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Abstract

A new technique for the latent state estimation of a wide class of nonlinear time
series models is proposed. In particular, we develop a partially linearized sigma
point filter in which random samples of possible state values are generated at
the prediction step using an exact moment matching algorithm and then a linear
programming-based procedure is used in the update step of the state estimation.
The effectiveness of the new filtering procedure is assessed via a simulation example
that deals with a highly nonlinear, multivariate time series representing an interest
rate process.
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1 Introduction

This paper is concerned with the problem of latent state estimation for a
nonlinear time series in discrete time. Our analysis will focus on the general
class of systems with the following state space form:

X (k + 1) = f (X (k)) + g (X (k))W(k + 1), (1)

Y(k) = h (X (k)) + V(k), (2)

where X (k) and Y(k) are the respective state vector and measurement vector
at time tk; f,g and h are given nonlinear (vector-valued) functions; and both
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V(k) and W(k) are symmetric vector-valued random variables. The time in-
crement tk− tk−1 is assumed constant for all k. Moreover, we assume the noisy
measurement vector Y(k) is available for every tk. We wish to find an estimate
of the random vector X (k) based on information up to (and including) time
tk.

In the special case when f, h are affine in X (k), g is identity and V(k),W(k)
are Gaussian, the optimal recursive solution to the state estimation prob-
lem is given by linear Kalman filter, as first outlined in [1]. However, these
assumptions are often not justified in practice. Nonlinear and non-Gaussian
models are used to capture the dynamics of many phenomena occurring in
the fields of radar navigation, climatology, geosciences and financial modeling,
among others. The optimal recursive solution to the state estimation problem
in nonlinear systems requires the propagation of full probability density; for
an approximate solution of a more general nonlinear filtering problem, refer
to [2], for example.

Current approaches designed to address the nonlinear filtering problems usu-
ally fall under one of the following approximate Bayesian filtering methods:

(a) Extended Kalman filter (EKF). Under this filter, equation (1) or its con-
tinuous time analogue is locally linearized resulting in a linear state space
system. A Kalman filter is then employed to obtain the conditional state
density of X (k). This approach is popular in engineering for more than three
decades and standard textbooks such as [3], [4] carry an extensive discus-
sion of its theoretical underpinnings and implementation. Extended Kalman
filters based on piecewise linear discretization of the underlying continuous
time stochastic differential equation (also called local linearization filters)
are discussed in [5], among others. [6] offers a derivative-free version of ex-
tended Kalman filter which is particularly suitable for parameter estimation
in nonlinear oscillators.

If the system is indeed approximately linear then EKF will work well. Nev-
ertheless, such assumption is often not easy to validate.

(b) Sequential Monte Carlo filtering. This is also known as particle filtering.
For this technique, the required conditional density function of X (k) given
measurement Y(k) at time tk is represented by a set of random samples (or
particles) and associated probability weights. The particles and weights are
updated recursively as new measurements become available. Under fairly
general conditions, the estimate approaches the optimal Bayesian estimate
as the number of samples becomes sufficiently large; see [7], [8], [9] and the
references therein. It can perform significantly better than EKF for highly
nonlinear systems. However, as large number of samples need to be gener-
ated at each time tk this technique is computationally quite expensive to
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implement.

(c) Unscented filter. The class of filters called unscented filters or sigma point
filters provides an increasingly popular alternative to particle filters in sig-
nal processing applications and in geosciences. This type of filters may be
viewed as a compromise between an EKF and a particle filter. Several appli-
cations in communication, tracking and navigation are discussed in [10] and
[11]. Applications of this filtering technique are also reported in modeling
population dynamics [12], in estimation of a parametric model for earth-
quake ground motion [13] and state estimation in electrochemical cells for
battery management [14]. In [15], approximate methods are developed to
deal with the multiplicative uncertainty in the observation equation under
sigma point filtering framework .

The sigma point filters use closed-form recursive formulae based on the linear
Kalman filter to propagate the mean and the covariance of state vector; this
is essentially similar to the propagation equations in EKF. The system equa-
tions nonetheless are not linearized in this case. A small set of sample points
(or sigma points) is generated and propagated through the nonlinear transfor-
mation to compute the conditional moment estimates. In lieu of using a large
number of points and matching the distributions asymptotically (as in a par-
ticle filter), the sigma point filter uses a small set of sample points which are
chosen such that some of the moment properties of the a priori distribution
are matched exactly. While these filters have been used successfully in some
engineering applications, they suffer from several shortcomings as elaborated
below:

(a) The weights corresponding to probability masses are not guaranteed to be
non-negative. Thus, the sample points generated in these filters do not nec-
essarily define a valid distribution.

