted in order to observe and 

collect GPS data - taking into account different navigation environments and 

measurement scenarios. The experimental work took place with reference to the 

position contextual parameters defined by the adaptive framework as described in 

Chapter 3. 

 
GPS measurements were processed and analysed in order to compare the performance 

achieved from the raw and coordinate domain methods implemented at the LS, along 

with the performance achieved from the current GPS/EGNOS positioning service 

implemented at the MU. The assessment took place in terms of the positioning 

performance parameters described in Section 2.4.1; this includes the position solution 

accuracy and precision as well as the service availability and integrity. In addition, the 

experimental performance comparison was conducted with reference to the required 

positioning performance levels associated with the non-error tolerance applications 

summarised in Table 3.4.  The second part of the evaluation methodology involves 

quantifying the developed positioning model against the accurate and reliable 

positioning services that will be offered by future Galileo and GPS systems. This was 

achieved by conducting a simulation study using Galileo Simulation Service Facility 

(GSSF). GSSF allows the investigative and analysis of future Galileo’s Open Service 

(OS) performance in different scenarios and conditions similar to the experimental 

work.  

 
The experimental work is described in Section 6.2, in which all utilised hardware and 

software components were explained. In addition, this section describes the 

environments and locations where the static and dynamic measurements were 
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conducted. In Section 6.3, the simulation part is described along with details of GSSF 

functionality. A statistical validation method is described in Section 6.4. Finally, 

Section 6.5 summarises this chapter. 

 

6.2 Experimental Evaluation 

 

The main task of the experimental evaluation is to collect GPS data in order to 

examine the overall performance of the positioning model under optimum to adverse 

operating conditions. Several types of GPS data were collected and stored in different 

files. This includes GPS position observations (standard, augmented position 

coordinates and raw pseudo-ranges), navigation messages and correction data (RTCA 

and RTCM messages). The organization of the experimental testing was carefully 

designed taking into consideration dynamic and static user measurement scenarios in 

urban, rural and open space navigation environments.   

 
6.2.1 Experimental Setup 

 
A list of software and hardware components were identified and compiled forming 

two main experimental prototypes. The first prototype implements the Mobile Unit 

(MU) which was mainly utilised in the field measurements. The second prototype 

describes the Localisation Server (LS), which was used for GPS data processing and 

performing consequential analyses and computation.  

 

6.2.1.1 Hardware Modules 

 
The validity of the utilised GPS receives was confirmed after performing various 

operational scenarios within different locations, by the equipment manufacturers and 

distributors (U-Blox, 2003a and 2003b). The MU prototype consisted of the following 

hardware components (see Figure 6.1): 

 
� Fujitsu Siemens Laptop, Pentium M, 1.5 GHz, 1GB RAM. 
 
� U-Blox ANTARIS 4 GPS module with LEA-4T sensor which provides raw 

measurement along with standard NMEA data outputs. This GPS engine is 

highly sensitive receiver and consists of 16 tracking channels enabling GPS 

timing with only one visible satellite. It supports SBAS functionality 
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(EGNOS) and includes an advanced multipath reduction facility (U-Blox, 

2003c). The SBAS functionality was switched off in case of acquiring 

standard (un-augmented) position solutions. As shown in Figure 6.1, The U-

Blox GPS receiver was connected to the Intel Fujistu Siemens laptop via a 

USB connection. 

 

 

Figure 6.1: Mobile Unit (MU) prototype 

 
A surveying unit was utilised for fixing the coordinates of the marker points and 

obtaining reference testing routes. This surveying unit consisted of a Topcon RTK 

GPS receiver. Topcon is a dual-frequency, dual-constellation receiver. It consists of 

40 channels allowing the tracking of L1/L2 signals from GPS and GLONASS 

(Topcon, 2004) (see Figure 6.2). 

 

 

Figure 6.2: Surveying Unit 
 
The LS was compiled from the following hardware components (see Figure 6.3):  

� Intel Dual Xeon computer, 3.2 GHz, 12 MB cache, 1600 FSB and 8GM. 
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� M12 Oncore-TM GPS Module. The antenna of this receiver was mounted on 

the roof of a five-storey building (Tower A) at Brunel University. The M12 

GPS device consists of 12 parallel channels for code plus carrier tracking. It 

also allows the reception of DGPS corrections in RTCM SC-104 format 

(Motorola, 2000). This receiver was connected to the computer device via a 

serial link providing GPS navigation messages from all tracked satellites. 

 
� U-Blox 5 GPS module with EVK-5H sensor was also attached for stand-by 

situations. This GPS engine consists of 50 tracking channels allowing precise 

GPS timing and position-sensing.  

 

 

Figure 6.3: Localisation Server (LS) prototype 

 

6.2.1.2 Software Components  

 
The following software components were installed in the MU prototype:  
 

1. U-Blox U-mobile application software utilised as a GPS data logger and 

analyser. Three types of GPS position observations were logged inside the MU 

internal memory; the standard and augmented position solutions in NMEA 

format as well as the raw pseudo-range measurements in LEA-4T binary 

output format. Additionally, this application software consists of statistical 

functions responsible for determining the availability of GPS and EGNOS 

services, including the calculation of DOP values during the measurements 

trials (U-Blox, 2003c).  
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2. ANTARIS 4 output data converter. This software takes the raw data stored 

using the U-mobile data logger, and converts it into RINEX files (U-Blox, 

2003c). 

 
The essential software tools running at the LS were as follows:  

 
1. SISNET User Application Software (UAS version 3.1) for obtaining EGNOS 

messages from the SISNET server. SISNET data is directly stored as text files. 

 
2. The BKG Ntrip Client (BNC-15) for simultaneously retrieving RTCM 

messages from the OS Net Ntrip caster and then converting these messages 

into RINEX files. 

 
3. U-blox U-centre for server computers used for final position coordinates 

plotting. Digital maps obtained from Edina (2008), were installed and 

uploaded using this software component  

 
4. TEQC for converting the navigation messages downloaded from the Motorola 

Oncore M12 receiver into RINEX files. 

 
In addition to the above software components, several software modules were 

developed, using MATLAB 7.4 based on a common group of algorithms and source 

codes described in the GPS toolbox (Leeuwen, 2002; Borre, 2003).  

 

6.2.1.3 Post-Processing Software Modules  

 

A set of software modules were developed with relation to the functional approaches 

and the main processing procedures described in Chapters 4 and 5. These components 

were described as post-processing software modules because they were used to 

process GPS data after being collected and stored in several corresponding files. A list 

of these stored files is described in Section 6.2.2.3. The developed software modules 

consisting of several MATLAB m-file functions are summarised as follows:  

 
1. Data Analyser: this software component is responsible for synchronising and 

reading all GPS data files into MATLAB workspace for post-processing. This 

module consists of the following m-file functions:  
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� RINEXE: this function is responsible for formatting the RINEX stored 

files into the MATLAB platform. For example, it reads the navigation 

messages files and reformats the data into a matrix of 21 columns for 

each tracked satellite. This is then stored in a new file ‘.mat’ and is 

referred to as the satellite ephemeris data.  

 
� HEADER: this function reads the header of file and decides on the 

type of the data contained (GPS observations or correction data files). 

It produces a list of identifiers such as the data types, antenna offset, 

and base station coordinates.  

 
� EpochReader: this function is in charge of getting an entire GPS 

epoch from each stored file. For example, the output of this function 

might be the GPS epoch time, satellites pseudo-ranges (P), satellites 

codes (PRN), or satellite clock drifts (dt), the correction messages and 

associated IOD values. 

 
� SatellitePR: this function is responsible for sorting the pseudo-ranges 

obtained from both the user measurements and navigation messages 

stored files. A new matrix will be created from each file; the number of 

columns is equal to the number of tracked and common satellites. The 

first row of the matrix represents the PRN masks for all satellites. The 

following rows hold the pseudo-ranges of the satellites. 

 
2. Data Integrity Monitoring: this software component is responsible for 

inspecting the integrity of the initial position solutions using EGNOS data, as 

described in Section 5.3. This module utilises the data outputs from the 

previous software module (data analyser) and performs the following 

functions: 

 
� IntegrityData: this function is in charge of analysing and extracting 

the variances contained in the RTCA messages (MT 2-5 and MT 26) 

such as the UDRE values for the clock and ephemeris corrections, and 

the GIVE values for ionospheric corrections. The output of this 
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function is the estimated variances for all pseudo-range measurement 

errors. 

 

� IntegrityCalc: this function is responsible for calculating the HPL and 

VPL integrity factors. The input of this function is the total error 

variance in the pseudo-range measurements domain received from the 

above function (IntegrityData). The pseudo-range variances are used to 

compute the position estimate covariance matrix. This matrix is used to 

estimate the horizontal and vertical position variances which are then 

multiplied by the integrity multipliers to compute the protection levels.    

 
3. PRC Estimation and Data Correction: this software unit is responsible for 

estimating the pseudo-range correction information, as described in Sections 

5.5 and 5.6. This component utilises the augmentation data files holding 

RTCM and RTCA messages and then performs the following functions in 

order to generate the required PRC values: 

 
� FastTermPRC: this function is in charge of extracting the fast 

pseudo-range corrections from RTCA Message Types (MTs) 2, 3, 4, 5, 

7 and 24 from all tracked satellites.  

 
� LongTermPRC: this function is responsible for extracting the satellite 

correction data, such as the SVs coordinate and clock drifts, from 

RTCA MT- 25.  

 
� OSNetPRC: this function is responsible for extracting the pseudo-

range correction from each RTCM message corresponding to the 

applicable reference station. The coordinates of the reference stations 

are included in RTCM MT-1. The result of this function is the scaled 

PRC value. 

 
� TropoPRC: this function is responsible for estimating the tropospheric 

range correction. The input of this function is the Sin of elevation angle 

of satellite, height of station in km, atmospheric pressure, height of 

pressure, surface temperature, height of temperature and height of 

humidity. The output is the absolute slant tropospheric delay. 
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� GeneratingPRC: this function is responsible for generating the final 

integrated pseudo-range correction, which is computed from the 

pseudo-range corrections obtained from the above functions. This 

integrated correction covers a cell area around the user independently 

from any baseline constrains.  

 
� CorrectionApp: this function is responsible for applying the 

integrated correction on the user’s pseudo-range measurements for 

each tracked satellite, after synchronising the user’s time stamps with 

the correction data time. 

 

4. Receiver and Satellite Position Computations: this software component is in 

charge of estimating the receiver and the satellite absolute coordinates either 

before (initial estimation) or after applying the pseudo-range corrections. 

 
� SatPosition: the input of this function is the GPS epoch time and the 

ephemeris data. This function is in charge of calculating satellite 

coordinates (X, Y, and Z) at each GPS epoch.  

 
� RecPosition: the input of this function is the GPS epoch time, the 

user’s corrected pseudo-ranges, satellite positions and the ephemeris 

data. This function is responsible for computing the user position 

coordinates and a rough estimated time bias, using either the 

coordinate domain or raw domain positioning methods, as described in 

Section 5.7. Afterwards, the user’s coordinates are frequently 

computed and updated from the corrected measurements.  

 

6.2.2 Experimental Measurement Methodology and Environment Setups 

 

Comprehensive field measurement trials were conducted observing and collecting 

several types of GPS data in static and dynamic scenarios over several dynamic routs 

and sites using the experimental setup. During the measurement trials all equipments 

were arranged in the same way to ensure a similar testing condition. Three routes 

(pedestrian  paths) and three static observation sites were carefully chosen at different 
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locations within Brunel University, Uxbridge campus (see Figure 6.4). The 

experiential field locations represented different navigational environments with a 

range of diverse conditions, from open spaces to densely built-up areas.  

