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:

Abstract. We shall consider the asymptotics of the wave field scaitered by a
right angled impedance wedge. By using the the exact complex Sommerfeld type
integral solution to the problem of the diffraction of a plane wave by a right angled
impedance wedge a new representation for the field is given. This new form is in a
form suitable for the asymptotics behaviour to be derived across the specular and
shadow boundaries where the usual diffraction coefficient becomes infinite.
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1. Introduction

In dealing with mobile phone propagation in cities the effect of building
corners and their surface cladding is of paramount importance for the
signal strength of the phones. One of these ubiquitous corners can be
effectively modelled for high frequency propagation by a right angled
impedance wedge in two dimensions. To obtain qualitative results for
the signal strength when there are multiple diffraction from a number
of such corners an effective approach is to use the Keiler method of
geometrical diffraction. This method requires information about the
» diffraction coefficient” which are obtained from the solution of canon-
ical wedge problems. These coefficients need to be uniformly valid in
the angular variables in order that the method can be used successfully
when considering multiple diffractions at different corners. This work
goes some way to addresses this problem.

The first exact solution to the problem of the diffraction of a plane
wave by an arbitrary angled impedance wedge was obtained in terms of
T feld integrals by (Malyuzhinets, 1958) and later inde-
pendently by { Williams, 1959}. The Sommerfeld integral representation
of the field required the solution of complicated difference equations.
The two different approaches of Malyuzhinets and Williams revolved
about the method of solution of the difference equations. Malyuzhinets
introduced a new transcendental function defined by a specific differ-
ence equation; Williams used the extant results on the Double Gamma,
function worked out, in his youth, by the later to be Anglican Bishop of
Birmingham, E W Barnes. These research works were a tribute to the
ingenuity of these mathematicians. A later paper by (Lebedev, 1963)
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used the Kontorovick Lebedev transform to derive another equivalent
solution. This also involved solving different, but complicated differ-
ence equations. A much simpler method to obtain the exact solution
to the specific problem of the diffraction of a plane wave by a right
angled impedance wedge was later obtained by, (Rawlins, 1990). This
method avoided solving the complicated difference equations that arise
in the previous methods. We shall use this later result to obtain useful
asymptotic results for the field across singular ray directions where
the usual diffraction coefficient, used in high frequency methods like
Kellers’s theory of geometric diffraction, break down. This is because
poles and saddle points of the Sommerfeld integrand coalesce. Here,
to be specific, we shall consider an electromagnetic E-polarized plane
wave that propagates towards and is diffracted by an impedance wedge.
We should remark that heuristic diffraction coefficients for arbitrary
angled impedance wedges have been considered by various authors, see
references in (Nechayev, 2006). These authors use non-rigorous but
physically plausible approximations. However they suffer from non-
uniformity in the angular variable. The uniform asymptotic far-field,
for the perfectly conducting situation, has been carried by using the
Kontorovich Lebedev transform by (Jones, 1964).

In section 2 we shall give the mathematical problem that we intend
to solve and the complex Sommerfeld integral solution. In section 3 we
shall use straightforward asymptotics to give some properties of the
diffraction coefficient used to calculate the far field. This diffraction
coefficient becomes infinite for particular far field angular directions.
In the next section 4 we represent the Sommerfeld integral in terms
of two new canonical integral representations I(d), J(d) that can be
asymptotically evaluated for all angular vales. In the remaining parts of
the paper we derive uniform asymptotic expressions for these canonical
integrals and hence expressions for the far field which is uniformly valid
for all angular values.

2. Formulation of the boundary value problem

The right angled wedge is assumed to be defined by the surfaces y =
0,z > 0 and z = 0,y < 0; and polar coordinates (r,f) are defined
by = = rcosf,y = rsind. The case when the only component of the
incident electric field is that parallel to the z-axis will be considered, We
shall assume that the incident field is given by ug = e~ lwithreos(@-8o)]

0 < By < B3m/2. If ue™™* denotes the total electric intensity parallel to
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the z-axis then Maxwell’s equation give,

(A+ K )u=0, o<9<§§f, (1)
where
_ 32 32
A=g T a

and where k% = eopow?. For a unique solution the total field u must
satisfy an edge condition, and the edge diffracted field vy a radiation
condition. The boundary conditions appropriate to the present problem
are given by

8“(% 0 ikcosdu{x,0) =0, {z>0), {(2)
Qy%_?ﬂ +ikcosPu(0,y) =0, (y <0} (3)

