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Abstract: In order to proceed along an action sequence,
an autonomous agent has to recognize that the intended
final condition of the previous action has been achieved.
In previous work, we have shown how a sequence of ac-
tions can be generated by an embodied agent using a
neural-dynamic architecture for behavioral organization,
in which each action has an intention and condition of sat-
isfaction. These components are represented by dynamic
neural fields, and are coupled tomotors and sensors of the
robotic agent.Here,wedemonstratehow themappingsbe-
tween intended actions and their resulting conditionsmay
be learned, rather than pre-wired.Weuse reward-gated as-
sociative learning, in which, over many instances of exter-
nally validated goal achievement, the conditions that are
expected to result with goal achievement are learned. Af-
ter learning, the external reward is not needed to recog-
nize that the expected outcome has been achieved. This
method was implemented, using dynamic neural fields,
and tested on a real-world E-Puck mobile robot and a sim-
ulated NAO humanoid robot.

Keywords: Neural Dynamics; Cognitive Robotics; Behav-
ioral Organization

1 Introduction
Recently, some of us have introduced a computational
neural-dynamicmodel of intentional actions, based onDy-
namicNeural Fields [15, 16]. Intentional actions are named
as such due to Searle’s theory of intentionality [24]. Two
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control components are essential for any intentional ac-
tion: a perceptual representation of the intention itself,
which must also be useful for guiding the motor system
(such as the foveal location of a target object), and a rep-
resentation of the condition of satisfaction useful for sig-
naling that the objective, or goal, of the action has been
successfully achieved.

In our model, intentional actions are represented in
the neural-dynamic controller by elementary behaviours
(EBs), each consisting of a neural-dynamic realization of
intention and condition of satisfaction (CoS). The frame-
work of Dynamic Neural Fields (DNFs) was used to im-
plement the intention and CoS as attractor dynamics, de-
fined over continuous parameter spaces [17, 19, 21], and
coupled to the sensory and motor systems of the embod-
ied agent. The intention DNF represents the sensorimotor
parameters of the current action and directs the agent’s
attentional shifts and movements. The CoS DNF receives
perceptual input and is activated when this input over-
laps with an internal bias, projected from the intention
DNF, which specifies the desired final state of the action.
Complex actions require coordination between a number
of simpler EBs, such that each EB is activated in the ap-
propriate order, persists as long as necessary in order to
achieve its behavioral goal, and is ultimately deactivated
once the goal is achieved.

We have previously demonstrated how sequences of
goal-directed actions may be generated in this neuraldy-
namic framework for behavioral organization by linking
the neural-dynamic architecture to sensors and motors of
a humanoid robot [15, 16].We have also demonstrated how
sequences of EBs may be learned from delayed rewards
by combining the neural-dynamic architecture with rein-
forcement learning [26], bymaking use of eligibility traces
that are implemented as neural dynamic item-and-order
working memory [12]. In that prior work, the structure of
an EB – i.e., the coupling between the intention and the
CoS DNFs that encodes the anticipated outcome of an ac-
tion – was pre-wired during design of the neural-dynamic
architecture. For instance, the intention of the EB “search
for color” encoded the color of the object, at which the
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robot’s gaze should be directed. The connection weights
between the intention and the CoS DNFs of this EB were
chosen such that the CoSDNFwas biased to be sensitive to
this color, present in the central portion of the camera im-
age. In thepresent article,we explore how this link froman
active intention to a CoS may be learned autonomously by
a reward-driven associative learning process, fully within
theneural dynamics framework.Wedemonstrate the func-
tioning of the developed neural-dynamic architecture for
learning conditions of satisfaction in two example scenar-
ios with embodied robotic agents: a simulated NAO robot
and a physical E-Puck robot.