 

 

Figure 6.4: Brunel university Uxbridge campus (Microsoft Maps) 
 
In order to asses the accuracy levels achieved in dynamic scenarios, different sets of 

marker points were identified on each route. The coordinates of these marker points 

were accurately surveyed over several days at a centimetre accuracy level, using the 

surveying unit described earlier in Section 6.2.1.1. The marker points were considered 

as benchmarks describing the testing route. During all testing trails (measurement 

sessions) the person walked exactly along the marked route assuming a constant 

velocity. When passing by each marker point an accurate time synchronised with GPS 

time was logged along with a group of GPS measurements, which allowed 

quantifying the positioning accuracy at each point and along the whole path. 

The first testing route was carefully selected to simulate a typical rural area. This 

route was located between the engineering school buildings (Howell, Tower D and 

Tower A) and was identified using five marker points (A, B, C, D and E). The 

distance covered by this route was approximately 250 meters. Table 6.1 summarises 

the surveyed marker points’ easting and northing coordinates, with reference to the 

Ordinance National Grid (OS Net, 2008). 
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MARKER POINT EASTING NORTHING 

Point-A 506025.407 182522.932 

Point-B 506026.107 182574.117 

Point-C 505972.422 182574.849 

Point-D 505971.437 182502.872 

Point-E 506025.023 182502.140 

Table 6.1: Marker points’ coordinates for the first testing route 

 
Points A and E identify the beginning and end of the first route. Figure 6.5 provides a 

general description of the first route and the surrounding objects. The second testing 

route was selected within the most densely sited build-up area, making an urban area 

in the university campus, with parts where signals from the satellites are very likely to 

be blocked by surrounding buildings. This route was selected in-between eight-storey 

accommodation buildings (Bishop Complex). As described in Figure 6.6, several 

marker points were identified at this route including points F, G, H, I, J, K, L, M, N 

and O. Marker points F and N determine the beginning and end of route 2 and the 

total distance covered was approximately 350 meters. Table 6.2 summarises the 

marker points’ coordinates. 

MARKER POINTS EASTING NORTHING 

Point-F 506201.047 182489.086 

Point-G 506204.664 182537.373 

Point-H 506204.393 182550.347 

Point-I 506198.497 182555.787 

Point-J 506188.170 182551.862 

Point-K 506169.983 182536.647 

Point-L 506181.660 182531.329 

Point-M 506645.036 182385.285 

Point-N 506643.674 182450.156 

Point-O 506644.624 182515.075 

Table 6.2: Marker points’ coordinates for the second testing route 
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Figure 6.5: First testing route description: marker points and landscape (Microsoft Maps) 
 
 

 

Figure 6.6: Second testing route description: marker points and landscape (Microsoft Maps) 
 
The third testing route was selected to simulate an open space (clear satellite view) 

environment in which the lowest measurements errors due to signal interference, 

multipath and blocking were experienced. As shown in Figure 6.7, this route was 

located at the university’s Sport Park and playing fields. In addition, this route covers 

150 meters and was identified using three marker points, which are summarised in 

Table 6.3.  
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MARKER 

POINTS 

EASTING NORTHING 

Point-X 506643.624 182515.075 

Point-Y 506643.774 182450.156 

Point-Z 506643.879 182385.3 

Table 6.3: Marker points coordinates for the third testing route 

 

 

Figure 6.7: Third testing route description: marker points and landscape (Microsoft Maps) 
 
During static measurements, three observation sites were selected representing 

different navigation environments. These sites were located on top of three university 

buildings known as (Tower A, Clifton Halls and Tower D). The GPS receiver antenna 

was mounted at these static sits separately during different days, in order to conduct 

24-hours of measurements. As shown in Figures 6.4 and 6.5, the first observation site 

was located within a rural environment, in which the receiver’s antenna was placed on 

top of a five-storey building (Tower A) adjacent to an obstruction from one side. The 

second observation site was located within a typical urban environment, in which the 

GPS receiver’s antenna was mounted on top of a four-storey building (Clifton Halls) 

surrounded by two eight-storey buildings. Therefore, severe signal blockage was 

experienced at this location. In addition, the third observation site was located on top 

of a five-story building (Tower D) within a clear satellite view area representing an 
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open space environment. Appendix A describes photos taken in different locations at 

the static sites and dynamic measurements routes. 

 

6.2.2.2 Experimental Measurement Constraints  

 

� Taking into consideration the identified DGPS stations baseline threshold (100 

km), only three applicable OS NET reference stations (mount-points) were 

used to obtain the RTCM messages at the LS. These stations are named as 

TEDD, AMER, and STRA in which the baselines from each station to the 

measurement field locations were approximately 15 km, 17 km, and 33 km 

respectively.  

 
� The satellites’ elevation mask was set to 5o, which is the commonly used value 

for performance assessment; the maximum PDOP value was set to 6. These 

constraints on satellite visibility were described by Hughes (2005) and are 

used to minimise the possibility of having a positioning service generating 

erroneous position solutions. 

 
� The Position Reporting Rate (PRR) used during the measurements was set to 6 

seconds per sample during the entire measurement period. This PRR 

corresponds to EGNOS fast corrections update interval. Although, most GPS 

receivers originally generate the position solution based on one second 

sampling interval, however this was adjusted while processing the RINEX 

files holding the GPS position observations.  

 

6.2.2.3 Experimental Measurement Procedure 

 

Utilising the above software and hardware prototypes, several types of GPS data were 

acquired and stored in several files at both the MU and LS. This includes GPS 

position observations, navigation messages, and augmentation data (RTCM and 

RTCA messages).  

 
At the LS, three separate data files were stored in RINEX format containing the 

following information: 

1. RTCM messages from OS NET using the BKG Ntrip Client. 
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2. RTCA messages from SISNET using the UAS. 

3. Navigation messages from Motorola Oncore M12. 

 
Three types of GPS position observations were obtained at the MU. This includes raw 

GPS data (pseudo-range measurements) contained in a RINEX file allowing the 

position computation in the raw domain method. Also, two separate NMEA data files 

were also obtained consisting of the following position observations:   

1. Standard GPS position samples, used in the coordinate domain method. 

2. Augmented GPS position sample describing the output solutions of the 

GPS/EGNOS method. 

 
The main steps involved during the experimental testing were divided into two parts 

with reference to the measurement scenarios (static and dynamic). In static scenarios, 

the following steps were conducted: 

 
� A GPS receiver (U-Blox 5 GPS engine with LEA-4T GPS sensor) was 

mounted at each observation site separately during different days. 

 
� GPS position observations were collected and stored into a computer from 

each observation site. GPS data were observed for 24-hours period in order to 

account for most satellite constellations and environmental conditions. 

Because each site was located in a different environment with several factors 

influencing the position, the data obtained at each site was stored in separate 

RINEX files. 

 
� The same steps were repeated at each observation site in order to collect all 

three types of GPS position observations (raw, standard and augmented).  

 
For dynamic scenarios the following steps were conducted: 

 
� It was difficult to conduct 24-hours of dynamic measurements. Therefore, in 

order to account for different GPS satellites constellations, 12 testing trials 

were conducted at different time periods of the day. This was repeated for 

several days in order to measure all types of GPS position observations at all 

dynamic testing routes. The duration of each testing trial was around one hour.  
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� For more efficient and accurate analysis along each testing route, GPS data 

were logged for at least 10 minutes while passing through each marker point.  

 
� The above steps were repeated for each testing route, and separate RINEX 

files were used to store all types of GPS position observations at each route. 

 
At the same time, during all static and dynamic testing trials, the navigation messages 

and augmentations data were downloaded and stored at the LS. In order to account for 

the contextual factors described in Chapter 3, the stored data files were processed at 

the LS taking into consideration data types, navigation environments and the 

measurement scenarios. Afterwards, the computed position solutions were thoroughly 

analysed in order to assess the performance levels achieved from each corresponding 

position computation method (raw domain, coordinate domain, and GPS/EGNOS).  

 

6.3 Simulation Evaluation Methodology 

 

The simulation study was conducted using GALILEO System Simulation Facility 

(GSSF). This simulation tool was primarily developed on behalf of ESA/ESTEC by 

an international consortium lead by VEGA (GSSF, 2004). The goal behind the 

simulation study was quantifying the developed positioning model performance 

against accurate and reliable positioning services that will be offered by future Galileo 

and GPS. This also identifies areas of compatibility and integration between the 

developed model and the future navigation system.  

 

6.3.1 GALILEO System Simulation Facility (GSSF)  

 
GSSF was developed in order to support the understating of the definition stages and 

longer-term development phases of the Galileo project. The current version is GSSF 

V2.1, which allows the simulation of Galileo’s functionalities and performance 

behaviour during different reference scenarios. GSSF allows the implementation of 

real system components including the space, ground and control segments to be 

integrated for the support of Galileo system understanding and validation. GSSF 

operates in two main capability modes, described as Service Volume Simulation 

(SVS) and Raw Data Generation (RDG), (GSSF, 2004; Zimmermann et al., 2004). 
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The RDG is responsible for generating raw data to be used in the validation of GSSF 

processing algorithms. The SVS offers the flexibility of combining GPS, EGNOS and 

Galileo navigation systems by including all navigation signals and satellite 

constellations within the simulation scenario. Different sets of error interferences can 

be added into these navigation systems using predefined UERE error budgets and 

integrity factors (GSSF, 2005 and 2006).  

 
In order to measure the positioning performance achieved from simulating Galileo, 

GPS, and EGNOS, the SVS allows the analysis of the data using two modes, standard 

and stand-alone. In stand-alone mode, the analysis was conducted manually without 

running the simulation again. However, using the standard mode several analysis 

functions were available, allowing automatic data processing. The following is a list 

of standard analysis functions: 

 
� Visibility Analysis: this function provides satellite visibility information. This 

includes the number of satellites in view of the user or ground segment at each 

time step during the simulation time. This process considers the elevation 

angle to determine if the satellite is visible to the receiver.  

� Coverage Analysis: this function describes the number of ground stations in 

view for the satellite locations.  

� Geometry Analysis: this function is responsible for computing the geometry 

components between the ground receivers and the corresponding satellite at 

each time step. This includes elevation and azimuth angles determination 

along with the geometric range. 

� Dilution of Precision (DOP) Analysis: this function is responsible for 

computing all DOP quantifiers, such as the PDOP, HDOP, VDOP, TDOP and 

GDOP for each user or ground segment element.   

� Accuracy Analysis: this analysis option includes two main parts: 

 
1. Navigation System Precision (NSP): this function describes the 

dispersion of user’s estimated position around its mean. The NSP is 

determined from the UERE budgets identified within simulation 

environment. This function allows computing the Overall NSP 

(ONSP), Horizontal NSP (HNSP), Time NSP (TNSP), and Vertical 

NSP (VNSP) for each user over the simulation period.  
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2. Signal-In-Space Monitoring Accuracy (SISMA): this function 

determines the level of accuracy described by the satellite’s Signal-In-

Space Error (SISE), at each simulation time step.  

 
� Integrity Analysis: this function allows the user to select from a number of 

integrity parameters and equations describing relevant integrity monitoring 

approaches. The GSSF Integrity monitoring concept includes the computation 

of the Probability of Hazardous Misleading Information (PHMI), also known 

as the integrity risk, and the computation of the Protection Levels (PL) based 

on SBAS or Galileo data. Galileo offers the following integrity information:  

 
1. Single in Space Error (SISE) describes the maximum standard 

deviation for the signal error in the range domain caused by satellite 

data. The SISE cannot be measured directly; it is obtained after 

providing an estimated SISE (SISEest).  