(b) There is no source of randomness in the filtering procedure because the al-
gorithms for generating samples are purely deterministic.

The ensemble filter, a variant of sigma point filter, is commonly used in geo-
sciences under which the state is sampled via the traditional Monte Carlo
sampling techniques and sample conditional moments are used (i.e. the
probability weights are assumed to be equal). This addresses both the short-
comings specified in (a) and (b). This technique was developed in [16] and
could also be found in [17]. A review of ensemble filtering techniques appears
in [18]. More recently, ensemble filter has been applied for magnetohydro-
dynamic systems in [19], with a view of using this type of techniques for
solar storm prediction. A potential shortcoming of ensemble filter is that a
very small number of samples is used as compared to the state space di-
mensions to compute the sample mean. This can lead to misleading results,

3



as indicated in [20].

(c) The computation of a square root of the state covariance matrix at each
time-step is required in a sigma point filter as well as in ensemble filters. If
the number of states is very large, this presents a hurdle in its computational
feasibility. This is usually the case for most problems in geosciences.

All of the above shortcomings were addressed in an earlier paper by the au-
thors [20], where a new sigma point generation procedure was employed to
match the first three moments exactly (as in the case of sigma point filters)
while also using randomly generated samples (as in the case of ensemble fil-
ters). This algorithm avoided the requirement of repeated covariance matrix
factorization in sigma point filters by only generating the samples of exogenous
noise at each time-step. However, [20] still uses a formula based on (3) below
for the Kalman filter-like update step. For linear Gaussian systems, Kalman
filter is a conditional mean estimator. The recursive filtering equations for
Kalman filter may be derived using a standard conditional mean relationship
for two Gaussian variables X ,Y [21]:

E (X|Y) = E (X ) + ΣXY Σ−1
Y Y (Y − E(Y)), (3)

where ΣY Y and ΣXY are covariance matrices. Even when V(k) and W(k) are
not Gaussian, Kalman filter is an optimal linear filter, in the sense that it
yields the minimum variance over all linear filters. However, neither of these
properties are relevant if the system is nonlinear. Hence, the motivation of
using Kalman filtering state estimator equations based on (3) in the sigma
point filter and its variants (including the one proposed in [20]) is not always
clear.

The purpose of this paper is to propose an alternative heuristic for the state
estimation of a nonlinear time series which does not use (3) in state estima-
tion at all and and seeks a state estimate which best matches the observations
in an appropriate deterministic sense. The algorithm uses linearized measure-
ment equation but preserves the nonlinearity of the state evolution equation.
Hence, we shall refer to this new filter as partially linearized sigma point fil-
ter (PLSPF). In PLSPF, we generate samples of exogenous noise in the state
evolution equation (1) using the exact moment-matching procedure in [22].
These noise samples are used to obtain samples of state prediction. The mea-
surement equation is linearized (similar to an extended Kalman filter) and a
set of linear programming problems is solved to obtain samples of the updated
state which best match the observations.

This paper is organized as follows. Section 2 sets out the algorithm in im-
plementing the partially linearized sigma point filter while section 3 outlines
briefly the underlying algorithm for sigma point generation. We include a
demonstration of the algorithm’s operation through a numerical example in
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section 4. More specifically, we illustrate the filtering procedure with a multi-
variate, nonlinear time series. Finally, some concluding remarks are given in
section 5.

2 A partially linearized sigma point filter

Suppose at time tk+1, the sample points (or sigma points)

W(i)(k + 1), i = 1, 2, . . . 2ns + 1

are available for the discrete time state space system (1)-(2) together with their
associated probability weights pi, i = 1, 2, . . . 2ns+1. Here, n is the dimension
of the vector W(k) (or in other words, the dimension of the state space in (1)).
We assume that the collection of samples W(i)(k + 1) matches a given mean
vector, covariance matrix and zero marginal skewness. The discussion of how
to generate W(i)(k + 1) is postponed until the next section.

A set of s probability weights determines the 2ns + 1 support points above;
details are given in the next section. In addition, the sample points of the
updated state estimate X (i)(k | k) are assumed to be available at time tk+1.