2 Dynamic Field Theory

2.1 Overview

Dynamic Field Theory originates in analysis of the activa-
tion dynamics of neuronal populations. Activation of such
neuronal populations during a perceptual or motor task
canbemodelledby aneural field,which assumeshomoge-
neous connectivity among neurons in the population and
averages away the discreetness of individual neurons and
the spiking nature of their activation. Amari [1], Wilson
and Cowan [29], and Grossberg [9] were among the first
to mathematically formalise the activation of a neuronal
population as a Dynamic Neural Field (DNF) equation:

τu̇(x, t) = −u(x, t) + hu + Sfu(x′, t)ω(x′ − x)dx′ + It(x, t).
(1)

Here, the activation of a DNF is denoted by u(x, t), where x
is the parameter that spans the dimension over which the
DNF is defined – i.e. a behavioural dimension, to which
the neurons in the modelled population are sensitive. t is
time, τ is the time-constant of the dynamics that deter-
mines how fast the activation converges towards the at-
tractor, defined by the three last terms on the right hand-
side of the equation: the negative resting level hu, the ho-
mogeneous lateral interactions, shaped by the interaction
kernel ω, typically a sum of Gaussians with a narrow pos-
itive part and a broader, but weaker negative part (“local
excitation, global inhibition” or “Mexicanhat” kernel) and
by the output non-linearity of the DNF, f [·], typically a sig-
moid; the last termof the equation is external input,which
drives the DNF and comes either from another DNF (neu-
ronal population) or a sensory system.

Lateral interactions of a DNF ensure the existence of
a localised activity bump as a stable solution of the dy-
namics, described by Eq. 1: in response to a distributed,

noisy input, a DNF builds a localised bump of positive ac-
tivation, which is stabilised against decay by the positive
part of the interaction kernel and against spread by its neg-
ative part. These localised activity bumps, or peaks, are
units of representation in Dynamic Field Theory of Em-
bodied Cognition [21], in which DNFs are used to model
behavioural signatures of perceptual and motor decision
making, working memory, category formation, attention,
recognition, and learning [11, 17, 25]. DNF architectures of
various cognitive functions were used to both model hu-
man behavioural data and to control autonomous robots,
in order to demonstrate that the architectures may indeed
be embodied and situated [7, 19].

The ability ofDynamicNeural Fields to formand stabi-
lize robust categorical outputs from noisy, dynamical, and
continuous real-world input are the basis for their use in
the sensorimotor interfaces of cognitive systems, includ-
ing cognitive robots [3]. DFT has been applied across a
number of domains in robotics, from low-level navigation
dynamics with target acquisition based on vision [2], ob-
ject representation, dynamic scene memory, and spatial
language [19] to sequence generation and sequence learn-
ing [12, 18].

These activation peaks in DNFs represent perceptual
objects or motor goals in the DFT framework. Multiple
coupled DNFs spanning different perceptual and motor
dimensions can be composed into complex DNF archi-
tectures to organize robotic or model human behavior. A
single DNF builds a stable localised peak that may track
the sensory input. In order to generate a sequence of be-
haviours, an additional mechanism is needed, which al-
lows this attractor solution to be destabilisedwhen the be-
havioural goal of the current action is achieved. This led to
development of the building block ofDNFarchitectures for
behavioural organisation – an Elementary Behavior that
ensures that dynamical attractors are stabilised and desta-
bilised as the agent proceeds from one behaviour to the
next one. We present these building block next.

2.2 Elementary Behaviors

An elementary behavior in DFT (Fig. 1; [16]) consists of in-
tention and condition of satisfaction DNFs. An intention
DNF either primes the perceptual system of the agent (e.g.
to cue it to be more sensitive to a particular feature) or
drives the motor dynamics of the agent directly (e.g. set-
ting attractors for the motor dynamics). The CoS DNF in
turn receives a top-down bias from the intention DNF that
specifies which perceptual inputs are signalling the suc-
cessful completion of the intended action. To enable this,
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two inputs converge on the CoS DNF: one from the inten-
tion DNF and one from a perceptual DNF, which is con-
nected to a sensor and builds activity peaks over salient
portions of the sensory stream. If the two inputs match in
the dimension of the CoS DNF, an activity peak emerges in
this field, inhibiting the intention DNF of the EB. The in-
tention DNF follows the generic DNF equation, Eq. (1).