 
2. Single in Space Accuracy (SISA) is a method providing a prediction 

of the standard deviation for a Gaussian distribution that bounds the 

SISE distribution (the distribution of difference between SISE and 

SISEest). If SISE > SISA then the system is considered sending 

hazardous misleading information to the user. 

  
� The Integrity Flag (IF): the IF threshold is computed from the SISE 

distribution and is used to determine whether to use the corresponding satellite 

or not. For example, if SISE is larger than threshold, the integrity flag then 

indicates that it is not recommended to use the satellite.  

 
6.3.2 Simulation Scenarios and Setup 

As described earlier, the use of GSSF was considered in order to investigate the 

positioning performance achieved from future Galileo navigation system along with 

the developed positioning model. The focus was only on the Galileo Open Service 

(OS) due to the following reasons: 

 
� The OS is planned to be free of charge and available to all types of users and 

applications, therefore it will be widely deployed in future LBS systems. 
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� The OS is the most applicable service to GPS standard positioning services.  

 
� According to the current development challenges of the Galileo programme, 

the OS is considered as the most possibly achievable Galileo positioning 

service (Fylor, 2009).  

 
� The OS does not offer integrity information, and the quality of the signals is 

not guaranteed. Therefore, the integrity information available from EGNOS 

can be associated with the OS during the simulation scenarios. This makes it 

more comparable to the developed positioning model. 

 
During the simulation study several satellite constellations were utilised, including 

Galileo, GPS, and even EGNOS in order to benefit from its integrity advantage. 

Hence, a hybrid positioning service was made available utilising Galileo OS single 

frequency within one of the frequency bands (E5a, E5b, E2-L1-E1, or E5-AltBoc) 

along with GPS CA signal within L1 frequency band. The simulation study was 

conducted in dynamic and static scenarios taking into consideration only urban and 

rural environments, because GSSF only offers UERE budgets for these two 

environments.  

 
In order to simulate a dynamic scenario (mobile user), the system requires the route 

information for the aimed dynamic testing route. This can be defined using the Define 

Trajectory option available within GSSF. This option allows entering a set of 

longitude, latitude and height coordinates defining the testing routes. The marker 

points’ coordinates used at the first and second experimental testing routes were 

entered into GSSF and used to identify the rural and urban trajectories in the 

simulation study. On the other hand, the static scenarios were simulated at two 

different points using different UERE budgets representing rural and urban 

environments. 

The simulation time intervals defined for both static and dynamic scenarios follow the 

same intervals used in the experimental work. Also, the position sampling rate during 

all simulation sessions was set to 6 seconds. The data obtained from the static and 

dynamic simulation scenarios were analysed using the SVS standard analysis 

functions providing the mean, maximum, and minimum values of the achieved 
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positioning performance parameters. Afterwards, these parameters were exported into 

an excel file using Galileo Scheduling and Analysis Tool (GAST) for further analysis.  

 
The results achieved from the simulation study were compared against the 

experimental measurements results, in order to quantify the positioning model’s 

achievable performance with reference to future Galileo and GPS systems.  

 
6.4 Statistical Validation  

 

In order to pursue the evaluation process of the developed positioning model, a 

statistical comparison was conducted in terms of the position integrity and accuracy 

performance factors. This comparison study was between the future hybrid (Galileo 

OS and GPS) positioning services against the raw domain positioning method, which 

was considered the best service provided by the positioning model. 

 
In the statistical point of view, the position solutions providers such as the hybrid 

system and the positioning model can be described as independent variables or data 

groups. Moreover, the performance factors (accuracy and integrity parameters) are 

described as dependent variables. Accordingly, a statistical significance test or a 

hypothesis testing is used to determine if there is enough statistical evidence of the 

difference between the averages of the dependent variables, with reference to the 

independent variables. For each statistical test, at least two hypotheses are identified; 

the null and the research hypothesis. The null hypothesis is not rejected unless there is 

substantial statistical evidence against it. In this work, the null hypothesis was defined 

as the following: there is no difference between the averages of each dependent 

variable (accuracy and integrity parameters) for both independent variables 

(positioning services providers). The research hypothesis can be defined as: the 

average values of each dependent variable for both independent variables are 

different.  

 
The statistical t-test was used to assess the equality of the difference between the 

averages of one dependent variable for both groups of independent variables. The t-

test determines a p-value that indicates statistical significance of a hypothesis test. The 

p-value is used to decide whether enough evidence is available to reject the null 

hypothesis and approve the research hypothesis (Cardinal & Aitken, 2006). A suitable 



Chapter 6: Positioning Model Performance Evaluation Methodology                                                 148 
                                                                                      

PhD Thesis by Mohammad AL Nabhan                                                                 Brunel University  

significance level (also known as a confidence level) denoted by alpha (α ) should be 

identified for each significance test. The popular levels of significance are 0.05, 0.01 

and 0.001. If the calculated significance value (p-value) was lower than the 

significance level (α -level), then the null hypothesis is rejected. Smaller α -levels 

give greater confidence in the determination of the statistical significance, however 

this implies a greater risk to reject a false null hypothesis (Cardinal & Aitken, 2006).  

 
In this work, a confidence level of 0.05 was chosen, therefore, if (p-value < 0.05), 

then the null hypothesis was rejected, meaning that there is a significant difference 

between the average values of the performance factors obtained from both positioning 

services providers.  

 

6.5 Summary 

 

This chapter has described the evaluation methodology that was utilised to investigate 

and asses the efficiency of the developed positioning model with regard to the 

position samples’ accuracy, precision, and service availability and integrity. The 

evaluation methodology was divided into two parts; the first one was based on 

carrying out experimental measurement trails in order to observe and collect GPS data 

within several navigation environments (urban, rural and open space) and 

measurement scenario (dynamic and static).  

 
The second part was based on simulating a hybrid positioning service offered by 

Galileo OS single frequency along with GPS standard single frequency services. The 

simulation study was implemented in dynamic and static scenarios with reference to 

urban and rural environments. Finally, a basic statistical comparison between the 

results obtained from the experimental and simulation work was explained, in order to 

quantify the developed positioning model’s performance against future positioning 

services offered by Galileo OS and GPS. 
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Chapter 7: Results Analysis and Discussion 

 
 
1.1 Introduction 

 

The evaluation methodology described in Chapter 6 was used in order to perform the 

following tasks: 

 
� Evaluating the overall performance of the developed positioning model, 

presented in Chapters 4 and 5, through the experimental measurements. This 

involved the following:  

 
1. Measuring the positioning performance achieved from the developed 

positioning methods (raw domain and coordinate domain), and 

comparing it to the existing augmented GPS/EGNOS single frequency 

service, taking place at the MU. This step involves the following 

constrains: 

� The positioning performance is determined from the position 

solutions, also described as position samples, accuracy and 

integrity, as well as the service availability. 

� The integrity factors (Horizontal Protection Levels (HPL) and the 

Probability of Horizontal Misleading Information (PHMI) at the 

MU were computed from augmentation data received directly from 

EGNOS geostationary (GEO) satellites. However, at the LS the 

integrity factors were computed form augmentation data received 

from EGNOS/SISNET. The HAL (maximum HPL) used in the 

integrity assessment was 11 meters.  

� The accuracy values presented throughout this chapter were 

calculated using 2DRMS statistical method. 

 
2. Quantifying the achieved positioning performance against the proposed 

minimum performance requirements associated with LBS application 

groups, as described in Chapter 4. In which, the identified maximum 
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position error margin was 2 meters, and the maximum allowable DOP 

quantifiers were (HDOP=2 and VDOP=2.5). 

 
3. Determining the effect of the age of correction data on the obtained 

position accuracy. 

 
� Investigating the future Galileo Open Service (OS) positioning using GSSF 

and comparing its achieved performance against the developed positioning 

model. 

 
This chapter is divided into two main sections: Section 7.2 presents and discuses the 

results obtained from the experimental measurements, which were used to describe 

the performance achieved from the developed positioning model. In addition, Section 

7.3 describes the results obtained from the simulation study measuring the 

performance achieved from future Galileo OS services.    

 

7.2 Experimental Results  

 

This section describes the results obtained after processing and analysing the GPS 

measurements, taking into consideration the navigation environments (urban, rural, 

open space) and measurement scenarios (static and dynamic). The results were used to 

describe the accuracy and integrity levels of the position samples computed at the LS 

using the raw and coordinate domain positioning methods, compared to the same 

levels of the position samples obtained at the MU using GPS/EGNOS service. In 

addition, the results have addressed the availability of GPS and EGNOS GEO 

satellites during the measurement trials. The outcome (position samples) of raw and 

coordinate domain positioning methods represents the core solution obtained from the 

positioning model presented in this work. With reference to the measurement 

scenarios, the experimental results are described in the following subsections.  

 

7.2.1 Static Measurements Results 

 

This section describes the results obtained from the experimental measurements 

conducted at the fixed observation sites 1, 2 and 3. As explained in Section 6.2.2, 

these sites were located in rural, urban, and open space navigation environments 
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respectively. The results described in this section present only the performance during 

the testing trial conducted between 12:00 pm to 1:00pm. This measurement period 

was chosen because it matched within all testing trials conducted at the observation 

sites and dynamic routes. The overall accumulative results obtained from 24-hours of 

static measurements and including all testing trials are described in Appendix B.   

 
At the first observation site (site 1), the horizontal position errors scattered around the 

mean of the position errors are shown in Figure 7.1a. In which, the x-axis presents the 

easting error in meters (m) and the y-axis is the northing error in meters (m). The 

position samples illustrated in Figure 7.1a are presented in three different colours; 

yellow, pink, and dark blue, which correspond to the outcome of raw domain, 

coordinate domain and GPS/EGNOS positioning methods. At a 95% confidence level, 

the calculated horizontal accuracy was 1.23 m, 1.53 m, and 2.19 m for the position 

solutions obtained from the raw domain, coordinate domain, and GPS/EGNOS 

positioning methods respectively. With reference to the availability experienced at 

this site, the average number of tracked satellites was 8. In addition, Figure 7.1b 

illustrates the DOP values obtained during the same measurement period, in which the 

x-axis presents the GPS time and the y-axis is the DOP value. The average of HDOP 

and VDOP was 1.9 and 2.4. 

 
The precision level of each position solution can be described using the standard 

deviations. Therefore, for the same measurements conducted at site 1, the standard 

deviations for the errors in the easting and northing position coordinates were (0.4, 

0.47), (0.53, 0.55) and (0.75, 0.8), for the raw domain, coordinate domain, and 

GPS/EGNOS position solutions respectively. Figures 7.2a and 7.2b present a 

cumulative probability distribution of the errors in the easting and northing position 

coordinates, which were contained within 4 meters. The x-axis presents the error in 

(m) and the y-axis is the probability. The yellow, pink and dark blue distribution lines 

corresponds to the error probability distribution for the raw domain, coordinate 

domain and GPS/EGNOS positioning methods respectively. 
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The horizontal position error scatter at the second and third observation sites (sites 2 

and 3) are presented in Figures 7.3a and 7.4a. At 95% confidence levels, the position 

accuracy computed at site 2 was 1.73 m, 1.95 m, 3.6 m; and at site 3 it was 0.96 m, 

1.2 m, and 1.9 m, for the position solutions obtained from the raw domain, coordinate 

domain and GPS/EGNOS methods. Accordingly, the worst position accuracy was 

achieved at site 2 (urban area), which was due to the environmental effects and 

limited augmentation services availability.  
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Figure 7.1a: Horizontal position errors scattering 

for samples computed at site 1, using the raw, 
coordinate and GPS/EGNOS positioning services. 
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Figure 7.1b: Horizontal and vertical DOP values 

measured at the site 1 
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Figure 7.2a: Probability distribution for the easting 
position errors computed at site 1, using the raw, 
coordinate and GPS/EGNOS position services. 
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Figure 7.2b: Probability distribution for the northing 
position error computed at site 1, using the raw, 
coordinate and GPS/EGNOS position services. 
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The DOP values experienced during the same measurement periods at the 

observations sites 2 and 3 are illustrated in Figures 7.3b and 7.4b. At site 2, the 

average of HDOP and VDOP was 2.4 and 2.7 respectively, and the corresponding 

averages at site 3 were 1.6 and 2.0. This confirms that the GPS data measured at site 3 

(open space location) were obtained from satellites with good geometry compared to 

sites 1 and 2. In addition, due to the surrounding obstructions the average for the 

number of tracked satellites at site 2 was 7, compared to 13 satellites at site 3. 