The complex angle ¥ represents the impedance properties of the wedge
surfaces. For absorbing surfaces it is necessary that w < R < 3n/2. A
special case of this difiraction problem has been dealt with in (Rawlins,
1990) and from this work a convenient expression for the diffracted far
feld is given by :
(cos 422 — cos 40?;' 9y
V/3ri(cos fp 4 cos ) (sin g — cos J)
/ sin ggﬂ sin "2-316%7" cos(y—#)

5(0) (cos 2259 4 Ly(cos Hrtbo) 4 1y

(cosy — cos¥)(siny + cos ¥)(2 cos 31;9 o8 3% + & —cos ﬁi‘"gﬂ)dfy
(cos WM—M—;T -9 4 £)(cos MW; ) 4 ) ,

Ugd (?’, 9) = (4)

where the path of integration S(f) is the path of steepest descent
through 8. A straight forward application of the method of steepest
descent applied to the above integral gives, assuming that no poles of
the integrand occur near the saddle point v = g,

ua(r, 6,80) = D(0,86) = + O((kr)™5), (5)

kT

va

where the "diffraction coefficient” D(6,8p) is given by

26" (cos§ — cos ¥)(sin 6 + cos ) (cos o — cos Urto)y

" Brk{cos 8y + cos ¥)(sin g — cos ¥)(cos W +2)
(Zcosggﬁcos 23@ + 4~ cos éL"'—r:—ji?l)sin—z—@sin:?mgil

3 3 ) (6)
(cos Atz+®) G 8 1+ (cos 2————“;9" + £)(cos 2(6+400) i) 4 1y

D(G: 90)
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The results above can become infinite for certain combinations of the
angular variables 8, 8. To overcome this drawback we need to apply a
more sophisticated asymptotic analysis to the integral (4). Before we
can do this we need to represent this Sommerfeld integral in terms of
two new integrals.

3. Alternative integral representations for the integral (4)

Rewriting the infegral (4) in a more convenient form

1
,0) = e D(7,6 7
ug(r, 8) i3 Jso) {, 60} (7)
1 o ! ) e’ék'r cos(—y——f))d(y
cos % — cos Arzh)  cos 2 — cos 2ribo) ’
where
_ (cosy — cos #)(siny + cos?)

D{y,00) = (cos B + cos ¥} (sin by ~ cos 9) (8)

(cos f”—gﬂ — €08 f*i%jﬂ’ﬁ)(z o8 g_gg cos %1 + 3 —cos ﬂ_wm“?;*‘ﬁ))
p—— T ,
(cos A== 1(cos A0 - 1)

bt

The reason for writing ug(r,9) in this form, is that, complex poles in-
volving ¥ only appear in D(7,8p). These poles never occur in the range
of v for which we shall be concerned with provided R(v/1 — cos? ) > 1.
The physical reason for this is that no surface waves are excited or sup-
ported on the wedge faces under the present conditions, see, (Williams,
1960) and (Bowman, 1967). For certain values of @ and fg, the poles
of the integrand in (7) approach near to, and can exist at, the saddle
point. In such a situation the normal saddle point method breaks down,
and the expression (6) obtained for the diffraction coefficient is no
longer valid. The situation described above corresponds to the physical
situation when the field is observed near to the geometrical optics
boundaries. We shall now use the method of (Oberhettinger, 1959)
to derive expressions for the diffracted field which are uniformly valid
near the geometrical optics boundaries. Before applying the method of
Oberhettinger the diffracted field integral representation (7} must be
represented in terms of Laplace type integrals. Letting @ + {w = v in
the equasion (7) gives

1 oo ,
— f_m D0 -+ iw, bo) ©)

ud(?‘,(?) =
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i - 1 6zkr cosH W dw
cos && — cos -———M»H(GJ”;"WG" cos ¥ — cos 2~L———MH+?’§’+9°

The two integrals in the expression (9) are of the general form
D(6 + fw, Gy ) et SR duy

P(r,0 ;
(r:6) = 2\/1f (cos ZF waosgm@v?ﬂ)

where 1 = 0 #+ fp. Some manipulation, see appendix, enables one to
rewrite (10) in the form

(10)

1 'z,b) foo De(9 30’ vkrcoshwdw
0) = ——
Pnf) 6rt sin (cosh 2 — cos M)

