
A Complex Situation in Data Recovery

A Thesis submitted for the degree of Doctor of Philosophy

By

J. Sue Ashworth

School of Information Systems, Computing and Mathematics

Brunel University

May 2009

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/336372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 A Complex Situation in Data Recovery

Acknowledgements

J Sue Ashworth Page 2 of 174

Special thanks to Martin for
being my boyfriend and to
every one who reminded me
that I should be nice to my
boyfriend.

 A Complex Situation in Data Recovery

Abstract

The research considers an unusual situation in data recovery. Data recovery is the process of

recovering data from recording media that is not accessible by normal means. Providing that the

data has not been overwritten or the recording medium physically damaged, this is usually a

relatively simple process of either repairing the file system so that the file(s) may be accessed as

usual or finding the data on the medium and copying it directly from the medium into normal

file(s). The data in this recovery situation is recorded by specialist call centre recording

equipment and is stored on the recording medium in a proprietary format whereby simultaneous

conversations are multiplexed together and can only be accessed by using associated metadata

records. The value of the recorded data may be very high especially in the financial sector where

it may be considered a legal audit of business transactions. When a failure occurs and data

needs to be recovered, both the data and metadata information must be recreated before a single

call can be replayed. A key component to accessing this information is the location metadata that

identifies the location of the required components on the medium. If the metadata is corrupted,

incomplete or wrong then a repair cannot proceed until it is corrected.

This research focuses on the problem of verifying this location metadata. Initially it was believed

that only a small set of errors would exist and work centred on detecting these errors by

presenting the information to engineers in an at-a-glance image. When the extent of the possible

errors was realised, an attempt was made to deduce location metadata by exploring the content

of the recorded medium. Although successful in one instance, the process was not able to

distinguish between current and previous uses. Eventually insights gained from exploration of

the recording application's source code, permitted an intelligent trial and error process which

deduced the underlying medium apportioning formula. It was then possible to incorporate this

formula into the heuristics, generating the at-a-glance image, to create an artefact that could

verify the location metadata for any given repair.

After discovering the formula, the research returned to the media exploration and the produced

disk fingerprinting technique. The disk fingerprinting technique gave valuable insights into error

states in call centre recording and provided a new way of seeing the contents of a hard drive.

J Sue Ashworth Page 3 of 174

 A Complex Situation in Data Recovery

This research provided the following contributions:

1. It has provided a means by which the recording systems' location metadata can be

verified and repaired.

2. As a result of this verification, greater automation of the recovery process is now possible

before the need for human verification is required.

3. The disk fingerprinting process. This has already given insights into the recording

system's problems and is able to provide a new way of seeing the contents of recording

media.

J Sue Ashworth Page 4 of 174

 A Complex Situation in Data Recovery

Table of Contents

 Glossary...9
 Abbreviations and Acronyms..9
 Unix Commands...9
 RAID – Quick Overview..13

1 Introduction..15
1.1 This research..15
1.2 Context of the Problem – Telephone Voice Recording...16
1.3 The Problem ..19
1.4 This Situation - Context and Research Environment...22
1.5 Objectives...22
1.6 Structure of Thesis...23

2 Background of this Research...26
2.1 Introduction..26
2.2 A Typical PC: Functioning and Data Storage..26
2.3 The Recording System: Functioning and Data Storage...30
2.4 When Something Goes Wrong: The Operating System..34
2.5 When something Goes Wrong: the Data Partition...37
2.6 Causes of Failure..43
2.7 Company Work Practices and Data Recovery Future Plans..45
2.8 Disk fingerprinting...47
2.9 Chapter Summary ...51

3 Visualising the data structures...53
3.1 Background ...53
3.2 Introduction..54
3.3 The abslsr.txt ...54
3.4 Design Decisions..56
3.5 First Iteration..57
3.6 Non Linear Representations...59
3.7 The Most Pertinent Information...60
3.8 Added Value..62
3.9 Conclusions and Lessons Learnt..65

4 Disk Exploration and Fingerprinting...67
4.1 Background..67
4.2 Introduction..68
4.3 Missing Information...68
4.4 Practical Considerations...69
4.5 Searching the Disk...70
4.6 Putting the Theoretical Values to the Test...79
4.7 Wider Considerations...80
4.8 Disk Fingerprinting..81
4.9 Chapter Conclusions..85

5 Calculating the Correct File Sizes...87
5.1 Background..87
5.2 Introduction..87
5.3 The Code..88

J Sue Ashworth Page 5 of 174

 A Complex Situation in Data Recovery

5.4 The Files and their Calculations...89
5.5 Testing..92
5.6 Using the Information – Design and Implementation..92
5.7 Using the Information as Part of the Repair Process...94
5.8 An Example Beyond Repair..95
5.9 One Final Consideration..99
5.10 Chapter Summary..102

6 Disk Fingerprinting – An Exploration...104
6.1 Background..104
6.2 Introduction..104
6.3 Common Methods..105
6.4 Disk 1 General...106
6.5 Comparing Two C: Drives...115
6.6 Formatting a FAT 16 Drive...118
6.7 A Linux Disk..121
6.8 Two Fresh Installs of Linux...124
6.9 Similarities in File Storage...132
6.10 Disk Fingerprinting Round Up..137

7 Summary and Conclusions..140
7.1 Introduction..140
7.2 Summary..140
7.3 Achievements...142
7.4 Enabled and Future work...143
7.5 Contributions..144

 Appendices..146
 Appendix A –Data Storage...146
 Appendix B – Description and Source Code of Sample Puzzle...146
 Appendix C – Source Code for SVG Generation...149
 Appendix D – Source Code for Disk Iterating Script...156
 Appendix E – Source code for Web Server Calculator..156

 References..170

J Sue Ashworth Page 6 of 174

 A Complex Situation in Data Recovery

List of Figures

Figure 1.2.1: A typical recording system..17
Figure 1.6.1: A diagram of the research processes ..24
Figure 2.2.1: A sample boot sector...28
Figure 2.5.1: A typical history..39
Figure 2.5.2: A repaired file..39
Figure 2.5.3: A misaligned file...41
Figure 2.8.1: gnuplot basic...49
Figure 2.8.2: Linux laptop fingerprint..50
Figure 2.8.3: Start of a typical data partition ...50
Figure 3.3.1: A typical abslsr.txt..55
Figure 3.5.1: Initial unscaled graphic...57
Figure 3.5.2: Partially zoomed..58
Figure 3.5.3: Fully zoomed...58
Figure 3.5.4: Single axis zoom...58
Figure 3.6.1: Log base - e...60
Figure 3.6.2: Log base - 10...60
Figure 3.7.1: The number of records unzoomed...61
Figure 3.7.2: The number of records zoomed...61
Figure 3.7.3: Number of records in log base-10...62
Figure 3.8.1: Grouping files..63
Figure 3.8.2: Adding intelligence...64
Figure 3.8.3: The discrepancy...65
Figure 4.8.1: Raw graph...82
Figure 4.8.2: Annotated graph..83
Figure 4.8.3: Second disk - raw..84
Figure 4.8.4: Second disk - annotated..84
Figure 5.4.1: Output from sg_readcap..90
Figure 5.6.1: Data input web page..93
Figure 5.6.2: Metadata predicted layout...94
Figure 5.8.1: The start of the partition where the metadata should be...96
Figure 5.8.2: A portion of a normal disk.dat..98
Figure 5.9.1: Data input form...99
Figure 5.9.2: A good abslsr.txt file...100
Figure 5.9.3: The corrected layout with abslsr.txt errors depicted in red below..........................101
Figure 6.4.1: A screen shot of Partition Magic...109
Figure 6.4.2: First eighth of drive...110
Figure 6.4.3: Second eighth of drive..111
Figure 6.4.4: Third eighth of drive...111
Figure 6.4.5: Forth eighth of drive..112
Figure 6.4.6: Fifth eighth of drive..112
Figure 6.4.7: Sixth eighth of drive..113
Figure 6.4.8: Seventh eighth of drive...113
Figure 6.4.9: Final eighth of drive..113
Figure 6.5.1: C:1...116
Figure 6.5.2: C:2...116
Figure 6.5.3: C:1 start...117

J Sue Ashworth Page 7 of 174

 A Complex Situation in Data Recovery

Figure 6.5.4: C:2 start...117
Figure 6.6.1: C:1 before format..119
Figure 6.6.2: C:1 after format...119
Figure 6.6.3: C:1 pre format...120
Figure 6.6.4: C:1 post format..120
Figure 6.7.1: Boot partition..123
Figure 6.7.2: Some typical patterns..123
Figure 6.8.1: Boot partition and start of LVM unencrypted...126
Figure 6.8.2: Boot partition and start of encrypted LVM...126
Figure 6.8.3: Unencrypted LVM part 2..127
Figure 6.8.4: Unencrypted LVM part 3..127
Figure 6.8.5: Unencrypted LVM part 4..127
Figure 6.8.6: Unencrypted LVM part 5..128
Figure 6.8.7: Unencrypted LVM part 6..128
Figure 6.8.8: Unencrypted LVM part 7..128
Figure 6.8.9: Encrypted LVM part 2..129
Figure 6.8.10: Encrypted LVM part 3..129
Figure 6.8.11: Encrypted LVM part 4..130
Figure 6.8.12: Encrypted LVM part 5..130
Figure 6.8.13: Encrypted LVM part 6..130
Figure 6.8.14: Encrypted LVM part 7..130
Figure 6.9.1: /boot partition and start of the LVM...132
Figure 6.9.2: Part 2 of the LVM...133
Figure 6.9.3: Part 3 of the LVM...133
Figure 6.9.4: Part 4 of the LVM...133
Figure 6.9.5: Part 5 of the LVM...133
Figure 6.9.6: Part 6 of the LVM...134
Figure 6.9.7: The end of the LVM and the start of the NTFS partition..134
Figure 6.9.8: Part 2 of the LVM after text files copied..135
Figure 6.9.9: Part 3 of the LVM after text files copied..135
Figure 6.9.10: Fingerprint text data on part 3 of the LVM ..136
Figure 6.9.11: Drive I: containing the data from scanning of C: drives.......................................137

J Sue Ashworth Page 8 of 174

 Glossary A Complex Situation in Data Recovery

Glossary

The glossary is to explain the technical terminology that is endemic in data recovery, Unix, and

this research. This guide is intended to refresh the expert and provide a guide for the less

technically oriented. This glossary covers abbreviations and acronyms; Unix commands and a

brief overview of types of RAID (Redundant Array of Independent Drives).

Abbreviations and Acronyms

CD Compact Disk

DOS Disk Operating System

DVD Digital Versatile Disk

ext3 EXTended file system type 3. A file system used by Linux.

FAT File Access Table

GUI Graphical User Interface

LVM Logical Volume Manager, a Linux file system management system

NTFS New Technologies File System, a Microsoft proprietary file system

PC Personal Computer

PNG Portable Network graphics, an image format

RAID Random Array of Independent Drives

SCSI Small Computer System Interface

SVG Scalable Vector Graphics, an image format

UDF User Defined Field. A field that contains information chosen by the user.

USB Universal Serial Bus

VPN Virtual Private Network

Unix Commands

This section contains a brief overview of the commands used in this research. For a full

J Sue Ashworth Page 9 of 174

 Glossary A Complex Situation in Data Recovery

description of any command the Unix man (manual) pages are the definitive source of

information. These are accessed from the command line using the command “man command”

(where command is the command about which more information is required). For more

information about the man pages typing “man man” will access the manual for man. The manual

pages typically contain the NAME of the command, a SYNOPSIS, a DESCRIPTION, the name

of the AUTHOR, a REPORTING BUGS address, COPYRIGHT information and a SEE ALSO

section. Different man pages may contain other, additional headings but these are the most usual.

Most of the following descriptions are based on the commands' man pages.

 |

The pipe symbol means to take the output of the command to the left of the symbol and

feed it into the command on the right, e.g. cat this.txt | less will take the

output of the cat command and feed it to less where the text will be displayed.

awk

This is a pattern scanning and processing language that is designed for manipulating text

data in files or piped from another program.

cd

The change directory command is used to move from one directory to another when

working at the command line.

cat

Cat is short for concatenate. This is typically used with files as the input and the console

as the output.

dd

This is a convert and copy utility. This command reads data from a file or block device

and outputs the data to another file or block device. The input is specified by if, e.g.

if=/dev/sda will set the input to read from the first SCSI drive. The output is

specified by of, e.g. of=/dev/sdb will set the output to the second SCSI drive. If no

J Sue Ashworth Page 10 of 174

 Glossary A Complex Situation in Data Recovery

output is given then the default is stdout (the console). The block size is set with the bs

assignment, e.g. bs=512. The number of blocks to be copied is set by the count value,

e.g. count=100. The skip value is the offset into the input file to start copying, while

the seek value is the offset into the output to start writing. For example: dd

if=/dev/sda of=my.part.img bs=512 count=1 will copy the first sector of

the first SCSI disk to a file. This would be a reasonable way to make a backup of the

partition table.

diff

This finds the differences between two or more files.

dosfsck

This is a Linux utility that can perform scandisk like functions on a FAT file system.

fdisk

Fdisk is a partition table manipulator for Linux and other systems. Used with the -l switch

it displays the current partitions.

grep

This prints lines matching a pattern. That is to say it only shows the lines that match a

given pattern.

hexdump

Hexdump is an ascii, decimal, hexadecimal or octal dump. The hexdump utility which

displays specified files in a user decided format. When used in this project the following

formats were chosen: The canonical hex+ASCII display which displays the input offset in

hexadecimal, followed by sixteen space-separated, two column, hexadecimal bytes,

followed by the same sixteen bytes in %_p format enclosed in ‘‘|’’ characters and the two-

byte decimal display which displays the input, offset in hexadecimal, followed by eight

space-separated, five column, zero-filled, two-byte units of input data, in unsigned

decimal, per line.

J Sue Ashworth Page 11 of 174

 Glossary A Complex Situation in Data Recovery

less

Less is a program similar to more, a text editor, but which allows backward movement in

the file as well as forward movement. Less does not have to read the entire file before it

can display information so, with large input files, it starts up faster than text editors such

as vi.

sed

Sed is a Stream EDitor for filtering and transforming text. A stream editor can be used to

perform basic text transformations on an input stream (possibly a file or input from a

pipe). Sed’s ability to filter text in a pipeline particularly sets it apart from other editors.

sg_readcap

This utility is not normally part of the Unix operating system and can be found at

http://sg.danny.cz/sg/uu_index.htm.

This command sends a SCSI READ CAPACITY command. The SCSI READ

CAPACITY command actually yields the block address of the last block and the block

size. The number of blocks is thus one plus the block address of the last block (as blocks

are counted origin zero).

ssh

Ssh (SSH client) is a program for logging into a remote machine and for executing

commands on a remote machine. It is intended to replace rlogin and rsh, and provide

secure encrypted communications between two untrusted hosts over an insecure network.

su

SU is short for super user. It is used to gain elevated privileges.

uniq

uniq program reports or omits repeated lines. It discards all but one of successive identical

lines from INPUT (or standard input), writing to OUTPUT (or standard output). As used

in this research with the -c switch meaning to prefix the output with a count of the number

of occurrences.

J Sue Ashworth Page 12 of 174

 Glossary A Complex Situation in Data Recovery

vi

Vi is a text editor. It can be used to edit all kinds of plain text.

wc

Wc stands for word count and it is used to count words, lines or bytes.

RAID – Quick Overview

This brief explanation of RAID provides a background to RAID systems and identifies the two

types encountered in the project. The acronym RAID originally stood for “Redundant Array of

Inexpensive Disks”, but as “inexpensive” was somewhat vague and relative, the “I” now stands

for “Independent”.

Although software RAIDs can be created simulating some of the advantages of multiple disks,

the term usually applies to more than one physical hard drive combined to form an array of

drives. All references to RAID in this research refer to more than one physical hard drive.

There are several types of RAID numbered 0 to 6, each level providing redundancy, improved

performance or a combination.

RAID 0: This configuration provides striping (a means of distributing data across multiple drives

so that usually disk I/O bottlenecks can be minimised) and does not use parity, or any other error

detection, to provide fault tolerance. The more drives present in the array the more vulnerable to

failure the array becomes. This RAID may be used to increase performance.

RAID 1: This is a mirrored set of disks. Mirroring occurs where the data on one disk is replicated

on another. With this configuration the data is recoverable as long as one disk is sound. This is

one configuration used by the voice recording system, described in this research, where two

mirrored disks are fitted internally.

J Sue Ashworth Page 13 of 174

 Glossary A Complex Situation in Data Recovery

RAID 2: Here the disks are striped, but with very small stripes and with the disks synchronised to

spin together. Due to the use of error correction this configuration can recover from single bit

corruption and detect, but not repair, double bit. RAID 2 is very poor in terms of storage. Within

a 7 disk array four disks are used for data storage and the remaining three for error correction.

RAID 3: In this configuration byte sized stripes are used and data is spread sequentially across

several disks with another disk used purely for parity. This configuration does not permit multiple

I/O requests simultaneously as each block read entails all drives being read sequentially and

unable to seek to another block at the same time.

RAID 4: This configuration uses block size striping and has one disk dedicated to parity. Unlike

RAID 3 if the read (the amount of data read at a time) is smaller than a block then another disk

may read a different block if this is located on a different drive.

RAID 5: This is similar to RAID 4 except that here the parity is distributed between the disks.

This configuration means that if one drive fails there is no loss of data and if a new drive is

installed the RAID can rebuild itself. Typically a RAID enclosure may contain several drives plus

a dedicated spare. When one drive fails the spare is used in its place and the data from the failed

drive is built from the data and parity information stored across the remaining drives. In this

research this type of RAID is used if an external RAID is present in the voice recording system.

RAID 6: This is similar to RAID 5, but it has two sets of distributed parity thus at any given

moment in time there may be two failed drives without loss of data or, and possibly more

commonly, when a second drive fails while the first is being rebuilt. This gives a high degree of

redundancy. Like RAID 4 and 5 it uses block level striping.

In this research RAID 1 and 5 were encountered. In general use of RAIDs 0, 1 and 5 are

common, while the remaining levels are seldom encountered.

J Sue Ashworth Page 14 of 174

 1 Introduction A Complex Situation in Data Recovery

1 Introduction

1.1 This research

Data recovery is the process by which data that was written to recordable media and has become

inaccessible is made available once more. The data may be of any type from a single plain text

document to a full operating system with all a user's documents or a proprietary structure used for

a specific purpose. The recordable storage media may be a hard drive, a floppy disk, a CD or

DVD, a (digital) tape, a USB flash memory device, a RAID system or any other media that is

able to store computer data. The cause of the data being inaccessible may be due to physical

damage to the media or corruption of the file system, partition table or other metadata used to

access the data. The nature of the recovery process will depend on the underlying reason for the

data being inaccessible.

This research is about data recovery in the field of call centre telephone voice recording. It is

about a specific method of audio recording and the implications of this recording technique when

failures occur and the data needs specialist attention to recover the stored information.

Call centres may be extremely busy with a large number of calls occurring simultaneously. In this

system these calls are multiplexed (combined into a single data stream) while the information

needed to demultiplex the data is stored in separate metadata files. There is no underlying file

system and the different metadata streams are recorded to discrete areas of the recording medium,

normally a hard disk or a Random Array of Independent Drives (RAID) system. The locations of

these metadata files are defined in a location metadata block and are determined by a software

formula that takes into consideration the recording equipment's hardware and customer

refinements. This is a recording strategy that is normally very reliable, but when things do go

wrong the result is extremely unpredictable.

The first step in the recovery process is to examine the metadata information at the location

indicated by the location metadata. If this location information is wrong then the repair can not

J Sue Ashworth Page 15 of 174

 1 Introduction A Complex Situation in Data Recovery

proceed until it is corrected. For this system, the underlying formula by which the medium is

apportioned has been lost. This means that where this data is corrupted, incorrect or missing there

may be no reliable way to detect these errors or determine the correct information if the problem

is identified. The focus of this research is the recreation of the formula by which the metadata

locations are determined.

During the research process an attempt to reconstruct location metadata by exploring the contents

of a disk produced a potentially very useful diagnostic technique. The technique of disk

fingerprinting has provided very useful insights to data recovery and in a more general context.

The work was done in the laboratory of the company owning the voice producing the call centre

recording equipment, this company shall be only referred to as company X and the recording

product as recorder X or more simply as the recorder.

1.2 Context of the Problem – Telephone Voice Recording

When initiating a business telephone conversation it is not unusual to hear some variation of the

phrase “Calls may be recorded for training purposes”. While a reason for informing a caller of the

recording is to allow them to cancel the call if being recorded is unacceptable, it also provides

notice of the company's intentions. A company may legally record conversations with its

customers and potential customers and retain the data for later use.

The training purposes alluded to suggest exemplary calls being played to new recruits to train

them in the company's best practices, while some calls may be used in this way, there is

considerably more useful information in the recorded data. Many of these business calls will be

handled by a call or contact centre. (Typically a call centre will only communicate via telephone

while a contact centre may also use fax or email etc. to supplement the communications.) The

employees, or agents, based in such a centre will typically each have a workstation comprising of

a PC and a telephone headset (with which to make or take calls).

J Sue Ashworth Page 16 of 174

 1 Introduction A Complex Situation in Data Recovery

Figure 1.2.1 shows a typical overview of a call centre recording system. Here it can be seen that

the company's Private Branch eXchange (PBX) is connected to the telecommunications supplier's

Public Switched Telephone Network (PSTN). The agents' conversations travel through the

company's BPX and are recorded by the recording system. The telephone recorder system may

contain hard drive and tape data storage. It is this storage media with which a data recovery

engineer will typically work.

These centres are used for many different purposes, a centre that focuses on telemarketing will

have employees making or following up calls with a view to making a sale. A key performance

indicator (KPI) for this scenario is the number of sales per given time interval. The centre may be

run for a bank providing a telephone banking service or it may be a centre for car insurance

claims, In these circumstances a KPI could be the number of calls handled per hour. Different

companies will set differing targets and different business objectives for their centres, but most

will seek to optimise the performance of their employees.

Optimisation may start by a customer being asked to key (or speak) a number or sequence of

numbers to select an option before being connected to the best-suited agent. An agent will be

closely monitored, the amount of time spent talking to any individual customer is recorded as is

the number of calls per hour, the interval between calls and the amount of time an agent is

unavailable when taking a break. With this type of information the performance of an agent can

be examined and if required it may be improved, for example, by additional training to shorten

J Sue Ashworth Page 17 of 174

Figure 1.2.1: A typical recording system

 1 Introduction A Complex Situation in Data Recovery

the time spent talking to a customer while still retaining a satisfactory outcome. Agents'

performance can be compared with that of other agents and the results used can identify effective

traits, as can follow-up customer surveys. Some of the insights gained from the recorded calls

may be gleaned from voice recognition software. Performance-enhancing software may detect

when an agent requires further training and launch a PC based training session at their

workstation. The description “used for training purposes” can mean that all customer calls are

analysed and their content data mined so that more efficient strategies can be taught to call centre

employees. This data is potentially very useful to its owners.

Occasionally disputes may arise, a customer may believe they said one thing whilst the company

may believe it received differing instructions, in such cases replaying the recording of the

conversation will quickly and easily resolve the issue. More complex situations may occur in

which a recording may be required as evidence for a court of law, e.g. where funds are being

moved in as part of an illegal operation or where the caller is not whom they claim to be. The

precise nature of such situations is beyond the scope of this project. It should be noted that that if

a recording is used as legal evidence, a degree of authenticity will be required. If data recovery

has been performed then some assurance must be presented that the recovered data is the same as

the original recording. There is no reliable method of predicting which calls will be deemed

valuable and where any call may be potentially valuable then all calls must be considered

valuable. When performing data recovery on a recording it should be remembered that a

nondescript repair may subsequently become important audio evidence that must be

demonstrated, to a court, to be a realistic representation of a conversation between the parties that

took place on the date and time in question. Fortunately such occurrences are extremely rare but

the possibility is always present.

Although there is profit in being able to refine the workforce to a high degree, there is also value

in retaining recorded calls as an entity in their own right and under some circumstances a level of

recording may be mandatory. Consider the case of a bank customer telephoning their bank and

transferring money between two accounts, a normal everyday occurrence, but one that only a few

years ago would have required the customer to visit their bank in person and give the cashier a

signed transfer document. With the advent of telephone banking (and other similar services) the

recorded transcript is now the authenticated audit trail replacing the transaction slip. Financial

J Sue Ashworth Page 18 of 174

 1 Introduction A Complex Situation in Data Recovery

institutions have regulators and just as the loss of signed transfer documents, cheques or other

evidence of authenticated transaction is not acceptable neither is the loss of recorded data.

Financial regulators appreciate that 100% data integrity, though desirable, may not be achievable

and apply a less stringent target of 99.XX % of data being available. The exact percentage may

vary with the type of service provided, but there is a real risk that an organisation could lose its

licence to operate if too much data is lost. Here the value of the volume of calls may be

disproportionally high compared to the sum of the values of the individual calls.

Modern telephone recording systems are reliable and to lose a conversation is rare. Once a call is

initiated the audio data is recorded to storage media and periodically this data will be backed up

to longer-term storage media, such as magnetic tape, and archived. As with any data, the most

vulnerable period is after it has been created but before a reliable backup has been made.

1.3 The Problem

The biggest aspect of the problem is the reliability of the system and the lack of common faults.

This means that although there are some faults that have precedence almost every data recovery

job is a new challenge. An internal company document likens the analysis of a repair to that of an

air accident investigation where all the fragments from a downed aircraft must be found, their

original location determined and an analysis of the cause of the accident undertaken. When an

aeronautical disaster occurs there may be speculation to the sequence of events, but until the

investigation is completed the root cause is unknown. Like the work of air accident investigators,

each repair starts with a search for all the pieces of the data and the correct location determined.

Here, unlike an air accident investigation, after the analysis the data must be reassembled and

made playable again.

With very few exceptions it is not possible to observe symptom X and deduce that approach Y is

the correct method to follow. Even if the underlying cause is suspected there is no certainty that

the effect will be the same as a previous occurrence. Another consideration is that the time at

which a failure is recognised may not be the same as the time of failure. Sometimes there is an

J Sue Ashworth Page 19 of 174

 1 Introduction A Complex Situation in Data Recovery

obvious cause for the failure, for example after a power outage no data could be replayed.

Sometimes a more insidious sequence of events may occur and the first recognised symptom is a

failure in the backup process. If a problem is recognised immediately then the recording medium

will be taken out of service, but it is possible that recording may continue and new data will be

written to the hard drive or RAID system. This may mean that some data is overwritten but more

often it is just another factor in an already complex situation.

The causes of failure may be hardware, software or ill considered human intervention. For

example hard drives may fail (although RAID systems can provide data protection in the event of

a single disk failure). Software problems can also jeopardise recorded data and there are wide

ranges of possible causes ranging from software bugs that result in an application writing to the

wrong part of the disk to configuration issues erroneously resetting significant parameters.

Sometimes a problem may be compounded rather than alleviated during the initial system fault

assessment.

Irrespective of history, all repairs must begin with an examination of the data and its associated

metadata, but in order to access these files their location must be known. The location of the data

and metadata components is stored in the location metadata and it is the contents of this file that

permits the collection and examination of the information required for a repair to proceed. If the

location information is wrong, incorrect portions of the medium will be examined leading to an

incomplete or missing capture of the data. The location of these files is determined by a software

formula when the recording system is commissioned. Without knowing the formula used to

apportion the recording medium the following problems exist:

1. If the location metadata was corrupted or modified inadvertently then there is no way to

deduce the correct layout nor (and this may ultimately be more significant) is there any

way to validate if the information present is correct.

2. Where the location metadata is changed the problem may be twofold, first there may be

data recorded prior to the change that has become inaccessible and second there may be

subsequent recordings written to the wrong place. The correct location metadata must be

deduced before calls recorded prior to the incident can be accessed with the same

J Sue Ashworth Page 20 of 174

 1 Introduction A Complex Situation in Data Recovery

information required for recordings made after the incident to be moved to the correct

location on the recording media.

3. If the location metadata is missing there is very little to assist the recovery engineer to

begin the recovery process.

Fortunately the location metadata is usually correct and even if the information can not be

verified it is possible to proceed on the basis that it is unlikely to be wrong. For the majority of

repairs this is a strategy that works. Where this strategy is employed the recovery engineer will

usually seek supporting information as the repair proceeds (e.g. the metadata files contain

expected data) and by the time the assessment is complete there is a high degree of confidence in

the information. However if errors exist and go undetected then a good deal of time may be lost

in backtracking and understanding why a repair will not replay. Data recovery engineers' time is

an expensive commodity to waste in this fashion.

Although the above verification is performed by considering if other information is consistent

with the collected location metadata. It would be advantageous for the location information to be

otherwise verified and then used to confirm the supporting data, rather than observing

consistency (which may or may not be indicative of correctness).

Although the immediate user of the location metadata is the data recovery engineer, there is a

future plan to create a Recovery Studio, which will permit a less experienced engineer, possibly

the front line maintenance engineer, to perform some basic recovery repairs or assessments. As

well as considering the nature of the recording medium allocation formula, some additional

consideration must be given to the presentation of the information both to an experienced user

and the novice. The Recovery Studio concept is considered in greater detail in section 2.7

1.4 This Situation - Context and Research Environment

Most of the experiments described in this research took place while employed three days a week

J Sue Ashworth Page 21 of 174

 1 Introduction A Complex Situation in Data Recovery

as a data recovery engineer. Although this employment did not impact directly on the

experiments performed nor the choices of the approaches undertaken, it is worth briefly

considering how it influenced the research.

This research took place in the company's data recovery laboratory while employed by the

company. The work was carried out under controlled conditions and these were the normal

conditions for this type of data recovery. This meant that distinctions of in vivo or in vitro (Basili

2007) were not applicable. As the research was carried out while working as a data recovery

engineer, this permitted both aspects of the practitioner and researcher approaches to be

experienced (Basili 1996). These advantages of being able to research in this manner were

complimented by a degree of sensitivity to the company's requirements.

As this research mostly took place while employed as a data recovery engineer there were

occasions where company core business was expected to take precedence over personal research

considerations. This was not an unreasonable expectation. The company's expectations were that

during normal working hours the focus of attention should be company business. Outside these

hours there was the freedom to use data for research purposes. A remote login was arranged for

this purpose and to permit some company work to be performed from home.