Equation 2 describes our dynamics for a CoS DNF:

τv̇(y, t) = − v(y, t) + hv + R(t) + Sfv(y′, t)ω(y′ − y)dy′

+ Sm[W(x, y, t)]f [u(x, t)]dx + Isens(y, t). (2)

Here, v(y, t) is activation of the CoS DNF, where y is the
parameter which corresponds to a perceptual feature to
which the CoS DNF is sensitive. Isens(y, t) is the sensory
input that comes from a perceptual DNF, which in turn
is directly coupled to the agent’s sensors. R(t) is the re-
ward signal, which provides a global boost to the CoS field
when an internal drive is satisfied. W(x, y, t) is the two-
dimensional weight function that projects positive activa-
tion of the intention DNF onto CoS DNF. Learning dynam-
ics for this weight function are described in Section 3.

Figure 1: Schematic representation of a generic elementary behav-
ior.

The intention and CoS DNFs are associated with in-
tention and CoS nodes, respectively. These nodes facili-
tate the sequential organization of EBs.While theDNFs are
relevant for intra-behavior dynamics, such as selection of
the appropriate perceptual inputs for a given behavior, the
nodes play a role on the level of inter-behavior dynamics
(i.e., switching between behaviors). In previous work, we
have shown how EBsmay be chained according to rules of
behavioral organization [15, 16], serial order [5, 6, 18], or
the value-function of a goal-directed representation [12].

Super-threshold activation of the condition of satisfac-
tion DNF generates a signal, which denotes that the inten-

tion of its EB is successfully achieved. For instance, the
CoS DNF for the behavior ‘find the red object’ would detect
whena large red object is present in the visual field. Activa-
tion of the CoS is determined both by the particular dimen-
sion(s) of the given CoS field, as well as the synaptic con-
nection weights from the intention field to the CoS field.
While the dimensions of the field reflect which sensory di-
mensions the robot is sensitive to, the weights shape the
preactivation in the CoS field and make specific regions of
the field sensitive to perceptual input. This can be thought
of as an anticipatory attentional bias.

In our previous work, the intention to CoS weights W
(see Eq. 2) were ‘hardcoded’ into the architecture. The di-
mensions of the CoS field and the synaptic weights con-
verging onto the field were designed such that they would
produce super-threshold CoS activation (i.e., a peak in the
CoS field) under the desired conditions. Although such
hardcoded constraints have successfully been shown to
generate desiredbehaviors in robotic agents (see e.g., [15]),
we next address the question of how the structure of an EB
can be learned without a priori design of the intention to
CoS coupling.

3 Learning a Condition of
Satisfaction

Here, we present a DFT mechanism for learning a con-
dition of satisfaction through reward-gated associative
learning. The basic Elementary Behavior is augmented
with adaptive weights from the intention field to the CoS
field. The learning rule tunes the weights when a reward
signal is received, increasing weights that connect to the
CoS DNF’s features that are present in the stimuli, and de-
creasingweights to the locations of the CoSDNF that corre-
spond to features that are not present. Features could cor-
respond to many different characteristics of the environ-
ment, depending on the robot and the desired behavior.
One of the simplest features is color (which is what we use
in our experiments). The learned values of the weights ul-
timately specify which perceptual features were most of-
ten associated with reward. After learning, the function
of the weights is to boost the CoS field locally, by priming
the features which were learned to be associated with re-
ward. Once those features are perceived, the activity of the
CoS field reaches threshold, signalling that the active be-
haviour has achieved its goal, at which point the reward
signal driven by an internal drive is not needed.

In the present work, the reward signal is designed
to come from a teacher, who could be training the robot

Bereitgestellt von | UZH Hauptbibliothek / Zentralbibliothek Zürich
Angemeldet

Heruntergeladen am | 22.02.16 14:14



Learning the Condition of Satisfaction of an Elementary Behavior | 183

Figure 2: Architecture for CoS learning.

how to complete its elementary behaviors. This is simi-
lar in spirit to work involving the SAIL robot, which was
trained to perform obstacle avoidance in real time by re-
ward and punishment signals coming from following a
teacher’s proper and timely usage of “good” and “bad”
buttons [28].