Remark: We observe that X (i)(k | k) is not sampled and the probability pi

for W(i)(k + 1) at each i is effectively assigned as the joint probability for the

occurrence of
[
W(i)(k + 1)> X (i)(k | k)>

]>
, where > denotes the transpose of

a matrix. In this respect the procedure is similar to some of the ensemble
filtering algorithms.

We assume that X (0) is a random vector with a known mean, known co-
variance matrix and zero marginal skewness in the initialization stage of the
procedure. Section 3 describes a procedure that can be employed to generate
the sample points X (i)(0|0) from a prior knowledge about the moments of
X (0). For k ≥ 0 and whenever the measurement Y(k + 1) becomes available,
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we present the steps in the computation of sigma points at time tk+1:

X (i)(k + 1 | k) = f
(
X (i)(k | k)

)
+ g

(
X (i)(k | k)

)
W(i)(k + 1), (4)

V̂(i)
Y (k + 1 | k) = Y(k + 1)− h

(
X (i)(k + 1 | k)

)
, (5)

X̂ (k + 1 | k) =
2ns+1∑

i=1

piX (i)(k + 1 | k), (6)

δ̃(i)(k + 1 | k + 1) =

arg min
δ(i)(k+1|k+1)

‖V̂(i)
Y (k + 1 | k)−H(i)(k + 1 | k)δ(i)(k + 1 | k + 1)‖1,

(7)

X (i)(k + 1 | k + 1) = X (i)(k + 1 | k) + δ̃(i)(k + 1 | k + 1), (8)

X̂ (k + 1 | k + 1) =
2ns+1∑

i=1

piX (i)(k + 1 | k + 1). (9)

The gradient matrix H(i)(k + 1 | k) for the vector valued function h at time
tk+1 is defined by

[H(i)(k + 1 | k)]jl =
∂hj

Xl

∣∣∣∣∣X (i)(k+1|k),

and ‖ · ‖1 denotes the 1-norm of a vector (which equals the summation of
absolute values of all elements).

Implementing the above algorithm yields the sigma points X (i)(k + 1 | k + 1),
i = 1, 2, . . . , 2ns + 1, along with the expected values of the predicted and the
updated state estimate, i.e., X̂ (k+1 | k) and X̂ (k+1 | k+1), respectively. Note
that the 1-norm minimization in (7) can be achieved by linear programming.

If ε̂(i) is the minimum cost and if δ̃(i)(k + 1 | k + 1) are the decision variables
which achieve this minimum, it is easy to see that there exist V(i)(k + 1) such
that

Y(k + 1) = h(X (i)(k + 1 | k)) + H(i)(k + 1 | k)δ(i)(k + 1 | k + 1) + V(i)(k + 1)

holds and ‖V (i)(k+1)‖1 ≤ ε̂(i). In other words, corresponding to each X (i)(k+
1 | k), the procedure finds (vector-valued) measurement noise which causes the
smallest error as measured by the 1-norm between the linearized prediction of
h(·) around X (i)(k + 1 | k) and the actual observation Y(k + 1).

We re-emphasize that the main idea of this exercise is to preserve some of
the nonlinearity in the system dynamics while generating the state estimate
and can (possibly) do better than extended Kalman filters without having to
resort to the computationally expensive sequential Monte Carlo-based esti-
mation. Note that solving a small number of linear programming (LP) based
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optimization problems with n decision variables will usually be cheaper than
doing a Monte Carlo simulation with n correlated random variables. LP prob-
lems can be solved extremely efficiently (theoretically, in polynomial time) and
several good LP solvers are commercially available; see [23] for more details on
linear programming algorithms. The proposed formulation can also be modi-
fied easily to account for a situation where there are upper and lower bounds
imposed on the unobserved states due to dynamics of the system; see [24]
for example. Solving an LP problem with several hundred variables and con-
straints in a few seconds on an ordinary desktop is a reasonable expectation
given today’s technological advancement in computing. Furthermore, this pro-
cedure eliminates the need of knowing the information about the parametric
form of distribution of the measurement noise, which is not always available.

Finally, the special case when h is linear is worth mentioning. When h is
linear, H is a constant matrix and the measurement equation can be written
as

Y(k + 1) = HX (k + 1) + V(k + 1).