 
At site 2, the standard deviations for the errors in easting and northing position 

coordinates were summarised as (0.52, 0.56), (0.62, 0.7) and (0.9, 1.0), for the 

samples obtained from raw domain, coordinate domain and GPS/EGNOS positioning 

methods. The corresponding standard deviations at site 3 were summarised as (0.31, 

0.37), (0.4, 0.45) and (0.76, 0.7). The probability distributions of the errors in the 

easting and northing position coordinates are presented in Figures 7.5a and 7.5b for 

site 2 and in Figures 7.6a and 7.6b for site 3. 

 
With reference to the positioning integrity levels experienced at the static observation 

sites, the HPL values were computed for each position sample obtained at the MU 

using EGNOS GEO and at the LS using EGNOS/SISNET. EGNOS GEO 

augmentation service was approximately available, at observation sites 1, 2 and 3, 

during 80%, 85% and 90% of the measurement periods. However, the availability of 

the augmentation services from SISNET at the LS was during more than 99% of the 

measurement periods, due to the dedicated high speed internet connection between the 

LS and SISNET data server. The averages of HPL values for the measurements 

conducted at site 1 were 7.1 m and 6.5 m for the samples computed at MU and LS; 

while the averages of corresponding HPL values computed at site 2 and site 3 were 

(8.6 m, 7.2 m) and (9.1 m and 7.8 m). Accordingly, the integrity performance 

achieved at the LS outperformed the integrity achieved at the MU within all 

observation sites. In the same time, the best integrity performance was experienced at 

site 3; this was due to the clean measurements obtained and high augmentation 

services availability. 
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Figure 7.3a: Horizontal position errors scattering for 
samples computed at site 2, using the raw, coordinate and 

GPS/EGNOS position services. 
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Figure 7.3b: Horizontal and vertical DOP values 
measured at the site 2 
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Figure 7.4a: Horizontal position errors scattering for 
samples computed at site 3, using the raw, coordinate 

and GPS/EGNOS position services. 
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Figure 7.4b: Horizontal and vertical DOP values 
measured at the site 3 
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Figure 7.5a: Probability distribution for the easting 
position errors computed at site 2, using the raw, 
coordinate and GPS/EGNOS position services. 
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Figure 7.5b: Probability distribution for the northing 
position errors computed at site 2, using the raw, 
coordinate and GPS/EGNOS position services. 

 

The position errors scattering shown in Figures 7.1a, 7.3a and 7.4a have described the 

position samples accuracy and precision achieved from all three positioning methods 

at the static observation sites. It can be noticed that the raw and coordinate domain 

methods (yellow and pink dotted marks) have shown more precise position solutions 

around the mean value with less error budgets (below 2 meters), compared to the 

GPS/EGNOS method (blue dotted marks). In addition, the probability distributions in 

Figures 7.5 and 7.6 have illustrated the probability of having different error margins 

within the position samples along the measurement period. For the raw and coordinate 
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Figure 7.6a: Probability distribution for the easting 
position errors computed at site 3, using the raw, 
coordinate and GPS/EGNOS position services. 
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Figure 7.6b: Probability distribution for the northing 
position errors computed at site 3, using the raw, 
coordinate and GPS/EGNOS position services. 
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domain methods (yellow and pink lines) the error probability distributions were 

contained within small error margins (less than two meters), comparing to large error 

margins exceeding two meters for GPS/EGNOS method (blue lines) during the entire 

period along all observation sites. 

 
According to the previously illustrated Figures and summarised results, more reliable, 

accurate and precise position samples were available at the LS using the raw domain 

and coordinate domain methods, compared to GPS/EGNOS service at the MU. This 

improved positioning performance at the LS, was due to the guaranteed availability of 

the correction messages and the efficiency of the generated integrated pseudo-range 

corrections used to correct and compute the user’s position.  

The GPS/EGNOS positioning method at the MU experienced several drawbacks, such 

as the unavailability and the delay of the correction information. The position 

accuracy against the delay in the correction messages reception, also described as 

corrections age, was quantified by assuming different delay intervals in the reception 

of the correction messages. This was implemented by decoding the correction 

messages (RTCA messages from SISNET and RTCM messages from OS NET), and 

then applying them after specified delay intervals (e.g. 10 seconds). The delay is 

normally based on the vulnerability of the medium used to carry the correction 

messages to the experimental location. Hence, a small amount of delay can be 

experienced if a good connection to the augmentation data source was available and 

while navigating in open spaces and less crowded areas. Figure 7.7 illustrates the 

contribution of the age of RTCA and RTCM correction messages in the total position 

error, with reference to the measurements obtained at site 2 (typical urban 

environment).  

 
The average of position errors caused by the delay induced in RTCA and RTCM 

messages was 0.8 m and 1.0 m respectively. It can be noticed from Figure 7.7, that the 

error magnitude increases along with the increase in the delay. For RTCA messages a 

large error deviation was experienced at seconds 120 and 140, which was due to time 

validity constrains for the fast and slow correction messages, as described in Table 

5.1. In addition, for RTCM messages a vivid deviation was experienced at 60 seconds.  

 
As reported by Almasri et al. (2009), while using an HSDPA mobile connection for 

downloading continuous UDP packets such as RTCA and RTCM messages from the 
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augmentation sources (SISNET and OS NET). The measured Round Trip Delay Time 

(RTT) reached a value up to 500 ms in the worst case scenarios, with a packet loss of 

up to 10 %. However, the LS was connected to the augmentation sources with a 

dedicated wired internet connection with speed up to 100 Mbit/s. The maximum RTT 

experienced by this link was 80 ms. 
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Figure 7.7: Position accuracy against the age of correction data for measurements at site 1 

 

7.2.2 Dynamic Measurement Results 

 

This section describes the results obtained from the measurements conducted at the 

dynamic routes 1, 2, and 3, which were located in rural, urban, and open space 

navigation environments respectively (see Section 6.2.2). The dynamic measurements 

took place over several days. In each day twelve testing trials in different time periods 

were conducted. The duration of each trial was approximately one hour. In order to 

quantify the positioning performance achieved at each dynamic route, the collected 

GPS data were processed and analysed in terms of the horizontal position accuracy, 

integrity and the experienced service availability. The overall results obtained from 

the twelve dynamic trials at all marker points covering the testing routes are described 

in Appendix B.  

 
Similar to the results obtained from static measurements, the results described in this 

section present the performance achieved during one testing trials that took place 

during the measurement period (12:00 to 1:00pm), at a number of selected marker 

points identifying each path. These marker points were selected showing different 
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levels of positioning performance at each testing route. With reference to the marker 

points identified on each route as described in Section (6.2.2), the following points 

were selected: 

� Marker points A, C and E on route 1. 

� Marker points H, J, and L on route 2. 

� Marker points X on route 3. 

 
7.2.2.1 Dynamic Measurement Results on Route 1: Rural Environment 

 
This section presents the positioning performance achieved at different locations 

(marker points A, C and E) on route 1. As shown in Figure 6.5, this route simulated a 

rural navigation area, in which GPS and EGNOS signals were occasionally blocked 

by an adjacent building (Howell) from one side during the measurements. The 

availability of EGNOS augmentations service on this route ranged between (80-85%) 

during all testing trials.  

 
At marker point A, the horizontal position errors scattered around the mean value are 

shown in Figure 7.8a. The accuracy computed in 95% confidence level for the 

position samples obtained from the raw domain, coordinate domain and GPS/EGNOS 

was 1.33 m, 1.65 m and 2.3 m respectively. The positioning performance results 

obtained at this marker point are summarised in Table 7.1.  

 

Marker A Easting

(σ) 
Northing 

(σ) 
2D 

Accuracy 
(95%) 

HPL 
(m) 

HMI
% 

HDOP 
(Mean) 

VDOP 
(Mean) 

# Sat 
(Mean) 

GPS/EGNOS 0.75 0.87 2.3 8.5 13% 

Coordinate 

Domain 

0.51 0.65 1.65 

Raw Domain 0.42 0.52 1.33 

7.4 7% 

1.9 2.2 8 

Table 7.1: Positioning performance at marker point A (12:00 to 1:00pm) 
 
As described in the above Table, 13% of the samples computed at the MU using 

GPS/EGNOS were within the Hazardous Misleading Information (HMI) zone. 

However, only 7% of the samples computed at the LS were within the HMI zone. 

This zone describes position samples that are considered as HMI to the user. The HMI 

percentages were calculated with reference to the integrity threshold (11 m). 
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Accordingly, advanced integrity performance was achieved at the LS. Figure 7.8b 

illustrates the HPL values computed at the MU and at the LS. The probability 

distributions of the errors in the easting and northing position coordinates at marker 

point A are shown in Figures 7.9a and 7.9b. These probability distributions 

correspond to the position samples errors obtained within the same measurement 

period from the raw domain, coordinate domain and GPS/EGNOS positioning 

methods. 
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Figure 7.8a: Horizontal position errors scattering 
for samples computed at marker A, using the raw, 

coordinate and GPS/EGNOS position services. 
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Figure 7.8b: HPL values computed at the MU and 
LS at Marker A. 
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Figure 7.9a: Probability distribution for the easting 
position errors computed at marker A, using the 

raw, coordinate and GPS/EGNOS position services. 
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Figure 7.9b: Probability distribution for the northing 
position errors computed at marker A, using the raw, 

coordinate and GPS/EGNOS position services. 
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 At route 1, the worst data measurements were experienced while passing through 

marker point C. As described in Figure 6.5, this marker point was located between 

two buildings (Howell and Tower A). The horizontal accuracy computed in 95% 

confidence level at marker C was 1.52 m, 1.9 m, and 2.8 m for raw domain, 

coordinate domain and GPS/EGNOS methods. The horizontal position errors 

scattered around the mean value at this marker point are shown in Figure 7.10a. In 

addition, Figure 7.10b illustrates the corresponding HPL values obtained for each 

position sample computed at the MU and at the LS.  

 
The positioning performance results obtained at marker C are summarised in Table 

7.2.  

Table 7.2: Positioning performance at marker point C during (12:00 to 1:00pm) 
 
Although the number of tracked satellites at both marker points A and C has the same 

average, the DOP values computed at point C were higher. This has increased the 

position errors at marker C compared to marker A. At the same time, the percentage 

of samples, computed at the MU using GPS/EGNOS, and being within the HMI zone 

increased to 17%. However, the raw domain positioning showed nearly the same high 

performance at both marker points (A and C). This confirms the efficiency of the raw 

positioning method even within limited GPS navigation signals availability 

conditions. The probability distribution of the errors in the easting and northing 

position coordinates at marker C is shown in Figures 7.11a and 7.11b.  