An alternate interpretation that doesn’t require a
teacher is that the rewarding signal is associated with in-
nate internal drives. As mentioned, these drives can be
similar to theprototypical drives suggestedbyWoodworth,
e.g. hunger and thirst [30]. Drives such as these serve as
internal forces that initiate behaviors and agents are re-
warded when the drives are satisfied [10].

The behaviors learned in order to satisfy these drives
can be internalized, and recalled, in circumstances similar
to those involving drive satisfaction, but where there is no
actual (external) satisfaction (reward signal). Even though
the agent does not achieve actual immediate reward of the
type that satisfies the primitive internal drive that caused
the behavior to be formed, it may find the behavior use-
ful in another context, perhaps in combination with other
behaviors, to reach an alternate source of reward.

3.1 Reward Gated Associative Learning in
Dynamic Fields

The DFT learning process leads to the formation of mem-
ory traces in the mapping between the intention and CoS
dynamic neural fields. Fig. 2 illustrates a sketch of the
learning architecture.

There are two dynamic neural fields, for intention and
CoS, respectively, each following Equation (1) and Equa-
tion (2), respectively. The intention DNF builds activity
peaks with different locations in the field’s dimension de-
pending on the currently active internal drive (primary in-

tention) and activates the agent’s behavior (action). The
CoS field receives input from the perception DNF and in-
put from the Intention DNF through a weight matrix.

The reward signal, R(t) in Eq. (2), provides a global
boost to the CoS field, with the purpose of pushing per-
ceptually induced activations above the output threshold,
to enable learning of weights between the active regions of
the intention andCoSDNFs.We conceptualized the reward
signal as binary (R(t) ∈ {0,1}).

Figure 3: Experiment environments for E-Puck (Left) and NAO
(Right).

The two-dimensional weight function, W(x, y, t),
maps the output of the intention DNF onto the CoS DNF,
as shown in Fig. 5. W(x, y, t) is updated according to the
reward-driven learning rule:

τlẆ(x, y, t) = λR(t) −W(x, y, t) + fv(y, t) · fu(x, t) (3)

Note that the weights are only updated when a nonzero
reward signal R(t) is perceived. The intention field output
f [u(x, t)] also gates the learning, such that weight values
can only be updated along the “ridge” of W(x, y) selected
by intentionfieldpeak location x. Forweightswithout sup-
port from the CoS field f [v(y, t)], their values will decay ac-
cording to −W(x, y, t). The weights with perceptual sup-
port have their values increased. λ is a learning rate pa-
rameter.

Fig. 5 shows an example of a mapping between
two, one-dimensional, intention and CoS dynamic neural
fields. In this case, the coupling between them is 2D, and
can be visualized easily. The effects of the weights are vis-
ible between the fields as two “preshapes” in the 2D field
(also called memory traces which are subthreshold activ-
ity bumps), indicating, for two different intentions, which
regions of CoS field they boost, if activated.

The intention peaks can be thought of as behavioral
indices. A given behavior terminates once its associated
CoS field goes above threshold. The CoS field gets input
from the perceptual system (not shown), and is driven
above threshold in the caseswhere the input stimulimatch
the preshape location.

After learning, one can see the effect of the weights,
by referring back to Eq. 2. Based on how the intention field

Bereitgestellt von | UZH Hauptbibliothek / Zentralbibliothek Zürich
Angemeldet

Heruntergeladen am | 22.02.16 14:14



184 | Matthew Luciw et al.

Figure 4: One of the E-Puck’s intentions is satisfied by perception of
the color red. If that intention were active, this would be a reward-
ing state for the robot. If the other intention were active, this would
not be rewarding. When the reward signal is positive, all colors de-
tected in the image are gradually associated with the CoS for that
intention. It is essential for the robot to see different background
colors. Of course, if one never sees a teacup apart from its saucer,
one will never understand they are two separate objects.

output peak selects x′ in the x dimension, and the corre-
sponding y dimension (the CoS activity) is boosted accord-
ing toW(x′, y).

