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Robust Algorithm for Generalized State Estimation
M. R. Irving

Abstract—This letter introduces a robust generalized state esti-
mator which is able to detect and reject gross measurement errors,
parameter errors, and topology errors simultaneously. The solu-
tion is based on finding a consistent estimate which minimizes the
total number of hypothesized gross errors. The problem is formu-
lated as a mixed integer nonlinear program. A small-scale ac esti-
mation example is given which illustrates some of the properties of
the method.

Index Terms—Generalized state estimation, mathematical pro-
gramming, robust estimation.

1. INTRODUCTION

ENERALIZED state estimation algorithms [1]-[3] op-
G erate with busbar-level models, so that topology errors
(e.g., incorrect circuit-breaker status) can be handled by gross
error processing. By extending a previous robust estimator ap-
proach [4], [5], a new algorithm is introduced which is capable
of simultaneously processing gross measurement errors, gross
parameter errors, and topology errors. Test results on a small
example network illustrate the capabilities of this method.

II. PROBLEM FORMULATION

In addition to conventional transmission line models, a gen-
eralized estimator also models the flow of active and reactive
power on “links”, where a link represents a zero-impedance con-
nection (such as a closed circuit-breaker). Flows on links and
additional voltage magnitudes and phase angles (at their con-
nection points) are included as states of the system. The non-
linear ac loadflow equations then become

Pi= > "Pij+ ) PLij 1)

Qi= ) Qij+ > QLij )
where
Pi, Qi active/reactive injection at bus i;
Pij, Qij active/reactive line flow, bus i to j;
PLij, QLij active/reactive link flow, bus i to j;
> over connected buses.
Pij =1{(Vi, Vj, 6i, 0], Gij, Bij, Bii, Gii) 3)
Qij =g(Vi, Vj, 01,0}, Gij, Bij, Bii, Gii) ()
where
Vi, Vj bus voltage magnitudes;
01, 0j bus voltage phase angles;
Gij, Bij line conductance and susceptance parameters;
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Gii, Bii

f,g
Following the principle of adopting an “uncertainty range” for
each measured quantity [4], and also introducing uncertainty in

the line parameters, we can define a set of uncertainty inequali-
ties:

shunt conductance and susceptance at bus i;

ac loadflow functions.

zi—ty —Mby < 7§ < zp+t;7+Mby 3)

where

Z) measurement (or parameter) k;

7y, estimated value;

ty lower tolerance;

tlj‘ upper tolerance;

by 0/1 binary variable;

M arbitrarily large positive scalar value.

The set of uncertainty inequalities include all available mea-
surements of Pi, Qi, Vi, 6i, Pij, Qij, PLij, QLij, plus toler-
ance ranges for Bij, Gij, Bii, and Gii. The tolerance ranges are
defined according to the familiar engineering practice of speci-
fying a quantity as accurate to within plus or minus a tolerance.
If all the measurements and parameters are within tolerance, it
will be possible to find a solution which satisfies all the above
inequalities with b, = 0. However, if some measurements, or
parameters, have unexpectedly large errors, it will be necessary
to use by = 1 to “switch off” the corresponding uncertainty
constraint. The scalar value M must be chosen to be large in
comparison with possible gross errors, in order to eliminate any
influence on the solution from “switched off” constraints.

Topology errors can be handled in a similar manner. A link
indicated as closed (between bus i and bus j) is represented by
the following inequalities:

—Mby < Vi— Vj < Mby

—Mby, < 8i—6j < Mby 6)
—M(1-bx) <PLij < M(1-bx)
—M(1-bx) <QLij < M(1—b). @)

These constraints are “complementary”, since the same by vari-
able is used in both (6) and (7). If the link is actually closed, by
should be zero, constraining the voltages at each end of the link
to be equal and switching off the flow constraints. If the link is
actually open, by should be found to be 1, constraining the link
flows to zero and switching off the voltage constraints. A link in-
dicated as open can be represented by similar inequalities, with
by and (1 — by ) interchanged.

The robust estimation criteria used is to select a state estimate
that minimizes the total number of measurements, parameters,
and link states that are considered out-of-tolerance, i.e.,

Min. Zbk. ®)

all k
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Fig. 1. Example network.

This results in a mixed integer nonlinear program in the binary
variables by and real variables Vi, Vj, 6i, 6j, Gij, Bij, Bii, Gii,
PLij, and QLij. In the case that a link has no status indication
available, inequalities (6) and (7) can be used with the corre-
sponding by value omitted from the objective function.

III. RESULTS AND ANALYSIS

The problem can be readily solved using standard mathe-
matical programming software, such as the MINLP algorithm
of Fletcher and Leyffer, available via the NEOS web-service
[6]. The proposed method is therefore related to the branch and
bound method of Monticelli [1]. The robustness of the pro-
posed method can be illustrated using the small example net-
work shown in Fig. 1. An accurate loadflow solution was ob-
tained, with the link between bus 2 and bus 3 closed, and with
correct network parameters as shown in the second column of
Table I. Measurement and parameter uncertainty ranges were
then defined, as shown in columns 3 and 4 of Table 1. Three si-
multaneous gross errors were introduced, on Py, B1s, and the
link status (which was erroneously indicated as “open”). The so-
lution of the mixed integer program gave the estimates shown in
column 5 of Table I. The three gross errors have been detected
and corrected. The minimized cost function has a value of 3, as
the binary variables associated with the gross errors have values
of one, with all other binary variables remaining at zero.

A disadvantage of the proposed method is that little noise
filtering is provided, as the estimator will use the full range
of tolerance available to find an estimate that minimizes the
number of hypothesized gross errors. This problem could be
counteracted by introducing a second stage of noise filtering
using weighted least squares, once the gross errors have been
eliminated. Mixed integer nonlinear programming is a compu-
tationally demanding task. This limits the online application of
the method to small areas of the network where multiple gross
errors are suspected and where sufficient local redundancy is
available.
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TABLE 1
UNCERTAINTY RANGES AND ESTIMATES FOR EXAMPLE NETWORK

Zy 7zt | 7 + tk+ Z],(e
P, 1.824 2.81 2.84 1.822
Q 1.0200 | 1.01 1.03 1.017
P, 1.0423 | 1.03 1.05 1.031
Qi 0.5828 | 0.575 | 0.59 0.575
P -0.7714 | -0.78 | -0.763 | -0.78
Qs -0.3857 | -0.388 | -0.381 | -0.388
P, -0.9 -0.91 -0.89 -0.906
Q, -0.45 -0.455 | -0.445 | -0.445
P; -0.9 -0.91 -0.89 -0.89
Qs -0.45 -0.455 | -0.445 | -0.447
Vi 1.0 0.99 1.01 0.99
V, 0.9630 | 0.95 0.97 0.952
Gip 4.0 3.96 4.04 3.96
B, -20.0 -10.1 -9.9 -19.33
Gis 3.0 2.97 3.03 3.03
Bi; -15.0 -15.15 | -14.85 | -14.85
Link,; closed open open | closed

IV. CONCLUSIONS

A robust generalized state estimator has been presented. The
use of binary decision variables throughout (to accept or reject
measurements, parameter values, and topological states) allows
all three types of gross errors to be judged on a comparable
basis. Simultaneous gross errors in measurements, parameters,
and topology can be identified and corrected. The computational
effort of solving the required mathematical program probably
limits the practical application of the method to relatively small
networks, or sections of the network, at present. However, it is
hoped that future advances in numerical algorithms and com-
puter hardware will widen the scope of application in the future.
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