Marker C Easting

(σ) 
Northing 

(σ) 
2D 

Accuracy 

(95%) 

HPL 

(m) 

HMI

% 

HDOP 
(Mean) 

VDOP 
(Mean) 

# Sat 
(Mean) 

GPS/EGNOS 0.91 1.1 2.8 9.3 17% 

Coordinate 

Domain 

0.62 0.73 1.9 

Raw Domain 0.43 0.63 1.52 

7.8 8% 

2.5 2.7 8 
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Figure 7.10a: Horizontal position errors scattering 
for samples computed at marker C, using the raw, 

coordinate and GPS/EGNOS position services. 
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Figure 7.10a: HPL values computed at the MU and 
LS at marker C. 
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Figure 7.11a: Probability distribution for the easting 
position errors computed at marker C, using the raw, 

coordinate and GPS/EGNOS position services. 
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Figure 7.11b: Probability distribution for the 
northing position errors computed at marker C, using 

the raw, coordinate and GPS/EGNOS position 
services. 
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The marker point E identifies the end of route 1. This point was located at a clear 

view location compared to the rest of the marker points at this route. The average 

number of tracked satellites was 9, and the average of HDOP and VDOP values at this 

point was decreased to 1.9 and 2.4 respectively, compared to points A and C. The 

positioning performance results obtained at marker point E are summarised in Table 

7.3.  

 

Marker E Easting

(σ) 
Northing 

(σ) 
2D 

Accuracy 
(95%) 

HPL 

(m) 
HMI

% 

HDOP 
(Mean) 

VDOP 
(Mean) 

# Sat 
(Mean) 

GPS/EGNOS 0.73 0.85 2.24 8.1 10% 

Coordinate 

Domain 

0.43 0.55 1.3 

Raw Domain 0.32 0.41 1.04 

7.1 8% 

1.9 2.4 9 

Table 7.3: Positioning performance at marker point E during (12:00 to 1:00pm) 
 
As shown in the table above, the performance achieved at point E was the best 

compared to previous marker points (A and C) along route 1. The percentage of 

samples computed at the MU and being within the HMI zone decreased to 10%. The 

horizontal position errors scattered around the mean value are illustrated in Figure 

7.12a. The corresponding HPL values for each position sample computed at the MU 

and LS are shown in Figure 7.12b. Furthermore, Figures 7.13a and 7.13b show the 

probability distribution for the errors in the easting and northing coordinates 

respectively.  
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Figure 7.12a: Horizontal position errors scattering for 
the samples computed at marker E, using the raw, 

coordinate and GPS/EGNOS position services. 
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Figure 7.12b: HPL values computed at the MU and 
LS at marker E. 
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Figure 7.13a: Probability distribution for the easting 
position errors computed at marker E, using the raw, 

coordinate and GPS/EGNOS position services. 
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Figure 7.13b: Probability distribution for the 
northing position errors computed at marker E, using 

the raw, coordinate and GPS/EGNOS position 
services. 
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Looking at the probability distributions in Figures 7.9, 7.11 and 7.13 for the position 

errors obtained at marker points A, C and E. It can be noticed that the error 

distribution for the position samples provided by the raw domain and coordinate 

domain methods (yellow and pink lines) were contained within an error margin of less 

than two meters. However, the error distributions of GPS/EGNOS method (blue lines) 

have exceeded the two meters error margin, during the whole measurement period. 

Accordingly, at these three marker points (A, C, and E), the advanced positioning 

methods developed at the LS showed an improved performance, compared to the 

existing GPS/EGNOS method. 

 
As shown in Figure 7.14, three measured paths describing route 1 were determined 

from the traces of the position samples computed at all marker points using the raw 

domain, coordinate domain, and the GPS/EGNOS positioning methods.  

 

Rural Path Coordinates Traces

182475

182490

182505

182520

182535

182550

182565

182580

182595

505935 505985 506035

Easting (m)

N
o

rt
h

in
g

 (
m

)

Surveyed Path (Reference)

GPS/EGNOS Measured Path

Coordinate Domain Measured Path

Raw Domain Measured Path

 

Figure 7.14: Reference and measured position traces (paths) at route 1 

 
With reference to the surveyed path, the horizontal accuracy along each measured 

path obtained from the raw domain, coordinate domain, and the GPS/EGNOS was 1.2 

m, 1.5 m and 2.4 m, at a 95% confidence level. Accordingly, more reliable and 

accurate paths were determined from the position samples computed at the LS using 

the developed positioning methods (coordinate and raw domain), compared to 

samples computed at the MU using the existing GPS/EGNOS positioning method. 
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7.2.2.2 Dynamic Measurements on Route 2: Urban Environment 

 

This section presents the positioning performance achieved at different locations 

(marker points H, J, and L) on route 2, during the measurement period (12:00 to 

1:00pm). As previously described in Section 6.2.2, this route was selected at the most 

densely and built up area around Brunel University campus, where signals from 

satellites were very likely to be blocked by surrounding buildings. The availability of 

EGNOS augmentations service at this route ranged between (65-80 %) of the time 

throughout the testing trials. Table 7.4 summarises the positioning performance 

results achieved at marker point H.  

  

Marker H Easting

(σ) 
Northing 

(σ) 
2D 

Accuracy 
(95%) 

HPL 
(m) 

HMI
% 

HDOP 
(Mean) 

VDOP 
(Mean) 

# Sat 
(Mean) 

GPS/EGNOS 0.89 1.2 3.1 9.8 19% 

Coordinate 

Domain 

0.61 0.72 1.7 

Raw Domain 0.42 0.65 1.54 

7.8 11% 

2.4 2.8 6 

Table 7.4: Positioning performance at marker point H during (12:00 to 1:00pm) 
 
The horizontal position errors scattered around the mean value at marker H is 

illustrated in Figure 7.15a. As described in the table above, the availability of GPS 

signals was limited, in which the average value of the number of tracked satellites was 

6, accompanied by high DOP values. The corresponding HDOP and VDOP values are 

shown in Figure 7.15b.  

 
At marker H, the number of samples considered within the HMI zone was 19% and 

11% at the MU and LS. Therefore, the integrity of the position solutions computed at 

the LS were considered higher, compared to the MU. Figures 7.16a and 7.16b 

presents the error probability distributions in the corresponding easting and northing 

coordinates at marker H. 
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2D Position Error
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Figure 7.15a: Horizontal position errors scattering for 
samples computed at marker H, using the raw, 
coordinate and GPS/EGNOS position services. 
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Figure 7.15b: Horizontal and vertical DOP values 
measured at marker H 
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Figure 7.16a: Probability distribution for the easting 
position errors computed at marker H, using the raw, 

coordinate and GPS/EGNOS position services. 
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Figure 7.16b: Probability distribution for the northing 
position errors computed at marker H, using the raw, 

coordinate and GPS/EGNOS position services. 
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As previously described in Figure 6.6, marker point J was surrounded by three 

buildings. Therefore, the availability of GPS and EGNOS signals was very limited at 

this point, and considerable interference to the received signals was observed. The 

horizontal accuracy scatter and the DOP values observed at marker point J are 

presented in Figures 7.17a and 7.17b. The positioning performance obtained at this 

point, is summarised in Table 7.5.  

 

Marker J Easting

(σ) 
Northing 

(σ) 
2D 

Accuracy 
(95%) 

HPL 
(m) 

HMI
% 

HDOP 
(Mean) 

VDOP 
(Mean) 

# Sat 
(Mean) 

GPS/EGNOS 1.31 1.4 3.82 10.2 23% 

Coordinate 

Domain 

0.81 0.86 2.36 

Raw Domain 0.55 0.74 1.84 

8.2 12% 

2.7 3.2 6 

Table 7.5: Positioning performance at marker point J during (12:00 to 1:00pm) 
 

As summarised in the table above, low position accuracy and integrity levels were 

achieved at point J, compared to the same levels at point H, using the GPS/EGNOS 

positioning method. However, still an improved accuracy and integrity levels were 

achieved using the coordinate and raw domain positioning methods at the LS. In 

addition, at point J, the average of HPL values computed at the MU and LS increased 

to 8.2 m and 10.2 m, this has added more position samples to be within the HMI zone. 

The probability distributions for errors in the easting and northing coordinates at 

marker point J are shown in Figures 7.18a and 7.18b. 
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Figure 7.17a: Horizontal position errors scattering 
for samples computed at marker J, using the raw, 
coordinate and GPS/EGNOS position services. 
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Figure 7.17b: Horizontal and vertical DOP values 
measured at marker J 
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Figure 7.18a: Probability distribution for the 
easting position errors computed at marker J, using 

the raw, coordinate and GPS/EGNOS position 
services. 
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Figure 7.18b: Probability distribution for the 
northing position errors computed at marker J, using 

the raw, coordinate and GPS/EGNOS position 
services. 
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The worst measurements on route 2 were observed at marker point L. At this point 

almost no EGNOS satellites were visible; also GPS signals were extremely jammed 

due to the surrounding buildings. The average of HDOP and VDOP increased to 2.9 

and 3.6. The positioning performance results obtained at marker L are summarised in 

Table 7.6.  

 

Marker L Easting

(σ) 
Northing 

(σ) 
2D 

Accuracy 
(95%) 

HPL 
(m) 

HMI
% 

HDOP 
(Mean) 

VDOP(
Mean) 

# Sat 
(Mean) 

GPS/EGNOS 1.65 1.9 4.9 13.5 28% 

Coordinate 

Domain 

0.92 1.1 2.85 

Raw Domain 0.73 0.81 2.18 

8.8 15% 

2.9 3.6 6 

Table 7.6: Positioning performance at marker point L during (12:00 to 1:00pm) 
 
The unavailability of EGNOS augmentation service at marker point L degraded the 

accuracy achieved from GPS/EGNOS positioning service. In which, the accuracy 

reached nearly 5 meters. At the same time, the percentage of samples being within the 

HMI zone at the MU increased to 28%. In addition, due to the extreme GPS signals 

interference and satellites visibility limitations at point L, the number of valid pseudo-

range measurements required for the raw domain position calculation method was 

decreased. Therefore, the average of position accuracy achieved from this method has 

exceeded 2 meters. The horizontal accuracy scatter and the DOP values at point L are 

presented in Figures 7.19a and 7.19b. The corresponding probability distributions for 

errors in the easting and northing coordinates are shown in Figures 7.20a and 7.20b.  