In this case, the 1-norm minimization problem

min
X (k+1|k+1)

‖Y(k + 1)−HX (k + 1 | k + 1)‖1

has a unique solution. One simply needs to solve this single linear programming
problem and need not use the samples X (i)(k+1 | k) in computing X (i)(k+1 |
k + 1). Moreover,

X (i)(k + 1 | k + 1) = X (j)(k + 1 | k + 1) =: X̂ (k + 1 | k + 1)

holds. The sampling procedure is still required for W(i)(k + 1) if the expected
value of prediction, X̂ (k + 1 | k), in (6) needs to be determined. Time series
models with nonlinear f and g in (1), but a linear h in (2) commonly occur in
econometric models. The most prominent class of models with this structure
includes the Cox-Ingersoll-Ross (CIR) model, which is employed to model in-
terest rates. This popular class of models has been widely discussed in the
literature; see [25] and [26], among others. The instantaneously compounded
interest rate in these type of models is unobservable and has to be inferred
from observed interest rates using a nonlinear filter; see [26] for the use of ex-
tended Kalman filter in CIR-type interest rate models. Clearly, the algorithm
proposed here can provide an intuitively attractive and computationally af-
fordable alternative to EKF, which does not rely on linearization of the state
evolution equation.

In the above algorithm, we have assumed that a procedure to generate a set
of sigma points W(i)(k + 1), i = 1, 2, . . . 2ns + 1 with the desired statistical
properties is available. The next section outlines such a procedure in gen-
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erating a symmetric discrete distribution that matches a given mean vector
and covariance matrix exactly without requiring an additional optimization.
This procedure was first suggested in [22] and has been used in nonlinear fil-
tering context in [20]. A summary of this procedure is provided here for a
self-contained presentation of our proposed method in latent state estimation.

3 Generation of sigma points

3.1 Notation

In outlining the sigma point generation algorithm, we shall use the following
notation:

n number of random variables (or dimension of a random vector),

s number of samples

Φ target mean vector

R target covariance matrix

Our aim is to generate samples from a symmetric distribution with a specified
mean vector and a specified (positive semi-definite) covariance matrix. Recall
that a symmetric matrix R is said to be positive semi-definite if R ≥ 0, i.e., its
eigenvalues are all non-negative. The sigma point generation algorithm given
in the next subsection forms a part of the filtering procedure described in
section 2, as it is used to generate G := W(i)(k + 1), i = 1, 2, . . . , 2ns + 1
which match a given mean vector Φ, a given covariance matrix R and have a
symmetric marginal distribution.

3.2 Algorithm for generating sigma points

Following [22], an algorithm adapted for sigma point generation is outlined
below.

(i) Decompose a matrix R as R = LL> where L is a symmetric positive
definite matrix. For a symmetric positive definite R, L is unique and is
called the square root of the matrix R; see, e.g. [27] and the references
therein for the methods of finding L.

(ii) Generate qi ∈ [2ns,∞], i = 1, 2, . . . , s. The qi’s may be generated using
any deterministic algorithm or using a random number generator.

(iii) Write pi := 1
qi

, i = 1, 2, . . . , s and ps+1 := 1− 2n
∑s

i=1 pi.
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(iv) Define a multivariate discrete distribution G over a support of 2ns + 1
points as follows:

P
(
G = Φ +

1√
2spi

Lj

)
= P

(
G = Φ− 1√

2spi

Lj

)
= pi,

j = 1, 2, . . . , n, i = 1, 2, . . . , s,

P (G = Φ) = ps+1. (10)

where Lj denotes the jth column of a matrix L.

The steps (i)-(iv) constitute the procedure to generate sigma points having Φ
as the mean vector, R as the covariance matrix and zero marginal skewness.
In sequential state estimation, step (i) is not necessary to be repeated when
the covariance matrix has to remain the same throughout multiple time-steps.
In various practical applications, the noise covariance matrices are usually
assumed to be constant. Hence matrix factorization is not needed at each
time-step in the filtering process.

The distributional properties of these samples are summarized in the following
result:

Lemma 1 (1) For pi defined as above, pi ≥ 0, i = 1, 2, . . . , s and 2n
∑s

i=1 pi+
ps+1 = 1.

(2) For G defined as above,

E[G] = Φ, (11)

E
[
(G − Φ)(G − Φ)>

]
= R, (12)

E
[
(Gi − Φi)

3
]

= 0. (13)

Proof : See [20].