The employment situation lasted for a year before economic circumstances forced the company

to reduce staff and as a recent employee and part time worker, the employment concluded. By

this time the research had successfully identified disk allocation formula.

1.5 Objectives

The overall aim of this research is to improve the the initial analysis of the data recovery repair

process. To do this, the primary objectives for this research are:

1. To attempt to identify the formula used in apportioning the recording medium into areas

of metadata and data.

J Sue Ashworth Page 22 of 174

 1 Introduction A Complex Situation in Data Recovery

2. If found, to present this information in a usable form for both expert and novice users so

that they may make an informed initial assessment of the repair.

3. To see what, if any, useful information could be obtained from the disk fingerprinting

technique developed as an attempt to automate the exploration of recording medium (see

chapter 2 section 8).

1.6 Structure of Thesis

The rest of the thesis is organised as follows:

Chapter 2 considers the nature of an operating system and the types of problems that can arise

when key parts of the recording medium are damaged. These principles are extended to the call

centre recording system and the application specific data recording mechanism is explored. The

problems that may be caused by this recording stratagem are also considered. The main causes of

failure are identified before considering the current working practices and the company's long

term aspirations. A description of the disk fingerprinting technique is also included here before a

brief summary of the chapter's main concepts.

The following four chapters begin with a brief consideration of the external factors present when

the work was undertaken. Chapters 3 to 5 describe the different stages of solving the problem of

verifying and recreating the location metadata. Figure 1.6.1 shows a flow diagram of the work

done in these stages.

Chapter 3 describes the process of extracting information from the location metadata; performing

some heuristic analysis and presenting this information visually to the user with any

inconsistencies highlighted (an at-a-glance representation). While the objectives of the processes

were fully met, the initial understanding of the problem was incomplete and subsequent repair

jobs revealed that key data may not only be incorrect but also missing. Nothing in the processes

J Sue Ashworth Page 23 of 174

 1 Introduction A Complex Situation in Data Recovery

developed in this chapter could cope with missing information. This is depicted in the top third of

Figure 1.6.1.

In Chapter 4 a different approach was attempted. Here, the data partition was processed sector by

sector first to follow data types and then to produce a graphical image of the disk. Although this

disk “fingerprinting” gave very clear readable insights into the layout of the metadata and data, it

was not able to distinguish between information written to disk during its current operation and

data written either in a previous usage of the medium nor an earlier, now irrelevant, system

configuration. Early optimism for this process was dampened when a very misleading set of data

was processed. Despite the fingerprinting technique not being able to solve this specific problem

J Sue Ashworth Page 24 of 174

Figure 1.6.1: A diagram of the research processes

Chapter 3

Chapter 4

Chapter 5

 1 Introduction A Complex Situation in Data Recovery

it was felt that it was potentially very useful. This is depicted in the middle third of Figure 1.6.1.

In order to work out the correct location and space allocation of the metadata and data the source

code for the recorder software application was examined in Chapter 5. This was initially

considered to be a trivial task but, whilst a worthwhile exercise, this approach proved more

complex than anticipated and eventually working formulas were deduced from an understanding

of the nature of the source code methods and a trial and error process applied to historical data.

With a reasonable degree of confidence gained from testing that the formula was correct, the

formula was added to the at-a-glance processing software described in Chapter 3 which could

now detect and present errors in the location metadata to both expert and novice users. This is

depicted in the bottom third of Figure 1.6.1 with a line joining into the top of the diagram where

the developed at-a-glance image is used and enhanced. So far the formula has proven correct for

all instances and the end box is reached. The dotted line beneath the end box allows for the

possibility that an instance may be found that does not follow the formula and further refinement

may be required. (Although no longer employed at the company contact has been maintained

with the senior engineer.)

Chapter 5 saw the realisation of the research objectives and the production of an artefact that

incorporated the at-a-glance image with the rediscovered formula. This allowing the disk finger

printing technique developed in Chapter 4 to be reconsidered in a broader context to see if this

method has value beyond the specific problem. These subsequent investigations are presented in

chapter 6.

Chapter 7 summarised and considered the work done. Here, enabled and future work was

identified as were the contributions made by this research.

J Sue Ashworth Page 25 of 174

 2 Background of this Research A Complex Situation in Data Recovery

2 Background of this Research

2.1 Introduction

This Chapter looks at the background of this research. Section 2.2 considers how a typical

Personal Computer (PC) functions and how it stores its data. Section 2.3 looks at the audio

recording system and finds similarities between it and the machines considered in the previous

section. The following two sections (2.4 and 2.5) consider failure scenarios both for a domestic

PC and its file system and for the data partition of the recorder. Common causes of failure are

considered in section 2.6.

The data recovery working practices are outlined (2.7) before a description of the disk

fingerprinting technique (2.8). The chapter is summarised in section 2.9.

2.2 A Typical PC: Functioning and Data Storage

This section considers a typical PC which consists of a single hard drive that contains the

operating system and stored data. Although there may be other devices it is assumed that the PC

will boot from this hard drive.

When the PC starts up the attached monitor will display information about the loading operating

system. Often the first visible information will be in a textual format giving some information

about the hardware components before operating system (OS) specific progress indications are

displayed. A modern OS usually has some form of graphical information that indicates the

loading progress. By the time the PC is ready to use many tests and processes have completed.

Although reassuring to see information on a monitor, a lot is done before there is any output to

the display. The first test that is done is the power supply test. If the voltages are suitable for the

J Sue Ashworth Page 26 of 174

 2 Background of this Research A Complex Situation in Data Recovery

hardware then the next step is to read the information in the Basic Input Output System (BIOS).

This information permits the next level of tests to proceed. These checks are often referred to as

POST (Power On Self Tests) where the rest of the hardware (other than the power supply) is

verified. As these tests may be taking place before the video output is active, any errors detected

are indicated as a series of audible beeps sent to the system speaker. These beeps will be

hardware specific and usually consist of a series of short or long beeps interspersed with pauses

which may be interpreted using the handbook for the machine in question. When no errors are

detected a single short beep may be heard.

Once the self tests are completed the PC looks for bootable media, that is media on which

bootstrap code is located such as hard drives, CD/DVD drives, USB devices or floppy disk

drives. Depending on how the PC is set up it will search for bootable media in each configured

boot device. For example, a very common set-up is to attempt to boot from a CD or DVD drive

and if no bootable media is present then the hard drive is the next device attempted. This choice

of boot sequence allows the PC to boot normally when there is no bootable CD or DVD present,

but if there is a problem then a bootable recovery CD/DVD can be placed in the drive and used to

repair the problem without the user having to modify settings to change the boot sequence.

Where the hard drive is the bootable medium there is a stub of code located on the first sector

(512 bytes) of the drive (sometime referred to as the Master Boot Record (MBR)). This sector

contains OS specific code (that will access more complex programs which enable the OS to

complete the boot process), and the partition table. The partition table contains information about

how the physical drive is divided up (partitioned) into logical drives (partitions). The partition

table occupies the last 62 bytes of the first sector before the 4 byte end of data marker (55 aa).

The information in the partition table is read by the OS as part of the boot process and if there are

obvious errors the PC may not continue to boot.

Although there are exceptions, the most common rules for partition tables are as follows. The

partition table has space for four partition entries. These may be primary or extended. A primary

partition is a direct reference to a partition while an extended partition is a container that holds

information about other partitions. An extended partition contains the information about the

partitions it contains while its entry in the partition table (in the MBR) only contains information

J Sue Ashworth Page 27 of 174

 2 Background of this Research A Complex Situation in Data Recovery

about this extended partition.

The partition table contains information about the active status, the type, location and size of each

partition. Only one primary partition may be set as being active and it is this flag that will identify

the partition as one from which an OS may boot. The type of a partition is its file system type

such as FAT16, FAT32, NTFS, ext3 or many others. The location is defined in terms of start and

end locations while the size is the number of sectors.

The following is a sample hex dump of a boot sector:

This is the MBR for a Linux PC that uses grub (GRand Unified Bootloader) as a bootloader. The

highlighted regions are (yellow) the active primary partition (/boot) and (green) the LVM

J Sue Ashworth Page 28 of 174

00000000 eb 48 90 10 8e d0 bc 00 b0 b8 00 00 8e d8 8e c0 |.H..............|
00000010 fb be 00 7c bf 00 06 b9 00 02 f3 a4 ea 21 06 00 |...|.........!..|
00000020 00 be be 07 38 04 75 0b 83 c6 10 81 fe fe 07 75 |....8.u........u|
00000030 f3 eb 16 b4 02 b0 01 bb 00 7c b2 80 8a 74 03 02 |.........|...t..|
00000040 80 00 00 80 41 18 01 00 00 08 fa 90 90 f6 c2 80 |....A...........|
00000050 75 02 b2 80 ea 59 7c 00 00 31 c0 8e d8 8e d0 bc |u....Y|..1......|
00000060 00 20 fb a0 40 7c 3c ff 74 02 88 c2 52 be 7f 7d |. ..@|<.t...R..}|
00000070 e8 34 01 f6 c2 80 74 54 b4 41 bb aa 55 cd 13 5a |.4....tT.A..U..Z|
00000080 52 72 49 81 fb 55 aa 75 43 a0 41 7c 84 c0 75 05 |RrI..U.uC.A|..u.|
00000090 83 e1 01 74 37 66 8b 4c 10 be 05 7c c6 44 ff 01 |...t7f.L...|.D..|
000000a0 66 8b 1e 44 7c c7 04 10 00 c7 44 02 01 00 66 89 |f..D|.....D...f.|
000000b0 5c 08 c7 44 06 00 70 66 31 c0 89 44 04 66 89 44 |\..D..pf1..D.f.D|
000000c0 0c b4 42 cd 13 72 05 bb 00 70 eb 7d b4 08 cd 13 |..B..r...p.}....|
000000d0 73 0a f6 c2 80 0f 84 ea 00 e9 8d 00 be 05 7c c6 |s.............|.|
000000e0 44 ff 00 66 31 c0 88 f0 40 66 89 44 04 31 d2 88 |D..f1...@f.D.1..|
000000f0 ca c1 e2 02 88 e8 88 f4 40 89 44 08 31 c0 88 d0 |........@.D.1...|
00000100 c0 e8 02 66 89 04 66 a1 44 7c 66 31 d2 66 f7 34 |...f..f.D|f1.f.4|
00000110 88 54 0a 66 31 d2 66 f7 74 04 88 54 0b 89 44 0c |.T.f1.f.t..T..D.|
00000120 3b 44 08 7d 3c 8a 54 0d c0 e2 06 8a 4c 0a fe c1 |;D.}<.T.....L...|
00000130 08 d1 8a 6c 0c 5a 8a 74 0b bb 00 70 8e c3 31 db |...l.Z.t...p..1.|
00000140 b8 01 02 cd 13 72 2a 8c c3 8e 06 48 7c 60 1e b9 |.....r*....H|`..|
00000150 00 01 8e db 31 f6 31 ff fc f3 a5 1f 61 ff 26 42 |....1.1.....a.&B|
00000160 7c be 85 7d e8 40 00 eb 0e be 8a 7d e8 38 00 eb ||..}.@.....}.8..|
00000170 06 be 94 7d e8 30 00 be 99 7d e8 2a 00 eb fe 47 |...}.0...}.*...G|
00000180 52 55 42 20 00 47 65 6f 6d 00 48 61 72 64 20 44 |RUB .Geom.Hard D|
00000190 69 73 6b 00 52 65 61 64 00 20 45 72 72 6f 72 00 |isk.Read. Error.|
000001a0 bb 01 00 b4 0e cd 10 ac 3c 00 75 f4 c3 00 00 00 |........<.u.....|
000001b0 00 00 00 00 00 00 00 00 5f a1 09 00 00 00 80 01 |........_.......|
000001c0 01 00 83 fe 3f 18 3f 00 00 00 9a 20 06 00 00 00 |....?.?....|
000001d0 01 19 8e fe ff ff d9 20 06 00 e8 69 9b 12 00 00 |....... ...i....|
000001e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000001f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 aa |..............U.|

Figure 2.2.1: A sample boot sector

 2 Background of this Research A Complex Situation in Data Recovery

(Logical Volume Manager) partition. The LVM manages the main file system and the swap file.

If the partition table is deemed acceptable as the OS continues to load, it may perform a basic

check on any partition it is able to recognise. If no errors are detected the boot process continues.

Different operating systems have different boot processes. A Microsoft DOS system will seek to

find files called "IO.SYS", "MSDOS.SYS" and "COMMAND.COM" and seek to follow the

configuration files config.sys and autoexec.bat. A Linux system will run “init” (short for

initialisation) and depending on the contents of inittab (its configuration file) will start the

applications as defined by the contents of the rc.d. Microsoft's Windows XP system uses NTLDR

(NT Loader) which reads the boot.ini file and NTDETECT.COM to read registry hardware

configuration before loading NTOSKRNL.EXE (the NT OS kernel). There are many other

operating systems; these are just a sample.

The preceding information has been greatly simplified. The exact mechanisms used to boot by

different OS is largely irrelevant to the research, what is important is the concept that the data on

the hard drive is read and that data is used to control the computer and enable it to function. A far

more detailed description of the boot process and partition tables can be found in Sammes and

Jenkinson (2007) and specific to the MS system Ray Duncan (1986).

The files used during the boot process must be present, correct and readable. If the system is to

read the files it requires then it must have a means of locating the files and this is the primary

purpose of the file system. For example, a FAT system is named after its File Allocation Tables

of which there are two copies (one backup) at the start of the logical drive. A Linux file system is

based on inodes, a system that uses a unique number to identify the information (including name)

of each file. A NTFS (New Technologies File System) drive will have MFT (Master File Table),

like FAT there is also a backup copy.

Although all these file systems (and others not discussed) are very different they all permit access

to stored data. In the normal course of events the PC will successfully boot and the user will use

their computer. To create a new text document the user will typically select an icon from their

desktop or menu to launch their chosen text editor. This action will initiate the executable

program (the editor) or, put another way, this will locate the executable of the hard drive, load it

J Sue Ashworth Page 29 of 174

 2 Background of this Research A Complex Situation in Data Recovery

into memory with any additional configuration information. When the user creates and saves a

new document the information will be saved in a file that is written to the hard drive and the file

system will be updated to include an entry for this file.

Files are stored on a hard drive in clusters. A cluster is the smallest unit of a drive that can be

allocated for a file and it may be (usually) between 1 and 8 sectors in size. The exact size is

determined by the size of the partition and the way the drive was formatted. A file is stored in at

least one cluster even if it only need a fraction of that space and another file may start in a

subsequent cluster. If the first file grows so that it no longer fits in a single cluster then it will be

allocated another cluster, but this may mean that the file is fragmented, that is to say that the

allocated clusters are not contiguous. The same may occur if the file is very large and there is not

a single extent of space into which it may fit. In this case the file must be broken into smaller

pieces. The exact mechanisms for this are file system dependent and for the purposes of this

discussion it is enough that the possibility of a file being split up is highlighted. Despite this it is

common to find that a file can be read directly from the disk by reading sequential sectors.

For the normal operation of a typical PC, the system must have some form of bootable medium

(in this case a hard drive). In order for the drive to be bootable there must be a stub of code on the

first sector of the drive that will permit larger programs to control the OS specific boot process

and a partition table that will indicate where to find this operating system partition. As the PC

continues to boot, the file system enables the location of both executable and interpreted data to

be used to finish booting and handle subsequent disk storage and retrieval operations essential for

normal operation.

2.3 The Recording System: Functioning and Data Storage

The recording system has much in common with the domestic PC. The system uses an active

primary FAT partition to boot to its operating system. The operating system partition is a fixed

size, irrespective of the size of the recording medium, with the remaining space being used for the

second partition that holds the recorded data. These two logical drives may reside on a single

J Sue Ashworth Page 30 of 174

 2 Background of this Research A Complex Situation in Data Recovery

physical hard drive or may be housed on a RAID system. Although RAID technology provides a

greater degree of fault tolerance and may provide greater capacity, as far as the system is

concerned there are simply two logical partitions (or drives).

Unlike a domestic PC the recorder system does not normally interact with a user and instead it

boots to a dedicated software system that controls the specialist hardware required to perform its

primary function – namely that of recording audio data. There will be at least one specialist

interface card that inputs the telephone signals and data. There is another non-standard interface

that allows user commands to be input via a control panel and indications to be output to a small

display. Although not always present, most configurations will contain tape drives that are used

to create permanent records of the recorded data. There are usually two drives although small

systems may use only one and other systems may use a network to backup the data. The whole

system may be rack mounted and may not be immediately recognisable as a computer. The

recorded data is stored on the hard drive or RAID and periodically archived to tape.

The boot process for the recorder is as described in the previous section. The machine is powered

on and the hardware self tests are performed before the hard drive or RAID is located and the

stub of code in the first sector is run. The active primary partition is located and the operating

system starts to load checking the remainder of the partition table. Although there is a valid

second partition, the type identifier is not recognised by the operating system and its presence is

ignored. This second partition has no file system and it is written to and read from directly by the

recording application. Once the recorder has finished booting this application is run.

When the recorder software starts it reads the first few sectors of the second data storage

partition. Here is the information about how the partition is organised and where different regions

of data are located. Using the information in this part of the disk, the application is able to locate

the different metadata regions. (These regions are frequently referred to as files even though

without a file system this term may be considered inaccurate, it represents a concept that is still

applicable to that of containing a portion of continuous, related data.)

The incoming audio data is split up into segments of about two seconds duration and recorded in

the main body of the data (called disk.dat). If there is only one call in progress the segments of

J Sue Ashworth Page 31 of 174

 2 Background of this Research A Complex Situation in Data Recovery

the call will follow one after the other, but if there is more than one call taking place it is very

likely that the next segment will be from a different call. As simultaneous calls are recorded in

segments that are interleaved with those of other calls, more information is required if these calls

are to be replayed as discrete conversations.

There are two key metadata files that are required for the audio segments to be isolated and

replayed. The first is the jump table that records the number of other segments between the

segments of a single call. This is simply a sequence of numbers, e.g. 2345211 meaning play 1

segment, jump 2, play 1, jump 3, play 1 etc. This information is referred to as the fat information

due to some similarity with the way a File Allocation Table works in a FAT partition.

In order for each call to be recognised there is also an index file, this contains information about

different parts of a call. It will identify the start of a call, for example when a customer dials in

and selects an option (press 1 for option A, 2 for option B etc.). The next part of a call may be

talking to an agent, another part of the call may be put on hold and yet another may be transferred

to a different operative. All these parts of a call must be linked together and the index file is a

collection of doubly linked lists where each portion has a previous and a next reference. When a

call starts the previous value will be null as will the next value when the call terminates.

Although not required for an audio replay, the index file has an associated user defined data file

(referred to as the udf file). This file tracks the index file and allows the customer to record

additional information about each part of the call, for example which agent handled any portion

of the conversation.

There is also a metadata file that permits daylight saving changes to be recorded so that calls can

be retrieved in local time.

A typical replay process is as follows: A search is made for a particular call, this may be done by

searching for a given date and time. The index information is retrieved and the audio offset into

disk.dat is identified. This information is married with the fat information so that once the start

segment is found and played, the next segment can be identified and played until all the segments

of all the portions of the call are played.

J Sue Ashworth Page 32 of 174

 2 Background of this Research A Complex Situation in Data Recovery

There are two sources of data for a replay. The first is from the hard drive or RAID where the

previously described process uses the information still present on the system or it may be

performed from tape. Tape drives are used to record long term storage and a heavily used system

may have tapes permanently in the drives that are ejected and replaced when full. Such tapes may

contain only a few days worth of data. A more lightly used system may have tapes inserted every

six months or more. The tapes contain a timespan of audio data (an extract of disk.dat), relevant

portions of daylight saving information, fat, index and udf data. When each tape is made, a

counter is incremented and the recorded (to tape) data is identified as being backed up.

The data recording partition is laid out as follows (this assumes a typical system with two tape

drives).

First is the metadata:

dir.info this contains the location information about the other files

disk1d.dat this contains information about daylight saving times

disk1f.dat the is the fat or jump table information

disk1i.dat this is the index information

disk1u.dat this is the customer's user defined information

eventsx.dat this is a small audit trail

cache.dat a legacy file no longer actively required

drive1d.dat daylight saving information for tape drive 1

drive1f.dat fat information for tape drive 1

drive1i.dat index information for tape drive 1

drive1u.dat udf information for tape drive 1

drive2d.dat daylight saving information for tape drive 2

drive2f.dat fat information for tape drive 2

drive2i.dat index information for tape drive 2

drive2u.dat udf information for tape drive 2

space.wst a padding file to ensure optimum disk usage

Then the data:

disk.dat the main body of audio data - this is about 80-90% of the partition.

J Sue Ashworth Page 33 of 174

 2 Background of this Research A Complex Situation in Data Recovery

Of these files the information in dir.info should be constant for normal operation. The

information it contains defines the start and extent of the other files and is used by the application

when writing data to these regions. The drive1X.dat files all contain recorded data. Over time the

amount of data stored in each file will increase until the file becomes full (i.e. reached the

maximum extent permitted by dir.info). At this point it will go back to the beginning and start to

overwrite the oldest data. The rate at which each file is used is different so each will become full

at different times. The offset into each file is maintained as a separate variable. These offsets are

maintained by the application and stored in its configuration files so that the information is not

lost if the recorder is powered down.

The eventsx.dat file contains information about system events such as a reboot, a user logging in,

their key strokes and other debug information. The drive files are all temporary data areas used

during the creation of tapes. The contents of these areas is not important except during the

creation of a tape. The space.wst file is a padding file to ensure that the remainder of the space

used by disk.dat is a whole number of records in size.

In summary: During normal recording the recorder will append information to the current

position in each of the audio, daylight saving, fat, index and udf files at an offset determined by

the application's configuration files from the start of the files as determined by the location

metadata, dir.info. When replaying a call the index information is used to find the start of the call

as an offset into the main body of the data as determined by the dir.info and the fat information is

then used to select the segments to play. The relative offsets to use between the index and fat data

are maintained by the application's configuration files.

2.4 When Something Goes Wrong: The Operating System

The previous two sections have looked at how a typical personal computer and the telephone

recording system work, this section looks at what can go wrong.

Although the recorder's final operating condition is unlike a typical PC, many of the steps in the

J Sue Ashworth Page 34 of 174

 2 Background of this Research A Complex Situation in Data Recovery

boot and operating process are the same. Both the recorder and a typical PC start out by checking

their internal hardware and faults detected at this stage may cause the boot process to halt. If the

boot process is halted then it is unlikely that further damage will occur and replacing the faulty

component and rebooting is likely to provide a satisfactory outcome. The exception to this is the

hard drive itself, although if there is sufficient value in the data on the failed drive then repairs

can be undertaken. Such repairs are normally too expensive for a domestic user and a company

would need to have a good reason to justify the cost. However physical repairs can be successful

even when they necessitate the replacement of motor, printed circuit board (PCB), bearings,

preamplifier or any other part of the hard drive to be replaced (Sobey, Orto et al. 2006).

Assuming the hardware is functional, as the PC boots up and the first sector is read, a number of

problems may be encountered. The first may be damage to the master boot record code that starts

to load the operating system. There are several ways that this could be damaged, historically this

region was a popular target for virus writers who would write infectious routines that could reside

on floppy disks. If an infectious disk was left in a PC and the PC was set to boot from this drive

then it was possible that the master boot sector of the hard drive could be infected. Today such

infections are rare as floppy disks are seldom used and anti-virus software is more common.

Damage may occur on any portion of a hard drive and the first sector is no exception. Most

modern operating systems have the means to repair their boot code, but recovery of the partition

table may be more troublesome. In 1998 a virus was written that attempted to overwrite the first

two sectors of a hard drive and erase BIOS (Basic Input/Output System) settings. This virus,

named Spacefiller, Chernobyl or CIH, triggered on April 26th, 1999 and the 26th of every month

thereafter. Initially there were many drives with destroyed partition tables and a few months later

there were many utilities released that were able to recreate partition tables.

Assuming that the initial boot code is successful one of the next possible areas for trouble is the

file system. If there is damage to the file system the operating system may not be able to find the

files it needs to complete the boot process. In such a scenario it is possible that a recovery CD

may be able to repair the file system structures and enable the computer to function once more. It

is also possible for file system damage to be sufficiently minor that only a few files are lost and

the user may not even notice that they are gone.

J Sue Ashworth Page 35 of 174

 2 Background of this Research A Complex Situation in Data Recovery

Although technically not file system damage, another reason for files being lost is that a user

deletes a file they later wish to access. When a file is deleted the pointer to the file is usually left

intact, however the area on the disk pointed to is marked as unused. Data loss through this type of

user mistake is sufficiently common. In fact many free utilities are available to recover files after

they have been deleted. D (2007) provides a guide to such a recovery process.

Physical jarring, unexpected loss of power, viruses or a deteriorating hard drive are among the

reasons why data may be lost. Whatever the cause, the extent of data loss or corruption will vary.

Sometimes only part of a file may be damaged. For example, if portions of a Microsoft Word

document are corrupted then it may not be possible to view the document with Microsoft Word;

however opening the document with a plain text editor may allow for some or all of the textual

contents to be extracted. Although all formatting and any inserted images or diagrams would be

lost with this technique, being able to open the textual contents of the file normally represents an

improvement over recreating the document from scratch (but obviously not as good as having a

reliable backup).

Most files are stored to disk as sequential sectors of data. Even where file system damage has

occurred a simple search of the drive, sector by sector is likely to find the information eventually,

providing it has not been overwritten by newer data. This process is time consuming and not all

operating systems will permit direct access to a drive, but it is often possible to use a “live” Linux

CD (one that boots into a usable version of the operating system) and search the media using this

temporary system. Once found the file can be copied to another storage location such as a flash

memory stick or another drive if present. (Recovered data should never be saved to the drive

from which it was recovered, as it is possible that the saved data may be written over the data that

is being rescued.) Even where files are not contiguous and a file was stored in several chunks, it

should be possible to find these chunks and piece them back together. Although this form of data

recovery may be beyond the expertise of average users, it is not a difficult process and there are

occasional articles on such techniques in computer magazines (for example, see Farmer (2001)).

Although all the problems considered above could effect the recorder it is unlikely that any of the

recovery techniques discussed would be used. The primary partition contains only the system

software and for the most part this is not considered valuable as the data on this partition can be

J Sue Ashworth Page 36 of 174

 2 Background of this Research A Complex Situation in Data Recovery

reinstalled. The exceptions are the state and configuration files. The configuration files contain

information about how the recording system has been set up, e.g. the number and type of tape

drives installed for creating long term backups or the number and type of cards used to interface

to the telephone system. The state files capture the state of the machine with information such as

pointer offsets or the number of the last backup tape created. Although it is helpful to access this

information, these files exist for use by the application software rather than forming part of the

stored data and they can be recreated by careful examination of the stored data.

Usually it is not worth the time searching the medium for the configuration files as they can be

recreated. If the partition table were overwritten it would be fairly trivial to edit back the partition

entries by copying the data from another machine using a disk editor. If this were the only

problem then this repair would permit access to the useful files. Another quick repair possibility

if the file system is damaged is to access the partition from a Linux PC and run the dosfsck

utility. This tool takes only minutes to run and may save time later.

Often a recorder will use a RAID system to provide some fault tolerance. In such a system a

single hard drive may fail with little or no impact. Sometimes the impact is so minimal that the

failure goes unnoticed until a second drive fails. In this case the drive must be physically repaired

before the RAID can rebuild itself. If a rebuild is successful there may be no repair required.

If there are problems with the application partition then one of the quickest ways to repair the

operating system is to dd the contents from another recorder into an image and write this image

over the damaged partition. Although the primary partition closely resembles a typical PC

configuration a major difference is that minimal data is stored here and although it is useful to

access this drive it is of little significance if it is lost.

2.5 When something Goes Wrong: the Data Partition

Under normal operating conditions the location metadata identifies the start of the files and the

recorder's application keeps a record of how far into each of the files is the current recording

position. New data is recorded after these positions and existing data can be replayed from behind

J Sue Ashworth Page 37 of 174

 2 Background of this Research A Complex Situation in Data Recovery

these positions.

If this offset information is lost, for example if the application partition is damaged, then it is

possible to recreate the information. If the recorder has not been in use for a long time then the

metadata regions will not be full and the end of the written data will be the offset. The situation is

more complex when the recorder has been in use for a longer period of time and some or all files

have become full and are overwriting the oldest data as they re-traverse their allocated space.

Although more difficult, the current offsets can still be deduced. Embedded into the main body of

audio data are occasional metadata blocks from which time and date may be decoded. This

information can be used to determine the offset of the latest audio information recorded (in

disk.dat). The index files also contain the date and time of the call and this too can be used to find

the latest recording of this data. As the user defined data has the same offset as its companion

index, if the index offset is known then so is the udf offset. The fat (jump table) files are more

difficult. Here the chain of jumps is traversed to find the durations of the calls. This length of call

table is then compared to the lengths of calls in the index data and when a match is found the

offset into the fat data can be deduced.

The most common repair scenario is where the recorder either resets itself (for reasons unknown

or unreported) or is manually reset. Here the offsets are zeroed and the recording goes back to the

start of each of the files simultaneously.

In a repair the initial assessment is an analysis of the various metadata files. To do this the

information in dir.info is read and decoded. By using the decoded location information the key

file regions are copied into (real) files for analysis. The initial analysis examines the files that

contained date/time information. Figure 2.5.1, of a typical history, shows the type of information

that may be discovered. The numbers in this file indicate incrementing date and time values.

These are greatly simplified for the purpose of this explanation as in reality there may be many

thousands of entries.

This figure shows that the oldest data (right) that has filled the allocated region (records 12 to 16

still visible). These oldest records were in the process of being overwritten with newer data,

records 17 to 24, although only record 20 onward is still available as a reset occurred after record

J Sue Ashworth Page 38 of 174

 2 Background of this Research A Complex Situation in Data Recovery

24 was written and the recording jumped back to the start. This reset went unnoticed and records

25 to 27 were recorded.