 
It can be noticed form from the probability distributions shown in Figures 7.16, 7.18, 

and 7.20, the error in the position solutions provided by the raw domain and 

coordinate domain methods (yellow and pink lines), have exceeded the two meters 

error margin. However, for the GPS/EGNOS (blue lines) the errors have exceeded a 

four meters error margin. This was considered the worst experienced measurement 

errors compared to distributions shown in Figures 16 and 18, for marker points H and 

J respectively. 
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Similar to route 1, three measured paths were determined using the traces of the 

position samples computed from the dynamic measurements conducted at route 2, 

during the period (12:00 to 1:00pm). The measured paths along with the surveyed 

measured one are illustrated in Figure 7.21. With reference to the surveyed path, the 

horizontal accuracy average for each measured path obtained from the raw domain, 

coordinate domain, and GPS/EGNOS positioning methods was 1.5 m, 1.9 m and 3.5 

m, at a 95% confidence level. 
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Figure 7.19a: Horizontal position error scattering 
for the samples computed at Marker L, using the 

raw, coordinate and GPS/EGNOS position services. 
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Figure 7.19b: Horizontal and vertical DOP values 
measured at marker L 
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Figure 7.20a: Probability distribution for the 
easting position errors computed at marker L, using 

the raw, coordinate and GPS/EGNOS position 
services. 
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Figure 7.20b: : Probability distribution for the 
northing position errors computed at marker L, 

using the raw, coordinate and GPS/EGNOS position 
services. 
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Figure 7.21: Reference and measured position traces (paths) at route 2 

 

7.2.2.3 Dynamic Measurements on Route 3: Open Space Environment. 

 

This section presents the positioning performance achieved on route 3 during the 

measurement period 12:00 to 1:00pm. This route was located within an open space 

(clear satellite view) environment. Therefore, similar positioning performance was 

achieved at all three marker points (X, Y and Z) identified on this testing route. Only 

the results obtained at marker point X were presented in this section. Table 7.7 

summarises the positioning performance achieved at this marker point. The 

availability of EGNOS service at this route was during 95% of the time throughout 

the testing trials. 

 

Marker X Easting

(σ) 
Northing 

(σ) 
2D 

Accuracy 
(95%) 

HPL 
(m) 

HMI
% 

HDOP 
(Mean) 

VDOP 
(Mean) 

# Sat 
(Mean) 

GPS/EGNOS 0.47 0.6 1.52 7.5 8% 

Coordinate 

Domain 

0.42 0.45 1.23 

Raw Domain 0.33 0.37 0.98 

6.8 6% 

1.6 1.9 11 

Table 7.7: Positioning performance at marker point X (12:00 to 1:00pm) 
 

As described in the table above, an improved performance was achieved using all 

three positioning methods at marker point X. In terms of the integrity levels, the 
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average of HPL values computed at the MU and LS was 7.5 m and 6.8 m. This was 

considered as the best HPL values achieved during the dynamic measurements, which 

was due to the availability of line of site signals from an increased number of satellites 

with good geometry throughout the whole testing route. The horizontal accuracy 

scatter and the DOP values at point X are shown in Figures 7.22a and 7.22b. Looking 

at Figures 7.23a and 7.23b, the error distributions in the easting and northing position 

components obtained from GPS/EGNOS and coordinate domain methods, were 

contained within 2 meters error margin. However, for the raw domain the errors 

distribution was contained within one meter. 

 
During the period (12:00 to 1:00pm), three measured paths were determined using the 

traces of the position samples computed at all marker points on route 3. This is shown 

in Figure 7.24. With regard to the surveyed path, the horizontal accuracy along each 

measured path obtained from the raw domain, coordinate domain, and GPS/EGNOS 

positioning methods was 1.0 m, 1.1 m, and 1.5 m in 95% confidence level. 

Accordingly, the best measured paths were determined at route 3, compared to routes 

1 and 2. This was due to the improved positioning performance achieved at this route 

from all of the positioning methods, providing reliable and highly accurate position 

solutions. 
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Figure 7.22a: Horizontal position errors scattering 
for the samples computed at marker X, using the raw, 

coordinate and GPS/EGNOS position services. 
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Figure 7.22b: Horizontal and vertical DOP values 
measured at marker L 
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Figure 7.24: Reference and measured position traces (paths) at route 3 
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Figure 7.23a: Probability distribution for the easting 
position errors computed at marker X, using the raw, 

coordinate and GPS/EGNOS position services 
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Figure 7.23b: Probability distribution for the 
northing position errors computed at marker X, 

using the raw, coordinate and GPS/EGNOS position 
services. 
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7.2.2.4 Discussion 

 
The experimental results described earlier in Section 7.2, have investigated the 

achieved positioning performance during the testing trial (12:00pm to 1:00pm). The 

performance analysis was in terms of the position samples integrity and accuracy as 

well as the service availability, between the developed positioning methods (raw 

domain and coordinate domain) and the existing augmented GPS service 

(GPS/EGNOS). This section discusses the main conclusions achieved from the results 

described in Section 7.2 and from the accumulative results summarised in Appendix 

B. The accumulative results describe the overall performance obtained from the 24-

hours measurements at each observation site and from the 12 testing trials conducted 

at each testing route.  

 
The navigation environment was the main contributor to the measurement errors. It 

was responsible for increasing the DOP values and degrading the availability of GPS 

and EGNOS GEO satellites, as well as increasing the age of RTCA and RTCM 

correction messages. At the same time, this contextual factor was responsible for 

inducing multipath and atmospheric delays on GPS measurements, hence increasing 

the magnitude of the position error. It was noticed from the results that the positioning 

performance in built-up areas (urban environments) was the lowest compared to other 

environments (rural areas and open spaces). This was clearly observed, especially 

while using the existing GPS/EGNOS positioning method at the MU. However, the 

positioning methods developed and implemented at the LS (raw domain and 

coordinate domain) have experienced an insignificant effect from the environment. 

This was due to the efficiency of the developed positioning model, which guaranteed 

the availability of up-to-date GPS augmentation data at the LS, and provided an 

effective integrated pseudo-range correction components used in the error correction 

process. Accordingly, having the dedicated remote positioning component (LS) for 

positioning services provision in LBS have introduced the following advantages: 

 
� The effect of the age of corrections on the final position solution accuracy was 

significantly reduced or eliminated. 

� The possibility of receiving and processing multiple types of GPS navigation 

and augmentation data was achieved 
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� The correlation between the roving receiver location and the correction 

information used to augment the user’s position was increased. 

� The provision of reliable and highly accurate position solutions satisfying the 

associated application requirements was ensured during all environments and 

measurement scenarios. 

 
The second main contextual factor that affected the achieved positioning performance 

was the capability of the GPS receiver and the supported output data formats. The raw 

domain positioning method was based on raw GPS data and the coordinate domain 

method was based on standard position solution outputs provided in NMEA formats. 

This raw domain positioning method has demonstrated an advanced performance 

compared to the coordinate domain method. The reason behind the raw domain 

advantage is the ability to apply the corrections directly on the raw data (code pseudo-

ranges and time stamps), achieving a highly accurate position solution, even if not 

enough satellites where tracked at the rover side (MU). The problem with coordinate 

domain is that the measurements were already corrected or filtered at the MU. 

 
Looking at the accumulative experimental results (summarised in Appendix B), the 

best performance achieved from the static measurements, was at site 3 due to the clear 

satellite view that was experienced at this location. The over all position accuracy 

average was, 0.9 m, 1.2 m, and 1.6 m for the position samples obtained from the raw 

domain, coordinate domain, and GPS/EGNOS positioning methods. Accordingly, 

slight differences between the accuracy levels were observed between the positioning 

methods, and all average values were below the maximum error threshold (2 m), as 

identified in Table 3.4. In addition, the overall average of HPL values at site 3, 

computed during 24-hours measurements at the LS and MU, was 7.6 m and 7.1 m. 

This advanced integrity was due to high availability of EGNOS messages at both the 

MU (more than 90%) and LS (more than 99%). With reference to the integrity 

threshold (HPL=11 m), the percentage of samples within the HMI zone was 6% and 

4% for the position solutions computed at the LS and MU respectively. These values 

are both less than the HMI threshold (10%) that can be identified for high 

performance applications. 

 
In the same concern, the best positioning performance achieved from the dynamic 

measurements was at route 3, where clear GPS and EGNOS satellites’ views were 
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experienced and signals were slightly affected from the surrounding environment. 

Satellites were tracked with good geometry, in which the overall average of HDOP 

and VDOP during the 12 testing trials was 1.6 and 2.0. These two averages were 

below the availability threshold values (HDOP=2 and VDOP=2.5) identified earlier in 

Table 3.4. In addition, only a slight differences between the corresponding accuracy 

levels were computed at all marker points during the 12 testing trials at route 3, in 

which the overall accuracy average was 1.0 m, 1.2 m, and 1.6 m for the samples 

obtained from the raw domain, coordinate domain, and GPS/EGNOS positioning 

methods.  

 
Conversely, from the accumulative experimental results described in Appendix B, the 

worst positioning accuracy obtained from the static measurements was observed at 

site 2, due to signal blockage and interference caused by the surrounding 

environment. Accordingly, during the 24-hours measurements at this site, the 

availability of EGNOS GEO satellites at the MU was during 85% of the measurement 

time. However, at the LS the availability of correction information from SISNET and 

OSNET was during more than 95% of the time. This allowed achieving advanced 

position accuracy and integrity values at the LS using the developed coordinate and 

raw domain positioning methods. The average of the overall accuracy during the 24-

hours of measurements at site 2 was 1.73 m, 1.95 m, and 3.6 m for the position 

samples obtained from the raw domain, coordinate domain, and GPS/EGNOS 

positioning methods. In addition, the average of HPL values corresponding to the 

position solutions computed at the LS and MU was 7.7 m and 9.2 m respectively. The 

percentage of samples within the HMI zone was 15% at the MU comparing to 7% at 

the LS. 

 
Similarly, looking at the accumulative experimental results obtained from the 12 trials 

of dynamic measurements, the worst positioning performance was achieved at route 2, 

which was located within an urban area. A considerable variation between the 

position accuracy and integrity values was obtained at the marker points identifying 

this route 2. In which, the accuracy ranged from 2.6 m at marker point G to 5.1 m at 

marker point L. The overall position accuracy average for all marker points at route 2 

was 1.5 m, 1.9 m, and 3.5 m for the position samples obtained from raw domain, 

coordinate domain, and GPS/EGNOS positioning methods. Therefore, at this route 
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accurate position samples (below the thresholds) were computed only using the 

advanced positioning methods developed and implemented at the LS.  At the same 

time, the corresponding HPL integrity averages computed at point G were 9.2 m and 

7.7 m, compared to 10.5 m and 8.7 m computed at point L. Accordingly, The 

percentages of position samples within the HMI zone at point G were 17% and 10% 

compared to 28% and 15% at point L.  

 
According to the results and discussion presented in the above sections, the following 

main points are concluded:  

 
� The advanced positioning methods developed at the LS (coordinate domain 

and raw domain) were able to deliver highly accurate position solutions with 

improved integrity, during all testing trials and measurement periods, and 

within all identified contextual factors (navigation environments, 

measurements scenarios and receiver capability). This was due to two main 

reasons; the guaranteed availability of valid correction information with 

extremely low delay (<5 sec per testing trial). As well as, the efficiency of the 

positioning model functional approaches in detecting and correcting the 

measurement errors and computing the position solution.  

 
� The raw domain positioning method has achieved the performance 

requirements identified for applications demanding high accuracy (see Table 

3.4). 

 
� Discarding the urban environment, improved positioning performance was 

achieved from the static measurements compared to dynamic measurements; 

this was due to the multipath effects and the satellites visibility.  

 
� During dynamic measurements a variation in the computed accuracy and 

integrity levels was experienced between the marker points identifying each 

testing route based on the GPS and EGNOS service availability constraints.  

 
� The best positioning performance can be achieved in the open space 

environments either in dynamic or static measurement scenarios. However, the 

developed coordinate and raw domain methods were less affected from the 
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environmental conditions compared to the existing GPS/EGNOS positioning 

services in all environments.  

 
� The contextual factors described in chapter 3, more especially the navigation 

environment, the measurement scenario (user activity), receiver output 

capability, and the entitled positioning requirements were very much the main 

factors affecting the positioning performance. The advanced positioning 

methods (coordinate domain and raw domain) were developed taking into 

consideration these factors. In which, each positioning method operated based 

on different data formats, and provided different performance levels which 

were either considered sufficient or insufficient based on the performance 

requirements. 