From Lemma 1, note that the exact values of the weights pi have no impact
on matching of moments Φ and R, so long as they form a valid probability
measure. In situations where G(k) itself represents a discrete time stochastic
process, we could choose random probability weights {pi} at each time k and
generate a different realization of G(k) at each time k. Of course, we may
choose to use deterministic pi’s instead if desired.

4 Numerical example

We consider an Euler-discretized version of a 2-factor, square root affine inter-
est rate model as described in [26] to demonstrate the implementation of the
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new filtering method. This model is a generalization of the CIR model first
proposed in [25]. In this model, the two unobservable states X1(k) and X2(k)
are assumed to evolve according to the following equations:

Xj(k + 1) = κjθj∆ + (1− κj∆)Xj(k)

+σj

√
Xj(k)∆Wj(k + 1), j = 1, 2, (14)

where W1(k) and W2(k) are independent standard normal random variables
at each time tk. The time period between two successive samples is assumed
to be ∆ := tk− tk−1 = 1/250. The measurable functions of these states, Yi(k),
are given by

Yi(k) =
2∏

j=1

Ai,j exp


−

2∑

j=1

Bi,jXj(k)


 + Vi(k), (15)

where Ai,j =

(
2φj,1 exp(φj,2Ti/2)

φj,4

)φj,3

, Bi,j =
2

(
exp(φj,1Ti)− 1

)

φj,4

and φj,1 =
√

(κj + λj)2 + 2σ2
j , φj,2 = κj + λj + φj,1, φj,3 = 2κjθj/σ

2
j , φj,4 =

2φj,1 +φj,2(exp(φj,1Ti)−1). In these equations, κj, θj, σj and λj are constants.
Here, Ti is a non-negative number which, in practice, represents the time to
maturity of a pure discount bond and Yi(k) is the corresponding price of the
bond at time tk. Note that each Ti only appears in the measurement equation
for Yi(k). We assume that Y1(k), Y2(k), etc are observed in noise Vi(k) which
is bounded and have a mean of zero.

Remark 2 One may use − log(Yi(k)) as a measurement, which yields a lin-
ear measurement equation in Xj(k). We shall use Yi(k) as a measurement to
illustrate the performance of the proposed filter wherein the state space system
involves a nonlinear unobservable dynamics as well as a nonlinear measure-
ment equation.

The parameters used for this model are the same as those used in the numerical
demonstration in [26] and are presented in Table 1.
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Table 1. Parameters in the implementation of the system specified
in (14)-(15).

κ1 0.0718 σ1 0.2160

κ2 0.7830 σ2 1.2200

θ1 4.3000 λ1 −0.2130

θ2 1.6400 λ2 −0.9140

We will use T1 = 0.5, T2 = 1, T3 = 2 and use the corresponding Y1(k), Y2(k)
and Y3(k) as the observations at each time tk. This gives a two-state, three-
measurement state space system. Based on a simulated observation sample
path, we wish to see whether we can predict Yi(k+1 | k) at each tk accurately,
where

Yi(k + 1 | k) =
4s+1∑

l=1

νl

2∏

j=1

Ai,jexp


−

2∑

j=1

Bi,jX (l)
j (k + 1 | k)


 .

Here, 4s + 1 is the total number of sigma points for W(i)(k + 1) (since n = 2)
and νl’s are the corresponding 4s + 1 probability weights. We would like to
compare the predictive ability of the PLSPF proposed here to that of the EKF.
At time tk+1, EKF uses linearized versions of equations (14) -(15) around the
updated state estimate X̂ (k | k) at time tk and then uses the standard Kalman
filter for state prediction and update. The formulae for the EKF based on (3)
are not repeated here; the reader is referred to standard textbooks such as [4].
Alternatively, [20] provides the formulae with a notation similar to the one
used in this paper.