This type of data dislocation is the most common type of repair. It is probable that backup tapes

will have been made of all the data up to (for example) record 23. This leaves 24 and 25 to 27 to

be backed up. (Although it is always possible that data, which has not been backed up, may be

overwritten in practice this is unusual and only occurs if there have been several resets since the

last backup.) In a typical repair the customer will want their data archived to a backup tape. The

standard way of achieving this is to copy the newest data to the position it would have been

recorded to, had there not been a reset, and then recalculate the offset. See Figure 2.5.2 below.

Once all the files have been similarly repaired and all the correct offsets calculated, tapes may be

inserted and the required backup made. (This explanation ignores the fact that the underlying

reason for the reset may have produced other errors and repairs may also be required on the

relocated data.)

Although it is possible to manipulate different aspects of the recording the only time the location

metadata should be changed is if a recorder's owner wishes to make changes to the amount of

information stored in their user defined data. As far as it is known, all other reasons for changes

J Sue Ashworth Page 39 of 174

Figure 2.5.1: A typical history

oldest

Figure 2.5.2: A repaired file

25,26,27: 20,21,22,23,24: 12,13,14,15,16,25,26.27:

Calculated offset

25,26,27: 20,21,22,23,24: 12,13,14,15,16

mid agednewest

Current offset

oldest

 2 Background of this Research A Complex Situation in Data Recovery

are errors.

For such a change the following steps occur:

1. The front line engineer will define the new information fields.

2. The changes will be stored and the recorder will be rebooted.

3. As the recorder recognises that fundamental changes have been made, it will recalculate

the recording media layout and rewrite the location metadata (dir.info).

4. All offsets will be set to zero, meaning that all files will now start recording at the

beginning of their newly allocated positions.

Changing the user defined information is not a common occurrence, most customers would

decide what information was required and this would remain constant over the life cycle of the

recorder. The procedure is not usually troublesome as prior to the changes backups should be

made so that there is no data lost. In this scenario the changes are made through a deliberate set of

actions and the application is expected to behave in a predictable fashion. If backup tapes are not

made before the changes then, if the recorder is returned to the data recovery laboratory, it should

be possible to return the user defined information to its previous size and recalculate the offsets.

Tapes could then be made before the new changes were reapplied. As the reason for the

reapportioning of the medium was known the application could be trusted to recreate the same

layout for the same inputs.

Although very rare, a similar situation can occur for less obvious reasons. No software is perfect

and, although bugs are fixed when discovered, the recorder application has historically (and

passably currently) encountered situations in which a parameter is modified and the machine

rewrites the location metadata and resets the recording offsets. If the recorder is located in an

equipment room and no one observes the machine rebooting, it is possible that the event may go

unnoticed until the backup tapes are examined. This is possibly the worst case scenario, as the

formula by which the recording medium is apportioned is unknown, the changes in the location

metadata may not be detected. The recorder will not attempt to correct such a change on

subsequent restarts.

J Sue Ashworth Page 40 of 174

 2 Background of this Research A Complex Situation in Data Recovery

Figure 2.5.3, a misaligned file, shows a typical metadata file that has filled its entire region and is

in the process of overwriting the oldest data. In this case no data has been recorded after the

recorder failed. The blue file shows records incrementing and at the value of 40 the maximum

extent is reached and the oldest data is overwritten at the start of the region where the data

increments to reach record 49. This could be a very simple repair, however if the cause of the

failure had been an event that modified the dir.info data then the wrong region of data may be

captured as indicated by the peach region.

The incorrect capture would indicate that the record 40 was reached. As the first record at the

start is 43 then a logical explanation would be that the recorder wrote 41 and 42 before a reset

occurred and the pointers went back to the beginning with record 43 and 44 onward overwriting

the missing information. The assumption of a reset may seem a non-intuitive conclusion,

however with several files showing similar symptoms and reset being a common reason for a

repair, it is not an unreasonable assumption.

In theory wrong offsets could be calculated to compensate for the wrong start location, but these

would mean that the relative offsets between files were incorrect. It is believed that a correct

repair cannot be made until the location information is corrected. Prior to this research it was not

possible to determine if this information was correct and unless there were obvious errors the

repair would proceed on the assumption that it was correct. Fortunately this was usually the case.

A recorder being reset is usually a symptom of a problem. Very often there is a reason for the

reset and this may need correcting before the repair can be effected. Sometimes the data or

metadata is damaged or changed in a way that is not understood. For example, a repair was

encountered where there appeared to be 20 Gigabytes of audio data missing. The reason the data

J Sue Ashworth Page 41 of 174

Figure 2.5.3: A misaligned file

41,42,43,44 ,45,46,47,48,49:38,39,40

43,44 ,45,46,47,48,49:38,39,40

 2 Background of this Research A Complex Situation in Data Recovery

appeared to be missing was that the validation of the data was done by searching for embedded

metadata segments. As these were not found in this region of the disk, it was thought that the

audio data was missing. It transpired that the check for this embedded metadata was performed

by checking only the sectors that were expected to hold this information. A closer inspection

showed that the data on this region of the disk was a sector behind its anticipated location and as

a result the metadata structures were not in the sample regions. The mechanism by which the data

was written to a sector after its anticipated location is not known nor is it understood why, after

writing 20 Gigabytes, this should correct itself.

That the recording partition has no file system means it avoids a layer of complexity, however

this choice means that the data and metadata are written to the disk as the application sees fit. If

there is any form of problem in the recording system there is a possibility that data may be

written to any portion of the recording medium. Fortunately the recorded information is usually

in a predictable location or, if not, it can be located. Only one instance, during the employment as

a data recovery engineer, was metadata found to be missing as discussed in Chapter 5.7.

Once the data structures are believed to be correct, the repair must be tested. For this the

recording medium will be connected to a recorder with either compatible hardware to the original

or with configuration changes made so that the machine becomes compatible. The machine is

powered up and then, using the front panel controls, a search is performed and a call selected for

replay. When the replay option is selected a replay progress bar will appear on the display and the

call will be replayed. If everything is successfully realigned then the call should sound correct

and will finish when the progress bar reaches the end. If one call plays successfully then further

calls are selected. Sometimes the nature of the initial fault condition must be taken into account,

for example if the recorder was subject to frequent spontaneous reboots then it will be unrealistic

to expect perfect audio output as the system cannot record while it is down or rebooting. In this

situation gaps in the audio are to be expected.

If the data partition has been successfully repaired, creating backup tapes is simply a matter of

inserting blank tape(s) and waiting while the data is written to these tapes.

J Sue Ashworth Page 42 of 174

 2 Background of this Research A Complex Situation in Data Recovery

2.6 Causes of Failure

The primary types of causes of loss of data have been identified as the following:

1. Hardware faults.

2. Software faults.

3. Unfortunate front line support.

The first, hardware faults, covers such events as physical failure of the recording media. This may

be the failure of a hard drive's motor or bearings necessitating a specialist clean room repair.

Problematic power supplies may cause frequent reboots resulting in the loss of recording while

the machine recovers. Memory errors may cause unpredictable data computation and network

cards “hanging” in some configurations may suspend the operation of the machine.

Such hardware problems are common to almost any computer-based system, but one recorder

specific, recurring problem identified was an ill considered routing of SCSI ribbon cables

adjacent to the power supply feeds. (SCSI cables can be subject to interference that may impact

on the SCSI devices attached.) It is believed that this was the source of sporadic corruption found

on some (SCSI) recording medium. An example of a recorder with bursts of corruption is

described in Chapter 4. Investigations into SCSI I/O operations are still ongoing, but where this

problem occurs the bursts of corruption seem to be randomly distributed. The problems that arise

from this may be as minimal as a 2 second burst of noise in an audio recording; as catastrophic as

losing the location metadata or somewhere in between depending on the damaged file. For

example, damage in either index or fat files will render the associated calls unable to play

correctly.

No application of any size can ever be completely free of software faults. When an observed

problem is recognised as having a software cause, time and effort is expended in rectifying the

error. Sometimes fixing one problem can cause unexpected side effects and the process of

identifying and rectifying the resultant features begins again. Some software problems require

specific circumstances before symptoms arise. One such problem was an overflow caused when

the number of channels being recorded multiplied by the number of years in operational use

J Sue Ashworth Page 43 of 174

 2 Background of this Research A Complex Situation in Data Recovery

exceeded a buffer size.

Front line support is an area that is not completely understood. It is possible to fix a problem and

release an upgrade only to later discover that rumours and superstition have meant that the fix to

a known problem is not applied. Despite extensive testing the channel/year fix (for the problem

described above), it was rumoured to cause a system reset even though no supporting evidence

was offered. Repairs still came to the laboratory when this problem occurred and contrary to

instructions the fix was not applied.

It is not uncommon that one of the last events to be captured (on the recorder's audit trail) is of

someone logging into the system with the administrative password. When logging in with this

level of privileges it is possible to change all of the configuration options, from user defined

fields to the identity of the machine itself. Despite such evidence the fault report may state that

the recorder “just failed”. While some sympathy may be felt for the front-line maintainer it is

frustrating to realise that potentially useful information is being withheld and that the repair

report can only state the time and date of the recorded login relative to the failure.

The very essence of this data recovery work is that each job is new unexplored territory and it is

likely to have at least one aspect that has not been seen before. A secondary task for most repairs

is to perform an RCA (Root Cause Analysis). Unfortunately on most occasions not even an

educated guess can be offered. On the occasions that a diagnosis can be made it is usually an

improbable sequence of actions performed by the front line engineer. These actions are highly

unlikely to be replicated. It is this unpredictability that provides the need for this research. If there

were a set of predictable faults or types of fault then these could be identified and the repair could

proceed accordingly. With no assumptions possible before a repair starts every step must be

confirmed. Although the location metadata is usually correct it cannot be assumed that this is the

case and without verification all other actions risk being wrong.

Although the criteria for determining correctness is a qualitative process it combines the

astonishing ability of the human ear synchronised with a corresponding visual input to produce a

quantitative analysis of either everything is correct or the repair is not yet complete.

J Sue Ashworth Page 44 of 174

 2 Background of this Research A Complex Situation in Data Recovery

2.7 Company Work Practices and Data Recovery Future Plans

While working as a recovery engineer two basic disciplines were observed. The first was that all

data recovery attempts began with the cloning of the medium and the recovery attempts were

performed using the copy. This ensured that any mistake made during a recovery attempt did not

destroy the original data. With the original data untouched it was always possible to take another

clone and reattempt a repair.

The second discipline was that each recovery engineer kept a log of all the steps taken. This log

was used if a mistake was made so that the successful steps leading up to the mistake could be

reapplied (on a fresh clone). It was also useful if another engineer had to take over a repair and

could provide the basis for a discussion if things do not proceed as expected. Although highly

unusual it is possible that a conversation from a recovered system could be deemed as evidence in

future legal proceedings. As this may be many months, possibly years after the repair, the log

would provide the engineer with the confidence to say that their repair contained the same data as

was originally recorded.

Working in the laboratory was a specialist area and the work was performed in isolation from

other company sections. This did not mean that engineers were left unsupervised, but it was

recognised that the nature of the work meant little could be put into formal procedural

documentation. This did not prevent the company from having long term plans for a Recovery

Studio. This was to be an application that would provide a basis for automating the data recovery

process.

Ideally every front line engineer would have the skills to recover lost data at the time the problem

was identified, but data loss is too rare an occurrence for such a training exercise to be cost or

time effective. Instead a data Recovery Studio is envisaged that will allow a front line engineer to

progress through a recovery process either solo or with remote assistance. Work on this recovery

studio has not yet begun. Since almost every data recovery task is different and there is a lot of

analysis to be done before any development can begin.

J Sue Ashworth Page 45 of 174

 2 Background of this Research A Complex Situation in Data Recovery

Over the years data recovery engineers have developed many small dedicated purpose utilities to

help examine, diagnose and repair recording media sent for recovery. For example, there is a

utility for examining the dir.info region and using the information there to capture the index data

to a file in a working directory and another for converting the binary information to a human

readable textual format. If errors are found in the text file these can be corrected before another

utility is used to convert this back into a binary form. Once a corrected binary is produced all or

part of it may be copied back to the medium using the information extracted from dir.info and the

Unix dd command. (This last part is normally done by hand rather than an automated process.)

The purpose of the recovery studio is to provide a framework for these utilities and others, some

not yet written, to be combined into a single relatively automated GUI (Graphical User Interface)

based system. The requirements for the Recovery Studio describe this concept and identify the

preferred software development languages. These consist of the Trolltech QT4 graphic libraries

for developing the GUI, shell scripts, python, C, C++ and sed/awk scripts for performing the

underlying tasks.

A large portion of the requirements specification is a list of technical problems that need to be

solved before the work can begin. These tasks are mostly in the form of a list of small program

specifications many of which have already been written (or solved). An example of a doubly

linked list and the task of working out the base starting point is included in appendix B to give an

indication of the nature of these puzzles.

Another identified requirement is for some form of graphical representation of the recorded

metadata and data so that a drag and drop, initiated from the GUI, could be translated to moving

files to, from or around the recording medium. It is recognised that a graphical representation, if

it is to represent all the data could not provide the fine detail needed to select a single record or

group of records. However such a representation could be used to launch a slider (or similar) that

could permit a more exact selection to be made. More pertinent, to this research, is that the same

graphic could be used to highlight suspected inconsistencies or errors that could alert an engineer

to the presence of a problem.

The requirements include the need for verifying or recreating the location of the metadata and the

J Sue Ashworth Page 46 of 174

 2 Background of this Research A Complex Situation in Data Recovery

following comments are included in the requirements documentation: “Note: this requires a

detailed synthesis of the “XXX” formula which is non-trivial.” (Where XXX is the application

name.) The search for this formula has been previously attempted without success. Solving this

formula will mean that the location metadata can not only be read and decoded, but also verified

before the metadata regions are captured into files for further processing. If there is a high degree

of confidence that the metadata has been captured correctly then there is scope for automating its

evaluation and the point at which a human needs to intervene moves further into the recovery

process.

2.8 Disk fingerprinting

A large number of the data recovery process use the Unix dd command. This utility copies data

from a source to a destination. The source may be a device such as a hard drive or it may be a

file. When cloning a RAID or hard drive prior to recovery work a variant of dd was used. If no

output is given then stdout (the command prompt) is used. This means that the output from

this command may be piped to other Unix commands. Very often there may be a need to check

and see if the data being copied is the correct data. To an experienced eye piping the output to

hexdump can provide the means of checking. For example dd if=/dev/sda count=1 |

hexdump -Cv will copy all the data on the first sector of the first drive to hexdump formatted

for ASCII as seen previously in Figure 2.2.1.

Although the ASCII representation is probably the most common use of hexdump it has other

switches. If the -d switch is used then the output is in decimal, dd if=/dev/sda count=1

| hexdump -dv produces the following:

0000000 18667 04240 53390 00188 47280 00000 55438 49294
0000010 48891 31744 00191 47366 00512 42227 08682 00006
0000020 48640 01982 01080 02933 50819 33040 65278 29959
0000030 60403 46102 45058 47873 31744 32946 29834 00515
0000040 00128 32768 06209 00001 02048 37114 63120 32962
0000050 00629 32946 23018 00124 12544 36544 36568 48336
0000060 08192 41211 31808 65340 00628 49800 48722 32127
0000070 13544 62977 32962 21620 16820 43707 52565 23059

J Sue Ashworth Page 47 of 174

 2 Background of this Research A Complex Situation in Data Recovery

0000080 29266 33097 22011 30122 41027 31809 49284 01397
0000090 57731 29697 26167 19595 48656 31749 17606 00511
00000a0 35686 17438 51068 04100 50944 00580 00001 35174
00000b0 02140 17607 00006 26224 49201 17545 26116 17545
00000c0 46092 52546 29203 47877 28672 32235 02228 05069
00000d0 02675 49910 03968 60036 59648 00141 01470 50812
00000e0 65348 26112 49201 61576 26176 17545 12548 35026
00000f0 49610 00738 59528 62600 35136 02116 49201 53384
0000100 59584 26114 01161 41318 31812 12646 26322 13559
0000110 21640 26122 53809 63334 01140 21640 35083 03140
0000120 17467 32008 35388 03412 58048 35334 02636 49662
0000130 53512 27786 23052 29834 47883 28672 50062 56113
0000140 00440 52482 29203 35882 36547 18438 24700 47390
0000150 00256 56206 63025 65329 62460 08101 65377 16934
0000160 48764 32133 16616 60160 48654 32138 14568 60160
0000170 48646 32148 12520 48640 32153 10984 60160 18430
0000180 21842 08258 18176 28517 00109 24904 25714 17440
0000190 29545 00107 25938 25697 08192 29253 28530 00114
00001a0 00443 46080 52494 44048 00060 62581 00195 00000
00001b0 00000 00000 00000 00000 41311 00009 00000 00384
00001c0 00001 65155 06207 00063 00000 08346 00006 00000
00001d0 06401 65166 65535 08409 00006 27112 04763 00000
00001e0 00000 00000 00000 00000 00000 00000 00000 00000
00001f0 00000 00000 00000 00000 00000 00000 00000 43605

This is the same information as before except the information is now in decimal and there is no

textual presentation. The column on the left is the offset in hex into the sector. The decimal

values can range from 0 to 65535. The sum of all the values for this sector is 6735643.

The developed disk fingerprinting technique is very simple. It takes the sum of a sector as

calculated above and records its offset. For example, the above is offset of the sector is 0 and sum

is 6735643. The same calculation is performed on all the sectors of interest and a graph is created

using gnuplot (gnuplot 2009). Gnuplot is a powerful command line driven scientific graph

generator. The reason this graph generator was chosen was because of its availability and ease of

use. There is no reason why another utility should not be used to generate the same graphs.

Gnuplot allows the user to set the output to an image. For all of the images used in this thesis the

output was set to png (Portable Network Graphics) so that images could be generated that could

be inserted into the document. If this option is not selected gnuplot will by default open a window

for the graph. This window can be resized, zoomed in and otherwise manipulated to allow

examination of the graph. In the following screen shot of gnuplot, Figure 2.8.1, the command line

from which the utility was launched can be seen in the background as can the single command

plot � ratcatcher-fp.txt� . The resultant pop-up window and the generated graph are

J Sue Ashworth Page 48 of 174

 2 Background of this Research A Complex Situation in Data Recovery

shown in the foreground. The data used was partial fingerprint data from a Linux laptop called

RatCatcher.

The above figure shows how very simple it is to display about 50MB of data. In order to make

the images used in the document the following commands were used:

gnuplot> set term png size 800, 270
Terminal type set to 'png'
Options are 'nocrop medium size 800,270 '
gnuplot> set output "ratcher.png"
gnuplot> plot "ratcatcher-fp.txt"with dots

J Sue Ashworth Page 49 of 174

Figure 2.8.1: gnuplot basic

 2 Background of this Research A Complex Situation in Data Recovery

The first line sets the output to type png with a size of 800 x 270 pixels. In the following two

lines are the confirmation that the command has been accepted and available options. The next

step is to provide the name of the output file and the final line modifies the default plot of a cross

to a dot. Figure 2.8.2 shows the refined image of a Linux laptop. This fingerprint shows the boot

partition and the start of a LVM volume. The structures seen in this image are typical of the

fingerprints taken from other Linux machines. Chapter 6 explores this in greater detail.

Although the fingerprinting technique has considerable potential for domestic PCs and data

recovery in general, it has proved to be extremely useful as a diagnostic aid in this specific data

recovery situation. Figure 2.8.3 shows the start of a typical data partition. The basic fingerprint

J Sue Ashworth Page 50 of 174

Figure 2.8.2: Linux laptop fingerprint

Figure 2.8.3: Start of a typical data partition

 2 Background of this Research A Complex Situation in Data Recovery

produced from iterating the metadata and the start of the data from a normal working recorder.

Chapter 4 contains far greater analysis of this type of information. The identifiable regions are

labelled.

Given that the basic concept of plotting the sum of a sector is so very simple, that different types

of metadata and data should produce such visually different patterns is considered most

serendipitous.

2.9 Chapter Summary

This chapter has looked at the basic functioning of a typical personal computer and how it

functions when all is working as expected. Many of these functions are the same for the

telephone recording system as its operating system is very similar to a domestic PC.

Having looked at how a functioning PC works consideration is then given to the machine that

does not work. As the types of problems that can effect a PC are the same for the recorder system

the two are considered as being effected by common problems. There is a big difference in the

recovery techniques as a domestic machine is likely to contain valuable (to its owner) data while

the recorder only contains a few useful but not essential files. To this effect, while time and

energy may be invested in recovering data from a PC, it is unlikely that more than a brief attempt

would be made to restore the application partition of a recorder.

The data partition of the recorder contains valuable information. Its structures and its failure

modes have been examined and the reason why correct location metadata is so important to a

repair has been described. It would have been useful to describe typical repairs, but the fact that

the system is so reliable means that when a failure does occur it is usually unique. Simply put

there are no typical faults. Despite this lack of typical faults a recorder reset is common enough to

warrant a description. The steps needed to recover from a reset give some idea into the working

of the recording equipment.

This chapter has also considered the working practices of the company and for data recovery in

J Sue Ashworth Page 51 of 174

 2 Background of this Research A Complex Situation in Data Recovery

general. One of the company specific considerations was the Recovery Studio project. The

requirements for this project have influenced the direction of this research to a large degree but

given that the company permitted almost unlimited access to their data and equipment this was

not considered unreasonable.

During the research process a disk fingerprinting technique was developed. This has also been

described here although greater detail of its use will be included in the second half of this thesis

where the research events are described.

J Sue Ashworth Page 52 of 174

 3 Visualising the data structures A Complex Situation in Data Recovery

3 Visualising the data structures

3.1 Background

The events described in this chapter took place in the early days of the employment. At that time

no documentation existed for most of the recovery procedures and one of the employment duties

was to write the documentation. Usually a PhD student will read the available literature and then

work forward from the understanding gained from such writing. In this case the initial

understanding was gained orally from the senior engineer or had to be deduced from first

principles. Once an understanding had been gained the documentation was written.

Although there were usage instructions and man pages for most of the utilities that were used, the

only formal documentation that existed, in a form management would recognise, was that of the

requirements for the Recovery Studio. It was this document that was used as a template from the

subsequent documentation of repair procedures. The requirements for the Recovery Studio

represented a collection of problems and puzzles that provided useful insights into research areas

that would be challenging and useful to the company.

At this time the understanding of the repair process was incomplete. Only a couple of repairs had

been performed before a problem was encountered where the location metadata was incorrect.

The initial assessment process was a basic shell script that took information from the location

metadata and copied regions of data into files before decoding anything with a date/time or serial

number information. During this repair the anomaly was detected by the assessment script, but

the error was output to the console and had scrolled off the screen without being read.

The error was spotted by the senior engineer while supervising the repair. The location metadata

was corrected and the recovery job continued. Afterwards an examination of the initial script was

made and the process by which the error was detected was isolated. The detection was made by a

finite set of rules and it was believed, at the time, that all location errors could be detected. The

initial problem seemed to be not the detection but the presentation of detected errors.

J Sue Ashworth Page 53 of 174

 3 Visualising the data structures A Complex Situation in Data Recovery

Having read the Recovery Studio requirements it seemed that the need for a visualisation of the

data and metadata could be combined with a means of detecting and presenting the location

metadata. Although the assumption that all errors could be detected in this way was somewhat

naive this chapter documents the development of the at-a-glance representation that could detect

a subset of possible errors.

3.2 Introduction

This chapter describes the first attempt to solve the problem of verifying the location metadata.

As the original understanding was incomplete and it was believed that there was only a set of

detectable errors, the focus is on presenting the metadata and data information to engineers in an

at-a-glance image that would alert them to any detected errors.

Section 3.3 describes the starting information in the form of an abslsr.txt file including a sample

file. The next section (3.4) looks at the reasons for selecting the software language and graphic

format chosen before the initial first attempt is made (3.5) where the limitations of a linear

representation become apparent. Logarithmic scaling is then attempted (3.6) and this approach

permits greater insight into the data allowing more pertinent information to be revealed in section

3.7. With a good representation of the files, extra intelligence is added so that errors can be

presented to the observer in section 3.8 before the achievements of this chapter are considered in

the final section (3.9).

3.3 The abslsr.txt

The abslsr.txt file is an output from the initial processing of the dir.info region of the recording

medium. At the time this work was undertaken it was believed that the abslsr.txt information was

always fundamentally correct and that there existed a finite set of errors that could be detected

and correct values deduced. Although this assumption was subsequently proved to be wrong there

J Sue Ashworth Page 54 of 174

 3 Visualising the data structures A Complex Situation in Data Recovery

was also a need to represent information to a novice engineer in such a way that errors in the

location metadata were immediately visible and in this respect the progress made here is of long-

term use. It is feasible that the resultant image may also be used as a basis for dragging and

dropping files to/from the recording medium as part of the future Recovery Studio development.

As this falls outside the scope of this research then care can only be taken to preclude as few

options as possible.

This stage sought to generate an at-a-glance image that could convey all the relevant information

to an engineer in a single graphic. Then they may be reassured that all is correct or be alerted to a

problem that may either be overridden by local knowledge or a proffered solution could be

accepted. Even though the underlying error detection code is unable to detect all errors (the

ultimate objective), it is sufficient at this stage to note the creation of an at-a-glance image that is

able to represent the errors known at the time of its creation. The image is revisited in chapter 5

after the underlying formula for the metadata layout has been rediscovered and much greater fault

information is available.

The initial automated scan will produce an abslsr.txt, a text file listing the file names, their size in

bytes, start address, number of sectors (rounded up if only part used) and the number of records.

A typical abslsr.txt is shown in Figure 3.3.1. The objective is to present this information to the

J Sue Ashworth Page 55 of 174

Figure 3.3.1: A typical abslsr.txt

 3 Visualising the data structures A Complex Situation in Data Recovery

recovery engineer in a more intelligent visual format.

Of these files the first, dir.info, is the location metadata with the subsequent four files containing

the metadata for the main audio recording. The eventsx.dat is an audit trail of the most recent

events. DriveX files refer to the tape drive X and in Figure 3.3.1 it can be seen that there are two

tape drives. This represents the most common configuration but there may be up to eight drives

installed or there may be none. Disk.dat is the main body of the data with space.wst and cache.dat

being padding files to ensure the optimal use of the recording media.

3.4 Design Decisions

As there is a great deal of variation in the file sizes some consideration was given as to how to

represent this information. If the largest file were to be displayed in a reasonable scale then the

smaller files would be barely visible. If the smaller files were appropriately displayed then the

largest file would require considerable scrolling before its trailing edge could be discerned.

To enable a viewer to see both the macro and micro information, a form of zooming in and out

was considered necessary. If a zooming mechanism was to be used then any image must either be

redrawn for each step of the zoom range or an image format that natively supported such scaling

must be used. Of the two options a scalable image format seemed to offer a simpler way forward

and this option was chosen. It should be noted that the option of generating multiple views of the

same information was not completely discarded as practical implementation considerations could

still make this a more efficient option.

The decision to use a scalable image format meant that the choice of image type was limited. This

option predisposed that the image was a form of vector graphics (as opposed to raster or bitmap

image). SVG (Scalable Vector Graphics) and PostScript were considered. SVG was chosen as it

would render in both the Opera and Firefox Internet browsers; it was a relatively simple XML file

format and a QT4 sample SVG viewer offered the promise of easy development. (The

requirements had already specified a preference for QT4.) PostScript was judged to be relatively

J Sue Ashworth Page 56 of 174

 3 Visualising the data structures A Complex Situation in Data Recovery

complex and was not investigated further. While no alternative should ever be totally discarded

PostScript was considered an improbable option.

The SVG support in QT4 was limited to SVG 1.2 Tiny specification (W3C 2008), but this would

be sufficient for this type of image.

3.5 First Iteration

The initial SVG image was generated using a simple perl script. Perl was chosen as it is usually

installed on Linux machines by default and it can easily be installed on a Microsoft windows

system. Although there are many other languages that could have been used, familiarity with this

language was a key deciding factor.

In the initial attempt each file was represented by the file name followed by a horizontal coloured

bar representing the length of the file. As the width of the resultant graphic was expected to be

large, the scale was set so that the size of the smallest file was represented by the width of a

single pixel.

Figure 3.5.1 shows the unscaled extreme left of the generated graphic as displayed in a cut down

version of the SVG viewer example provided with QT4.

J Sue Ashworth Page 57 of 174

Figure 3.5.1: Initial unscaled graphic

 3 Visualising the data structures A Complex Situation in Data Recovery

This unscaled version initially looked promising, but when the image was zoomed out to see the

extent of the larger files, it was found that the picture rapidly became unreadable as shown by

Figure 3.5.2, partially zoomed and Figure 3.5.3, fully zoomed.

In Figure 3.5.2 the file names are unreadable, but it is possible to see that the small files are much

smaller than the big files. Unfortunately as the zoom process continues it becomes harder to see

any meaningful information. In Figure 3.5.3 (fully zoomed) it is just possible to discern that the

extent of a file size has been reached but it is not possible to determine which file this is.

As the SVG viewer was compiled from open source it was possible to modify the zoom function

so that only the width was changed by the zoom process. Figure 3.5.4, where a single axis zoom

is used, shows the largest file with other files barely discernible.

J Sue Ashworth Page 58 of 174

Figure 3.5.3: Fully zoomed

Figure 3.5.4: Single axis zoom

Figure 3.5.2: Partially zoomed

 3 Visualising the data structures A Complex Situation in Data Recovery

Although modifying the zoom process allowed for much better zooming out (to the point where it

was possible to see the entire length of the largest file), the resultant image displayed very little if

any usable information. The large relative differences meant that the mechanics of the zoom

process required considerable user mouse clicks to get from small to large. If the rate of zoom

was increased the granularity became such that if similar sized files were to be compared an

optimal image zoom may not be available. Although the zoom function in the SVG viewer could

be modified to provide a variable rate of zoom, this was not going to provide a novice engineer

with an at-a-glance image that could display the file sizes in a meaningful way. That the largest

file was very large compared to the smallest file could have easily been determined from the

original textual information.

It had been hoped that the produced SVG file would be able to be viewed in a variety of

applications, but in order to accommodate the extremes of scale a dedicated application was

required. Had this modification produced a usable visualisation, this would have been acceptable

even if this restricted future development to a QT solution.

3.6 Non Linear Representations

The first attempt had clearly shown the vast differences in relative file sizes, but had produced

little other usable information. Though being able to view this information would be extremely

useful to a novice, an experienced engineer would find little, if any, added value in such a

revelation.