 
� If EGNOS GEO service was available for more than 85% of the measurement 

time, then satisfactory integrity levels were achieved, and the percentage of 

samples being within the HMI zone was reduced to less than 15%. This 

validates the idea of having EGNOS GEO availability constraints as the main 

trigger to establish the communication session between the MU and LS, as 

described in Chapter 4.  

 

7.3 Simulation Results  

 
The simulation scenarios were conducted only in urban and rural environments 

because GSSF only offers UERE error budgets for these two environments. The 

marker points identified in the experimental testing were utilised in the simulation 

facility to describe reference urban and rural environments. Additionally, several 

satellite constellations were utilised in the simulation scenarios, including Galileo and 

GPS constellations along with EGNOS GEO satellites. The simulation study aims to 

investigate the positioning performance achieved from future Galileo OS single 

frequency service (E5a, E5b, E2-L1-E1, or E5-AltBoc) accompanied by GPS standard 

L1 signal, and EGNOS integrity service.  

 
The results described in this section are the outcome of 24-hours of simulation 

runtime for static scenarios and one hour runtime repeated in 12 different periods for 

dynamic scenarios. The position sampling rate used was 6 seconds. The positioning 
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performance achieved in the rural reference environment during static and dynamic 

scenarios is described in Tables 7.8 and 7.9 respectively. 

 

Frequency Band East (σ) North (σ) 2D Accuracy (95%) HPL (m) 

L1/E2-L1-E1 0.26 0.41 0.97 4.1 

L1/E5-AltBoc 0.24 0.41 0.98 4.8 

L1/E5a 0.23 0.45 1.0 4.4 

L1/E5b 0.28 0.41 0.99 4.7 

Table 7.8: Positioning performance while simulating a static scenario in the rural 
environment 

 

Frequency Band East (σ) North (σ) 2D Accuracy (95%) HPL (m) 

L1/E2-L1-E1 0.26 0.41 0.97 4.4 

L1/E5-AltBoc 0.28 0.4 0.98 4.7 

L1/E5a 0.3 0.45 1.1 5.1 

L1/E5b 0.26 0.47 1.1 4.6 

Table 7.9: positioning performance while simulating a dynamic scenario in the rural 
environment 

 
As described in the tables above, the total average of the position samples accuracy 

from all frequency bands was 0.98 m and 1.0 m for static and dynamic scenarios. 

Also, for the same position samples, the corresponding HPL average was 4.5 m and 

4.8 m for static and dynamic scenarios. Accordingly, highly accurate and reliable 

position solutions can be obtained from the future Galileo, due to the overall 

experienced service availability within the simulated reference rural environment. The 

average of HDOP was 1.1 for static scenarios and 1.2 for dynamic scenarios. The 

number of tracked satellites was around 18, including GPS, Galileo, and EGNOS 

during all simulation trials within the rural environment. However, as in the 

experimental results the maximum number of tracked GPS satellites in best scenarios 

was 13. This outlines the availability advantage from having multiple systems 

working jointly.  
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The positioning performance achieved in the urban environment during static and 

dynamic simulation scenarios is summarised in Tables 7.10 and 7.11. Slightly limited 

service availability was experienced in this environment, in which the average value 

of HDOP was 1.3 and 1.4 for static and dynamic scenarios. The number of tracked 

satellites was reduced to 14 satellites during all simulation periods. 

 

Frequency Band Easting (σ) Northing (σ) 2D Accuracy (95%) HPL (m) 

L1/E2-L1-E1 0.15 0.45 0.95 5.4 

L1/E5-AltBoc 0.21 0.44 0.97 5.7 

L1/E5a 0.25 0.56 1.25 6.3 

L1/E5b 0.17 0.55 1.15 6.1 

Table 7.10: Positioning performance while simulating a static scenario in the urban 
environment 

 

Frequency Band Easting (σ) Northing (σ) 2D Accuracy (95%) HPL 

L1/E2-L1-E1 0.21 0.54 1.15 6.5 

L1/E5-AltBoc 0.21 0.45 0.99 5.7 

L1/E5a 0.24 0.56 1.25 5.8 

L1/E5b 0.20 0.55 1.2 6.7 

Table 7.11: Positioning performance while simulating a dynamic scenario in the urban 
environment 

 
The total average (from Tables 7.10 and 7.11) of the position solutions accuracy 

achieved in the urban environment using all frequency bands was 1.1 m and 1.2 m for 

static and dynamic scenarios, respectively. For the same position samples, the 

corresponding average of all HPL values was 5.8 m and 6.1 m. Therefore, an 

advanced positioning performance from Galileo service was also achieved in the 

simulated urban environment with a slight degradation comparing to the rural 

environment.  

 
A significant statistical testing (t-test) was used to compare the positioning 

performance achieved from the raw domain positioning method, against the 

performance achieved from the hybrid positioning services offered by future Galileo 
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in conjunction with GPS and EGNOS. The statistical comparison considered the 

simulation results obtained from all frequency bands (L1/E2-L1-E1, L1/E5-AltBoc, 

L1/E5a and L1/E5b) as shown in Tables 7.8 to 7.11; along with the accumulative 

experimental results obtained from the 24 hours of static measurements and 12 

dynamic testing trials, as described in Appendix B. 

  
The averages of the 2D accuracy and integrity (HPL factor) values were used as the 

dependent variables during the statistical testing. The confidence level assigned was 

(α =0.05). The computed statistical significances (p-values) with reference to the 

navigation environments and measurement scenarios are summarised in the following 

Table: 

 

Navigation 

Environment 

Measurement 
Scenario 

Dependent 

Variables 

Significance 

Value (p-value) 

Urban Static 2D Accuracy 0.01447 

Urban Static HPL 0.00044467 

Urban Dynamic 2D Accuracy 0.01157 

Urban Dynamic HPL 0.00082172 

Rural Static 2D Accuracy 0.07945 

Rural Static HPL 0.00000875 

Rural Dynamic 2D Accuracy 0.07164 

Rural Dynamic HPL 0.00000027 

Table 7.12: Statistical significance values 
 
As described in the table above, the significance value was higher than the confidence 

level only for the position accuracy obtained in the rural environment during dynamic 

and static scenario. Therefore, the null hypothesis described in Chapter 6 was 

accepted for these two scenarios only, confirming there is no significant difference 

between the accuracy achieved from both raw domain and the hybrid positioning 

service. However, a significant difference in terms of the accuracy and integrity 

values was observed at the remaining scenarios and navigation environments. This 

performance difference was for the advantage of the hybrid positioning services.  
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According to the simulation results in this section, the following main conclusions are 

summarised: 

 
� Highly accurate, precise, and reliable position solutions are achievable from 

future Galileo OS along with GPS standard positioning services. This was due 

to the utilisation of multiple satellite constellations and several signal 

frequencies in the position fixing process. 

 
� Utilising EGNOS augmentation services have improved the integrity of 

position solutions obtained from Galileo OS and GPS positioning services. 

 
� An advanced positioning performance can be obtained from all Galileo signals 

which are identified within different frequency bands. However, a slight 

performance difference was experienced between the signals. This is normally 

due to the modulation techniques used to generate these signals. In GSSF, this 

is accounted using different UERE budgets assigned for each frequency band. 

 
� The developed positioning model, more especially the raw domain positioning 

method, was capable of providing position solutions with comparable accuracy 

to the hybrid standard services offered by future Galileo OS and GPS/EGNOS, 

only for rural environments. However, the reliability and integrity of the 

hybrid positioning services outperforms the developed positioning model in all 

scenarios and environments. Accordingly, this identifies areas of compatibility 

and integration between the developed positioning model and future systems. 
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7.5 Summary  

 

This chapter described the results obtained from the overall evaluation process 

conducted to quantify the performance of the developed positioning model, taking 

into consideration different contextual factors. The positioning performance achieved 

from the advanced methods (GPS/EGNOS, raw domain, and coordinate domain) was 

measured and compared in terms of the position solutions accuracy and integrity, 

along with augmentation data availability and delay. From the existing GPS/EGNOS 

positioning method, the best performance was achieved while having clear satellite 

view and high augmentation data availability. However, from the developed raw 

domain and coordinate domain methods an improved positioning performance, 

outperforming GPS/EGNOS method, was guaranteed in most conditions due to the 

effectiveness of the positioning model presented in this work. 

 
This chapter also investigated the positioning performance obtained from simulating a 

future hybrid system consisting of Galileo OS, GPS and the integrity advantages of 

EGNOS, in different scenarios and environments. A statistical comparison was 

conducted between the performance obtained from the hybrid services, along with the 

performance achieved from the developed positioning model using the raw domain 

method. It was concluded that the raw domain positioning method was able to provide 

a comparable accuracy levels only in the rural environment.  
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Chapter 8: Conclusions and Recommendations for Future 

Work  

 
 
This thesis presents the research work carried out in enhancing the performance of the 

positioning technology utilized within LBS applications. An adaptive LBS framework 

was described as well as a new positioning model proposed and developed. The 

adaptive framework is considered as a step towards integrating the available 

positioning technology within the surrounding LBS context for a sustainable 

performance. The positioning model that was developed is capable of delivering 

highly accurate, precise and reliable position solutions, fulfilling the LBS application 

requirements as identified in the adaptive framework. 

 
This chapter presents the conclusions of the major tasks that were carried out and 

pinpoints the major outcome of this research work. The conclusions drawn from the 

literature review and preliminary investigations of GPS positioning performance are 

summarized. In addition, the main features of the adaptive framework and the 

positioning model are presented. Afterwards, the main findings obtained from the 

extensive evaluation of the positioning model are outlined with reference to several 

contextual factors. Finally, this chapter presents a list of suggestions for future work 

to develop and enhance the positioning model providing more accurate positioning 

services and extending its capability for in-door environments. 

 

8.1 Conclusions 

 
The main points of conclusion from the literature review and the preliminary research 

investigations can be summarised as follows 

  

� LBS application’s QoS depends on the performance of its technical 

components and on a set of contextual factors affecting the sustainability of 

the available resources. Furthermore, each LBS application implies specific 

QoS requirement depending on the sensitivity of the delivered services. 
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� The positioning technology is the most important component in LBS. It 

provides crucial information about when and where the services are delivered. 

GPS is the most widely deployed positioning technology. However, its 

performance is affected from several error sources degrading the accuracy of 

the position solutions accuracy, and limiting its service integrity and 

availability. Although several GPS augmentation techniques have been 

introduced and used in various applications, still the positioning performance 

achieved was based on the availability of up-to-date and reliable correction 

information. This was affected from the data transmission means, 

measurement scenarios and navigation environments. In addition, utilising 

GPS and its augmentation systems requires a deep consideration of LBS 

applications architecture and positioning requirements. 

 
� A set of preliminary experiments were conducted in different scenarios 

measuring the availability of GPS satellites, and quantifying the positioning 

performance achieved utilising standard DGPS and WADGPS systems such as 

EGNOS. The outcome of these preliminary experimental studies have 

confirmed that the visibility of GPS and EGNOS satellites as well as the 

overall perceived positioning performance is mainly subject to the navigation 

environments (urban, rural, open-space and indoor), the measurement 

scenarios also known as user activity (dynamic and static), and the available 

hardware resources (receiver sensitivity, data input/output formats, and DGPS 

capability). Therefore, these contextual factors were considered in the 

developed positioning model for sustainable and efficient performance. 

 
The strategy that was adopted in order to address the above conclusion and enhance 

the positioning performance of GPS for the intention of LBS applications was 

presented in this thesis in two steps as described below: 

 

1. An adaptive LBS framework was presented by introducing four new 

components for increasing the contextual awareness of the positioning 

technology, and also considering the associated application requirements. 