To measure the performance of a filter, we consider the average of root mean
squared error (AvRMSE) as well as the average of mean relative absolute
error (AvMRAE) in one step ahead predictions. The root mean squared error
(RMSE) for a measurement Yj and for a particular sample path i is given by

RMSE (i,j) =

√√√√ 1

M

M∑

k=1

( (Yj(k + 1))i − (Yj(k + 1 | k))i )
2,

where M is the time horizon. Here (Yj(k + 1))i (respectively, (Yj(k + 1 | k))i)
denotes the noisy observation of Yj(k + 1) (respectively, the prediction of
Yj(k + 1 | k)) for the ith sample path. AvRMSE j is computed as the sample
mean of RMSE (i,j) over different sample paths i,

AvRMSE j =
1

N

N∑

i=1

RMSE (i,j), j = 1, 2, 3.
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In a similar fashion, MRAE for measurement Yj and sample path i is defined
by

MRAE (i,j) =
1

M

M∑

k=1

|(Yj(k + 1))i − (Yj(k + 1 | k))i|
(Yj(k + 1))i

and AvMRAE j is computed as the sample mean of MRAE(i,j) over different
sample paths i, i.e.,

AvMRAE j =
1

N

N∑

i=1

AvMRAE (i,j), j = 1, 2, 3.

Both these functions of prediction error, AvRMSE j and AvMRAE j, are com-
puted over N=100 sample paths, with each path consisting of M=250 time-
steps, for each of the three measurements Y1(k), Y2(k) and Y3(k). At each
time-step only 13 samples or sigma points are generated, which corresponds
to choosing s = 3 for the algorithm in section 3.2. The results of this error
analysis for PLSPF are reported in Table 2. Figure 1 on the other hand dis-
plays a graphical comparison between the simulated Yj(k +1) (solid line) and
the predicted Yj(k + 1 | k) (dashed line) for one particular sample path. The
mean computation time per sample path for PLSPF was 65.88 seconds, with
the maximum time per sample path being 71.03 seconds. In other words, the
performance with PLSPF is achieved at the cost of only around 0.27 seconds
per time-step. The experiments were also repeated for four measurements and
three states and the mean computation time per sample path in this case
was 117.15 seconds (detailed results in this case are omitted for brevity). This
computation was carried out on a desktop with Pentium IV core duo pro-
cessor (2.4 Ghz), running MATLAB version R2007b on Windows XP. The
computation time can easily be improved by employing a purpose-written op-
timization code or a higher specification machine. Clearly, this computation
time is affordable even for real time processing involving applications where
the estimation of state dynamics is sufficiently slow, such as on-line estimation
problems in many chemical processes.

Table 2 : Average errors in predicting Yj(k + 1) with PLSPF
(average over 100 sample paths, with 250 time-steps in each

sample path).

j = 1 j = 2 j = 3

AvMRAEj 0.000498 0.000589 0.000795

AvRMSEj 0.000525 0.000616 0.000764

The state estimation results with EKF in the present example were signifi-
cantly worse, with the filter diverging in 60 out of 100 sample paths and yield-
ing extremely large errors. The average errors over the remaining 40 sample
paths were still high, even with the lowest average error being over ten times
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Fig. 1. Prediction for Y1(k), Y2(k) and Y3(k) using PLSPF
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the corresponding error with the PLSPF, as can be seen from Table 3.

Table 3 : Average errors in predicting Yj(k + 1) with EKF (average
over 40 sample paths on which the filter did not diverge, with 250

time-steps in each sample path).

j = 1 j = 2 j = 3

AvMRAEj 0.006915 0.014729 0.034515

AvRMSEj 0.013974 0.030556 0.074106

These numerical experiments clearly indicate the superiority of the proposed
algorithm over the EKF for nonlinear systems of the form (1), in the case
when the measurement equation is sufficiently smooth.

5 Concluding remarks

In this article, we put forward a new filtering heuristic for nonlinear and non-
Gaussian systems, which we refer to as partially linearized sigma point filter
(PLSPF). This algorithm shares some of the advantages of the modified sigma
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point filter proposed in [20], in the sense that the state covariance matrix need
not be factorized at each step and the first three moments are exactly matched
during sigma point generation. However, unlike conventional sigma point fil-
ters, the state update step in PLSPF does not use closed-form formula based
on the Gaussianity assumption. Instead, a simple and intuitively appealing
optimization is utilized where the measurement equation is linearized and
the updated state which best matches the given observations in an appro-
priate deterministic sense is found. We demonstrated the implementation of
the algorithm through a detailed numerical example involving a nonlinear,
multivariate time series. The proposed method is a computationally simpler
and attractive alternative to particle filtering for nonlinear time series in en-
gineering as well as in econometric modeling applications in decision sciences.
Further, it also provides a very useful alternative to traditional sigma point
filters in engineering and ensemble filters in geosciences.
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