The second approach to this problem was to consider a non-liner representation of the file sizes.

Figure 3.6.1 and Figure 3.6.2 show the file size information scaled using a natural logarithm

(base e) and log base-10 respectively. Both logarithms displayed the files in a single view

allowing the relative file sizes to be observed. Though there was little to choose, in visual terms,

between the representations, it was considered that the log base-10 was preferable. The reason for

this choice was not based on any visual improvement but on the fact that interpreting a

logarithmic scaled diagram is non-intuitive; that the widely used decibel measuring system was

J Sue Ashworth Page 59 of 174

 3 Visualising the data structures A Complex Situation in Data Recovery

log base - 10 based and any pre-experience of logarithmic representation was more likely to be

drawn from log base -10. The decibel system is widely used to measure audio amplitude and the

system is essentially an audio recording device.

Although logarithmic scaling solved all the problems from the initial implementation, it required

the observer to either be experienced with this representation or to adjust their perception to use

this scale. As this would be the first, and possibly only, representation (of this information) that

most users would encounter there would be no “unlearning” required so, even if the image was

envisaged as being to scale, it still provided a good overall depiction. With a little practice or with

a reference set of sample good images it was anticipated that major problems could be detected

from this representation.

3.7 The Most Pertinent Information

Both the two previous iterations had concentrated on representing the relative file sizes for initial

assessment without considering what form of assessment would be made. With this at-a-glance

representation available it was realised that there may be more useful information to display. One

of the key pieces of information derived from the differing file sizes was the number of records

each file contained. This information was obtained by dividing the file size by the size of a record

of each type of file where the size of the records varies between 4 bytes and 2048 bytes. To

J Sue Ashworth Page 60 of 174

Figure 3.6.2: Log base - 10Figure 3.6.1: Log base - e

 3 Visualising the data structures A Complex Situation in Data Recovery

complicate matters further, disk1u.dat's record size is a user defined option. Fortunately this size

is known at the time the abslsr.txt is created and the number of records is calculated making up

the final column (Figure 3.3.1 shows a typical abslsr.txt).

An SVG file was created to depict the number of records per file. Figure 3.7.1, using the number

of records, shows the unzoomed left portion of this file and Figure 3.7.2 shows the zoomed-in

view of the same information.

The records per file depiction gives a very different perspective. Here it is now easy to see that

disk1i.dat and disk1u.dat are about the same size (as indeed are the drive X sets). It can also be

seen that disk1f.dat contains the greatest number of records even though it is only about 1/50th of

the size of disk.dat.

Even though some useful information can be seen from the graphic, the issue of very big and very

small being observed side by side still exists even if the problem is not of the same magnitude.

Figure 3.7.3 shows the same information using the log base-10 scale as per the previous iteration.

This image enables some key information to be observed. Files with the same number of records

can be seen to be of the same magnitude. Files relating to tape drive information can be seen to be

similar for each tape drive present. If such an image were generated for each abslsr.txt then an

engineer would soon become used to the log base-10 scaling and be able to spot large

incongruities. Although major discrepancies would be plainly visible in such an image there was

still a possibility that significant, but minor differences, may not be so easily discerned.

J Sue Ashworth Page 61 of 174

Figure 3.7.1: The number of records unzoomed Figure 3.7.2: The number of records zoomed

 3 Visualising the data structures A Complex Situation in Data Recovery

3.8 Added Value

Though the logarithmic representation of the records per file was considered to be the most

useful, it was felt that there was still some value in the logarithmic representation of file size.

However neither graphical representations addressed the potential for fine detail to be

overlooked. For example the values 10485760 and 10485768 may not be represented by a visible

graphical difference although the textual representation shows the potentially significant

discrepancy.

In order to produce a usable product, the graphical information must be intelligently enhanced to

highlight the issues for which the engineer searches. The information in an abslsr.txt file can

indicate a number of known problems and has the potential to indicate some not yet encountered.

The reason for this is that there are a number of simple mathematical rules to which the files must

conform. By checking that a set of files observe the rules any discrepancies can be highlighted.

There was also the possibility of grouping the files into disk and drive clusters, although care

would need to be taken not to deviate too far from the familiar textual layout. For example, re-

ordering the files could prove to be a big psychological hurdle for an experienced engineer and

J Sue Ashworth Page 62 of 174

Figure 3.7.3: Number of records in log base-10

 3 Visualising the data structures A Complex Situation in Data Recovery

potentially mislead a novice.

Figure 3.8.1 shows the repeating groups of d, f, i, and u coloured in a common colour sequence

while unique files had their own colours. Here also variation in the separation between files was

used to imply grouping.

The choice of colours for this representation proved surprisingly difficult. The colours are defined

using a RGB scale (Red Blue and Green) with each colour having possible values between 0 and

255. It had been assumed that if the values of 0, 85, 130 and 255 where used for one colour while

the others remained unchanged this would produce four colours on a even colour scale, this was

not the case. Whether it was the way the human eye detected colours or the way the computer

graphics rendered the colours is not completely understood, but this approach meant that at least

two of the resultant colours were barely distinguishable. As a result the colours were chosen by

eye, these are not claimed to be the most optimal, but they provide visibly different colours and

highlight the repeating file groups satisfying the current requirements. This grouping is further

enhanced by small variations in layout.

With a base representation created, the rules to which the file sizes must conform were added.

The outcome of these rules were that if a file was determined to be a wrong size then it would be

J Sue Ashworth Page 63 of 174

Figure 3.8.1: Grouping files

 3 Visualising the data structures A Complex Situation in Data Recovery

represented in red; if a file size discrepancy implied that another file was incorrect then the

second file would have a red border. Figure 3.8.2 shows the result of this processing.

Here it is immediately obvious that drive2f.dat is the wrong size with additional text below

indicating the reason for the error even if the bright red colouring does not make this immediately

obvious. It would have been possible to present the user with additional information about the

extent of the error and suggest correct values, but at this point it was realised that the set of rules

used in this analysis was inadequate and that they would not be able to determine all errors.

Although the representation was effective, more work was required in calculating the correct

sizes and numbers of records for each file.

When this image was viewed it was first considered to be an error in calculation, but a quick

check in the pertinent abslsr.txt file confirmed that this file was indeed the wrong size. It was

disconcerting to realise that none of the previous images had highlighted this fact. It was even

more disconcerting to realise that the best “picture” of the discrepancy was obtained by knowing

it was there and specifically searching for it. Figure 3.8.3 shows a horizontally zoomed-in linear

scaled representation of records per file. Although using this representation allows the difference

between drive1f.dat and drive2f.dat to be seen, the view does not even permit the identification of

J Sue Ashworth Page 64 of 174

Figure 3.8.2: Adding intelligence

 3 Visualising the data structures A Complex Situation in Data Recovery

the files without zooming out or scrolling to the left.

The final iteration, a log base-10 representation of the number of records per file with added

intelligence did produce a usable visualisation of the abslsr.txt. The resultant at-a-glance image

was able to present information that could be disseminated with a single glance, but more work

was required to extend the usefulness of the process so that it would be able to detect all errors in

the location metadata and not just a limited subset.

3.9 Conclusions and Lessons Learnt

The reason for finishing this portion of the research was that the at-a-glance image had been

achieved and it was able to represent the files and a subset of all errors. A subsequent repair

would reveal that although the error encountered in this testing would be detected, there was no

mechanism by which missing data could be reconstituted. This meant that although the image

was potentially highly useful, this potential could not be achieved without a better means of

determining the correctness of the dir.info information.

The initial design choice to use SVG files provided a satisfactory format to generate graphical

representations and unless some other factor emerges it is unlikely that this format will be

changed. Even though the final representation did not require to be zoomed, the ability to do so is

not detrimental. Although the screen shots taken for this chapter all used the QT SVG viewer, the

J Sue Ashworth Page 65 of 174

Figure 3.8.3: The discrepancy

 3 Visualising the data structures A Complex Situation in Data Recovery

files can just as easily be viewed in Firefox or Opera browsers (tested under Linux KDE X

windows and Microsoft Windows XP) and possibly others (untested). That cross-platform

browsers can display this file type keeps options open for the Recovery Studio and, while not a

current requirement, it does not preclude the possibility of a web enabled application.

With hindsight, the initial visualisation of the files based on size was a little naive. Though the

size of a file is important, greater insight can be obtained by considering the number of records.

Despite this, the work done working with the file sizes was considered valuable in discounting

this approach and in highlighting the need for non-linear representations where file sizes were

vastly different. Even if the more sophisticated approach had been taken from the outset this

visualisation would need to have been created if only to discount such a method.

The use of a log base-10 scale is considered appropriate in this representation. This does not

mean that other non-linear scales can not be used but that this one worked effectively in this

instance. It is however disappointing to lose the ability to visually compare small differences

between files but, as discovered, a poor and time consuming method of visually comparing files

adds no value when there is a textual representation of the same data that can be checked in an

instant, especially if the engineer is given an indication to examine this area.

The final iteration's value comes from the additional processing that finds and highlights errors.

Although incomplete, if this were integrated into the Recovery Studio it could provide a useful

starting point, but the textual information must also be a selectable option if any action is to be

taken based on the visualisation.

J Sue Ashworth Page 66 of 174

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

4 Disk Exploration and Fingerprinting

4.1 Background

By the time the events described in this chapter took place there was a far greater understanding

of the recovery processes and the recording system. Although still supervised there was by now

greater autonomy and most of the repair decisions were made independently.

Although there was a degree of satisfaction with the previously developed at-a-glance image, it

was understood that this technique was only able to cope with a subset of possible errors. Unless

some means of determining the correct location values was found the image had only limited

application. The search for a means of detecting all faults in the location metadata was still being

actively pursued and when this repair came into the laboratory it was considered both a research

opportunity and an interesting work problem.

The repair was one in which the tape drive information had been removed. Although a base

description of what occurred to the recorder was included in the fault report there was still some

question about how the recorder got into this state. The senior engineer had not encountered a

machine that had ended up in this state before and it was not certain that the steps the front-line

engineer claimed to have taken could have produced a machine in this state.

With no previous instance of this fault there was no known way to repair it. At this time the

formula by which the disk was allocated was still not known so the attempt to deduce the missing

information by looking at the contents of the disk seemed as good a way to proceed as any other.

That it was possible to repair this medium using this method was fortunate. After the repair, the

company received new documentation for the process. Businesses like process documentation

even if the process is neither likely be required again and if it were it may not always be effective.

The development of the disk fingerprinting technique was purely experimental. Once the first

graph was produced the possibilities as a diagnostic tool were immediately obvious and the perl

script was put into the repository of diagnostic aids.

J Sue Ashworth Page 67 of 174

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

4.2 Introduction

The previous chapter considered the information contained in the dir.info file and how best to

represent this information to an engineer. The key assumption made at this stage was that the

information in this file was basically sound and that it could be used to provide a good starting

point for the recovery process. This chapter considers a situation in which a recorder has been

inappropriately reconfigured and, though the information is consistent for the machine's current

state, it no longer reflects the location of the files of the disk and the previously recorded data.

First the unusual situation is described (4.3) and then the practical considerations for this stage of

the research are presented (4.4). The detailed description of the techniques used to piece together

the contents of the disk are described in 4.5, while the way this repair was tested follows in 4.6.

In section 4.7 an attempt to widen the use of the techniques and the pitfalls are documented while

the generalisation of the fingerprinting script follows in 4.8. The chapter finishes with section 4.9

and this section's conclusions.

4.3 Missing Information

An initial assessment of a repair revealed that there was no tape drive information in the dir.info

file when it was known that the recorder in question was fitted with two tape drives. Though

incomplete, the recent history of this machine appeared to be that the recorder developed a

problem. After several attempts to fix this problem the support engineer physically disconnected

the tape drives, deleted the configuration files and then restarted the recorder. Random bursts of

corruption found on the recording medium suggested that there may have been SCSI issues but

this was not confirmed.

A reasonable question at this point is why did the support engineer take such action? With the

J Sue Ashworth Page 68 of 174

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

benefit of hindsight this seems a very foolish approach, but it must be remembered that different

cultures have differing attitudes to on-site repairs and a non UK company may demand an

engineer repair equipment before they are permitted to leave the premises. This repair job did not

originate from within the UK. Global differences in the expectations of support engineers is

outside the scope of this research.

Although the primary DOS partition was corrupted, it was possible to recover some configuration

files which suggested that the recorder had been utilising a user defined record size of 477 bytes.

The size of the records in this file is significant, as the size of the file is directly proportional to

the size of the records. What was not clear was whether this was the operational value, something

generated during the attempted repair or something copied from another machine. This

uncertainty meant that very little could be assumed about any of the metadata locations. In this

chapter an attempt is made to physically search the disk to discover the true location of the files

and to provide the engineer with sufficient information to recreate the broken dir.info.

The objective here was to use the contents of the disk to “reverse engineer” the configuration that

was present when the data was created and use this deduced configuration to determine if the

current configuration was correct and to recreate the missing information.

4.4 Practical Considerations

While one of the key considerations for this project is the usefulness of graphically representing

information for easy dissemination, it must be remembered that a graphical environment is not

always possible. The initial investigation into searching this recording medium was done via a

command line over an ssh connection and using only command line tools and editors such as dd

and vi. The reason for the lack of available GUI was, in this instance, a combination of distance

that required a remote connection and security which meant that only limited ports and hence

limited services were available. The practical effect of such a working environment meant that all

commands or processes had to generate some network traffic to avoid the connection timing out

on idle or the command had to be run with the nohup prefix and the output monitored with

J Sue Ashworth Page 69 of 174

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

subsequent logins. (nohup ensures that the process does not terminate if the initiator logs out.)

4.5 Searching the Disk

The damage to the primary partition caused the preprocessing to terminate before an abslsr.txt

was created. This failure occurred due to unreadable configuration files. Although it was possible

to force this file's creation, it was not considered worthwhile as the information about the current

configuration would provide very little assistance in recovering the previous data.

Fortunately an absls.txt was generated. This file contains most of the information of the abslsr.txt,

the missing information being the number of records per file. From this file the following

information was obtained:

name bytes start_address sectors
dir.info 4096 722925 8
disk1d.dat 2000 722933 4
disk1f.dat 427827712 722937 835601
disk1i.dat 320870400 1558538 626700
disk1u.dat 207228800 2185238 404744
eventsx.dat 1245184 2589982 2432
cache.dat 130023424 2592414 253952
space.wst 57856 2846366 113
disk.dat 217960275968 2846479 425703664

Knowing that dir.info and disk1d.dat should always be 4096 and 2000 bytes in size respectively,

and that an initial offset of 722925 sectors was the norm, it was a reasonable assumption that

disk1f.dat started at an offset of 722937 sectors from the start of the disk. All information beyond

this point was considered likely to be incorrect for restoring this system.

Although reasonably safe to assume, as the absls.txt file was created from examining this portion

of the disk, the location of dir.info was checked using the following command:

dd if=/dev/sdc skip=722925 bs=512 count=8 | hexdump Cv | less

[dd is a convert and copy program, the parameter “if“ refers to the input file in this case it is the

J Sue Ashworth Page 70 of 174

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

block device /dev/sdc (the SCSI RAID) “skip“ is the offset into the drive in sectors in this

case it is the start of the data partition, “bs” refers to the block size, 512 is the size of a sector and

a count of 8 (sectors). The output from dd is usually another file or device, but if no destination

is given then the default is stdout, where in this instance it is piped into hexdump and

formatted in a Canonical hex+ASCII display which in turn is piped to less, a command line text

reader.]

The output from this command showed that dir.info started in the location expected (see below).

00000000 20 64 69 72 2e 69 6e 66 6f 20 00 00 00 10 00 00 | dir.info|
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02 59 |...............Y|
00000020 03 47 64 69 73 6b 31 64 2e 64 61 74 00 00 d0 07 |.Gdisk1d.dat.. .|�
00000030 00 00 00 00 00 00 00 10 00 00 00 00 00 00 01 00 |................|
00000040 04 90 3c 00 64 69 73 6b 31 66 2e 64 61 74 00 00 |..<.disk1f.dat..|
00000050 00 22 80 19 00 00 00 00 00 18 00 00 00 00 00 00 |."..............|
00000060 01 00 04 c0 3b 00 64 69 73 6b 31 69 2e 64 61 74 |... ;.disk1i.dat|�

A similar examination was made of disk1d.dat and these four sectors of the disk were found to

contain only zeros. As the file contains daylight saving information and this feature can be

disabled, an empty file is a valid possibility.

The suspected start of disk1f.dat was examined and found to contain data. While non-conclusive

this supported the premise that this was the start of disk1f.dat. A visual inspection of this data

showed “fe ff ff ff” to be an often recurring sequence. To discover the extent of this file a

shell script was written to check that this sequence recurred regularly.

Sample data from disk1f.dat:

000000c0 1a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000000d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000000e0 23 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |#...............|
000000f0 02 00 00 00 fb ff ff ff fc ff ff ff 00 00 00 00 |................|
00000100 00 00 00 00 00 00 00 00 20 00 00 00 00 00 00 00 |........|
00000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000120 00 00 00 00 00 00 00 00 0b 00 00 00 00 00 00 00 |................|
00000130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000150 00 00 00 00 fe ff ff ff 00 00 00 00 00 00 00 00 |................|
00000160 00 00 00 00 00 00 00 00 00 00 00 00 fe ff ff ff |................|
00000170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000180 00 00 00 00 00 00 00 00 fe ff ff ff 00 00 00 00 |................|

J Sue Ashworth Page 71 of 174

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

The script was a simple loop that outputs the results of a dd into grep (for “fe ff ff ff”)

and for each occurrence of the sequence a counter was reset allowing the loop to continue. If the

sequence did not occur within an expected scope the script would exit. Given the history of the

disk and the presence of bursts of corruption, the script allowed for one sequence to be missed

before terminating and reporting the position of the last found sequence. The script was left to run

overnight.

The following morning the script was manually aborted. It was clear, that while working, it was

impracticably slow and a more efficient method was required. A closer evaluation of the data

showed that the sequence “fb ff ff ff fc ff ff ff”, while less frequently occurring,

was repeated every 1292 bytes and although “fb ff ff ff” recurred more often, this was the

only occurrence of “fc ff ff ff”. The sequence “fb ff ff ff fc ff ff ff” was

decoded to be the identifiers for a regularly occurring “additional information” block followed by

a “special” block. The reason that “fb ff ff ff” recurred more often was that additional

information blocks may occur as often as required while “special” blocks will only occur every

1292 bytes.

Using this observation the script was then modified to examine only 4 bytes (the size of fc ff ff ff)

every 1292 bytes and continue only where this was found. This modification improved the

estimated run time from a projected execution time of 3.5 days to a recorded time of 36 minutes.

This performance improvement meant that the script would halt if any corruption was

encountered, but with the significant decrease in running time it became realistic to continually

monitor its progress rather than leave it running over a weekend where a false stop would be

problematic. It also meant that there was virtually no likelihood of another file having the same

sequence in the same location and providing a false positive. The end of disk1f.dat was found to

conform to the absls.txt prediction. While unexpected, this coincidence gave some confidence in

the results.

It was anticipated that disk1i.dat would be next file to be examined. The following command was

used to examine this portion of the disk.

J Sue Ashworth Page 72 of 174

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

dd if=/dev/sdc skip=1558538 bs=512 count=1 | hexdump Cv | less

This produced the following output:

00000000 01 74 d7 93 77 7e 02 00 ff ff ff ff ff ff ff ff |.t .w~.. |� ��������
00000010 93 5f ec 44 00 00 00 00 ff ff ff ff 00 08 14 00 |._ D....|� ����
00000020 06 06 00 00 34 9e 00 00 10 0d 00 00 00 00 00 00 |....4...........|
00000030 02 74 d7 93 77 7e 02 00 00 74 d7 93 77 7e 02 00 |.t .w~...t .w~..|� �
00000040 a7 5f ec 44 00 00 00 00 ff ff ff ff 00 08 07 00 | _ D....|� � ����
00000050 06 06 00 00 f4 42 00 00 34 ae 00 00 00 00 00 00 |.... B..4|� �
00000060 03 74 d7 93 77 7e 02 00 01 74 d7 93 77 7e 02 00 |.t .w~...t .w~..|� �
00000070 b4 5f ec 44 00 00 00 00 ff ff ff ff 00 08 0a 00 | _ D....|� � ����
00000080 06 06 00 00 a0 52 00 00 b8 fe 00 00 00 00 00 00 |.... R..|� ��
00000090 04 74 d7 93 77 7e 02 00 02 74 d7 93 77 7e 02 00 |.t .w~...t .w~..|� �
000000a0 be 5f ec 44 00 00 00 00 ff ff ff ff 00 08 3e 03 | _ D.... ..>.|� � ����
000000b0 06 06 00 00 fc 56 19 00 a0 52 01 00 00 00 00 00 |.... V.. R......|� �
000000c0 05 74 d7 93 77 7e 02 00 03 74 d7 93 77 7e 02 00 |.t .w~...t .w~..|� �
000000d0 fc 62 ec 44 00 00 00 00 ff ff ff ff 00 08 0d 00 | b D....|� � ����

This hexdump showed that this file contained a regular pattern repeating every 48 bytes. As

each record in this file was 48 bytes in size this was the expected repeat interval. The pattern,

while distinct, evolved over the records. This evolution was explained by the fact that this

structure contained incremental counters and date/time representations.

For this recorder the sequence “77 7e 02 00” was the high end representation of the recorder

identity and this was used as part of the record numbering sequence. Ideally this sequence would

be found repeated twice every third line, as linked list next sequence number and previous

number form part of the record. Since calls have a start and end (the absence of previous or next

segments are both represented by -1) then it should be found at least once on every third line.

Here the output from dd was piped to hexdump and then to grep, the output of which was

itself piped to wc -l. This counted the number of lines containing this sequence and when used

with a block size of 512 at least 10 lines should be expected to be counted. However this is not

always the case as a caller may change their mind and put the phone down before it is answered

or there may be a glitch on the line creating a phantom call. After some experimenting, a value of

4 lines per sector was considered a reasonable, robust minimum value to allow for such

occurrences.

The script was run and it stopped after about 200,000 sectors. This portion of the disk was

examined and there appeared to be a large area of corruption. The address of this anomaly was

recorded and the script was restarted a sector later on the disk.

J Sue Ashworth Page 73 of 174

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

The script stopped a second time a little before the offset predicted by the absls.txt. This time an

examination of the disk revealed empty space. The most likely explanation of the empty space

was that this was an as yet unused portion of the disk1i.dat's allocation. This hypothesis could be

supported by finding the next area of disk that was used and examining its contents.

The script was modified to search for all zeros and abort at the next area of data. Data was next

found at an offset of 2185238 and a visual inspection suggested that this was disk1u.dat.

dd if=/dev/sdb skip=2185238 bs=512 count=1500 | hexdump -Cv | less

00000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 36 |...............6|
00000020 36 30 38 00 00 38 39 39 30 00 00 00 00 00 00 00 |608..8990.......|
00000030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000040 00 00 00 49 6e 00 00 30 00 00 00 00 00 00 00 00 |...In..0........|
00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000090 00 00 00 00 00 00 00 38 39 39 30 00 00 00 00 00 |.......8990.....|
000000a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
000000b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

The disk1u.dat files contain the information fields that the customer has chosen to record. These

may be telephone numbers, operator identity, whether the call is incoming or outgoing or any

other information the customer required. The size of a user defined field (udf) depends on how

the recording system has been configured and cannot be predicted, but the record size

information may be deduced from other files if this information is lost when a recorder fails. An

examination of this (suspected) disk1u.dat file showed strings of what appeared to be telephone

numbers. This type of data was consistent with presumed file type even though very little use

appeared to have been made of this user defined feature. Despite being suspected that a record

size of 477 was used there was too little recorded information in the file to determine if this was

correct; additionally there were many records in which no data was present.

The script examining this portion of the disk searched for between 24 and 31 lines of empty space

per sector and allowed for four consecutive sectors to fall outside these tests before aborting.

Despite allowing a number of sectors to fail the tests, the script frequently stopped for false

alarms making this part of the disk exploration slow and tedious. These false alarms consisted of

J Sue Ashworth Page 74 of 174

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

bursts of corruption and sequences of empty sectors. At an offset of 7987133 no more udf like

data was found and the next portion of the disk contained all zeros.

The empty space terminated at an offset of 8413069 sectors. If the udf field size were 477 bytes

then this would be the expected end of disk1u.dat. It was considered that a partially written

disk1u.dat (with a record size of 477 and with empty space for further records) to be the most

probable explanation of the disk at this stage; this was further supported by the fact that disk1i.dat

had also finished before its predicted end and both these files should use their space at the same

percentage rate. Although there was little confidence in the previous values in absls.txt, some

reassurance was gained when coincidental values were obtained experimentally. However at this

point the absls.txt value for the size of the disk1u.dat was clearly wrong. For this value to be

correct either the udf size was 31 bytes, which seemed suspiciously small, or it contained

differing numbers of records to disk1i.dat, which should never occur.

At an offset of 8413070 was a file presumed to be eventx.dat. This file was very different to the

previous files in that it contained densely packed information, but without any obvious repeating

pattern. Given that the eventx.dat file is an audit log of the recorder these are not surprising. This

file was found to give way to empty space at an offset of 8415502.

dd if=/dev/sdb skip=8413070 bs=512 count=1500 | hexdump -Cv | less

00000000 84 38 ea 46 b0 01 fd 01 01 00 01 b3 08 03 00 2d |.8 F-|� � � �
00000010 00 00 00 84 38 ea 46 b0 01 00 12 03 00 01 2b 00 |....8 F+.|� �
00000020 00 00 00 00 00 00 84 38 ea 46 b0 01 fd 0a 03 00 |.......8 F|� � �
00000030 01 f3 fe ff ff 00 00 00 00 84 38 ea 46 b0 01 01 |.8 F ..|���� � �
00000040 91 09 00 0a f2 13 00 00 01 00 00 00 84 38 ea 46 |....8 F|� �
00000050 b0 01 01 91 09 00 0a f2 13 00 00 02 00 00 00 84 ||� �
00000060 38 ea 46 b0 01 01 91 09 00 0a f2 13 00 00 03 00 |8 F|� � �
00000070 00 00 84 38 ea 46 b0 01 01 91 09 00 0a f2 13 00 |...8 F|� � �
00000080 00 01 00 00 00 84 38 ea 46 b0 01 01 91 09 00 0a |......8 F|� �
00000090 f2 13 00 00 04 00 00 00 84 38 ea 46 b0 01 01 91 |8 F ...|� � �
000000a0 09 00 0a f2 13 00 00 05 00 00 00 84 38 ea 46 b0 |...8 F |� � �
000000b0 01 01 91 09 00 0a f2 13 00 00 01 00 00 00 84 38 |......8|�
000000c0 ea 46 e0 79 00 63 05 00 01 00 00 00 00 00 00 00 | F y.c..........|� �
000000d0 00 37 39 ea 46 b0 01 fd 01 01 00 01 b3 08 03 00 |.79 F|� � � �
000000e0 2d 00 00 00 37 39 ea 46 b0 01 00 12 03 00 01 2c |-...79 F,|� �
000000f0 00 00 00 00 00 00 00 37 39 ea 46 b0 01 fd 01 01 |.......79 F . ..|� � �

An eventx.dat file is expected to be 1245184 bytes in size. The extent of this file exactly matched

this size without any trailing empty space. To eliminate any possibility of this being a

J Sue Ashworth Page 75 of 174

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

coincidence the data on this portion of the disk was copied into a file and the data decoded as if it

were an eventx.dat file. It was reassuring to find that audit information was present in this file as

predicted and it was also observed that the records at the start of the file followed immediately

after those at the end. This indicated that the file had filled its allocated region and began

overwriting the oldest data. Since the records were contiguous, both the start and end of this file

must be correct. With the location of eventx.dat confirmed there could be far greater confidence

in the size and type of all the previous files derived experimentally.

After this point the disk exploration became less clear cut. Empty space was found to occupy

offset 8415502 to 8669458. This could indicate cache.dat, drive1d.dat or both. Without knowing

what was found here, no further mapping could be made for sure. The rest of the disk was

explored and more areas of data were found. This data was similar to the data found in FAT,

index and udf files and was presumed to be tape related data. This suspicion was based on the

assumption that the next area of the disk contained tape drive 1 and 2 files.

The following table summarises what was found from the end of the eventx.dat file:

Type Start Finish

Empty space 8415502 8669458

Fat like 8669458 8702938

Empty space 8702938 8751378

Fat like 8751378 8768460

Empty space 8768460 8812818

Fat like 8812818 8831014

Index like 8831014 8835510

Fat like 8835510 8841276

Index like 8841276 8851630

Empty space 8851630 9423382

Fat like 9423382 9498205

Empty space 9498205 9505302

Fat like 9505302 9520546

Empty space 9520546 9566742

Fat like 9566742 9605058

J Sue Ashworth Page 76 of 174

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

Udf like 9605058 9635285

empty space 9635285 10178579

disk.dat 10178579

It must be noted that a change from one data type to another may indicate a change of usage. A

change from some form of data to empty space may indicate the end of a file or the maximum

usage of the file.

On its own, the layout of this portion of the disk was uncertain. The next step was to look at the

expected files and their permitted sizes and try to find an explanation for the observed disk

structures. Some of the file sizes are fixed and others depend on the type of tape drive fitted (of

which two types exist, DDS3 and DDS4). The following table shows the expected files and,

where known, their possible sizes in bytes.

File Static size DDS3 size DDS4 size

cache.dat 130023424

drive1d.dat 2000

drive1f.dat 25165824 41943040

drive1i.dat 18874368 31457280

drive1u.dat 187564032 * 312606720 *

drive2d.dat 2000

drive2f.dat 25165824 41943040

drive2i.dat 18874368 31457280

drive2u.dat 187564032 * 312606720 *

space.wst

disk.dat

The values marked with a * are calculated assuming a udf field size of 477 which, given the

coincidence of the experimentally determined size and the predicted size of disk1u.dat using this

figure, was considered the most likely value.

Trying to make any correlation between the DDS3 file sizes and the observed data failed. When

the DDS4 file sizes were used a number of boundary matches were found if it was assumed that

J Sue Ashworth Page 77 of 174

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

the empty data at the start was both cache.dat and drive1d.dat.