In our simulations, function m in Eq. (2) which we
call a “maturity” function, controls the transition between
the learning phase to exploitation phase.m outputs a zero
during a “guided learning” phase, in which intention has
no effect on the CoS field. In this phase, external rewards
from the teacher lead to peaks in the CoS field due to the
boosts from these external rewards alone. In this phase,
external reward is necessary for the weights to undergo
learning. In the exploitation phase, mpasses its input to
its output so that the intention DNF biases the CoS field
according to the learned weights.

The agent’s learning of Wshould be mature enough,
such that a CoS peak can result in the proper condi-
tions without an external reward. The guided learning
phase will be useful when the agent is “immature”, ei-
ther in the sense of being too young to have learned a
properW, or having learned an improperWthrough some
means, which now needs to be corrected. Alternatively,
the weights could be used directly in both phases. In this
case, the resting level of the CoS field should depend on
the number of positive (learned) weights in the matrix W.
In the beginning of learning, the strength of the summed
weights is low and leads to a low resting level of the CoS
DNF, which now cannot build activity peaks without the
external reward (drive satisfaction). Later in the learning

Figure 5: Example weighted mapping between one-dimensional
intention and CoS dynamic neural fields.

processes, the resting level of the CoS DNF is higher, so
that the perceptual input and the weighted input from the
intention field alone are enough for the activity peaks to
be formed in the CoS DNF. Functionally, both these mech-
anisms are equivalent and here we choose a better con-
trolled (but less autonomous) mechanism using the “ma-
turity” function.

4 Implementation and Results
In order to illustrate the working of our learning mecha-
nism, we present implementations on two robots – an E-
Puck, and a Nao, with the latter tested in a simulated envi-
ronment (usingWebots [27]). The robots and their environ-
ments are shown in Fig. 3. Both robots receive visual input
from their cameras through a visual perceptual DNF. This
DNF spans over dimensions of color and location along
the horizontal dimension of the image [15, 18] and builds
activity peaks at positions that correspond to salient col-
ored objects. Other feature dimensions have been used in
other Dynamic Field Theory architectures [8], and could
similarly be used with this mechanism as well.

The E-Puck was equipped with a new color camera
(with higher frame-rate and resolution than the onboard
camera), and was placed in a square enclosure, contain-
ing a red apple, a yellow block, and multi-colored distrac-
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tor items and surroundingwalls. TheNAOhumanoid robot
was placed in front of a table with a pink block and a blue
block, in front of a color-changing background wall.

Each robot switches between two elementary behav-
iors during learning. Activation of the respective inten-
tions for the E-Puckwas controlled by the teacher, through
an interface. The NAO intentions were switched back and
forth on a timer. Each EB intention did not initially have
a defined Condition of Satisfaction, meaning the weight
mapping was initially set to all zeros. These weights were
learned over each experiment.

Whereas the E-Puck implementation did not use mo-
tor behavior, instead being controlled by the teacher,
the NAO used a random ‘babbling’ motor behavior. More
specifically, the E-Puck switched between various views,
with different multi-color backgrounds, while the Nao
switched between two focus points over a background sur-
face that switched colors.

The learning process we described in Section 3 was
utilized in both situations. The weight learning was gated
by reward to associate the features (colors) that corre-
sponded to the eventual satisfying condition. The E-Puck
rewards were given by the teacher, while the NAO rewards
were automated such that the reward was given as a con-
stant signal for a short time after the intention and envi-
ronment conditions matched.

Figure 6: Snapshots of the E-Puck’s dynamic fields during the learn-
ing. Left: The primary intention (drive) “thirst” is activated, which
is satisfied by perception of the yellow color. When the rewarding
signal is received, three colors are prevalent in the observed scene
– yellow, red, and blue, and these all leave memory traces in the
weights connecting the intention and the CoS DNFs. When learning
continues and rewards are experienced in different scenes, the cor-
rect mapping activated, which is satisfied by the perception of the
red color. Since only the red object is present in robot’s view when
the rewarding signal is received, a single peak is activated in the
CoS field and only weights towards its location are strengthened.