_1__ sin 2(?T + @b) /00 De(G,G{J,HJ)e?‘MCOShwdw
G 3 0 (cosh g%  cos g@;—@)

i foo D, (6, B, w) sinh 227 oosh 0y

6 Jo (cosh 22 — cos ?i—’%i"’l)
N i /00 D,(8, 8g, w) sinh 2L et cosh® )
6 Jo (cosh 2 — cos Aridly
(11)
where
D.(8,66,w) = D0+ iw,by) + DG — iw, 05), (12)
DO(G,Qo,w) = D8 -+ dw, fg) ~ D(Q — a0, 90)
Thus the feld ug(r, ) can now be written in the form
wg(r, 8) = — {I(m—0+8)+J(r —06-+06)}
— {I{m + 8 — 6p) — J{w 4 0 — 0o)}
+ {I('J’i’m@-——ge)“}-J(WwQ“Qo)} (13)
4 {I(m 6+ 8p) — J(w+ 0+ 8)
where o5 o cosh
mm o0 IRT COsShw
1(5) = sin / Dg(ﬁ,ﬁo,;:)e - d,w’ (14)
6 Jo {cosh &2 — cos &)
3 o) Do(e 907 )sinh 2w éfcrcoshwd,w
J(6) = _/ . 15
(6) G Jo (cosh % — cos 23‘5 (19)
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16) = —I(~3), J(8)=J(~9), (16)
15+ 3mm) = 1(8), J(@+3mm)=J(),Inl=0,1,2,...

To evaluate (14) and (15) asymptotically for large &r it is neces-
sary to expand the numerator, excluding the exponential, in terms of
sinh ¥. This is achieved by means of Burmen’s theorem, (Whittaker
and Watson, 1962), which gives

D(8 + iw, o) = }oi B (8, 60)(sinh %)ﬂ-, (17)

n=0

where Bo(8, 60) = D(8, 60), By(6, 6) = 2iD1 (0, 60); D1 (6, 60) = 2],
The remaining coefficients are given by

-1 : v
Bn(ﬁ,ee)wl d [dD(emw,QO)( w )] =23
w==l)

7! dawn! dw sinh %

It is clear that By is a function of 8,8 but we shall drop the explicit
representation of this dependence in the rest of the paper. From the
relationship between D(6 ~ tw, 8}, Do(8, 0, w) and D.(6,6,w) with
the expansion,(Erdelyi et al, 1958)

. LW 11 3 ) w
sinh vw = 2vsinh Egﬂ(v + 55" Vigi= sinh? wzw),
we obtain -
— s W op
De(8,8p,w) = 2 fé) Bgp{sinh -2—) , (18)
> w
Do(6, 60, w) = 2 Y, Bansa (sinh )7, (19)
ey
Letting
2 :
isinh %Do(a, Bo,w) = 4sinh? %’1;00(9, 8o, w) (20)
where .
D.(9,00,w) = 3 B, (sinb %‘f)?”, (21)
n=f)

gives a relationship between the coefficients B;m and Bonyi, for n =
0,1,2,.... the first few of which are given by:
: 74

27 . 29 p 21
By = ""gmBh By = "3"“]33 + E?Bl’ By = EBs +

7 91z
“2—7-B3 -~ %Bl,
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The above expansions are valid in the region |sinh ¥] < 1,and, since
the saddle point of the integrals (14) and (15) occur at w = 0, the
integrands are in a suitable form for the standard asymptotic evaluation
of the integrals. We exclude the situation where R =~ 37 /2 and 39 = 0
since the non captured poles of D{8 + iw, 6y} will approach the saddle
point and the modified saddle point method will also have to be applied
in this case. Since these poles do not exist when ¢ = 37 /2 we shall not
carry out this special situation here. '

4. Uniform asymptotic expansion for 1(J)

We shall now obtain the asymptotic expansion for the integral (14) for
arbitrary § and kr large. Let coshw =14+t in (14} so that

dat

00
T8 = 'UC?"/ Kt ihri , 99
@ = | K@t = (22
where
PR -1
K@) :Sm%@ (t +32) : D@(Gl,ﬁo,cozsh 1'(1 ) o)
m {C osh ZBILHEELIOT) oo 28
and from (18}
= ¢

D.(0, 65, cosh™ {1 +1)) =2 Ban(3)"™ (24)

ne=0

The expression (23) can be expanded in an infinite power series in f,
about the origin, and the function to which the series converges uni-
formly to, will be analytic in the region [t} < |to], where to(= —2 sin” {)
is the nearest pole to the origin. Thus