The following table shows the information collected at this stage of the research and theoretical

values for the unconfirmed files using the default values for DDS4 drives. The values marked

with * are those that are to some degree confirmed by a physical change of data type observed on

the disk.

Name Size in bytes Start address in sectors Number of whole sectors

 dir.info 4096 722925 * 8

disk1d.dat 2000 722933 * 4

disk1f.dat 427827712 722937 * 835601

disk1i.dat 320870400 1558538 * 626700

disk1u.dat 3188649600 2185238 * 46227832

eventsx.dat 1245184 8413070 * 2432

cache.dat 130023424 8415502 253952

drive1d.dat 2000 8669454 4

drive1f.dat 41943040 8669458 * 81920

drive1i.dat 31457280 8751378 * 61440

drive1u.dat 312606720 8812818 * 610560

drive2d.dat 2000 9423378 4

drive2f.dat 41943040 9423382 * 81920

drive2i.dat 31457280 9505302 * 61440

drive2u.dat 312606720 9566742 * 610560

space.wst 653824 10177302 1277

disk.dat 214206241280 10178579 *

The only unconfirmed boundaries were those that occurred in empty space. As both cache.dat and

drive1d.dat appeared to be empty there was no way to determine where one started and the other

ended, as a result the start of drive1d.dat was established on the basis of its known size. A similar

situation occurred where drive2u.dat was considered to be part used and space.wst considered as

empty data. With these exceptions, the disk exploration and the use of known possible values

provided a very good match between theoretical values and observed values.

J Sue Ashworth Page 78 of 174

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

Of the empty files on the disk, cache.dat was orally confirmed as being a legacy file and not in

use at the time, hence it was expected to be empty space. That the disk and drive d.dat files were

empty due to daylight savings being turned off was unconfirmed but plausible. It was also

possible that the recorder had not been in service long enough to encounter a change, while

space.wst (as its name suggests) was known to be used as a filler to ensure the space used by

disk.dat contains an integral number of records.

4.6 Putting the Theoretical Values to the Test.

To ensure that the values derived from this experiment were correct, the dir.info file was

recreated with these values, and written back to the correct portion of the disk. By using the

corrected state and configuration files it was possible to check if the recorded data could be

replayed correctly.

As far as it was possible existing copies of the original files were taken from the DOS partition.

Although some attempt had been made to take backup copies of the critical files, this was done

after some key values had been reset. Despite this the remaining information was still useful in

recreating basic configuration files.

Generating and copying back the new dir.info was the first step. After this step it was possible to

use an automated script to collect textual representations of the current state of the disk files.

Unlike the previous attempt where the information was unavailable as the wrong locations of the

disk were being used to extract data, this attempt appeared to complete successfully and provide

credible data. This data was used to calculate the missing values for the configuration files.

As the DOS partition was corrupted a known good image of a similar DOS partition was used to

overwrite this partition. The DOS file system could have been formatted and reinstalled, but, as a

good image was available this was considered an acceptable short-cut. The recovered

configuration files were modified so that the pointers to the system files were back to the values

J Sue Ashworth Page 79 of 174

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

prior to the failure and then copied back into the file system of the corrected DOS partition.

The RAID, which held the repaired data, was disconnected from the recovery PC and connected

to a recorder with hardware compatible with the original. The system was then powered on.

When it had finished booting a selection of calls were replayed. The replaying of the calls

provided a high degree of confidence that the operation had been successful. In fact there was

audible human speech, the predicted call length matched the actual replayed time and there was

no garbling or sudden switching between unrelated calls. Tapes were then inserted into the

recorder and the previously unrecorded data was backed up to tape - these were the deliverables

of this recovery task. Prior to dispatch, further tests were carried out to prove the integrity of the

tapes (and hence the critical portion of the recovered disk). The tests found the tapes to be

acceptable.

4.7 Wider Considerations

On this occasion the disk analysis, combined with known information, was able to recreate the

missing dir.info structure. Subsequent to this disk exploration it was confirmed that the tape

drives had been DDS4. Key to the success of this approach was the fact that this disk was fairly

clean. Clean in this context meant that there had been no previous use of the disk and that space

that was not currently in use was “empty”, containing only zeros.

Disks or RAID systems may be transferred between recorder systems, a disk that was previously

in a machine with DDS3 tapes may end up in a system with DDS4 or vice versa. Udf field sizes

may be changed possibly giving rise to two sets of file beginnings for the tape drives and, more

importantly, more than one starting point for disk.dat.

If the starting point for disk.dat is assumed to be too early then the offset of the information from

the (true) beginning of the file will be incorrect. The presence of no information at or before the

normal offset should alert an observant engineer, but if disk.dat is assumed to start after its real

start then information from the start of this file may be overlooked. In the case of systems being

J Sue Ashworth Page 80 of 174

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

reset, the data to be recovered is usually at the start of this file.

An attempt was made to automate the disk crawling scripts for this system and, although it was

possible to automatically identify dir.info, disk1d.dat, disk1f.dat and the start of disk1i.dat, areas

of corruption repeatedly caused the script to fail. The areas of corruption appeared to be raw

audio information written to random portions of the disk. These areas could last for several

sectors or just a few dozen bytes. Given that the size of these areas of corruption could be greater

than a disk1d.dat or driveXd.dat files meant that any program that ignored short lived corruption

risked missing a key file. Worse still was the fact that various subroutines had been optimised for

efficiency for each type of file, thus if a file was missed there was a reasonable chance that the

wrong matching criteria would be used for the wrong file types. Such corruption was always a

possibility in the systems received for recovery.

Although the use of disk crawling scripts and human intervention had been fundamental to the

recovery of this particular disk, this did not necessarily mean that the method was universally

useful. It was disappointing to realise that this method was not going to provide a quick fix.

Before completely abandoning this method it was decided to adapt the script to crawl a disk,

attempting to fingerprint the sectors and see what if any value could be extracted from the results.

4.8 Disk Fingerprinting

The disk crawling script was rewritten to dd a sector to hexdump (as before) but this time the -

dv switches were used to format the output in a decimal format with no ASCII as below.

0000000 11427 32896 51907 00001 65535 65535 65535 65535
0000010 23440 16276 01024 00106 65535 65535 00064 01259
0000020 02561 00000 51360 00036 08532 65030 00002 00000
0000030 11428 32896 51907 00001 65535 65535 65535 65535
0000040 23440 16276 01024 00118 65535 65535 00064 01259
0000050 02561 00000 51468 00036 57648 65029 00002 00000
0000060 11429 32896 51907 00001 65535 65535 65535 65535
0000070 23440 16276 01024 00120 65535 65535 00064 01259
0000080 02561 00000 51576 00036 41264 65029 00002 00000
0000090 11430 32896 51907 00001 65535 65535 65535 65535
00000a0 23440 16276 01024 00123 65535 65535 00064 01261

J Sue Ashworth Page 81 of 174

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

00000b0 02561 00000 55832 00036 24880 65029 00002 00000
00000c0 11431 32896 51907 00001 11423 32896 51907 00001

The fingerprint was designated to be the sum of all the decimal values for a sector. It was

recognised that a few large values could produce a similar output to many smaller values, but it

was decided to use this technique in order to understand what, if anything, could be determined.

The output from the script was two numbers per sector, the sector offset and the sum for that

sector. It was recognised that this would create a very large output file and that the process could

take days to complete. (Although this was a disadvantage, large output files and slow disk

traversal are common features of many data recovery techniques.) When the script had traversed

the disk from offset 722925 (the start of dir.info) to beyond the start of disk.dat (offset 11810163

sectors) it was stopped. Beyond this point there would only be a continuation of disk.dat so it was

not expected to reveal anything new. This data took about a day and a half to collect and was

152M in size. The processing of the data was done using gnuplot, this command line driven

scientific graph generator took less than a minute. The result for this system is shown in the

following diagrams, the first Figure 4.8.1 is the raw graph and the second Figure 4.8.2 is edited to

assist interpretation. The X axis is the offset in sectors and the Y axis is the sum of the bytes (as

described above) of the sector.

J Sue Ashworth Page 82 of 174

Figure 4.8.1: Raw graph

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

It should be noted that the empty left portion of the graphs is the application partition that was not

iterated and that the empty space to the right was where the script terminated. The method used to

“fingerprint” the disk sectors did produce visibly different patterns for each of the file types. This

result was unexpected and potentially very useful.

From this graph it is possible to identify most of the main files although, as with previous

representations, the small files such as dir.info and disk1d.dat are indiscernible. Despite this there

are some very interesting patterns visible, in disk1f.dat nearly all sector fingerprints are either less

than 2000000 or about 17000000; for disk1i.dat the data lies between (approximately) 4000000

and 7000000. The disk1u.dat file is especially interesting as it shows a customer barely using the

user defined information, then increasing the usage twice before reverting back to minimal usage,

however there can be nothing in this data that can explain the rationale or policies behind such a

history. Just as the human assisted disk crawling produced a clearly defined eventx.dat, with

some less than obvious definitions for the tape drive related files, the fingerprinting technique

was similarly effective.

Disk fingerprinting produced a potentially useful visualisation, but before discussing its value, a

second scenario is considered. In this instance there was no question about the layout of the files

on the disk, this fingerprint was taken of the next system to be recovered and was intended to

verify the findings from the previous disk exploration. Again the two following graphs show both

J Sue Ashworth Page 83 of 174

Figure 4.8.2: Annotated graph

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

raw (Figure 4.8.3) and interpreted information (Figure 4.8.4), the greyed areas in the second

annotated graph shows data from a previous configuration.

At first glance these graphs show the same pattern as the previous drive except that this one is

more clearly defined. This graph is however a composite of two different usage patterns. In the

J Sue Ashworth Page 84 of 174

Figure 4.8.4: Second disk - annotated

Figure 4.8.3: Second disk - raw

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

earliest usage the user defined fields are relatively small and take up a smaller portion of the disk

causing the old eventx.dat, tape drive files and disk.dat file to be written at smaller offsets than

the current usage. In time it is expected that the disk1u.dat file would overwrite the old eventx.dat

and drive1 files, although it is not certain whether the current tape drive files would ever

completely erase the old start of disk.dat.

This previous usage was not known at the time of this repair; its presence was irrelevant to the

recovery process as in this instance the layout of the disk was known and proved to be correct.

4.9 Chapter Conclusions

In the case of missing information about the location of files on the disk a physical examination

of the disk contents can assist in finding these files. When a system has been recording on a clean

disk, this disk exploration may produce definitive answers although some caution is required in

interpreting empty areas of disk. As a technique for reliably recreating or verifying the location

metadata, it is not suitable for all instances and as such cannot be considered the solution to

discovering the underlying location metadata.

Specific file type crawling scripts can be useful, however these are prone to fail in the presence of

corruption on the disk. Also if the scripts are programmed to ignore corruption they may also

miss valid files. An experienced human eye viewing hexdumps of sectors can still be one of the

best methods of determining the content at any point on the disk.

Disk fingerprinting can produce very a clear picture of what is present on a disk, but this does not

distinguish between current and previous configurations. As a result it may provide misleading

information. The process can take several days to complete depending on the speed of the

processor and the disk or RAID configuration. While this delay is not in itself prohibitive, an

experienced engineer would be able to selectively view portions of the disk and identify key

boundaries in a few hours. That the fingerprinting is able to produce a very good visualisation of

the state of the disk may yet prove to be useful as a diagnostic aid. Where possible further

J Sue Ashworth Page 85 of 174

 4 Disk Exploration and Fingerprinting A Complex Situation in Data Recovery

fingerprints will be taken to see if any particular characteristics, for a full system or single file

type, are associated with a particular type of failure.

This chapter has shown that it is possible to recreate information missing from dir.info files by

intelligently exploring the disk and that the disk fingerprinting technique can produce very good

visualisation of the state of the disk even if this visualisation has the potential to mislead.

J Sue Ashworth Page 86 of 174

 5 Calculating the Correct File Sizes A Complex Situation in Data Recovery

5 Calculating the Correct File Sizes

5.1 Background

By the time this stage of the research was attempted a reasonable degree of confidence had been

gained in the specialist data recovery techniques used in the repair processes. Despite working on

many recovery tasks each new repair was still a puzzle and no two repairs had been the same.

Attempting to find a way to detect all metadata location errors was still an active pursuit. When

access to the recording application's source code was granted it was assumed that finding the

solution would be a relatively simple task. The was not the case. As this chapter illustrates, it

required several months to derive the formula. The research attempt that led to the solution was

based on knowledge acquired from understanding the source code and the types of methods

employed (in the code). Such knowledge formed the basis of plausible conjectures made in

relation to the formula used by the application to apportion the medium.

Once the medium allocation formula was found it was easy to enhance the at-a-glance image

generation to produce far better error detection. At this stage it was possible to detect all errors

and offer the correct solution. This would provide a significant step toward the development of

the Recovery studio.

Coincidental to the formula being (re)discovered was a recovery job in which the location

metadata had been changed in a way not previously believed possible. It is still believed that the

formula could recalculate the correct location information, but it was the disk fingerprinting

process that gave insights into the recording problem.

5.2 Introduction

The previous two chapters have explored the representation of the systems' files with an at-a-

J Sue Ashworth Page 87 of 174

 5 Calculating the Correct File Sizes A Complex Situation in Data Recovery

glance image and, when the full extent of the possible errors was realised, exploring the

possibility of determining the correct configuration from the state of the disk. However neither of

the techniques tested to this point produced a reliable method of determining the correct layout

and sizes of the files. In this chapter a definitive method of calculating these critical system

parameters is pursued and the results are used with the previously developed visualisation.

This chapter briefly describes the assumption that the source code would be easy to unravel in

section 5.3. Some explanation for this is given in section 5.4, while 5.5 describes the formula.

However, although the formula matches all available examples, the chance to use it to reconstruct

a blatantly wrong location allocation fails as the data to verify the reconstruction is missing (5.8).

As a demonstration of potential, the graphic produced in Chapter 3 is represented using the

additional information available (5.9).

5.3 The Code

The source code for the recorder's application was made available and it was initially assumed

that it would be possible to extract the formula used to allocated the file sizes. This assumption

was incorrect. Even with advice and notes (from a previous attempt) the search through the code

took over a month before any meaningful information could be extracted. The information that

was extracted was not the formula but the type of techniques used in manipulating variables.

Whilst it would be easy to write a long critical passage on the ugliness of the source code, its

historical context must be considered. The code was developed over several years and by many

developers with more than one company buyout. Its development is currently reduced to the point

where only operationally important bug fixes are considered. While this was not observed first

hand, there are stories of minor simple changes in one area of the code causing catastrophic

failures in other modules with no obvious reason ever found. However, it is suspected that some

critical timing may be involved.

Some comments within the code appear to have been superseded by other changes leaving tracts

J Sue Ashworth Page 88 of 174

 5 Calculating the Correct File Sizes A Complex Situation in Data Recovery

of documentation at best misleading and at worst completely wrong. Yet despite the potential

disinformation many useful facts were obtainable even if all information had to be otherwise

validated.

One key observation that was readily available was the frequent use of a rounding up function

that took two arguments (X, Y). The function added the value of X with the value of Y-1 and

then performed an integer division on this sum using Y as the divisor. The result of this division

was then multiplied by Y. This meant that the function returned the next integer above X that was

exactly divisible by Y. That such a function existed and was frequently used enabled conjectures

to be made and tested while attempting to find a formula that fitted all the collected examples.

5.4 The Files and their Calculations

The recorder application's source code made references to the size of the data storage partition

and the number of tape drives. Although not completely understood, the code had some methods

related to the type of tape drives used. Using insights gained from the code and information

already known to the recovery engineers the basic inputs were identified. These inputs were:

1. The size of the partition.

2. The number of tape drives.

3. The type of tape drives.

4. The size of the user defined fields.

The size of the recording medium can be determined using the sg3_utils sg_readcap (Gilbert D

2009) utility which returns (among other things) the number of bytes capacity; for example, the

output for this PC is shown in Figure 5.4.1. During a normal initial scan of a repair, this data is

collected to a readcap file so that the information is available for further processing (e.g., by the

future Recovery Studio) or for human reading.

As the size of the operating system partition is a constant size, subtracting this (370137600 bytes)

J Sue Ashworth Page 89 of 174

 5 Calculating the Correct File Sizes A Complex Situation in Data Recovery

will leave the size of the data partition.

The number and type of tape drives and the user defined field size should all be extractable from

the configuration files, but it is possible that if the application partition is damaged then these

configuration files may be inaccessible. If this information is not available from the files, a visual

inspection of the recorder would reveal the number and type of tape drives and the size of the

user defined fields should be known to the company and their front line support.

Although, in theory, other settings could be changed and this would have an effect on the location

metadata, there are no known systems where these changes have been made nor is it anticipated

that these configuration options would ever be adjusted from their default values. It is the

possibility that such anomalies may legitimately exist. This means that full automation of a repair

is unlikely to be possible and that a degree of human verification will always be required.

Some information is obvious and some information can be deduced, for example all the files have

a start address, a size, a number of records and the size of a record. The size will be the exact

product of the record size and the number of records. All files start on a sector boundary even if

the previous file occupies only a few bytes of the preceding sector. Some files are constant in

size, some are dependent on the size of the disk and some on the type of tape drives fitted. The

number of tape drives fitted can determine whether or not some files exist while most files are

always present.

To examine the information available for each file:

name information

dir.info The file information is stored in dir.info, which is always located at an offset

of 722925 sectors from the start of the disk (or RAID file system). This file is

J Sue Ashworth Page 90 of 174

Figure 5.4.1: Output from sg_readcap

 5 Calculating the Correct File Sizes A Complex Situation in Data Recovery

always 4096 bytes in size and it occupies exactly 8 sectors. It may contain

information for the files associated with up to eight tape drives though in

practice most systems will have two or less of these devices fitted.

disk1d.dat This file starts after dir.info at 722933 sectors (the start of dir.info + the size

of dir.info in sectors). This file is a constant 2000 bytes in size and while

occupying 3.90625 sectors this is rounded up to 4 sectors when considering

the start of the next file. The record size of this file is 1 byte and there are

2000 records.

disk1f.dat The start of this file is always 722937 (the start of disk1d.dat + 4 sectors).

This file is calculated from the size of the hard drive (or RAID). Although the

code that performs this operation has not been isolated, the formula appears to

be that the number of records is the result of the size of the disk in bytes

divided by 2048 (2K) rounded up to the next number divisible by 323. As

there are 4 bytes to a record, the file size is 4 times the number of records.

There is however a minimum size of 13107340 records (52429360 bytes).

According to comments in the code this is approximately 25G (1024 * 1024 *

25 = 26214400), however it can be seen that the real value is twice this (at the

time of this research, the point where this value is doubled had not been found

and this information is derived from observed data taken from successful

repairs).

disk1i.dat The number of records in this file is the size of the disk in bytes divided by

(2048 * 16) rounded down to a whole integer. As there are 48 bytes to a

record the file size is the number of records multiplied by 48. As with

disk1f.dat there is a minimum number of records of 819200 (size of

39321600 bytes). The start point of this file is dependent on the size of

disk1f.dat (in turn dependent on the size of the disk).

disk1u.dat This file is dependent on the user defined data. There are the same number of

records as disk1i.dat and the size is that of (disk1i.dat /48) * udf size. The

start of the file is dependent on the sizes of disk1f.dat and disk1i.dat (in turn

decided by the size of the disk).

eventsx.dat The start of this file is determined both by user configurable data and the size

of the disk. This file has a constant size of 1245184 bytes. It always contains

J Sue Ashworth Page 91 of 174

 5 Calculating the Correct File Sizes A Complex Situation in Data Recovery

65536 records and occupies exactly 2432 sectors.

cache.dat This starts 2432 sectors after eventsx.dat. The file is also a constant

130023424 bytes with one byte per record. It occupies 253952 sectors.

The files relating to the tape drives typically come as a pair though there are configurations

where only one or no tape drives are present. Where tape drives exist the type of drive

determines the file sizes. The following two sets of files are possible. Here X is the drive number

and the maximum number of drives is 8.

DDS3 DDS4

driveXd.dat 2000 2000

driveXf.dat 25165824 41943040

driveXi.dat 18874368 31457280

driveXu.dat (18874368 /48) * udf (31457280 / 48) * udf

space.wst The remainder of the disk is as many whole records of disk.dat as possible

with any unused space being taken up by space.wst. So the size of space.wst

is the modulus of the remaining space in bytes divided by 661504 (the size of

a record of disk.dat in bytes).

disk.dat This file occupies the remainder of the disk.

5.5 Testing

The above formulae were verified by looking at previous repairs and comparing the calculated

values for abslsr.txt files with the actual retrieved values. Where differences existed the observed

data was found to be suspect and in many cases this was the underlying reason for the recovery

task. Whilst it is not proven that all eventualities have been taken into account, at the time of this

research, the formula proved correct for all existing historical data. If the assumption is that this

formula is true in all cases then no instance has yet been found that disproves this assumption.

5.6 Using the Information – Design and Implementation

J Sue Ashworth Page 92 of 174

 5 Calculating the Correct File Sizes A Complex Situation in Data Recovery

There are many ways in which the solution could be presented to a user from a command line

program using arguments to a fully blown interactive graphical application. While no future

development direction has been discounted an initial proof-of-concept application has been

developed as a pseudo web server mostly following HTTP 1.0 standards (Berners-Lee et al

1996) written in perl. This permits information entry and returned results to be displayed in any

browser from any operating system; allows more than one query to be handled from more than

one location simultaneously and the browser provides a familiar interface. As there was only one

instance of the application running, any development changes could be deployed instantly by

editing the source, stopping and restarting the server.

The following images Figure 5.6.1 and Figure 5.6.2 show the data input page, with data, and the

returned results.

In order to calculate the file information the size of the disk is required; the number and type of

the tape drives fitted to the recording system and the size of the user defined fields. The data

input page uses a simple HTML (Hyper Text Mark-up Language) form to input the data which

when submitted is used to calculate the predicted abslsr.txt that is returned to the browser to be

compared with the data in the actual abslsr.txt generated during the initial scan of the recording

media.

J Sue Ashworth Page 93 of 174

Figure 5.6.1: Data input web page

 5 Calculating the Correct File Sizes A Complex Situation in Data Recovery

5.7 Using the Information as Part of the Repair Process

The web server was left running on a PC in the laboratory. When a repair came in and the initial

scan was carried out the resultant abslsr.txt file was observed; while previously its contents may

have been presumed to be correct, it was now possible to point a browser at this web server and

generate the predicted metadata layout. If the two sets of information were in agreement then the

abslsr.txt and the metadata locations on the disk could be assumed to be correct and the repair

could proceed with a high degree of confidence in this data that may otherwise only be obtained

gradually as the repair progressed. This was a significant improvement to the initial assessment.

When the comparison failed, an early warning of a problem could be given. Apparently plausible

J Sue Ashworth Page 94 of 174

Figure 5.6.2: Metadata predicted layout

 5 Calculating the Correct File Sizes A Complex Situation in Data Recovery

data could be detected as being suspect and an underlying cause determined. With such

information possibly hours of a data recovery engineer's time could be saved by the realisation

that errors were present. In the case of missing data, as in the previous chapter, the information

could be easily recreated without time consuming hours spent searching the data partition.

If corruption occurred in the location metadata area and all location data was lost then the

information could be recreated from scratch, a feat not previously possible. Even though such a

situation may be very rare this would previously have taken many days to correct. It should be

remembered that each repair is unique and nothing could have predicted the state in which the

following repair was found.

5.8 An Example Beyond Repair

Not all disks can be repaired. The following abslsr.txt was generated from a recorder that was

unable to replay a specific call.

name bytes start_address sectors records
 dir.info 4096 722925 8 4096
disk1d.dat 2000 722933 4 2000
disk1f.dat 427829004 722937 835604 106957251
oops.dat 217631682560 1558541 425061880 unknown
disk1i.dat 320871552 426620421 626703 6684824
disk1u.dat 13416441768 427247124 26203988 6684824
eventsx.dat 1245184 453451112 2432 65536
cache.dat 130023424 453453544 253952 130023424
space.wst 611840 453707496 1195 611840
disk.dat -12880390144 453708691 -25157011 -6289253

The problem with this disk is that an extra file, oops.dat, had been generated and this distorted the

entire disk layout. The file oops.dat is a legacy repair file that was generated in specific

circumstances for a specific customer; its scarcity meant that it had not been previously

mentioned and even where it occurs the total sectors used by oops.dat and disk1f.dat is equivalent

to a normal disk1f.dat. (This is a very good example of local knowledge being able to override

the predicted data, but still make use of its contents.) Oops.dat should not be present on this disk

and up until this point no one had even speculated what would happen if someone tried to modify

J Sue Ashworth Page 95 of 174

 5 Calculating the Correct File Sizes A Complex Situation in Data Recovery

the media layout in this fashion where this fix was not required. As previously observed, it is

never wise to predict the actions of front line support.

The presence of negative numbers in disk.dat attributes is caused by the difference between the

calculated space used and the size of the disk in this case, due to the inappropriate oops.dat, the

difference is negative. Despite the fact that all the parameters for calculating the correct location

metadata are believed to be known, no usable index, FAT, event or udf information could be

processed from the disk. The reason for this was that although the location of the files was

believed to be correct, the data was overwritten by audio data when the application started writing

to the beginning of the partition and then would not write metadata in the audio data area.

As no further progress could be achieved on that day, a disk fingerprint (as described in the

previous chapter) was initiated and left to run overnight. The resultant image Figure 5.8.1 shows

the start of the data partition and gives an insight into what was occurring on the disk while it was

operational.

The image reveals that the start of this partition was occupied by disk.dat data (in fact the whole

of the data partition would be subsequently found to contain disk.dat data). Although this may

J Sue Ashworth Page 96 of 174

Figure 5.8.1: The start of the partition where the metadata should be.

 5 Calculating the Correct File Sizes A Complex Situation in Data Recovery

seem a reasonable outcome for such an unusual abslsr layout, it breaks a lot of the assumptions

currently existing in this area of data recovery. The disk fingerprint for this area showed some

interesting patterns, the most obvious of which is the repeating vertical lines every X sectors.

Despite the fact that there were no index or FAT files, it was still considered possible that a

recovery may have been effected by extracting embedded “backup” copies of the key metadata

files that were encoded into disk.dat. At this point it was believed that by relocating the data to a

larger drive and using these synthetic metadata files, of size and location determined by the

uncovered formula, it would be possible to replay a reasonable percentage of the audio. To be

able to repair a disk in this fashion would prove that the concept of recreating abslsr data from the

formula as a viable repair technique.

The above scenario proved to be extremely optimistic. When the synthetic indexes were created

they were discovered to be less than 20% usable with large portions of the data completely barren

of these metadata structures. As the available data tended to occur in bursts, these bursts were

examined to see if there was a usable string of continuity. It was discovered that these bursts were

20 minutes apart. 20 minutes is the time interval after which the tape, if present, will record any

unrecorded data from the disk so there was some speculation as to the possible mechanism that

was causing the index information to be written to disk only at this time (although no satisfactory

full explanation has yet been found). It was then that the correlation was made between the

regular lines in the fingerprint and the presence of index information. It was not the separation of

these lines by sectors that was important, but the separation by time combined with the fact that

these patterns occurred coincidentally with the presence of (backup) index metadata in the main

data.

The image from the misplaced disk.dat, while recognisable as disk.dat data, shows some

differences with previous images created from more usual disk.dat data. If it is compared with a

normal disk.dat where backup index data is present such as Figure 5.8.2, it can be seen that there

is continuous pattern of this data and it is reasonable to assume that the difference in pattern is

caused by the presence of this information stored within the data. The backup information may be

only index information, but as no tests were done to see if any other backup data was present, it

would be unsafe to assume that the lack of index information is the whole explanation of the

J Sue Ashworth Page 97 of 174

 5 Calculating the Correct File Sizes A Complex Situation in Data Recovery

visible differences between the two disk captures. The reason the presence of other data was not

tested was that this work was performed in an operational environment and one in which research

must not be allowed to interrupt the core business. There was insufficient index information to

recover the audio irrespective of whether other information was available or not. Other repairs

were waiting and there was no advantage to the company in searching for this data.

Despite the uncertainty about exactly what happened while the recorder was running in this

unlikely configuration, there is evidence that the fingerprint process can potentially identify not

only types of recorded data, but also patterns that could be symptomatic of certain fault

conditions.

A hypothesis that the metadata could be successfully recreated from scratch in this instance has

been neither proved nor disproved. It is believed that calculated values for this repair are correct,

but without any metadata available the audio cannot be reconstructed to see if it replays recorded

conversations and thus provide a verifiable answer.

Even though the previous chapter decided that the disk fingerprinting could not provide a

definitive method of predicting the location of the metadata, the technique provided useful

insights into what happened to the recording and is the subject of the next chapter.

J Sue Ashworth Page 98 of 174

Figure 5.8.2: A portion of a normal disk.dat

 5 Calculating the Correct File Sizes A Complex Situation in Data Recovery

5.9 One Final Consideration

Chapter 3 focused on presenting the information to a novice engineer in an at-a-glance graphic.

Although the recovery studio is a long way from being built, it is possible to use the formula

discovered in this chapter to improve the generated image so that additional errors can be

detected.

The discovery of the underlying formula permitted a far greater number of errors to be detected

and graphically displayed, therefore the SVG generation software was added into the web server.

As both applications had been written using perl the integration was relatively straight-forward,

but with the underlying formula available, it was possible to detect and highlight a greater

number of errors. The data entry page was modified so that an abslsr.txt could be uploaded and

analysed.

There were a few issues in the development that required some HTTP 1.1 (Fielding et al. 1999)

commands being used to prevent Opera Version 9.62 for Linux from caching images. These

problems were circumnavigated and the resultant screen shots were captured to show a working

prototype. Disappointingly Firefox would not display the images in-line although it would show

them if the option to open an image were selected. The following images show the data input

page, Figure 5.9.1 and a good location metadata file results (Figure 5.9.2).

J Sue Ashworth Page 99 of 174

Figure 5.9.1: Data input form

 5 Calculating the Correct File Sizes A Complex Situation in Data Recovery

The above graphic shows the data input. If no file is uploaded (the upload box is left blank) then

the results are as before generating only a correct set of values as per Figure 5.6.2. If a correct

abslsr.txt is uploaded then the above is a typical good output.