4.1 Results of experiments on an E-Puck
robot

The E-Puck was trained by a teacher in the real world,
in real time. The robot had two intentions, each of which
would be satisfied by a different color, but it did not know
what these colors were initially. For the sake of discussion,
we can label these drives ‘hunger’ and ‘thirst’. The drives
became active at different times: With the hunger drive ac-
tive, reward was only obtained when a red object was in
the image, seen in Fig. 4. When thirst was active, reward
was obtained with a yellow object in the image. The actual
reward was contingent on the teacher’s input, through a
training interface.

The robot was freely moved around the arena in a
pseudo-random manner. The camera images provided in-
put to a two-dimensional perceptual field [18], with one di-
mension as color hue (separated into 15 bins) and the other
as the image columns. Along each column of the camera
image, the hue of the pixels was summed to provide input
to a certain location in the perceptual field. Activity peaks
were formed in the perceptual field, detecting color objects
along the horizontal dimension of the image. Positive ac-
tivation in the perceptual field was projected onto the hue
dimension and provided input to the CoS field. However,
without either a reward signal, which uniformly boosts the
CoS field, or a targeted boost (preshape) from the intention
field, the CoS field cannot achieve super-threshold activi-
tation levels in order to generate an output peak.

The function of the teacher-provided reward signal
was to provide this boost to the CoS field activation. Such
a boost allows a peak to emerge in the output. As a result,
the CoS field and intention field are simultaneously active,
allowing the associative learning rule to adapt the weights
between the active intention (corresponding to the active
drive), and the CoS field.

Fig. 6 shows a snapshot of the system in action. The
peak in the Intention Field reflects the currently active in-
tention. In the Perceptual Field shown in the left screen-
shot, the colored objects lead to hue feature activations at
yellow, red, and blue (white is not perceived as a color).
Even though the color yellow in the center is the reason
for a reward, all three colors become slowly associated
with this intention.When the robot experiences the reward
in many different contexts, the incorrect cues in the CoS
weights are diminished over time. On the right is shown
an uncluttered scene, for comparison.

One can see a video of the experiment at people.idsia.
ch/~luciw/videos/epuckcos.wmv. After approximately 5
minutes of the experiment, with objects being moved
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around such that many contexts were experienced, the
correct mappings were learned.

After the weight matrix is learned, the reward and the
teacher became unnecessary to achieve satisfaction. The
weights provided a sufficient boost to activate the CoS, and
under the appropriate conditions, this boost would be se-
lective for the perceptual conditions under which reward
was achieved. The Condition of Satisfaction will work as
needed in order to terminate its elementary behavior.

4.2 Results of experiments on a simulated
NAO robot

The simulated NAO robot was tested in similar, but more
automated, conditions than the EPuck. In particular, the
robot “explored” the environment by looking left and
right, with a timer causing the switch in head direction. A
separate timer, which did not line upwith the first, caused
the switch between drive A and B. The system received a
stream of visual inputs from the robot’s camera. The cam-
era images provided input to a two-

dimensional perceptual field (Hue ×Column). Internal
drives (as before, analogous to hunger and thirst), were
structured such that a rewardwas only achievable by find-
ing the object which is selectively rewarding for the cur-
rently active drive. When the NAO was motivated by Drive
A, it could only achieve a reward by focusing on the pink
object. Whenmotivated by Drive B, it could only achieve a
reward via the blue object.

Shots of the dynamic fields and weights, along with
the environment, throughout the learning stages, are
shown in Fig. 7. The reward signal provided a boost to
the CoS field activation. This reward signal occurs when
a drive is “satisfied” - drive A was satisfied by the percep-
tion of pink (Fig. 7(a)), but was not satisfied by the per-
ception of blue (Fig. 7(b)). However, the background colors
caused the weights as shown in part (b) to be as-yet non-
selective. The weights are shown in the bottom two subfig-
ures, and indicated by the blue line in the lower right sub-
figure. This was early in learning, however. Part (c) shows
that after enough learning, the weights associated with
driveAbecameselective for a single color (pink).A videoof
the learning is viewable at people.idsia.ch/~luciw/videos/
naocosbefore.mov.