K(t) = i Cntna iti < ‘tOL

n=0
D{8, 6} ) 1 [d®
o= t— = | n=1,2 ..
g Fys co 3 e - Litnl{(t}]tzo n=1,2

(25)

To obtain a uniform asymptotic expansion for I(§), which is valid for
§ — 0, it is necessary to remove the pole ¢ = ty from the expression for
K(t). Thus we define K*{t) by

by

K0 =KW~ o

(26)
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8 Anthony Rawlins
where K*(t) is analytic at ¢ = fo, and from (23)

D, (0,0, ~2sin” )
Vo '

From (26) it can be seen that K*(t) has a larger radius of analyticity
than K (£). This is because we have removed from K (¢) the singularity,
to, nearest to the origin. Denoting by £1, the singularity of K*{t) nearest
to the origin, then Jto| < |£1]; and thus we can expand K*{t) about the
origin, the expansion being analytic for {t| < |t1]. Thus

bot = Jim (£ = t0) (1) = )

o0
K*(g) = > dat", It < lt1],

n=={
17d"
= dpy = | e K =1,2,....
dﬂ. n! tdtnK (t):! 4520 Pn 321
(28)
Hence substituting K (¢} given by (26) into (22) we obtain
; o . dt e [0 ket O
T8 = ezkrb_ ] ezkrt + ezk’r/ K*t le\.'rtm. 29
©) = by [T et [TR W (29)
By considering the integral
e dz
Va(z +a)’

over a quarter circle of infinite radius indented at the origin in the first
quadrant, it can be shown that for z =z + Wy

e®dx e Yy

R R )

= 23 TR (VA)

where |arga| < , and F(v) is the Fresnel integral
oo
F(v) mf "™ du.
v

Thus the fixst integral of the expression (29) can be evaluated by using
the result:

(Vo) Giamdw p i
e 9 —t{abdn /4 gy /
L i e (Vab), (30)
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which is valid for |argb| <, a > 0. The second integral of the expres-
sion (29) can be evaluated by straightforward application of Watson’s
Lemmma; and noting that

dn = %{%K*(ﬂ] “dn:ﬁl‘z[&%(f{(“”ﬁ)}mo’

|

1[d by (~1)"
o [z.a‘t‘ﬂf‘*’(”] o oy

(=1)"27 ™1 D(8, 6, —2sin” §

N

T 27 (sin §)2r+1 '
(31)
we obtain
D fg, —2 si 24 i{kr cos §—Z8EN4}
1(6) = Delffo, 225t 5)e C  P(VTr|sin o)
VT 2
n ei(kr+%) o0 . (“1)”2””"%De(9,90,m251n2 %) inf‘(n-!w %}
VEr = 27 (sin §)2nt! (kr)yn 7
(32)

which is the uniform asymptotic series for 7(6}.

5. Uniform asymptotic expansion for J(4)

Making the change of variable coshw =141 in the integral represen-
tation (15) gives

J((S) e @HRT fm t%M(t)eékrtd.ﬁ’ (33)
o]
where L
(t+2)73D (8,60, c08h™ (1 + 1))

; ; (34)
3 [cosh 2zng1+t+3gt2+2t)5g - cos 2 }

M(t) =

and from (21)

o0
D (8,80, cosh™ (1 + ) = > B;n(%)ﬂ.

n={)

The expression (34) can be expanded in an infinite power series of £,
(about the origin), which will be analytic in the region it] < ito!, where
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to(= —2sin? §) is the nearest pole to the origin. Thus

M) = 3 ct" It <tol,

nz={)
. —2Dy(6,60) ,1 {d” }
oo Z2Due k) L S )] n=12,
® 7 9n/2{sin §)? monl Ldin ® =0

(35)

To obtain a uniformly valid asymptotic expansion for J (&} 1% is neces-

sary to isolate the pole to by defining a new function M*(¢) by

o * bl—-l
M) = M0+ 5

where

D.,(8, 80, —2sin? §)sin
NG sin? %

by = lim (¢ ~ to)M(t) =
{—tg

Thus {15) can be written in the form

dt

J((S) e e?k?"biﬂl /OO ,\/Z-e?:kﬂ"tw__gi_t___m e eik:‘" fw M*('{;)eik’”w,
0 ( o ;:

t—to}

where,

oo
w) = Sdat <l
n=0
/ 114,
= do= o [ @] m =1

(36)

(37)

(38)

(39)

The first integral in the expression (38} can be evaluated by noting

that

o0 L iax o0 LR oo LLGET
[ B2 by = f ¢ g bf L dz
Jo (z+b) 0 27 0 zi(w+Db)

and using the result (30) to give

Tore} L o o . -
| =\/§e%zmz\/;r‘zse—%abw@a~p(\/aa>.