Although this image is now part of a web page it is fundamentally the same as the one created in

Chapter 4. The additional benefit realised consists of being able to detect the wrong size of file as

well as the cascading effect on other files (as shown in Figure 5.9.3). This is the same input data

used in Chapter 3 with a much clearer indication of the effect of the problem is being displayed.

J Sue Ashworth Page 100 of 174

Figure 5.9.2: A good abslsr.txt file

 5 Calculating the Correct File Sizes A Complex Situation in Data Recovery

J Sue Ashworth Page 101 of 174

Figure 5.9.3: The corrected layout with abslsr.txt errors depicted in red below

 5 Calculating the Correct File Sizes A Complex Situation in Data Recovery

The previous diagram shows that the drive2f.dat is of incorrect size, but unlike the image in

Chapter 3 this one is able to identify not only that the size is wrong, but also that the sectors

occupied and the number of records are incorrect. This sets the border of the incorrect file to red

as well as the fill. As the subsequent files are out of place their borders are also red although the

files themselves are of the correct size (the fill colour is correct). As the sizes of space.wst and

disk.dat are derived from the remaining space in the partition they too are incorrect. The lower

portion of the image is made up of textual information and gives a list of discrepancies

encountered, that the first error reported is likely to be the root cause of the dislocation is no

coincidence.

Although for an expert working in the laboratory the availability of correct information which can

be compared with the actual information may be more useful, for a novice in the field the at-a-

glance image can convey the underlying problem in a easy to understand fashion, thus supporting

the concept that a graphical representation of the location metadata can be used to give a

diagnosis of the root cause of the problem.

For both the expert and the novice sufficient information exists in the textual results to create a

text file that can be converted into binary data that may be written to the dir.info region of the

disk to correct the problem.

5.10 Chapter Summary

In this chapter the formula for determining the location metadata was deduced after access was

gained to the source code. Although it was not possible to determine this formula directly from

the code it was possible to gain an insight into the type of methods used in apportioning the

recording media and with that knowledge use an informed process of trial and error that led to the

creation of a formula for predicting the correct layout of metadata and data.

While it is still possible that this formula may not hold true for all instances of the system, so far

J Sue Ashworth Page 102 of 174

 5 Calculating the Correct File Sizes A Complex Situation in Data Recovery

no instance has been encountered that does not conform. After a considerable amount of testing

sufficient confidence was gained and a mini web server was built to provide an interface to the

formula in the recovery laboratory. The web server application was used to verify subsequent

repair location metadata and when a repair was encountered where the location information was

clearly wrong it was used to predict the correct values. Unfortunately it was not possible to test

these predicted values as the damage was such that the metadata was either never written to disk

or was overwritten by audio data. Interestingly it was the disk fingerprinting technique developed

in the previous chapter that gave the greatest insight into the nature of the recording before the

fault had been discovered. As the primary objective for this research was to find a reliable

method of verifying the location metadata it had not been reasonable to change direction and

explore the potential for this technique, but now that the location metadata formula had been

identified it would be possible to revisit the disk fingerprinting process and experiment in this

area. (See next chapter, Disk Fingerprinting – An Exploration.)

The formula was integrated into the heuristic analysis of the abslsr.txt that was used to generate

an at-a-glance image which in turn was imported into the mini web server. The result was a

proof-of-concept server application that could be used with a web browser that supported SVG

graphics. As the design and development of the Recovery Studio cannot be predicted, further

refinement would be of little benefit.

J Sue Ashworth Page 103 of 174

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

6 Disk Fingerprinting – An Exploration

6.1 Background

Shortly after the formula by which the recording medium was allocated, and this part of the

research was concluded, the employment was terminated.

Despite the work done in designing the at-a-glance representation, it is expected that these

concepts have been stored until the development of the Recovery Studio begins. It is also

expected that the senior engineer has already extracted the formula used to allocate the recording

medium and that this has either been rewritten in the python programming language or has been

incorporated into the initial assessment shell script. This will provide immediate benefit with

minimal development overheard. These is a certain satisfaction in knowing that every current

repair has one less area of uncertainty.

Whilst the previous stages of the research had been done in a commercial laboratory this next

stage was done from home. Here it was possible to focus on the disk fingerprinting experiments

without the overhead of company or customer issues. The freedom from these issues was offset

by the fact that all data collected and documents written were stored in a single (geographical)

location. To mitigate the risk of data loss through, for example, a house fire or burglary, an

additional 500GB drive was purchased and a backup of all data was stored off-site.

The drives used for this part of the research were all privately owned and though some of the

software installations were old or broken all these drives were physically functional.

6.2 Introduction.

With the formula rediscovered the research could be considered complete, but this chapter returns

J Sue Ashworth Page 104 of 174

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

to the disk fingerprinting technique to see if it has wider possibilities and takes a look at the

information available from iterating a collection of hard drives. There is nothing special in these

drives or their contents; the novelty comes from this technique providing a new way of seeing the

data. As each of these drives were in computers of various states of repair there are subtle

differences in the way the script was run and each machine has a description of the method used.

Section 6.3 gives a brief outline of common methods.

The first disk is part of an old Microsoft Windows 95B system. As the disk was a moderate 10

Gigabytes in capacity it could be traversed in a relatively short period of time. This drive was

used to compare the differences between different partitions and to see the consequences of

formatting a logical drive. This disk is described in greater detail in section 6.4 with specific

comparisons between two C: drives described in 6.5. This chapter also includes before and after

comparisons of a simple format command (6.6).

In section 6.7 an examination is made of a Linux disk while 6.8 compares two fresh installations,

identical except for the choice to use volume encryption. In section 6.9 similarities in the way

data is stored on a hard drive are noted across different file systems before the chapter is

concluded in section 6.10.

6.3 Common Methods

For logistical reasons the computers used were powered down each night. This meant that the

fingerprinting process was only running for about half of the day and traversing a disk could take

months. Each morning the process was restarted from the point reached the day before and each

evening the scripts were amended to set the skip value to one less than the sector reached. (The

skip value is an argument given to the Unix dd process and is the offset into the disk in sectors.)

This meant that the resulting text files had two values in common with the previous file, although

this prevented the files being simply concatenated it allowed a basic sanity check to ensure that

there were no gaps or overlaps.

J Sue Ashworth Page 105 of 174

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

It would be easy to modify the perl script to take command line arguments, but editing the

starting point each time the script was run produced a list of stages reached during each working

day. This history allowed some predictions to be made about the duration of a particular disk

traversal and indicated in which file a particular portion of data was located.

All data was plotted using gnuplot. Each section below describes the exact commands used with

an explanation of why different options were chosen. For all graphs the X axis was the offset in

sectors from the start of the disk and the Y axis the count for that sector.

6.4 Disk 1 General

The first disk was in a Pentium II machine with a speed of 450 MHz, 128 Megabytes of memory

and a hard drive of a nominal 10 Gigabytes. The PC was set to boot from the CD drive. A Live

Fedora 8 KDE CD was used as a temporary operating system, this should have booted to the

KDE X windows system, but the video card was not able to cope and only the command line was

available. As the command line was all that was required this was sufficient.

The PC also had a second hard drive that was not fingerprinted, but this was used to store the

output data. On a Microsoft Windows machine a primary partition is by default identified as the

C: drive, unusually, this first drive was partitioned with 3 primary partitions (effectively 3 C:

drives) and an extended partition containing 3 logical drives. Only one of the primary partitions

could be active at any time so the other two had to be hidden partitions (Sammes, Jenkinson

2007).

Three C: drives is unusual and this machine was originally partitioned this way so that more than

one installation of Windows 95B could be installed. Exact records about how this installation was

achieved have not been kept, but it is believed that an old version of PowerQuest's Partition

Magic (now owned by Symantec) (Symantec Corporation 2009) was used to layout the drive

partitions.

J Sue Ashworth Page 106 of 174

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

The original reasoning behind this unusual partitioning was to install Microsoft Windows 95B on

the first and second primary partitions and leave the third spare for a possible trial of the

forthcoming Microsoft Windows 98. With the two partitions installed with the same operating

system one was used for everyday working, whilst the second was used to test out perceived risky

operations, such as new video drivers or major system configuration changes. If these were

successful then the main drive was similarly upgraded. Microsoft Windows 95B did not have

features such as system restore or check pointing a stable configuration so reinstalling a system

was more common than with later Microsoft products.

The working Windows 95B installation did fail, but recovery was trivial as all that was required

was to change the active partition and reboot. There has always been an intention to repair or

reinstall the failed installation, however it was left in its failed state so that any data found to be

missing could be copied to another drive. It had been this way for many years and by now it is

considered that any useful information has either been salvaged or completely forgotten that its

presence is irrelevant.

The Redhat Fedora fdisk (util-linux-ng 2.13) using the -l option reported the following for this

disk.

Disk /dev/sda: 10.1 GB, 10141286400 bytes
255 heads, 63 sectors/track, 1232 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk identifier: 0x00000000

 Device Boot Start End Blocks Id System
/dev/sda1 1 213 1710891 16 Hidden FAT16
/dev/sda2 * 214 426 1710922+ 6 FAT16
/dev/sda3 427 621 1566337+ 16 Hidden FAT16
/dev/sda4 622 1232 4907857+ f W95 Ext'd (LBA)
/dev/sda5 622 830 1678761 6 FAT16
/dev/sda6 831 1025 1566306 6 FAT16
/dev/sda7 1026 1232 1662696 6 FAT16

Partition Magic, the application that originally created the layout, provides this information:

C1: hidden fat 16
First physical Sector 63
Last physical Sector 3,421,844
total sectors 3,421,782
1,751,952,384 bytes
52% used 910,896,136

J Sue Ashworth Page 107 of 174

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

48% free 841,056,256

C2: active fat 06
First physical Sector 3,421,845
last physical Sector 6,843,689
total sectors 3,421,845
1,751,984,640 bytes
78% used 1,361,848,832
22% free 390,135,808

C3: hidden fat 16
First physical Sector 6,843,690
last physical Sector 9,976,364
total 3,132,675
1,603,929,600 bytes
0% used 263,680
100% free 1,603,665,920

Extended partition 0F
First physical Sector 9,976,365
last physical Sector 19,792,079
total 9,815,715

E-95 USABLES - 06 fat 16
First physical Sector 9,976,428
last physical Sector 13,333,949
total 3,357,522
1,719,051,264 bytes
91% used 1,561,568,256
9% free 157,483,008

F:FACTS - 06 fat 16
First physical Sector 13,334,013
last physical Sector 16,466,624
total 3,132,612
1,603,897,344 bytes
62% used 992,446,464
38% free 611,450,880

G:MASTERS - 06 fat 16
First physical Sector 16,466,688
last physical Sector 19,792,079
total 3,325,392
1,702,600,704 bytes
58% used 982,458,368
42% free 720,142,336

This information is summarised in Figure 6.4.1. It should be noted that the absence of a D: drive
is due to the second hard drive having a primary partition and this partition taking the “D” letter.

J Sue Ashworth Page 108 of 174

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

Once the Live CD had booted a command line login prompt was available from which a root

login was used. The following commands were used to mount a partition on the slave hard drive

from where the perl script was run. The PC's name was “front” and each day a new text file was

used to capture the output of the fingerprinting process.

[root@localhost ~]# mount /dev/sdb6 -t auto /mnt
[root@localhost ~]# cd /mnt
[root@localhost mnt]# ./fp.pl > front.01.txt

With this configuration it took approximately three weeks (twenty one days) to iterate over the

primary master hard drive (/dev/sda in this configuration). In order to display this information

gnuplot was used. In previous examples the graph had been plotted using a cross for each

position (the default), but here many more sectors were processed per graph and, with this greater

density of information, limbs of the crosses obscured other information. To overcome this loss of

clarity the default cross was replaced with a dot this helped to keep the number of images down

J Sue Ashworth Page 109 of 174

Figure 6.4.1: A screen shot of Partition Magic

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

while still displaying the overall information.

For the following set of graphs, the following gnuplot commands were used:

Terminal type set to 'wxt'
gnuplot> set terminal png size 800, 270
Terminal type set to 'png'
Options are 'nocrop medium size 800,270 '
gnuplot> set output "all8d.1.png"
gnuplot> set xtics 0,2475900
gnuplot> plot "all8.1.txt" with dots

These commands set the output to a PNG (Portable Network Graphics) format, 800 by 320 pixels

starting at 0 and going 2475900 sectors, an eighth of the drive (this was modified for each

subsequent image to give an even sized images) plotted with dots. These images have

subsequently been edited to show the approximate partition boundaries. As with previous

fingerprint images the X co-ordinates are the offset in sectors and the Y co-ordinates are the sum

of that sector.

Figure 6.4.2 The first eighth of the drive shows the start of the previously used, but now broken,

Windows 95B partition. The partition contains a mixture of executables and data. According to

Partition Magic this disk was 52% used and 48% free. Toward the end of the partition, as

illustrated in Figure 6.4.3, there appears to be unused disk space. Unused disk space in this drive

appears to be a pattern on the disk that appears to contain about half ones and half zeros, and it is

likely that this was the default pattern of this empty disk (ATA Model:IBM-DTTA-351010 Rev:

J Sue Ashworth Page 110 of 174

Figure 6.4.2: First eighth of drive

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

T560). This line can be seen at any point on the drive where there is little or no data. It is most

obvious on the unused C:3 drive.

Figure 6.4.3 and Figure 6.4.4 show the second C drive. This is similar in broad general pattern to

the first drive; here, however, 78% is used and 22% is free. It is not known when this partition

was last defragmented and although there are similarities between the drives there is no one to

one matching of spikes or troughs. A closer comparison follows after the whole disk is

considered.

J Sue Ashworth Page 111 of 174

Figure 6.4.4: Third eighth of drive

Figure 6.4.3: Second eighth of drive

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

The end of Figure 6.4.4, all of Figure 6.4.5 and the start of Figure 6.4.6 show the third unused C:

drive.

The extended partition and the E: drive (starting 63 sectors into the extended partition) is shown

in Figure 6.4.7. This and Figure 6.4.8 show that the E: drive appears to be mostly full, this is

supported by the drive being 91% used. This drive was originally intended to store small useful

programs, particularly those that did not require installation to be used by the current active C:

drive, for example executables that could simply run from the directory. The exception to this

was the installation of Microsoft's Visual Studio. Drive F: was intended for information and

contains mostly textual data in the form of saved html pages and images. It is only 68% used.

J Sue Ashworth Page 112 of 174

Figure 6.4.6: Fifth eighth of drive

Figure 6.4.5: Forth eighth of drive

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

The final logical drive, drive G:, contains master installation files. When the PC was installed the

J Sue Ashworth Page 113 of 174

Figure 6.4.9: Final eighth of drive

Figure 6.4.8: Seventh eighth of drive

Figure 6.4.7: Sixth eighth of drive

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

CD used to install the operating system was first copied to the hard drive and the installation

proceeded from the hard drive. One advantage of such an installation is that the machine will

never prompt for the installation CD. Other installation files on the drive include modem driver

files, Microsoft Office installation disks and service packs. The logic behind this approach was

that the machine could be totally reinstalled from this partition and that all installation media

could be kept in a separate safe location. It should be remembered that Microsoft Windows 95B

pre-dates common availability of fast broadband and finding and downloading drivers and

patches used to be more difficult. Drive G: is 58% used and once again there is a visible unused

portion. It is not known why there is data at the end of this (or any other) drive.

If the regular pattern seen in the empty space is considered as “the line” then textual data appears

to mostly fit below this line while executables spread from zero to maximum. This is however a

very broad generalisation.

The following is the content of a sector of the blank portion of the disk that produces the line, this

is the same for all sectors of the line. This was obtained by using dd to output the contents of one

sector to hexdump using the -Cv arguments to format the output in a Canonical hex+ASCII

display and to display all lines. This is presumed to be the normal empty state for this type and

make of hard drive, the state in which it left the factory.

00000000 08 8c 03 9a 5f 78 76 94 8f 45 bf 49 e3 96 00 c0 |...._xv..E.I....|
00000010 88 9d dd c0 6d 36 60 df 48 5d ad f7 46 d1 32 24 |....m6`.H]..F.2$|
00000020 38 29 95 cd ad 28 d2 a2 dc 89 f3 57 d9 21 cf de |8)...(.....W.!..|
00000030 df 8e 1f d3 30 3e 86 19 64 1e 9c 2f 95 b4 d8 36 |....0>..d../...6|
00000040 55 df 4b 4d cd 24 fb 31 e8 b8 e3 bf 0d ff 6d 43 |U.KM.$.1......mC|
00000050 32 02 64 43 b4 69 12 a7 f4 53 cc da 02 eb 60 f7 |2.dC.i...S....`.|
00000060 63 dd d0 68 1b 97 b8 2a 3b 7c c9 14 04 ef d7 44 |c..h...*;|.....D|
00000070 cd 62 b3 34 da 54 73 82 3f 5d 58 dd 14 2c ec 47 |.b.4.Ts.?]X..,.G|
00000080 ef c1 8f 10 00 8d 18 a0 e5 ed a5 98 43 9a 4b 5a |............C.KZ|
00000090 7d 7b e1 6c 8a 84 5b cf 1a 03 26 cb 54 17 de 3a |}{.l..[...&.T..:|
000000a0 09 8c c1 e4 ea 00 76 c9 7a 86 40 2e 59 96 56 28 |......v.z.@.Y.V(|
000000b0 9c 84 86 5a b7 62 c8 db e2 7a e5 dc 56 31 e5 06 |...Z.b...z..V1..|
000000c0 53 ab 63 21 48 cf 70 04 18 2d 2c 64 df 5a c9 7a |S.c!H.p..-,d.Z.z|
000000d0 09 1c 07 14 58 44 fb 19 73 57 04 f4 b6 ea f8 08 |....XD..sW......|
000000e0 f1 f0 3e ba 9e c4 ef df 69 30 c2 6f 70 49 bc 3f |..>.....i0.opI.?|
000000f0 2f 4c 90 5d 71 67 7f 28 3b 9d c7 9a 14 94 53 ca |/L.]qg.(;.....S.|
00000100 8a 95 e1 3c 6d 8c 1f 03 97 43 20 2e b8 af 91 95 |...<m....C|
00000110 fd 81 10 9b 09 ee 2a cd 2d b5 2c 01 1f 6f 7e f6 |......*.-.,..o~.|
00000120 57 3f a0 e8 44 c3 7d 50 5a 84 31 25 63 bb f5 bd |W?..D.}PZ.1%c...|
00000130 ea 93 46 dd 34 e4 18 f3 c3 6f 04 03 8a a2 45 63 |..F.4....o....Ec|
00000140 13 fa 9c 9e b9 e7 c6 c4 f2 77 a7 83 2a 87 d6 21 |.........w..*..!|

J Sue Ashworth Page 114 of 174

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

00000150 f7 c2 b3 da 0a 3d ae ad fe 05 e5 22 0d 3a bf 12 |.....=.....".:..|
00000160 03 34 bb eb 67 5e 01 85 21 09 f9 1c ce 17 6f 55 |.4..g^..!.....oU|
00000170 ab b2 a1 f4 ac d9 95 38 67 18 26 86 70 2d 49 29 |.......8g.&.p-I)|
00000180 f4 cf ad 00 f7 7c 80 e7 3a 90 65 6f 11 56 43 12 |.....|..:.eo.VC.|
00000190 19 75 22 2e 43 77 c2 fd 13 b3 f3 00 7c 5a 89 f8 |.u".Cw......|Z..|
000001a0 36 07 e7 be 11 77 db 5f 11 c9 fb a1 c9 13 1a 3d |6....w._.......=|
000001b0 da 81 14 3d 00 c7 70 83 9d 42 33 0c 02 87 6d f2 |...=..p..B3...m.|
000001c0 aa 8e a9 a4 70 6f ef 91 04 d8 84 7f c9 0a 08 df |....po..........|
000001d0 09 b5 18 76 1e 59 23 82 24 a4 9e cc e3 61 2a b6 |...v.Y#.$....a*.|
000001e0 b2 72 fa e0 ce 6c e6 43 fd 4a 9f 7f f1 de 66 28 |.r...l.C.J....f(|
000001f0 54 58 99 d9 df ad aa d6 55 14 b0 04 fe 7f 40 41 |TX......U.....@A|

6.5 Comparing Two C: Drives

With whole of the hard drive iterated, a more in depth comparison was attempted of the two

windows installations. The two installations of Microsoft's Windows 95B were plotted as discreet

graphs and to do this the xtics range (the X axis range) was set in gnuplot to reflect the start and

end of each logical drive. The two drives plotted in their entirety are shown in Figure 6.5.1: C:1

and Figure 6.5.2: C:2 respectively.

When seen side by side there are both obvious differences and almost similarities. Both C: drives

appear to have data at the very end, but this may not be an active part of the file system and may

have been generated during the installation or any other common process. The first halves of the

installations appears to be broadly similar. Although most of the sectors seem to have a sum in

the lower two thirds, there is some clustering at around the halfway point or “the line”. It is

expected that this clustering may be due in part to the fact that any sector to which no data has

been written will still contain the original pattern. The same can be said for the unused portion of

sectors that were only partially written, thus the sum of these sectors will tend toward the empty

state.

The first C: drive (C:1) has several straight lines for most of the final third. As these are believed

to be beyond the current extent of the operating system it is possible that they may have been

present on the drive initially or be the result of some operation that occurred in the past. The

second C: drive (C:2) contains an area of high average values about two thirds from the start.

This situation may be due to the fact that data that is currently there is represented with more ones

J Sue Ashworth Page 115 of 174

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

than zeros. Alternatively it may be a consequence of something overwriting the default empty

state with a pattern containing a higher percentage of ones. Therefore the unused space would

have a high sector sum. The presence of a barely visible second line in this portion of the graph

tends to support this explanation, but there is insufficient information to confirm this.

As the disk was not fingerprinted prior to any installation being performed, caution should be

used when trying to draw any conclusions about the current state. It was thought that two

identical installations would have originally put the same files at the same offsets, but if the

drives had been defragmented then a small variation in file positions may have propagated

producing much larger differences.

J Sue Ashworth Page 116 of 174

Figure 6.5.2: C:2

Figure 6.5.1: C:1

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

The initial 1000 sectors of each partition were plotted to see if the start of the logical drives were

similar. As the density of the data was significantly reduced, gnuplot was left in the default state

for plotting the data points using a cross. The following two figures (Figure 6.5.3 and Figure

6.5.4) show these first sectors for C:1 and C:2 respectively. Despite expectations of some

similarity, it is clear that these are not the same. The first half of each of these images are the

FAT (File Allocation Tables) and each drive had two identical copies (one is a backup). Just as

the files were different so too were the FATs that referenced them. Some regions of similarity

between the second halves of the image could suggest similar file(s) in similar positions, but this

is not conclusive.

J Sue Ashworth Page 117 of 174

Figure 6.5.4: C:2 start

Figure 6.5.3: C:1 start

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

One of the biggest differences between the two drives' FATs, namely the length of the lines of

zeros at the bottom of the images, can be explained by the differing utilisation: C:1 at 52%

(which should leave 48% of this area as zeros) and C:2 at 78% (which should leave 22% of this

area as zeros). Why there was another area of zeros roughly between sectors 590 and 700 on

drive C:1 is not known. (It is possible that this was the reason why this installation would not

boot to Windows 95B. A more probable explanation could be the fact that some manipulation

was performed on the boot files shortly after installation to retain the ability to boot to a previous

version of DOS, as was possible with the original version of Windows 95A.)

6.6 Formatting a FAT 16 Drive

In theory if the first partition was formatted then the FAT should contain all zeros. Given that it

took three days to retrieve the information about the whole of the disk and a format takes only

minutes, the rest of the disk may be unchanged.

The drive was set to be the active primary partition and was booted to the command prompt only

(this is as far as it could boot as the normal Windows starting option resulted in a blue-screen).

Unfortunately the chance to prevent the partition attempting to boot into Windows was missed

and the PC hung before it was restarted with the command prompt only. Then it was formatted

using format.com from the Windows\Command\ directory using the command “format C:”.

This file was 49,543 bytes in size and had a creation time of 24-08-96 11:11:10 (the version

distributed with Windows 95B). After the formatting was finished it was realised that format /s

would have been a better choice as in this configuration the PC could not boot from the hard

drive so a copy of a DOS 6.22 installation floppy disk was found and used to sys the drive (the

sys command copies the bare minimum of files needed to boot to the target device). Although it

was not a requirement for this research that this partition was bootable, it would have greatly

simplified any future work done with this drive. The Live CD was placed back in the CD drive,

booted to Linux and the drive reprocessed. Although the addition of some system files from the

old version of DOS was undesirable, the sizes of the files were minimal and would not have had

significant impact overall. Their presence meant that caution should be taken before making any

J Sue Ashworth Page 118 of 174

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

assumptions about the start of the drive beyond the location of the FAT sectors. Their presence

also meant that there must be at least a couple of entries present in the FAT tables.

The results from the post formatting fingerprint and the original were compared. A Unix diff

showed that up to sector 1068 there was hardly any original data remaining and after that only 38

sectors were different, all of which were before sector 149250 (this drive occupied 3421844

sectors). Before the drive was formatted there had been a delay in pressing the F5 key to gain

access to the command prompt and the PC had hung and needed a power reset before another

attempt could be made to break into the boot options. It is suspected that some of the 38 later

sectors may have been written to at this point but there is no evidence to support this.

J Sue Ashworth Page 119 of 174

Figure 6.6.1: C:1 before format

Figure 6.6.2: C:1 after format

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

The previous figures (Figure 6.6.1 and Figure 6.6.2), of the first 1000 sectors, show the before the

format and after the format graphs indicating that the FATs have been zeroed out except for the

system file entries. (Figure 6.6.1 is a repeat of Figure 6.5.3 before format, allowing side by side

comparison.) This also shows differences in the subsequent sectors that are most likely due to the

sys command placing different boot files in this location; these differences are to be expected.

The picture for the whole of this drive as shown in Figure 6.6.3, is a repeat of Figure 6.5.1,

allowing a side by side comparison. Figure 6.6.4 is the post formatted drive.

It is commonly thought that if a hard drive is formatted all the data would be removed. The

formatting described was done using the Windows 95B version of format.com. Newer versions

J Sue Ashworth Page 120 of 174

Figure 6.6.4: C:1 post format

Figure 6.6.3: C:1 pre format

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

shipped with later Microsoft products may have different capabilities and offer different switches,

but these have not been tested. Although the fingerprinting technique does not discover anything

new, it does allow a good visualisation of what happens to a hard drive during the format

procedure and of how little data is removed.

The drive has been left in this state as it may be interesting to “recover” the data at some future

point. Although the examination of these drives was done using a live CD which should not

change the contents in any way, both the slowness in preventing windows attempting to load and

the usefulness in having a bootable system meant that although the basic concept of zeroing out

the FAT tables has been shown to be fundamentally correct, extreme caution should be used

trying to interpret any change on the disk outside these sectors.

6.7 A Linux Disk

While the events of the previous section were taking place, a similar process was being

performed on a PC running Linux. This machine was running RedHat Fedora core 6 and had

been in use for several years. The first operating system that had been installed was RedHat

Linux 7.2, but over some years this had been upgraded and reinstalled several times. On this

occasion the fingerprinting was performed from and recorded within the operating system which

meant that the contents of the disks were changed by the recording process. The decision to work

in this fashion was largely dictated by the fact the CD drive from this machine was being used on

the old Windows PC and that the version of Fedora core used was too old to recognise the NTFS

(New Technologies File System) formatted USB (Universal Serial Bus) storage device for saving

the data off the machine. Although the process would write approximately 4GB of data to the file

system there were about 95GB unused on a 146GB / (root) partition and it was not considered

that the change to the data on the disk would be significant. The basis for this was that this

investigation was simply aimed at observing what could be identified. If user data was found on

the disk in areas where it were expected to be, then it was not significant as to whether it was

written before or during the investigation. Additionally as this installation occupied two hard

drives of 40GB and 122.9GB, it took 101 days to iterate in their entirety and there was

J Sue Ashworth Page 121 of 174

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

considerable convenience in storing the generated data on the machine itself. It could have been

possible to export and mount a drive from another machine, but it was believed that this would

slow down the process (not tested) and also no significant storage space existed on another

machine.

The drives had been in use for some considerable time and it was realised that the information

retrieved would show not only the currently available files but also files that had been deleted or

updated. (The following section 6.7 considers a fresh install on a disk that had zeros written to all

sectors)

An fdisk -l of the first drive gives the following information:

Disk /dev/hda: 40.0 GB, 40020664320 bytes
255 heads, 63 sectors/track, 4865 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System
/dev/hda1 * 1 13 104391 83 Linux
/dev/hda2 14 4865 38973690 8e Linux LVM

Here we can see that the first partition, the bootable one, is 104391 blocks, occupies 208782

sectors and is of type ext3. This partition contained the files needed to boot the PC to fc6 (Fedora

core 6) while the second partition was controlled by a Linux LVM (Logical Volume

Management). This volume spanned both hard drives and managed both the swap and / file

systems irrespective of the number of physical drives present.

The first data to be processed from this drive was the boot partition. As before this data was

plotted using gnuplot. The commands used here were:

gnuplot> set terminal png size 800, 270
Terminal type set to 'png'
Options are 'nocrop medium size 800,270 '
gnuplot> set output "box-boot.png"
gnuplot> set xtics 0,209000
gnuplot> plot "box-boot.txt" with dots

The resultant graphic is shown in Figure 6.7.1.

J Sue Ashworth Page 122 of 174

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

Although it was interesting to see the diagonal line starting at the bottom left corner, proceeding

for just under half the partition and rising to about a third of the sector occupancy, a lot of caution

is needed in interpreting data as it is not known what proportion of the data was active data and

what proportion was overwritten or deleted data.

The whole of the drive was fingerprinted and like the boot partition, many areas had the diagonal

stripes. Other patterns as can be seen in the following image Figure 6.7.2.