This basic exploration behavior along with the asso-
ciative learning mechanism we described led to the learn-
ing of a weightmatrix that appropriately encoded the Con-
ditions of Satisfaction. Fig. 8 shows the robot after learn-
ing. Once theweightmatrixwas learned, the actual reward
(and here, the teacher) became unnecessary, as the con-

ditions of satisfaction were internalized. At this point, the
weights provided a sufficient boost to activate the CoS, and
this boost was selective for the perceptual conditions un-
derwhich rewardwasachieved. (a):While driveA is active,
the learned weights caused the large but sub-threshold
peak in the perceptual field, which was further boosted by
the perception of pink. The other, small, peak was due to
the background color. (b):When drive Bwas active, a large
but sub-thresholdpeakwas causedby theweightmatrix in
the CoS field, for the color blue, which was pushed above
the threshold by the perception of blue. A video of theNAO
after learning can be viewed at people.idsia.ch/~luciw/
videos/naocosafter.mov.

4.3 Implementation Details

With respect to implementation, neural fields were con-
structed using the Matlab package cosivina (https://
bitbucket.org/sschneegans/cosivina/). 40 ms passed in
Webots between each time step. The robot shifted its head
every 40 time steps. The background wall changed to a
randomized color every 15 time steps. The drive changed
every 100 time steps. The time constant, τ, for the percep-
tual field was set to 7/3, while the intention and CoS fields
halved that. Resting levels for the perceptual and intention
field were set to −5, while the CoS field was set to −2.5. The
sigmoidal slope value for all fields was set to 4. The image
sizewas 120 × 160. Theperceptual, intention and condition
of satisfaction fields were set up for "find color" behaviors
in the standard way [18], except the CoS weights were ini-
tially zeroed. The 2D perceptual fieldwas composed of one
dimension which was a mapping from hue to (0 20], with
the second dimension as image column. The two hues of
the two box objects were at hue values 13 and 17. The 1D
CoS field was over the hue dimension, and took one of its
inputs from the output of the perceptual field, projected
over this hue dimension. The CoS field used neither local
lateral interactions nor global inhibition. The 1D intention
field was over values which had no external meaning. The
intention field received a gaussian stimuli, with amplitude
5.5 and σ = 1, centered in a location dependent on the cur-
rent drive, where drive A provided a stimuli centered at 5,
and drive B provided a stimuli centered at 15. The intention
field used local lateral interactions with a excitatory width
parameter of 3, excitatory amplitude 15, inhibitory width
6.5 and inhibitory amplitude 15. No global inhibition was
used. The intention field’s output location set the row of
the weight matrix, while the perceptual field output loca-
tions (multiple possiblewhenmultiple colors are in the im-
age) set the columns.Over the points of intersection, learn-
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Figure 7: NAO during various stages of learning. With Drive A active, the NAO receives a reward when it finds a pink object as shown in (a),
but not when it finds a blue object (b). When the reward is received in (a), weights from the intention to CoS field are boosted not only for
the rewarding object color (pink), but incorrectly boosted for the background color as well. When Drive B is active, the NAO only receives a
reward for finding a blue object, (c), but not for finding the pink object (d). As before, when a reward is received for finding the block that
satiates the active drive, weights are not only boosted for the correct color, but for the incorrect background color as well. After learning
over a large number of trials however, only the rewarding color weights remain, with the incorrect weights driven to 0 (shown in Fig. 8)

Figure 8: NAO after learning. After learning, the NAO only receives a boost in activation of the CoS field for the correctly rewarding color.
When Drive A is active (shown in (a)), the CoS field is selectively excited for the pink object, while for Drive B (shown in (b)), it is selectively
activated the blue object.
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ing occurred, at a rate 0.01,when rewardwas available. Re-
ward boosted the CoS resting level by 2, leading to super
threshold activation for the colors in the image, whereby
an association between current intention and CoS was re-
inforced. The values over the row of the weight matrix cor-
responding to current intention were input to the CoS field
as a secondary input, along with the perceptual field out-
put, after maturity. During this post-learning phase, the
weight matrix projection to CoS was multiplied by 2.