0o (z+8) v

(40)

(41)
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Tmpedance Wedge 13

The second integral of the expression (38) is evaluated by a straight-
forward application of Watson’s Lemma. Thus

D.(0, 69, ~2sin® §) sin

J(8) = —55 (42)
 2mkr sin %
2D, —2sin? §)(sin §)*
. 2Du(0, 00, 22600 (510 5) 980 bt 5 i )
\/7—1:8111“3*
. gt = (=1)"DL(0, 6, —25in2 $)27"3 ] T (n + §)
o =11 2 (sin §)2n+1 sin 4 (e}

(43)

Having determined the uniform asymptotic expansions for I(d) and
J(6) we shall now determine the expressions for particular values of 4.

6. J not near zero

In this situation the arguments of the Fresnel integrals are large and
we can use the asymptotic expansion for these integrals, viz.

it eir/? 2 T(n + 5)(—i)"
2Tl = z2n ’
Thus the expression (32) becomes after using (44)

8’3(.&1“4«7:/4) oo Cnr(ﬂ+ %)%n

F(|z) =~ lz] — 0. (44)

10~ =7 2"y
— D{0, 60) i(ler-+r /4) é —3/2
= i e cot 5 + O({kr)™"%). (45)

Rewriting {44} as

L0 ) -
ghe® gim[2 e gimf2 &2 I(n + %)(w%)ﬂ

F g - .
b= Sl ~avwpR e T
and substituting this expression into (42) yields
Iy ne EOTHTD S 6Tl kT
(kr)3/2 L= (kr)"
= 0+ O((kr)™3?). (47)
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12 Anthony Rawlins

Substituting the expression (45) and (47) into the expression {13)
gives the expression (5), where D(8, Bo) is given by (6), in accordance
with expectation.

7. & near zmero

For small § the arguments of the Fresnel integrals are also small,and a
suitable asymptotic expansion for F(|z!) must be found. For |z| — 0,

oo oo =l ir el
F(laf) = / ¢t = / et gt ——/ e dt = m\/ieT - et di.
Jal 0 0 2

(48)
For |z| << 1, the series expansion for ¢ is uniformly convergent for
all t << |z, and we may therefore integrate term by term the series
expansion for ¢’ in (48). Thus

Y o {w®)"
F(lz]) = Xle¥ e .
(al = 5o - Rl ey 20 69
By means of the following formulae
28 3 4§ 2t ¢ .39
o8¢ = = Ecsc§+~ﬁésm-2—+0(sm 5),
_ 2,8 16 40 . g0
cos g = 1 g st 5 — 5z in 2~§—O(sm ~2~),
L6 2 6 10 g6 154 . 40 .60
sin = 3s1n2+ Tk 2+5832 sin” 5 F O(sin 5),
csc(—s- = E:ics\cﬁ——]émsmg—~§£§m~sirx3§+O(si.‘nﬁé)
3 272 10872 11664 2 27
§ 3 6 5L .6 1335 39 58
C{)tg = §CSCQW%§SIH—2——W81H §+O(sm 5),

which are obtained from {Erdelyi et al, 1958),

1 1
sinvz = 21/3111“;'21?1(5 + V,*é—rz;g';Sinz %),
COsSVE — 22F1(V,"~U;%;S%nz—;—),

and the expression (49), we may expand (32) and (42) in terms of
sin %. The manipulations have to be carried out with care, and this is a
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rather tedious task. The parts which would be singular if 6 = 0 cancel
each other out and we finally obtain

1(8) = sgnéD(8, 6p)ettr—/4
P {ge”/d - VZkﬂSing! - %(vZkrlsing})g - }

ilhrrm/4) 5
. - D in—
Yl (8- 50e, ) sin
z(k’r+37r/4) B 7 D6 )
+ M_SM(R‘T)%< 4““5“2]: 2'*'5% (@, 0))3373'2"
8
+ O oin g ) + Osin® 55—)
(kr)? 2
(50)
Stmilarly
B SBéei(lcr"%ﬂr/!l) 3B 5 ik /4)
J(@) = W sgnészn et
X [w\gﬁe”/‘l — v/ 2kr|sin ~2—} — g(v2krlséng})3 -
ei(;’cr-—?r/fl) 3 7
" 2Varhr (§ 27144 0)
+ O sin 3 )+ Ofsin® é—)
(k’-'”) 2
(51)