Typical patterns include these diagonal lines and a fence-like structure. The upright “posts” of the

fence could last approximately 2,000,000 sectors at a time. Despite having collected a vast

amount of data, very little information could be interpreted. An exploration of parts of the disk

where a “post” was located indicated that this portion of disk was occupied by .tcl (Tool

J Sue Ashworth Page 123 of 174

Figure 6.7.2: Some typical patterns

Figure 6.7.1: Boot partition

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

Command Language) files. Although the contents were readable and the presumed file name was

included in the comments, it was very quickly realised that the vintage of this data could not be

established and no files in the current file system matched the disk information. As with previous

investigations the data on the disk was not the same as the data in the current file system.

6.8 Two Fresh Installs of Linux

Although historic data was available, and potentially being useful for data recovery, this data was

not permitting clear snapshots of the current Linux system. Some hexdumps were taken from

differing patterns of the drive and saved for possible later examination. The second (larger) hard

drive was left untouched, but the whole of the first hard drive was zeroed out using the following

command:

dd if=dev/zero of=/dev/sda bs=512

This command wrote zeros to the whole of the disk and provided a blank disk in a known state on

which the next series of experiments could be performed. The PC was then booted from a

Partition Magic v8 CD and all but the first 5GB (4981.1MB) of the drive was partitioned as a

primary NTFS partition. NTFS was chosen as it is able to be read by other operating systems (if

required) and was able to easily handle a partition size of 33181.1 MB. (FAT16 cannot handle

above 2G and although FAT 32 can be used above this size there are inefficiencies in the linked

list structure as the amount of data grows. Even with FAT32 there is a 4G file size limitation

which, at the time the partition was created, was not known if this would be a problem).

The PC was then booted from a Fedora 9 i386 DVD and a default installation was performed.

The only exceptions in this case were that the option for installing office and productivity tools

was unchecked (not installed) and UK keyboard and local were selected (from their default US

values).

Once installed the PC was logged into as the user created during the install and, from a console,

“su” was used to gain root privileges to mount the NTFS partition. The NTFS partition was

J Sue Ashworth Page 124 of 174

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

mounted to /mnt using the mount command. After moving to the NTFS partition the

fingerprint script was run creating files on that partition.

[root@localhost sue]# mount /dev/sda1 /mnt

[root@localhost sue]# cd /mnt

[root@localhost sue]# ./fp.pl > 1box.f9.01.txt

As with the previous scan of the disk containing Linux, the operation was performed using the

operating system under examination. On this occasion the output data was written to a separate

partition. Due to logistical reasons the PC was powered down each evening and separate files

were created each day. Although the data was being written to a different partition there would

still be changes to the Linux partition as each boot would modify the last accessed time on some

files and system processes would generate log files, however since each sector was examined as a

snapshot of its current state, the fact that there was a difference of five days between the first

sector being examined and the last was not considered significant. During the installation the

option to encrypt the disk was observed, but not chosen; after the plain installation of Fedora 9

and the fingerprinting process was completed, the start of the disk was once again zeroed out this

time using the command:

dd if=/dev/zero of=/dev/sda bs=512 count=10201120

This command which wrote zeros to the disk, stopped just short of the NTFS partition.

Unfortunately it also overwrote the partition table and removed the NTFS entry. The entry was

then hand edited back, but on the wrong line hence although the NTFS partition was the same as

before, its reference in the partition table was that of the second entry. After the subsequent

installation, it would be /dev/sda2 (not /dev/sda1 as before). This error was not noticed until after

the installation, however it is not considered to have had any impact on the experiment.

The installation of the Fedora 9 was repeated as before. This time however the encryption option

was selected before the drive was once again fingerprinted. The following images show the start

of the two installations side by side with Figure 6.8.1 and Figure 6.8.2, (the boot partition is

approximately the first quarter of the image). The boot partition for the Linux installation can not

be encrypted so there are some close similarities between these partitions, although a portion of

J Sue Ashworth Page 125 of 174

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

the data does appear to be located nearer the start of the disk on the encrypted partition.

Both the boot partitions are of type 0x83, Linux ext3. One possible reason for the differences

between the two boot partitions was the difference in the partition table entry for the NTFS

volume, however a subsequent zeroing out and reinstallation of another unencrypted installation

(with the NTFS volume still as the second partition) discounted this possibility. Although the

differences between the two boot partitions are interesting, the most obvious differences are in

the main body of the LVM partition. Here the encrypted partition forms a narrow band of data

while the unencrypted displays a more varied output.

The remaining parts of the unencrypted LVM partition are shown in Figure 6.8.3 to Figure 6.8.8.

This is shown in its entirety as the installation is small enough to make this feasible.

J Sue Ashworth Page 126 of 174

Figure 6.8.1: Boot partition and start of LVM unencrypted

Figure 6.8.2: Boot partition and start of encrypted LVM

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

The mixture of executable, text and graphics are not dissimilar to that of the FAT 16 Windows

J Sue Ashworth Page 127 of 174

Figure 6.8.4: Unencrypted LVM part 3

Figure 6.8.3: Unencrypted LVM part 2

Figure 6.8.5: Unencrypted LVM part 4

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

95B installations. However the installation of the base operating system (of Linux) is more

evenly distributed throughout the disk.

J Sue Ashworth Page 128 of 174

Figure 6.8.8: Unencrypted LVM part 7

Figure 6.8.6: Unencrypted LVM part 5

Figure 6.8.7: Unencrypted LVM part 6

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

The last of the data appears at the start of Figure 6.8.7. At the end of the LVM partition can be

seen a little before halfway in Figure 6.8.8. The final part of this image contains the start of the

NTFS partition and the data visible represents the data files of the scan. As with the previous

Linux fingerprint it is possible to see some diagonal lines; while the fence like structures are not

so visible, the “posts” or islands of data are very clear.

The following images are a repeat of the last installation, but showing the encrypted LVM

partition. Caution should be taken if trying to compare these directly with the previous

unencrypted ones as gnuplot had adjusted the scale as the maximum values are considerably

smaller than that of the unencrypted installation.

J Sue Ashworth Page 129 of 174

Figure 6.8.10: Encrypted LVM part 3

Figure 6.8.9: Encrypted LVM part 2

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

J Sue Ashworth Page 130 of 174

Figure 6.8.11: Encrypted LVM part 4

Figure 6.8.14: Encrypted LVM part 7

Figure 6.8.13: Encrypted LVM part 6

Figure 6.8.12: Encrypted LVM part 5

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

These images are interesting not for what they show, but for what they do not show. The only

information that can be determined is if there is data stored on a portion of the file system or not.

The overhead of such encryption is the prompt for a password before the PC will finish booting.

While it is assumed that there must be some additional overhead in encrypting and decrypting

data to and from the disk, it was not noticeable while using the machine. In the final image

(Figure 6.8.14) it can be seen that more data was present on the NTFS partition. As the NTFS

index has grown, the scale of this image is not the same as its unencrypted counterpart.

While the encryption was expected to obscure the data stored on disk, it was anticipated that there

would be some visible difference between different types of files, but the minimal difference

between sector sums was not expected. As with the previous scanning of these partitions the

operation was performed from within the installed operating system and there was a risk that the

operating system was modifying the reading of the disk to produce a degree of obfuscation. It

was not believed that this was the case, but the PC was booted to a Live CD and the first sectors

scanned again. The results from this scan were not a perfect match to the previous one, but this

was to be expected as the encrypted installation had been booted a few times and there would be

differences in the file last accessed attributes and log files would have been generated. Despite

these differences the same overall pattern was observed, i.e. that of a narrow band of variation

where data was present and all zeros where no data existed.

Encrypting disks had not previously been considered, but looking at these results the extra

security provided means that this option has some very obvious benefits; it has a minimal

overhead of entering a password during the boot process and, if there was any additional latency

in accessing the disk, it was not noticeable. The lack of any available information from an

encrypted disk does highlight the issues for forensic investigators (see section 2.6) where shutting

down an encrypted system means that the data may become inaccessible if the password is not

available.

J Sue Ashworth Page 131 of 174

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

6.9 Similarities in File Storage

In the last section the data from the fingerprinting was found at the start of the NTFS volume and

was also captured in the fingerprinting process. In this experiment the Linux installation was once

again zeroed out and another fresh installation was performed with no encryption and, as before

(except from setting the keyboard and region and choosing not to install office and productivity

tools) the installation was the default one.

Despite the same options being checked and the same passwords being used the installation

differed from the original one. It was expected that as the installation was done on a different date

and at a different time this would effect some of the data, but what was not expected was that the

apparent layout of the data would be that much different. One aspect that was the same (as the

previous unencrypted install) was the boot partition layout showing that the differences observed

between the encrypted and unencrypted installations were most likely due to the encryption

option and not to the fact that the NTFS partition was occupying the second slot in the partition

table as this was still the case. This time the fingerprinting was done using a Live CD in an effort

to minimise any changes caused by the operation system.

Although the following images show the installation in its entirety the height of these images was

reduced as these are intended to show an overview of the layout of the data and the loss of detail

here is not considered important; the exceptions are those containing empty space (Figure 6.9.2

and Figure 6.8.7). The final part of the partition is also shown in more detail so that the shape of

the recorded data can be seen on the NTFS partition. It is this data that will be copied to the

LVM partition to see if it appears in the empty portions of this volume.

J Sue Ashworth Page 132 of 174

Figure 6.9.1: /boot partition and start of the LVM

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

J Sue Ashworth Page 133 of 174

Figure 6.9.3: Part 3 of the LVM

Figure 6.9.4: Part 4 of the LVM

Figure 6.9.5: Part 5 of the LVM

Figure 6.9.2: Part 2 of the LVM

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

On this installation the empty space can be found mostly in parts 2 and 3, while on the previous

plain installation it was mostly in parts 4 and 5. Figure 6.9.7 is to the same scale as the previous

figures and it is the data starting at about 1.06e+07 that is of special interest here. This is the data

produced by the first plain installation when it was fingerprinted. The exact contents of the data is

mostly irrelevant in this context, however it is worth noting the overall shape of the plotted data.

The PC was then booted to the installation and the earliest files from the NTFS were:

1. Opened using gedit and saved in ~/Documents

2. Opened in gedit and saved in ~/Download

3. Copied to ~/Music

The above directories were the first three default directories in the home Directory. Gedit is a

simple text editor that comes with the default desktop. Copying the files put the disk usage from

75% to 93% and, as these were 180MB (each set), it was anticipated that they should produce

noticeable changes in the fingerprint. After the files had been saved, the PC was shut down and

J Sue Ashworth Page 134 of 174

Figure 6.9.6: Part 6 of the LVM

Figure 6.9.7: The end of the LVM and the start of the NTFS partition

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

once again the Live CD was used to boot and iterate over the first two partitions. Although there

were minor changes observed where there had previously been data, such changes should be

expected as the machine had been booted using the installed operating system to do the copying.

The biggest changes were where there had been empty spaces. Figure 6.9.8 and Figure 6.9.8 both

show marked differences with the previous (empty) scan but more significant is that the pattern

now occupying these areas of the disk is remarkably similar to that of the NTFS volume from

which they were copied. The areas have been ringed to highlight which parts they are.

Sampling these areas (by using dd piped to a hexdump) showed that these areas did contain the

text data previously collected.

The PC was once more booted to the installation on the hard drive and this time the command

cat 1box.f* > bigfile.txt

J Sue Ashworth Page 135 of 174

Figure 6.9.8: Part 2 of the LVM after text files copied

Figure 6.9.9: Part 3 of the LVM after text files copied

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

was used to write all the early files concatenated into a single large file in the home directory. By

now a df showed the file system to be 96% full and repeating the command (output to

bigfile2.txt) caused the output to show 100% full. The PC was shut down and once again

rebooted to the Live CD and one more fingerprint taken. Figure 6.9.10 shows the result of the last

copy on the text data to the installation.

Looking at the images of the stored data it was apparent that both the NTFS and the ext3 file

systems had stored the data in a similar fashion and a hex dump of the relevant sectors showed

that the data was written the same way on the disk. The diagonal lines appearing with the text

data are believed to be inodes (Linux file system structures for accessing the data from within the

operating system).

Although similar data had been recorded on a FAT 16 partition this logical drive had not been

examined. When the primary master drive of the Windows 95B PC had been scanned the data

was stored on a different physical drive and this drive had not been fingerprinted. This partition

was then fingerprinted.

As before a Live CD of Fedora 8 was used (as before this only gave access to command

prompts). The whole logical drive was scanned and it is clear that there was some pre-existing

data present before the output of the fingerprinting process was written to a significant proportion

of the drive. Figure 6.9.11 shows a similar pattern of data to both the NTFS and ext3 file systems.

In this diagram it starts at about 450,000 sectors from the start of the drive to nearly 1,300,000. A

hexdump reveals similar storage on the disk.

J Sue Ashworth Page 136 of 174

Figure 6.9.10: Fingerprint text data on part 3 of the LVM

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

6.10 Disk Fingerprinting Round Up

The disk fingerprinting technique used in this chapter has shown that it is possible to crawl a disk

and generate an image of the data present on that disk. As pointed out in Chapter 4 the technique

of summing the contents of a sector was not intended to reveal any specific result, but was simply

an experiment to see what could be revealed.

Specific to the data recovery situation described in previous chapters this technique's greatest

diagnostic potential was seen (as described in Chapter 5) where the location metadata was badly

distorted and the fingerprint was able to produce some insights into the nature of the subsequent

recording. It is strongly suspected that there will be other occasions where this tool is able to give

diagnostic assistance.

In this chapter several hard drives were iterated to see what the resultant graphs would reveal.

There was no expectation of discovering anything new about any of the operating systems used,

the intention was purely to observe and see what was present. When looking at the fingerprints

for different systems, it is important to note that unused disk drives may not all be in the same

J Sue Ashworth Page 137 of 174

Figure 6.9.11: Drive I: containing the data from scanning of C: drives

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

state. In the case of disks used in the laboratory, an empty drive seemed to contain all zeros

whereas on the drives in the first home PC, empty seemed to equate to a pattern of approximately

half ones and half zeros. Without a full history of all the drives from manufacture to present it is

not possible to determine why there are these differences in different empty states. To a large

extent these differences are not important except for the fact that, when looking at a fingerprint, it

must be remembered that any sector not completely full of data will tend toward the default

empty condition for that disk. This means that care must be taken where comparing graphs for

disks with different defaults.

When comparing the two installations of Microsoft Windows 95B it was possible to see that the

patterns were broadly similar. However as the data on the disk was a collection of data (data

available to the operating system, deleted data and part overwritten data), nothing more definitive

could be deduced. It is suspected that a fresh installation on a disk that had zeros written to it,

similar to the disk used to compare Linux installations, could provide a more definitive pattern

for this operating system. While such experimentation would be feasible, the value of producing

graphs for an obsolescent operating system is questionable. It was useful to be able to identify the

file allocation tables and observe the changes to their contents when a drive was formatted, while

the remainder of the drive was mostly untouched.

The Linux installation provided insights into the way the disk is used. Unlike the Windows

installation where files appeared to be written to the start of the disk and new data took the next

available empty sector(s), with Linux more of the disk is used for the installation with spaces left

to store data. Such a system may make it difficult to predict where a file may be written, but

when tested, it was noted that after the installation, data written to the disk filled up the empty

spaces at the start of the disk before moving to the next available space.

The disk fingerprinting process showed that files are written to the hard drive in a similar way

whether using NTFS, ext3 or FAT16 file systems. That is to say that the data on the disk is

fundamentally the same irrespective of the file system. The exception to this is when the partition

is encrypted and then very little can be determined about the system at all. The graphs of the

J Sue Ashworth Page 138 of 174

 6 Disk Fingerprinting – An Exploration A Complex Situation in Data Recovery

encrypted disk clearly show why forensic investigators must use a different approach when

dealing with encrypted disks (Casey, Stellatos 2008).

J Sue Ashworth Page 139 of 174

 7 Summary and Conclusions A Complex Situation in Data Recovery

7 Summary and Conclusions

7.1 Introduction

This Chapter concludes this research.

First is a brief overview of the work carried out in solving the problem (7.2) before considering

what has been achieved by this research (7.3). The results of this work are then evaluated in the

context of other work, specifically speculating how this research will forward the development of

the Recovery Studio and how the disk fingerprinting process could be used (7.4).

7.2 Summary

Most data recovery is fairly simple. Data is stored on the recording medium and accessed by the

file system. Unless there is physical damage to the medium or the data has been overwritten then

recovering inaccessible data is a process of either repairing the file system so that the data can be

accessed in the usual fashion or physically locating the data on the disk and copying it back into a

regular file.

This research looked at a system where there was no file system and data was recorded directly to

disk. In this system audio data from one telephone conversation is multiplexed with audio data

from other simultaneous conversations. The only way to replay a conversation is to use its

metadata to locate and extract the relevant audio segments. Normally this is not a problem and

the recorded information can be replayed, however when anomalies or failures occur then

reconstruction involves not only the main body of data but also the metadata and the relative

offsets between the required metadata files.

The first step of a recovery job is to locate the data and metadata. This is done by reading the

location metadata. Usually this information is correct, but if it is corrupted, missing or incorrect

then the recovery process must wait until it is corrected before a successful outcome is possible.

J Sue Ashworth Page 140 of 174

 7 Summary and Conclusions A Complex Situation in Data Recovery

The focus of this research was to find a way of verifying or recreating the location metadata.

In the initial stage the understanding of the problem proved to be incomplete and at that point it

was believed that the location metadata would always be fundamentally correct with only a

limited set of errors possible. On this basis a means of displaying these errors in an at-a-glance

representation that could be understood by both an expert and a novice engineer was developed.

The resultant representation was successful in highlighting the recognised set of errors, but by the

time this artefact was completed a greater understanding of the problem permitted the realisation

that the underlying heuristics would not detect all possible errors. This stage produced the at-a-

glance image and a more detailed understanding of the problem.

The second stage was an attempt to recreate the location metadata by searching the recording

medium to find the location of the data and metadata that had been recorded. Using several

dedicated scripts (as well as a lot of human intervention) it was possible to discover the layout

and make the repair in question. Attempts to automate these processes failed as bursts of

corruption could be larger than a region of data. A less specific process was developed that was

able to indicate the contents of any disk. Although potentially very useful, this disk fingerprinting

technique could not reliably determine the location metadata used to record the current data as it

could not distinguish between current and previous recordings. This stage produced the disk

fingerprinting technique, a new way of looking at the recording medium and potentially

diagnosing faults.

The third stage is represented by months of exploring the recording application's source code.

Although this exploration did not reveal the medium apportioning formula, it produced an

understanding of the nature of the methods used. This permitted a functioning formula to be

deduced by working with historical data from previous repairs through trial and error. For as long

as no example is encountered that does not follow the formula the problem of location of the data

and metadata may be considered solved. The formula was then used in combination with the at-a-

glance image process to produce an enhanced artefact able to detect and display all errors in the

location metadata and generate corrected information. This stage rediscovered the formula by

which the recording medium was apportioned and produced a greatly enhanced at-a-glance

image.

J Sue Ashworth Page 141 of 174

 7 Summary and Conclusions A Complex Situation in Data Recovery

With the main objective achieved it was possible to take a second look at the disk fingerprinting

process. This process had proved insightful to repairs inside the laboratory and it was now

possible to investigate its wider potential. In chapter 6 an exploration of several hard drives and

operating systems was undertaken. Here it was discovered that different disks may have different

states for “empty” (i.e. without data present); differing operating systems use the disk in different

fashions; different file systems may have different patterns, but data stored on three different file

systems was written to disk in a similar way except where the disk was encrypted. This section

also looked at a simple disk format and showed what changed and what remained the same.

Although no new information was uncovered, this section showed that the fingerprinting process

generated a new way of looking at stored data.

7.3 Achievements

The central objective for this work was to find a technique that could verify, correct or recreate

location metadata. This objective was achieved by recreating the underlying formula by which

the recording medium was apportioned. It is believed that the discovered formula has been

adopted for daily commercial use.

A secondary objective to find a way of displaying the data and metadata in a way that could be

understood by both expert data recovery engineers and novice front-line engineering support was

also achieved. Not only was an at-a-glance image developed to convey this information, but by

incorporating the rediscovered formula into the image processing, errors could be detected, their

presence highlighted and correct information offered.

Although not a primary objective, the development of the disk fingerprinting process has enabled

a new way of looking at the contents of recording media. This technique has already given

insights into one repair and provided background information on others in the laboratory, while

J Sue Ashworth Page 142 of 174

 7 Summary and Conclusions A Complex Situation in Data Recovery

providing interesting insights into other systems outside of this recovery situation. It is suspected

that more uses for this tool will be discovered in future. Where data recovery has been performed

on disks not included in this research, it has provided some insights into disk usage that have

assisted in the recovery of valuable (to the owner) data.

7.4 Enabled and Future work

Although the work carried out in this research has immediate benefits for the data recovery

engineers currently working on failed systems, there may be greater long term benefit as the

verification of the location metadata allows an extension of the automated processes used in the

initial analysis.

The current automated process collects operational configuration files from the application

partition, reads the location metadata and then copies some of the metadata regions into files. The

process then halts to allow the data recovery engineer to verify that no noticeable errors have

been encountered. With the rediscovered formula the automated process does not need to stop

here. Assuming that at least one configuration file can be read and decoded from the application

partition then the user defined field size, the number of tape drives and their type can be

extracted. This information can be supplemented with the data from the sg_readcap utility to

detect the size of the recording medium and used to verify the location metadata. If this

information is successfully validated the collection of the metadata into files can proceed as it

currently does, but now a greater number of metadata files can be captured and secondary

processing of this metadata can be performed before any human intervention is required. This

research has enabled an extension of the automation in the initial analysis stages of the recovery

process.

The Recovery Studio has yet to be developed and while basic requirements exist much of the

design has yet to be finalised. Although the work done in this research has provided the means of

J Sue Ashworth Page 143 of 174

 7 Summary and Conclusions A Complex Situation in Data Recovery

solving two of the requirements, care needed to be exercised to ensure that as many options

remain open to the eventual developer. It is to this end that all the development work has been

directed toward proof-of-concept applications and not to creating polished finished products. The

eventual development of the Recovery Studio is future work that falls outside the scope of this

research.

(It is possible that the cost of an expert developer's time to create and test such an application

may exceed the money saved by enabling less specialised engineers to perform a recovery. The

reliability of the recorder means that the data recovery process is seldom required. If the recorder

in question is superseded by newer products then there would be very little return for such

development.)

Exploration of media using the disk fingerprinting process has proved to be very informative and

it is difficult to envisage any data recovery job that would not be made easier if it was possible to

look at the medium's fingerprint first. The basic concept of adding all the bits in a sector and

plotting them in a graph of sum against sector is believed to be new. The technique of using

hexdump to give the decimal representations was an arbitrary choice taken purely as an

experiment. Ideally this process should have been tested to see if there were better ways of

performing this step, but once the first graph had been produced and used, it would not have been

possible to compare subsequent graphs if any changes were made to the way the script worked.

This meant that while the process may not be optimal any refinements must be considered future

work if comparisons between graphs already obtained were to be scientifically meaningful.

7.5 Contributions

The first contribution is the rediscovered formula by which the recorder's application allocates the

recording medium. Despite limited application it is believed that this is already providing greater

confidence in the initial stages of each current data recovery task. This and the developed at-a-

J Sue Ashworth Page 144 of 174

 7 Summary and Conclusions A Complex Situation in Data Recovery

glance image both move the potential development of the Recovery Studio forward.

The main contribution is the development of the disk fingerprinting technique. This has already

provided useful insight into at least one recording system data recovery problem and is expected

to have future use in this area. Outside the specialist repair the technique is able to provide

insights about other recorded media. In a general data recovery situation, this technique can

provide (among other things) information about disk usage allowing recovery attempts to be

focused on regions of the disk that are known to be in use.

The fingerprinting process could also be useful in a forensic investigation as it can examine the

entire disk and not just the portions accessible through the normal file system and drive

partitioning. If concealed areas of data existed outside these regions then a fingerprint would

reveal them; however it is considered more likely that disk encryption would be used by someone

wishing to hide data from an investigator (Berghel 2007).

J Sue Ashworth Page 145 of 174

 Appendices A Complex Situation in Data Recovery

Appendices

Appendix A –Data Storage

Although throughout this research the inference has been that data is stored on a hard drive as a

collection of ones and zeros that directly relate to the information stored in the files, strictly

speaking this not correct. If a hard drive is examined with a hex editor it will appear as if the

underlying ones and zeros are present as expected, however, the drive contains a translation layer

and when data is recorded to the magnetic medium it is not stored as ones and zeros that the user

would recognise, instead the data may be a series of NRZ (Non Return to Zero) transitions where

a transition may represent a one and no transition a zero. To prevent baseline wander these may

be bit-stuffed or RLL (Run Length Limited). Parity coding may be added in the form of ECC

(Error Correction Code). Further complexity is added by the fact the drive may map one physical

area to another to avoid manufacturing defects (P-list defects) or defects that occur during the life

cycle of the drive (G-list defects) (Sobey 2006).

Appendix B – Description and Source Code of Sample Puzzle

This sample puzzle is included to give some idea of the diverse nature of the requirements for the

Recovery Studio. Here there was a requirement for a program that worked on a doubly linked list

in the form of:

this value next value previous value
x 12340004 12340002
x+1 12340006 12340003

 x+2 ...

Where the objective was to find the value of x. The values in the first column increment by one

each time. In this example it can be seen that x is equal to 12340003 because there is only one

number between the next and the previous values in the first row and this must be the value of x.

But if there are no next and previous values only two increments apart the problem becomes more

interesting.

J Sue Ashworth Page 146 of 174

 Appendices A Complex Situation in Data Recovery

This formula was solved (by the author) by identifying applying the following rules.

this next previous

X+? Y Z
n lines....

Y+? W X
m lines....

W+? V Y

The value of ? is the offset and is constant so X - X+? = Y - Y+?
X - X+? = Y+? - Y = n
Y - Y+? = W+? - W = m
n + m + 1 = W+? - X+?

The full code of the solution is in Appendix B. Basically the program iterates over the lines until

the value in the next position appears in the previous position (in no more that next – previous -1

lines) and then the intermediate lines are tested to see if they pass all the preconditions. In

common with many of the little applications the program accepts a simple command line

argument and the output is piped to another program for more processing.

The program is used in the form:

./findindexinum.pl indexfilename | uniq -c

Where findindexinum.pl is the program name, indexfilename is the name of the input file

containing the linked list information and the output is piped to uniq a Unix utility that counts

the number of times a value occurs in a sequence. As there may be more than one lap in the

metadata file, a reset or reconfiguration, more that one value may have been used over the period

of recording. Typically there will be between one and three values on a disk. In the case of only

one result then this information could be passed to another program and further processing could

take place without additional checking. Some values such as zero are indicative of a specific

problem.

#!/usr/bin/perl
use strict;

This program opens the file name supplied as command line argument
First it looks to find a line containing a sensible NextINm and PrevINum
(though Prev not important - nice to have sanity check)

J Sue Ashworth Page 147 of 174

 Appendices A Complex Situation in Data Recovery

Once a good line is found subsequent lines are stored in a hash (of arrays)
until the NextINum value appears in the Previous.
The hash is then iterated to determine an offset that will work for a value
of INum - this is printed out. The program then looks for
the next sensible NextINum and PrevINum line and repeats. Not all lines are
evaluated - only one per NextINm - PrevINum.

X' = X - offset (etc) the rules
X',Y,Z X < Y, X > Z
n ----
Y',W,X X - X' = Y'- Y
m ----
W',V,Y Y - Y' = W' - W

my $infile;
my $IN;

my $i;
my $y;

my $startcount;
my $offset;
my $lastoffset = 0;
my $working = 0;
my %hash = ();
my $maxlook;

if ($#ARGV != 0) {
print " Usage = $0 < indexfilename >\n";
exit;

}
else {

$infile = $ARGV[0];
}

open ($IN,"$infile");

while (<$IN>) {

#don't care about the first line
if ($_ =~ /INum/) {

next ;
}

#regex to match INum,NextINum,PrevINum
m/(\d*),(\-?\d*),(\-?\d*)/;

#if we have a good start then build up the hash
if ($working == 1) {

$hash {$1} = [$2, $3];

if the NextInum doesn't appear as a previous
in the max poss scope
then give up with this attempt and try new values

J Sue Ashworth Page 148 of 174

 Appendices A Complex Situation in Data Recovery

if ($1 - $startcount > $maxlook) {
$working = 0;
%hash = ();

}

found the line where previous is next
if ($3 == $y) {

for loop till the rules are matched
for ($i = $startcount +1; $i < $1; $i ++) {

if (($y - $i == $hash{$i}[1] - $startcount) &&
 ($hash{$i}[0] - $1 == $hash{$1}[1] - $i) && ($hash{$1}[1] ==

$hash{$startcount}[0])) {
$offset=$y - $i;

if we have a match and it's the same as
the last one escape the loop
if ($offset == $lastoffset) {

$i = $1;
}

}
}
$lastoffset = $offset;
print "$offset\n";
$working = 0;
%hash = ();

}
}

do we have a previous and next call and are we ready to start?
if (($2 > 0) && ($3 > 0) && ($working == 0)){

$y=$2;
$maxlook = $2 - $3;
$startcount = $1;
#set a flag
$working = 1;
start hash of annomous arrays derived
from scalars from regex
$hash {$1} = [$2, $3];

}
}

close($IN);

Appendix C – Source Code for SVG Generation

The following code was used to generate the final SVG images as depicted in chapter 3.