These components were described as user profile, application profile, 

advanced service profile and an intelligent selection function. The application 

profile presents two main groups of LBS applications with associated 
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performance requirements. The user profile describes the mobile device’s 

available resources and the user’s current situation such as the surrounding 

environment and activity. The information described in the application and 

user profiles were used to generate a set of contextual parameters affecting the 

positioning performance. These parameters along with the information 

described in the advanced profile can be utilised in order to formulate an 

intelligent selection function between the available positioning methods. The 

selection function was described with reference to the developed positioning 

model. 

 
2. A new hybrid positioning model increasing GPS positioning accuracy and 

service reliability for the intention of LBS applications was proposed and 

developed. The positioning model was implemented as client-server 

architecture including two main components, the Localization Server (LS) and 

the Mobile Unit (MU). The new model has incorporated both components for 

the purpose of switching the MU from standalone position determination to 

server-based positioning mode based on the LS, in case of augmentation data 

unavailability. The LS utilises two sets of WADGPS sources providing 

EGNOS and networked-DGPS correction data in order to efficiently augment 

the GPS measurements collected at the MU, and compute an advanced 

position solution. Two functional approaches consisting of several procedures 

have been designed and presented at both the MU and LS for GPS data 

processing and analysing, in order to achieve the best positioning service 

fulfilling the LBS application requirements.  

 
A comprehensive evaluation methodology was described and utilised in order to 

investigate the positioning model performance in terms of the achieved position 

solutions accuracy, precision, and service availability and reliability. The evaluation 

process consisted of experimental and simulation studies which were conducted 

taking into consideration several contextual factors as identified within the adaptive 

framework. This includes the navigation environment, measurement scenarios and 

available position sensing resources. The main conclusions of the evaluation process 

are summarised below:  
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� The experimental results have confirmed that the positioning model’s position 

computation methods (coordinate domain and raw domain), developed and 

implemented at the LS were able to deliver position solutions with improved 

accuracy and integrity levels comparing to the existing GPS/EGNOS 

positioning service, during all navigation environments and measurement 

scenarios. The raw domain positioning method has fulfilled the performance 

requirements for high accuracy demanding applications. Therefore, the 

positioning model is capable of delivering sustainable and advanced 

positioning services required for crucial LBS applications such as guiding 

blind and elderly pedestrian even in urban areas.  

 
� The average of position samples accuracy achieved from current GPS/EGNOS 

within the urban environment and during a dynamic measurement scenario has 

reached 5.1 m, comparing to 2.4 m and 1.9 m accuracy averages using the 

developed coordinate domain and raw domain positioning methods 

respectively. In the same concern, the corresponding integrity HPL values 

computed using EGNOS GEO data at the MU was 10.5 m comparing to 8.7 m 

computed using EGNOS/SISNET data at the LS. During the best measurement 

conditions (clear satellite view); the average of the position accuracy achieved 

from current GPS/EGNOS was 1.5, comparing to 1.2 and 0.9 m achieved 

using the coordinate domain and raw domain. Accordingly, the developed 

positioning methods have outperformed the existing GPS/EGNOS services in 

worst and best conditions. This was due to the guaranteed high availability of 

up-to-date and reliable augmentation data at the LS along with the efficiency 

of the functional approaches in processing and correcting all types of 

navigation data. This also validates the idea of having a dedicated server (LS) 

for data correction and position computation. 

 
� From the simulation results, it was concluded that highly accurate and reliable 

position samples can be obtained from combining future Galileo OS along 

with GPS standard positioning services. Using a statistical t-test, it was found 

that the raw domain positioning method was only capable of providing 

position samples with comparable accuracy to the hybrid positioning service 

offered by Galileo OS and GPS/EGNOS, only during the measurements 
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conducted at the rural environment. The hybrid positioning service has 

outperformed the developed positioning model in terms of the positions 

service accuracy and reliability in all remaining scenarios and navigation 

environments. This identifies the need for further development of the 

positioning model and investigating the possibility of integrating the future 

services within the same platform including the positioning model. 

 

8.2 Future Work 

 

As for the conclusions of this research project, advanced performance was achieved 

from the developed positioning model. However, this achievement might be 

considered insufficient for applications requiring position samples with errors below 

one meter (centimetre accuracy). In addition, the positioning model was not 

implemented in real-time scenarios, and the indoor environment was not considered 

within the navigation environments during the system evaluation. Therefore, it is 

proposed that further research should be carried out to improve the performance and 

validity of the positioning model. The following steps are suggested: 

 
� Follow the development of EGNOS, GPS and Galileo systems in order to 

integrate future broadcasted navigation signals, correction messages and 

integrity information within the positioning model. This will allow the 

provision of more reliable and accurate positioning services in all navigation 

environments. 

 

� Investigate the possibility of using Real-Time Kinemics (RTK) data for carrier 

phase pseudo-range error correction at the LS. This data is included within 

RTCM v3 messages and can be received from networked-based DGPS 

systems using the Ntrip communication protocol.  

 

� Utilise supplemental navigation information based on a pedestrian Dead 

Reckoning (DR) model in order to extend the capability of the positioning 

model for indoor environments. This step includes the implementation of the 

integrated domain positioning method at the MU using an Extended Kalman 

Filtering (EKF) approach as described in Section 5.7.3, or any efficient 

algorithm for navigation data fusion.  
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� Develop the post-processing functional procedures for real-time 

implementations of the positioning model, in which GPS measurements can be 

sent directly from the MU using the mobile network to the LS, where data is 

processed and corrected immediately. This implies utilising a set of applicable 

software and hardware components, and requires configuring a two way 

mobile communication channel for data transmission and reception  

 
The adaptive LBS framework, has not considered the LBS user’s point of view in 

describing the contextual factors affecting the positioning technology and 

remaining LBS components. Therefore, it is worth conducting an extensive survey 

collecting the opinions and experiences of different types of LBS users regarding 

the positioning technology performance requirements. This allows updating the 

user profile with more details such as the user’s preferences and characteristics. In 

addition, the research work needs to be extended considering the performance of 

current mobile networks and handheld devices providing new efficient resource 

optimisation methods for the intention of LBS applications.  
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Appendix A: Experimental Testing Locations 

 

Figure A.1: Fixing and Surveying Marker Point’s Coordinates   
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Figure A.2: Route 1(rural environment) measurements locations 

 

Figure A.3: Route 2 (urban environment) measurements locations  

 

 

Figure A.4: Route 3 (open space environment) measurements locations  
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Appendix B: Accumulative Experimental Results 

 
 
Overall positioning performance at all marker points on dynamic testing routes 1, 2 

and 3 (averages of 12 dynamic testing trials): 

 

Route 1 (Rural Environment): 

 

Rural GPS/EGNOS Coordinate Domain Raw Domain 

Marker A 2.03 1.27 0.93 

Marker B 2.27 1.67 1.26 

Marker C 2.97 2.14 1.71 

Marker D 2.55 1.76 1.49 

Marker E 2.12 1.4 1.28 

Total Average 2.39 1.65 1.33 

Table B.1: Accumulative accuracy performance at all marker points on route 1. 

 
 

Marker Point HDOP VDOP 

HPL at 

MU 

HPL at 

LS 

HMI at 

MU 

HMI 

at LS 

EGNOS GEO 

Availability 

Marker A 1.83 2.24 8.8 7.4 12% 7% 90% 

Marker B 2.1 2.57 8.3 7.5 10% 7% 90% 

Marker C 2.4 2.72 9.3 7.8 17% 8% 80% 

Marker D 2.2 2.7 9.2 7.8 15% 7% 85% 

Marker E 1.99 2.41 8.8 7.4 11% 6% 90% 

Total Average 2.1 2.53 8.86 7.59 13% 7% 86% 

Table B.2: Accumulative integrity and availability at all marker points on route 1. 
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Route 2 (Urban Environment): 

 

Marker Point GPS/EGNOS Coordinate Domain Raw Domain 

Marker F 2.66 1.7 1.26 

Marker G 2.48 1.51 1.27 

Marker H 3.19 1.7 1.37 

Marker I 3.64 2.06 1.34 

Marker J 3.91 2.09 1.57 

Marker K 4.6 2.36 1.77 

Marker L 5.11 2.42 1.97 

Marker M 3.22 2.22 1.44 

Marker N 2.93 1.59 1.32 

Marker O 2.67 1.45 1.25 

Total Average 3.4 1.9 1.5 

Table BC.3: Accumulative accuracy performance at all marker points on route 2.  
 

Marker Point HDOP VDOP 

HPL at 

MU 

HPL at 

LS 

HMI at 

MU 

HMI at 

LS 

EGNOS GEO 

Availability 

Marker F 2.3 2.56 9.6 8.3 19% 10% 80% 

Marker G 2.11 2.54 9.2 7.7 17% 10% 85% 

Marker H 2.3 2.64 9.8 7.8 21% 11% 75% 

Marker I 2.31 2.8 9.9 8.2 24% 10% 70% 

Marker J 2.51 2.94 10.1 8.1 24% 12% 70% 

Marker K 2.59 3.29 10.3 8.2 27% 13% 65% 

Marker L 2.75 3.64 10.5 8.7 28% 15% 65% 

Marker M 2.41 2.81 9.8 7.5 19% 9% 78% 

Marker N 2.28 2.78 9.5 8.1 18% 10% 82% 

Marker O 2.22 2.44 9.6 7.8 17% 10% 83% 

Total Average 2.4 2.8 9.8 8 21% 11% 75% 
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Table B.4: Accumulative integrity and availability performance at all marker points on route 
2 

 
Route 3 (Open Space Environment): 

 

Marker Point GPS/EGNOS Coordinate Domain Raw Domain 

Marker X 1.62 1.11 0.95 

Marker Y 1.64 1.17 0.96 

Marker Z 1.66 1.25 0.96 

Total Average 1.64 1.18 0.96 

Table C.5: Accumulative accuracy performance at all marker points on route 3. 
 

Marker Point HDOP VDOP 

HPL at 

MU 

HPL at 

LS 

HMI 

at MU 

HMI 

at LS 

EGNOS GEO 

Availability 

Marker X 1.64 2.02 7.7 6.8 7% 6% 96% 

Marker Y 1.55 1.96 7.5 6.8 8% 5% 96% 

Marker Z 1.75 2.03 7.3 6.9 7% 6% 94% 

Total Average 1.65 2 7.51 6.83 7% 6% 95% 

Table B.6: accumulative integrity and availability performance at all marker points on route 3 

 
Overall positioning performance at all static observation sites, averages of 24 hours of 

measurements: 

 

Observation Site  GPS/EGNOS Coordinate Domain Raw Domain 

Site 1 2.11 1.58 1.21 

Site 2 3.6 1.95 1.73 

Site 3 1.55 1.22 0.92 

Total Average 2.14 1.51 1.2 

Table B.7: Accumulative accuracy performance at all observation sites. 
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Observation Site HDOP VDOP 

HPL at 

MU 

HPL 

at LS 

HMI 

at MU 

HMI 

at LS 

EGNOS GEO 

Availability 

Site 1 2.3 2.7 9.2 7.6 15% 7% 80% 

Site 2 1.85 2.32 8.4 7.5 11% 5% 85% 

Site 3 1.67 1.88 7.6 7.1 6% 2% 96% 

Total Average 1.94 2.3 8.4 7.42 11% 5% 89% 

Table B.8: Accumulative integrity and availability performance at all observation sites. 
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