8 &=1+d where § is small and + is a fixed angle

The arguments of the Fresnel integrals will be large and we can there-
fore substitute (44) into (42) and (47) and setting § = ¥+ & we obtain
after some manipulations of the resulting expressions

D8, fp)RrEE/a) 21(6, ) eitkr+7/4) gin &
(h+8) = ( 30)28 cot%i}? (9, ) s
V2mrkr 92 (kr) % sin® &

, (ke /4)
D0, bp)e (1 82 5 ) o

24+/3r (k) ? 3

!
9sin” %
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14 Anthony Rawling

g

?:Bzeé(kr-i-'rr/él) ,¢ sin %_

e cOt = + O ).
12v2r(kr)s 3 ((kr)%

(62)
By ! gitkr~m/4) P sm‘g
10) = 12\/M(k?")?( ) +O((kr)%)
(53)

9. Conclusions

We have derived some new results for the uniform asymptotic expan-
sions for the electromagnetic field produced when an E-polarized plane
wave is diffracted by a right angled impedance wedge. These results are
of use in applying the Keller method of geometrical diffraction theory to
problems which involve diffraction by right angled corners, for instance,
the problem of the high frequency diffraction by a rectangular cylinder
{a. model for a sky scraper) has been successfully solved by using these
results. The methods used here can also be used mutatis mutaendis for
an arbitrary angled imperfectly conducting wedge, other polarizations,
and the effect of surface waves.

Appendix

Here we shall derive in detail the result (11) from the expression {10}.

o0 D(a _{_ z,w 99) %krcoshwd,w

P T,Q e ’
(r,0) zm/_ (cos < 3 — CO8 %@l)
- 47{',\/— f OO( DG(G! 8[},'“)) “'!" DO(Q, 80’ w))e'\"}cTCOSh’w
« (cos %” — ¢osh %w cos ?%k -~ ¢ sinh 3—%"— sin %ﬁr’i)dw

(cos & - cosh 2 oos —2—§£)2 + (sinh %2 sin %/’2)2 '

Now by using the evenness and oddness of the integrand and noting

that sin%ﬁ = @ we get

P( G = "}m o D.8.6 ik coshw
r, ) I o e( f {},'U))e
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2 2 g 2 gip 28
(cos % sin 2 — cosh % cos ~F sin 4 )dw

(cosh 2 — cos 220 (cosh 2 — cos 2741

A fir cosh
- _g__ Do(e,eo,w)ev. r cosh w
7 Jo
(sinh 22 sin 2§£ sin &) dw

X .
(cosh 2 — cos &LM,)W; )Y {cosh 2 - cos M”{f 28

B 1 o0 De(g} 90’ w)ez'krccshw
Flnf) = ]0 (cosh 22

b — cos 2(w"'wrts’""ffi’)-)(cosh:’:3E ~ CO8 gﬁ%ﬁ"’))
2(r + )
3

2w —

% [—(cosh %U— — €08 (7{3 ¥) Jsin
2 2(m ~

- (cosh—%gj— — €OS (W; Tp))sin (WS Q’b)]

i /oo DO(Q, Bs, w}eik“" coshw

6m Jo  (cosh 2 — cos sz(?f; )y (cosh 2 cos mwz(w; ¥y

dw

X sinh —%:;E{(cosh %}- ~ COS M)
2(r — )

3 Ydw.

2
— (cosh —%U— — CO8

o L lrtd) 7D (6, 09, w)e* 0w gy
P(r,0) = sin / (cosh 22 — cos (n:;{w'z,b})

i (’n‘ o w) /oo Dc(g’ Qo,w)eikﬂr coshw .,
Bar 3 o (coshZ —cos 2—(1%33@)
i /’00 D, (8, 8y, w)eHreoshw ginh %w_dw
(cosh %% — cos —2—(%—1’0—))
N i /00 D, (8, 8o, w)e " ¥ sinh 22 day
67 Jo (cosh % — cos @1’@)

Which is the result (11).
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