5 Discussion

5.1 Relationship with Reward Prediction

When an elementary behavior is rewarded upon comple-
tion, its CoS field is, in a sense, a reward predictor, due
to the short delay between the agent sensing the correct
conditions, i.e., the emergence of a CoS peak, and actually
perceiving the reward. Learning to anticipate the outcome
of an action has been extensively discussed and there
aremany existing biologically-plausible reward prediction
learning mechanisms that handle the case of predicting
immediate reward [22, 23]. Other reward prediction meth-
ods go beyond one-step prediction and are not directly re-
lated to the animal learning literature [26]. In such rein-
forcement learning approaches, the state or state-action
value function associated with a policy is a reward predic-
tor with a discounted infinite horizon. Schmidhuber, for
example, considered reinforcement as another type of in-
put [20], and the non-discounted prediction and acquisi-
tion of this reward was managed by a fully recurrent dy-
namic control network.

5.2 Relationship with Classical Conditioning

Similar learning processes to those undergone in the
experiments have been studied in animal behavioural
experiments, in particular using different conditioning
paradigms [4]. For instance, in instrumental conditioning,
the animal learns the association between the desired out-
come and the selected action [14]. An explicit representa-
tion of expected outcomes of actions is emphasized in ex-
periments on Differential Outcome learning.

In the model presented here, the CoS learning process
is related to such conditioning experiments, in which ani-
mals learn to associate satisfaction of a certain basic drive
– hunger or thirst – with the outcome of a particular ac-
tion. By doing this, we try to answer the question: what

are the origins of elementary behaviors? We consider, in
general, one of the origins to be endogenous drives. The
drives here follow the definition provided by Woodworth
[30],who explicitly distinguished the notion of ‘drive’ from
‘mechanism’.Whereas ‘mechanisms’ refer to how an agent
can achieve a goal, ‘drives’ refer to why one might want to
achieve a goal in the first place. As prototypical examples
of bodily drives, Woodworth suggested hunger and thirst,
each of which serve as internal forces for motivating vari-
ous sorts of behaviors [10]. Themethod presented here en-
ables an agent, motivated by a set of such drives, to learn
to recognize the perceptual conditions associated with de-
sirable outcomes.

We have demonstrated how drive satisfaction may
lead to development of an anticipatory representation of
the outcome of an action. In neural-dynamic terms, the
coupling between intention and condition of satisfaction
of an elementary behavior is learned. After such learning,
the agent may detect a successful accomplishment of an
action without the need for an externally provided drive-
satisfaction signal. This anticipatory representation of the
final state of the action may be used to drive activation of
the next item in a behavioural sequence [13].

6 Conclusions
In thiswork,we showaDynamicNeural Field-based archi-
tecture that allows the learning of a coupling between the
intentionof anactionand its conditionof satisfaction. This
coupling amounts to an anticipation of the outcome of the
action and is learned based on rewarding signals, received
when an internal drive such as hunger or thirst) is satis-
fied. After learning, the perception of the CoS is enough
for the agent to perceive the action as finished, external
(to the nervous system) reward is not needed any more.
The method enables both a realworld, E-Puck robot, and
a simulated NAO humanoid robot to learn the conditions
of satisfaction for different behaviors, in their respective
environments.

The Dynamic Neural Fields, used to implement in-
tentions and CoS of the agent’s behaviours are continu-
ous activation functions, defined over the relevant feature
spaces. Thus, the location of the activation peak in this
field is determined by the current sensory input, which
drives these fields. Moreover, the peaks have finite width
and consequently, the learned coupling between the in-
tention and the CoS DNFs (1) reflects the actual sensory
state, experienced by the agent during learning and (2)
generalises to neighbouring locations in the feature di-
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mension. If during learning the activity peaks were experi-
enced over several neighbouring locations in the CoS field,
the weight matrix will reflect the experienced distribution
of peaks, although with less “certainty" (strength of re-
spective weights).

This work is the first step towards learning elemen-
tary behaviours, which structure the behavioural reper-
tory of an embodied agent and control its behaviour. The
model demonstrates how the association between the in-
tention and the anticipated condition of satisfaction may
be learned based on sensory input and unspecific reward-
ing signal in a behaving agent.
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