#!/usr/bin/perl

J Sue Ashworth Page 149 of 174

 Appendices A Complex Situation in Data Recovery

use strict;
use Switch;

set input and output files
my $outfile = "abslsr.svg";
my $infile = "abslsr.txt";
my $IN;
my $OUT;

Create a hash of names and colours. This only caters for up to two tape
drives at this time.
my %colourfile = (

"dir.info" => "rgb(24,116,205)",
"disk1d.dat" => "rgb(90,144,255)",
"disk1f.dat" => "rgb(132,142,255)",
"oops.dat" => "rgb(0,0,0)",
"disk1i.dat" => "rgb(70,130,180)",
"disk1u.dat" => "rgb(0,206,209)",
"eventsx.dat" => "rgb(143,188,143)",
"cache.dat" => "rgb(85,107,47)",
"drive1d.dat" => "rgb(90,144,255)",
"drive1f.dat" => "rgb(132,142,255)",
"drive1i.dat" => "rgb(70,130,180)",
"drive1u.dat" => "rgb(0,206,209)",
"drive2d.dat" => "rgb(90,144,255)",
"drive2f.dat" => "rgb(132,142,255)",
"drive2i.dat" => "rgb(70,130,180)",
"drive2u.dat" => "rgb(0,206,209)",
"space.wst" => "rgb(188,143,143)",
"disk.dat" => "rgb(139,69,19)");

my $handyvar;

my $wrongcolour = "rgb(255,0,0)";
my $wrongborder = ";stroke-width:2;stroke:rgb(255,0,0)\"/>\n";

my $height = 30;
my $width;
my $seperator = 3;
my $xrect = 135; #const
my $xtext = 10; #const
my $yrect = 10;
my $ytext = 20;

my $arg;

svg variables
my $svgwidth; # 0.7 $viewbwidth;
my $svgheight; # 0.7 $viewbheight;
my $viewbwidth;
my $viewbheight;
my $header;

my @array;
my @outerarray;
my @errorarray;

J Sue Ashworth Page 150 of 174

 Appendices A Complex Situation in Data Recovery

my $i = 0;

test the input file exists before opening this and the output file
if (-e "$infile") {

open ($IN,"$infile");
open ($OUT,"+>$outfile");
while (<$IN>) {

chomp;
s/(\s)+/ /g;
@array=split(/\s/,$_);
ditch the header line
if ($array[0] eq "name") {

next;
}

handle the space at the beginning of dir.info
if ($array[0] eq ""){

shift(@array);
}

for (my $j = 0; $j < @array; $j++) {
$outerarray[$i][$j] = @array[$j];

}

$i++;

}
close $IN;

}
else {

print "forgot the input\n";
}

for ($i = 0; $i < @outerarray; $i++) {

if ($outerarray[$i][0] =~ /[xd]\.dat/) {
$yrect +=5 ;

}
if ($outerarray[$i][0] =~ /\.wst/) {

$yrect +=4 ;
}
$ytext = $yrect + ($height/ 2) + 10;

$outerarray[$i][5]= "<text x=\"$xtext\" y=\"$ytext\" font-size=\"20\" >
$outerarray[$i][0]</text>\n";

$handyvar = 80 *(log($outerarray[$i][4])/log(10)) ;
$outerarray[$i][6]= "<rect x=\"$xrect\" y=\"$yrect\" width=\"$handyvar\"

 height=\"$height\" style=\"fill:";
$outerarray[$i][7]= $colourfile{$outerarray[$i][0]};#"rgb(0,0,0)";
$outerarray[$i][8] = ";stroke-width:1;stroke:rgb(0,0,0)\"/>\n";

if ($handyvar + $xrect > $svgwidth) {

J Sue Ashworth Page 151 of 174

 Appendices A Complex Situation in Data Recovery

$svgwidth = $handyvar + $xrect;
}
$yrect = $yrect + $height + $seperator;
$svgheight = $yrect + 10;

}

this is the array used to create the image
0 = name
1 = bytes
2 = offset
3 = sectors
4 = records
5 = text string
6 = rect
7 = colour
8 = border

my $fat;
my $blocks;
my $indexes;

for ($i = 0; $i < @outerarray; $i++) {

if (($i > 1) && ($outerarray[$i][2] != $outerarray[$i-1][2] +
 $outerarray[$i-1][3])) {

$outerarray[$i][8] = $wrongborder ;
$errorarray[@errorarray] = "$outerarray[$i][0] - start bad";

}

switch ($outerarray[$i][0]) {

case "dir.info" {
if (($outerarray[$i][1] != 4096) && ($outerarray[$i]

[3] != 8)) {
$outerarray[$i][7] = $wrongcolour;
$errorarray[@errorarray] = "$outerarray[$i][0] -

 size bad";
}

}
case "disk1d.dat" {

if ($outerarray[$i][1] != 2000) {
$outerarray[$i][7] = $wrongcolour;
$errorarray[@errorarray] = "$outerarray[$i][0] -

 size bad";
}

}
case "disk1f.dat" {

$blocks=$outerarray[$i][4];
$fat = $i;

}
case "disk1i.dat" {

if ($outerarray[$i][1]%48 > 0){
$outerarray[$i][7] = $wrongcolour;
$errorarray[@errorarray] = "$outerarray[$i][0] -

 non-integral records";

J Sue Ashworth Page 152 of 174

 Appendices A Complex Situation in Data Recovery

}
$indexes = $outerarray[$i][4];

}
case "disk1u.dat" {

if ($outerarray[$i][4] != $indexes){
$outerarray[$i][7] = $wrongcolour;
$outerarray[$i-1][8] = $wrongborder;
$errorarray[@errorarray] = "$outerarray[$i][0] -

 non-match with indexes";
}

}
case "eventsx.dat" {

if ($outerarray[$i][4] != 65536){
$outerarray[$i][7] = $wrongcolour;
$errorarray[@errorarray] = "$outerarray[$i][0] -

 wrong size";
}

}

case "drive1d.dat" {
if ($outerarray[$i][1] != 2000){

$outerarray[$i][7] = $wrongcolour;
$errorarray[@errorarray] = "$outerarray[$i][0] -

 wrong size";
}

}

case "drive1f.dat" {
if (($outerarray[$i][1] !=25165824) &&

($outerarray[$i][1]!= 41943040)) {
$outerarray[$i][7] = $wrongcolour;
$errorarray[@errorarray] = "$outerarray[$i][0] -

 wrong size";
}

}
case "drive1i.dat" {

if (($outerarray[$i][1]!=18874368) && ($outerarray[$i]
[1]!=31457280)) {

$outerarray[$i][7] = $wrongcolour;
$errorarray[@errorarray] = "$outerarray[$i][0] -

 size may be bad";
}

}
case "drive1u.dat" {

if ($outerarray[$i][4]!= $outerarray[$i-1][4]) {
if ($outerarray[$i-1][7] == $wrongcolour) {

if ($outerarray[$i][4] != $outerarray[$i
 +4][4]) {

$outerarray[$i][7] = $wrongcolour;
$errorarray[@errorarray] =

 "$outerarray[$i][0] - size may be bad";
}

}
else {

$outerarray[$i][7] = $wrongcolour;
$errorarray[@errorarray] =

 "$outerarray[$i][0] - size may be bad";

J Sue Ashworth Page 153 of 174

 Appendices A Complex Situation in Data Recovery

}
}

}
case "drive2d.dat" {

if ($outerarray[$i][1] != 2000){
$outerarray[$i][7] = $wrongcolour;
$errorarray[@errorarray] = "$outerarray[$i][0] -

 wrong size";
}

}
case "drive2f.dat" {

if (($outerarray[$i][1] != 25165824) &&
 ($outerarray[$i][1] != 41943040)) {

$outerarray[$i][7] = $wrongcolour;
$errorarray[@errorarray] = "$outerarray[$i][0] -

 wrong size";
}
if (($outerarray[$i][1] != $outerarray[$i - 4][1]) &&

 ($outerarray[$i - 4][7] != $wrongcolour)) {
$outerarray[$i][8] = $wrongborder;
$outerarray[$i - 4][8] = $wrongborder;

}
}

case "drive2i.dat" {
if (($outerarray[$i][1]!=18874368) && ($outerarray[$i]

[1]!=31457280)) {
$outerarray[$i][7] = $wrongcolour;
$errorarray[@errorarray] = "$outerarray[$i][0] -

 size may be bad";
}
if ($outerarray[$i][1]!=$outerarray[$i - 4][1]) {

$outerarray[$i][8] = $wrongborder;
$outerarray[$i - 4][8] = $wrongborder;
$errorarray[@errorarray] = "$outerarray[$i][0] -

 different to $outerarray[$i -4][0]";
}

}
case "drive2u.dat" {

if ($outerarray[$i][4]!= $outerarray[$i-1][4]) {
if ($outerarray[$i-1][7] == $wrongcolour) {
 if($outerarray[$i][4]!=$outerarray[$i-4][4]) {

$outerarray[$i][7] = $wrongcolour;
$errorarray[@errorarray] =

 "$outerarray[$i][0] - size may be bad";
}

}
else {

$outerarray[$i][7] = $wrongcolour;
$errorarray[@errorarray] =

 "$outerarray[$i][0] - size may be bad";
}

}
}

case "space.wst" {
if ($outerarray[$i][1]<165376) {

$outerarray[$i][7] = $wrongcolour;

J Sue Ashworth Page 154 of 174

 Appendices A Complex Situation in Data Recovery

$errorarray[@errorarray] = "$outerarray[$i][0] -
 size is bad";

}
}

case "disk.dat" {
if ($outerarray[$i][4] > $blocks) {

$outerarray[$i][7] = $wrongcolour;
$errorarray[@errorarray] = "$outerarray[$i][0] � size

 too big";
$outerarray[$i][8] = $wrongborder;
$outerarray[$fat][8] = $wrongborder;

}
}

}
}

my $errorsum = "";

$xtext+=20;

for ($i = 0; $i < @errorarray; $i++) {

$ytext = $yrect + ($height/ 2) + 10;
$errorsum = "$errorsum <text x=\"$xtext\" y=\"$ytext\" font-size=\"20\"

>$errorarray[$i]</text>\n";
$yrect = $yrect + $height + $seperator;
$svgheight = $yrect + 10;

}

#assorted fudge
$svgwidth += 10;
$viewbwidth = $svgwidth;
$viewbheight = $svgheight;
$svgwidth = 0.7 * $svgwidth;
$svgheight = 0.7 * $svgheight;
$header= "<?xml version=\"1.0\" standalone=\"no\"?>\n<svg width=\

 "$svgwidth\" height=\"$svgheight\" viewBox=\"0 0 $viewbwidth
$viewbheight\"\nxmlns=\"http://www.w3.org/2000/svg\" baseProfile=\"tiny\"

version=\"1.2\"><title>abslsr</title>\n";

print $OUT $header;
print $OUT $errorsum;

for ($i = 0; $i < @outerarray; $i++) {

print $OUT $outerarray[$i][5];
print $OUT $outerarray[$i][6];
print $OUT $outerarray[$i][7];
print $OUT $outerarray[$i][8];

}

J Sue Ashworth Page 155 of 174

 Appendices A Complex Situation in Data Recovery

print $OUT "</svg>\n";

Appendix D – Source Code for Disk Iterating Script

The following code is the disk fingerprinting script.

#!/usr/bin/perl -w

use strict;
my $skip = 0;

while ($skip < 1000000000) {

 my $fp = samplesector();
 print "$skip $fp\n";
 $skip ++;

 }

 sub samplesector {

 my $input;
 my @array;
 my $tot = 0;
 $input=`dd if=/dev/sda skip=$skip bs=512 count=1 2>/dev/null | hexdump

-dv`;
 @array = split(/\s+/,$input);

 for (my $i = 0; $i < @array; $i++) {
 if (length($array[$i]) < 6){
 $tot = $tot + $array[$i] ;
 }
 }
 return $tot;
 }

Appendix E – Source code for Web Server Calculator

#!/usr/bin/perl

use strict;
use IO::Socket;
use Storable;

J Sue Ashworth Page 156 of 174

 Appendices A Complex Situation in Data Recovery

use POSIX ; #'WNOHANG';
use Switch;

open the log file and enter the date/time program starts
my $LOG;
open ($LOG,"+>>logs/config.log");
print $LOG "\nConfiguration server started at ";
print $LOG `date`;

create a socket or record failure
my $listen_sock = IO::Socket::INET->new(
 LocalPort => 8889,
 Type => SOCK_STREAM,
 Reuse => 1,
 Listen => 5
) or print $LOG "Could not open socket.\n";

global variables
my $client; # handle on socket
my $errstr = "";
my $kid;
my @kids;

my $disksize = 0;
my $udf = 0;
my $ddstype;
my $tapecount;
my $diskused = 722937;

my $recordsize;
my $bytesize;
my $sectorsize;
my $totsectors;
my $diskdat;
my $diskdatmax;
my $upload = 0;
my $boundary = "qqqqq";

my $stage = 0;

my $var1 = -1;
my $var2 = -1;
my $var3 = -1;
my $var4 = -1;

my $file = 0;
my $empty = 0;

my @arraygen;
my @outerarraygen;
my @errorarray;

my @array;
my @outerarray;

J Sue Ashworth Page 157 of 174

 Appendices A Complex Situation in Data Recovery

my $i = 0;

my $upload = 0;

incoming connection from socket - fork or log failure
while ($client = $listen_sock->accept()) {

my $pid = fork();
print $LOG "Cannot fork\n" unless defined $pid;

parent: close the file handle and check for any dead kids
not very elegant but experiments show this worked reliably
if ($pid) {

close $client;
while ($kid = waitpid (-1, WNOHANG)>0){}
next;

}

child handle client browser
@kids = ();
$client->autoflush(1);

read the what the browser is sending. Deal with it or summon a
subroutine to handle the
response, if the response is not recognised do nothing
while ($_ = <$client>){

ditch carriage returns and line feeds from the line
 s/\r?\n//g;

ditch the empty lines for now - should be present and validated
for future development
if ($_ eq "") {

next;
}

this will be the returned data from the browser
if ($_ =~ /^POST \//){

$upload = 1;
next;

}

this will be true if a file is being uploaded
if ($file == 1){

$upload will be true if the first line is plausible
if ($_ =~ /^name\s/) {

$upload = 1;
}
else {

s/(\s)+/ /g;

if ($_ =~ /---$boundary/){
#$file = 0;

}
else {

@array=split(/\s/,$_);

J Sue Ashworth Page 158 of 174

 Appendices A Complex Situation in Data Recovery

if ($array[0] eq ""){
shift(@array);

}
for (my $j = 0; $j < @array; $j++) {

$outerarray[$i][$j] = @array[$j];
}
$i++;

}
}

}

if ($upload == 1){

make a note of the file boundary
if ($_ =~ /boundary\=(\-)*/){

$boundary = $';
}

elsif ($_ =~ /---$boundary/){
not required right now but may be wanted for future
development

}

grab the field being returned
elsif ($_ =~ /name\=\"n(\d)\"/) {

$stage = $1;
}

elsif ($_ =~ /^(\d+)/) {

switch ($stage) {
case 1 {$var1 = $1;}
case 2 {$var2 = $1;}
case 3 {$var3 = $1;}
case 4 {$var4 = $1;}

}
}

this signifies there is a file upload coming - set a flag
elsif ($_ =~ /Content-Type\: text\/plain/) {

$file = 1;
}

end of upload data stop reading and work out what to send
if ($_ =~ /$boundary(\-){2}/) {

bit of a cludge but if there is insufficient data
re-present the data entry page
if (($var1 == -1)||($var2 == -1)||($var3 == -1)||

($var4 == -1)) {
$errstr = " Missing or

 non numeric data <\/font>
";
$_ = "GET / more info";

}
else {

J Sue Ashworth Page 159 of 174

 Appendices A Complex Situation in Data Recovery

 print $client abslsr($var1, $var2, $var3, $var4);

if ($file == 1) {
svggen();

 print $client "
 ";
}

print $client "</BODY></HTML>\r\n\r\n";
 close($listen_sock);

exit;
}

}

}

if there's a "GET /" then send the data enty page

if (($_ =~ /^GET \//) && ($_ =~ /abslsr/)){

my $IN;

print $client "HTTP/1.0 200 OK\r\n";
print $client "Cache-Control: no-cache\r\nConnection:

 Close\r\n\r\n";

open ($IN, "abslsr.svg");

while (<$IN>) {
print $client $_;
print $_;

}
close $IN;

 print $client "\r\n\r\n";
close($listen_sock);

 exit;

}

if ($_ =~ /^GET \//){

print $client "HTTP/1.0 200 OK\r\n";
print $client "Connection: Close\r\n\r\n";

 print $client "<HTML><BODY><H1>Enter information</H1>";
 print $client "<pre><form method=\"POST\"

 enctype=\'multipart/form-data\'>";
 print $client "Enter partition size in bytes ..<input

 type=text name=n1>
";
print $client "Enter total udf size<input

 type=text name=n2 size=5>
";
print $client "Enter DDS Type (3 or 4)<input

 type=text name=n3 value=\"4\" size=2>
";
print $client "Enter Number of drives<input

 type=text name=n4 value=\"2\" size=2><p>";
print $client $errstr;

J Sue Ashworth Page 160 of 174

 Appendices A Complex Situation in Data Recovery

print $client "File to upload: <input type=file
 name=upfile>
";

print $client "<input type=submit value=\"Work it out\">
 </form>";

 print $client "</pre></BODY></HTML>\r\n\r\n";
close($listen_sock);

 exit;
}

} # end of while reading from socket
} # end while socket

close($listen_sock);

#---

sub spaces {

my $size = shift;
my $less = shift;
my $i;
my $spacestr = " ";

for ($i = 0; $i <= ($size - $less); $i ++){
$spacestr = $spacestr." ";

}

return $spacestr;
}

#--------------------------------

sub abslsr {

my $disksize = shift ; # $1;
my $udf = shift; # $2;
my $ddstype = shift; # $3;
my $tapecount = shift; # $4;

print "$disksize, $udf, $ddstype, $tapecount\n";

my $retstr = "";
my $totsectors = $disksize / 512 ;
my $int = 0;

$retstr = "HTTP/1.0 200 OK\r\n";
$retstr = $retstr."Connection: Close\r\n\r\n";

$retstr = $retstr."<HTML><HEAD></HEAD><BODY><H1>abslsr information</H1>";
$retstr = $retstr."<pre>name".spaces(25,5)."bytes".spaces(15,13).

"start_address".spaces(15,7)."sectors".spaces(15,7)."records\n";

$retstr = $retstr." dir.info".spaces(20,4)."4096".spaces(15,6)."722925"
.spaces(15,1)."8".spaces(15,4)."4096\n";

$outerarraygen[$int][0] = " dir.info";
$outerarraygen[$int][1] = "4096";

J Sue Ashworth Page 161 of 174

 Appendices A Complex Situation in Data Recovery

$outerarraygen[$int][2] = "722925";
$outerarraygen[$int][3] = "8";
$outerarraygen[$int][4] = "4096";
$int ++;

$retstr = $retstr."disk1d.dat".spaces(19,4)."2000".spaces(15,6)."722933"
.spaces(15,1)."4".spaces(15,4)."2000\n";

$outerarraygen[$int][0] = "disk1d.dat";
$outerarraygen[$int][1] = "2000";
$outerarraygen[$int][2] = "722933";
$outerarraygen[$int][3] = "4";
$outerarraygen[$int][4] = "2000";
$int ++;

$disksize = $disksize / 2048 ;
$recordsize = ceil($disksize / 323) * 323;

if (($recordsize < 13107340) && ($ddstype == 4)) {
$recordsize = 13107340;

}

if (($recordsize < 7864404) && ($ddstype == 3)) {
$recordsize = 7864404;

}

$bytesize = $recordsize * 4;
$sectorsize = ceil($bytesize / 512) ;

$retstr = $retstr."disk1f.dat".spaces(19,length($bytesize))."$bytesize"
.spaces(15,length($diskused))."$diskused".spaces(15,length($sectorsize)).

"$sectorsize".spaces(15,length($recordsize))."$recordsize\n";
$outerarraygen[$int][0] = "disk1f.dat";
$outerarraygen[$int][1] = "$bytesize";
$outerarraygen[$int][2] = "$diskused";
$outerarraygen[$int][3] = "$sectorsize";
$outerarraygen[$int][4] = "$recordsize";
$int ++;

$diskused = $diskused + $sectorsize;

$recordsize = floor($disksize / 16);

if (($recordsize < 819200) && ($ddstype == 4)) {
$recordsize = 819200;

}

if (($recordsize < 491520) && ($ddstype == 3)) {
$recordsize = 491520;

}

$bytesize = $recordsize * 48;
$sectorsize = ceil($bytesize / 512) ;

$retstr = $retstr."disk1i.dat".spaces(19,length($bytesize))."$bytesize"
.spaces(15,length($diskused))."$diskused".spaces(15,length($sectorsize)).

"$sectorsize".spaces(15,length($recordsize))."$recordsize\n";

J Sue Ashworth Page 162 of 174

 Appendices A Complex Situation in Data Recovery

$outerarraygen[$int][0] = "disk1i.dat";
$outerarraygen[$int][1] = "$bytesize";
$outerarraygen[$int][2] = "$diskused";
$outerarraygen[$int][3] = "$sectorsize";
$outerarraygen[$int][4] = "$recordsize";
$int ++;

$diskused = $diskused + $sectorsize;

$recordsize = $recordsize; # no change
$bytesize = $recordsize * $udf;

$sectorsize = ceil($bytesize / 512);

$retstr = $retstr."disk1u.dat".spaces(19,length($bytesize))."$bytesize".
spaces(15,length($diskused))."$diskused".spaces(15,length($sectorsize))

."$sectorsize".spaces(15,length($recordsize))."$recordsize\n";
$outerarraygen[$int][0] = "disk1u.dat";
$outerarraygen[$int][1] = "$bytesize";
$outerarraygen[$int][2] = "$diskused";
$outerarraygen[$int][3] = "$sectorsize";
$outerarraygen[$int][4] = "$recordsize";
$int ++;

$diskused = $diskused + $sectorsize;

$recordsize = 65536 ;
$bytesize = 1245184 ;
$sectorsize = 2432 ;

$retstr = $retstr."eventx.dat".spaces(19,length($bytesize))."$bytesize"
.spaces(15,length($diskused))."$diskused".spaces(15,length($sectorsize))

."$sectorsize".spaces(15,length($recordsize))."$recordsize\n";
$outerarraygen[$int][0] = "eventx.dat";
$outerarraygen[$int][1] = "$bytesize";
$outerarraygen[$int][2] = "$diskused";
$outerarraygen[$int][3] = "$sectorsize";
$outerarraygen[$int][4] = "$recordsize";
$int ++;

$diskused = $diskused + $sectorsize;

$recordsize = 130023424 ;
$bytesize = 130023424 ;
$sectorsize = 253952 ;

$retstr = $retstr."cache.dat".spaces(20,length($bytesize))."$bytesize".
spaces(15,length($diskused))."$diskused".spaces(15,length($sectorsize))

."$sectorsize".spaces(15,length($recordsize))."$recordsize\n";
$outerarraygen[$int][0] = "cache.dat";
$outerarraygen[$int][1] = "$bytesize";
$outerarraygen[$int][2] = "$diskused";
$outerarraygen[$int][3] = "$sectorsize";
$outerarraygen[$int][4] = "$recordsize";
$int ++;

J Sue Ashworth Page 163 of 174

 Appendices A Complex Situation in Data Recovery

$diskused = $diskused + $sectorsize;

for (my $i = 1; $i < $tapecount + 1 ; $i ++) {

$recordsize = 2000 ;
$bytesize = 2000 ;
$sectorsize = 4 ;

$retstr = $retstr."drive".$i."d.dat".spaces(18,length($bytesize))
."$bytesize".spaces(15,length($diskused))."$diskused".spaces

(15,length($sectorsize))."$sectorsize".spaces(15,length($recordsize))
."$recordsize\n";

$outerarraygen[$int][0] = "drive".$i."d.dat";
$outerarraygen[$int][1] = "$bytesize";
$outerarraygen[$int][2] = "$diskused";
$outerarraygen[$int][3] = "$sectorsize";
$outerarraygen[$int][4] = "$recordsize";
$int ++;

$diskused = $diskused + $sectorsize;

if ($ddstype == 3) {
$recordsize = 6291456 ;
$bytesize = 25165824;
$sectorsize = 49152;

}
else {

$recordsize = 10485760 ;
$bytesize = 41943040;
$sectorsize = 81920;

}

$retstr = $retstr."drive".$i."f.dat".spaces(18,length($bytesize)).
"$bytesize".spaces(15,length($diskused))."$diskused".spaces(15,length

($sectorsize))."$sectorsize".spaces(15,length($recordsize)).
"$recordsize\n";

$outerarraygen[$int][0] = "drive".$i."f.dat";
$outerarraygen[$int][1] = "$bytesize";
$outerarraygen[$int][2] = "$diskused";
$outerarraygen[$int][3] = "$sectorsize";
$outerarraygen[$int][4] = "$recordsize";
$int++;

$diskused = $diskused + $sectorsize;

if ($ddstype == 3) {
$recordsize = 393216 ;
$bytesize = 18874368;
$sectorsize = 36864;

}
else {

$recordsize = 655360;
$bytesize = 31457280;

J Sue Ashworth Page 164 of 174

 Appendices A Complex Situation in Data Recovery

$sectorsize = 61440;
}

$retstr = $retstr."drive".$i."i.dat".spaces(18,length($bytesize)).
"$bytesize".spaces(15,length($diskused))."$diskused".spaces

(15,length($sectorsize))."$sectorsize".spaces(15,length($recordsize))
."$recordsize\n";

$outerarraygen[$int][0] = "drive".$i."i.dat";
$outerarraygen[$int][1] = "$bytesize";
$outerarraygen[$int][2] = "$diskused";
$outerarraygen[$int][3] = "$sectorsize";
$outerarraygen[$int][4] = "$recordsize";
$int++;

$diskused = $diskused + $sectorsize;

#$recordsize = no change ;
$bytesize = $recordsize * $udf;
$sectorsize = ceil($bytesize / 512) ;

$retstr = $retstr."drive".$i."u.dat".spaces(18,length($bytesize)).
"$bytesize".spaces(15,length($diskused))."$diskused".spaces

(15,length($sectorsize))."$sectorsize".spaces(15,length($recordsize))
."$recordsize\n";

$outerarraygen[$int][0] = "drive".$i."u.dat";
$outerarraygen[$int][1] = "$bytesize";
$outerarraygen[$int][2] = "$diskused";
$outerarraygen[$int][3] = "$sectorsize";
$outerarraygen[$int][4] = "$recordsize";
$int++;

$diskused = $diskused + $sectorsize;

}

$diskdatmax = floor($totsectors - ($diskused - 722925)) ;
$diskdat = floor($diskdatmax / 1292) ;

$diskdat = $diskdat * 1292 ;

$sectorsize = $diskdatmax - $diskdat;
$bytesize = $sectorsize * 512;
$recordsize = $bytesize;

$retstr = $retstr."space.wst".spaces(20,length($bytesize))
."$bytesize".spaces(15,length($diskused))."$diskused".spaces

(15,length($sectorsize))."$sectorsize".spaces(15,length($recordsize))
."$recordsize\n";

$outerarraygen[$int][0] = "space.wst";
$outerarraygen[$int][1] = "$bytesize";
$outerarraygen[$int][2] = "$diskused";
$outerarraygen[$int][3] = "$sectorsize";

J Sue Ashworth Page 165 of 174

 Appendices A Complex Situation in Data Recovery

$outerarraygen[$int][4] = "$recordsize";
$int++;

$diskused = $diskused + $sectorsize;

$sectorsize = $diskdat;
$bytesize = $sectorsize * 512;
$recordsize = $bytesize / 2048;

$retstr = $retstr."disk.dat".spaces(21,length($bytesize))."$bytesize"
.spaces(15,length($diskused))."$diskused".spaces(15,length

($sectorsize))."$sectorsize".spaces(15,length($recordsize))."$recordsize\n";
$outerarraygen[$int][0] = "disk.dat";
$outerarraygen[$int][1] = "$bytesize";
$outerarraygen[$int][2] = "$diskused";
$outerarraygen[$int][3] = "$sectorsize";
$outerarraygen[$int][4] = "$recordsize";
$int++;

$retstr = $retstr."</pre>"; #</BODY></HTML>\r\n\r\n";

return $retstr;

}

#---

sub svggen {

my $outfile = "abslsr.svg";
my $OUT;

my %colourfile = (
"dir.info" => "rgb(24,116,205)",
"disk1d.dat" => "rgb(90,144,255)",
"disk1f.dat" => "rgb(132,142,255)",
"oops.dat" => "rgb(0,0,0)",
"disk1i.dat" => "rgb(70,130,180)",
"disk1u.dat" => "rgb(0,206,209)",
"eventsx.dat" => "rgb(143,188,143)",
"cache.dat" => "rgb(85,107,47)",
"drive1d.dat" => "rgb(90,144,255)",
"drive1f.dat" => "rgb(132,142,255)",
"drive1i.dat" => "rgb(70,130,180)",
"drive1u.dat" => "rgb(0,206,209)",
"drive2d.dat" => "rgb(90,144,255)",
"drive2f.dat" => "rgb(132,142,255)",
"drive2i.dat" => "rgb(70,130,180)",
"drive2u.dat" => "rgb(0,206,209)",
"space.wst" => "rgb(188,143,143)",
"disk.dat" => "rgb(139,69,19)");

my $handyvar;

J Sue Ashworth Page 166 of 174

 Appendices A Complex Situation in Data Recovery

my $wrongcolour = "rgb(255,0,0)";
my $wrongborder =";stroke-width:2;stroke:rgb(255,0,0)\"/>\n";

my $height = 30;
my $width;

my $seperator = 3;
my $xrect = 135; #const
my $xtext = 10; #const
my $yrect = 10;
my $ytext = 20;

my $arg;

svg variables
my $svgwidth; # 0.7 $viewbwidth;
my $svgheight; # 0.7 viewbheight;
my $viewbwidth;
my $viewbheight;
my $header ;

#my @array;
#my @outerarray;
#my @errorarray;

my $i = 0;

open ($OUT,"+>$outfile");

for ($i = 0; $i < @outerarray; $i++) {

if ($outerarray[$i][0] =~ /[xd]\.dat/) {$yrect +=5 ;}
if ($outerarray[$i][0] =~ /\.wst/) {$yrect +=4 ;}
$ytext = $yrect + ($height/ 2) + 10;

$outerarray[$i][5]= "<text x=\"$xtext\" y=\"$ytext\" font-size=\"20\" >
$outerarray[$i][0]</text>\n";

$handyvar = 80 *(log($outerarray[$i][4])/log(10)) ;
$outerarray[$i][6]= "<rect x=\"$xrect\" y=\"$yrect\" width=\"$handyvar\"

 height=\"$height\" style=\"fill:";
$outerarray[$i][7]= $colourfile{$outerarray[$i][0]};#"rgb(0,0,0)";
$outerarray[$i][8] = ";stroke-width:1;stroke:rgb(0,0,0)\"/>\n";

if ($handyvar + $xrect > $svgwidth) { $svgwidth = $handyvar + $xrect;}

$yrect = $yrect + $height + $seperator;
$svgheight = $yrect + 10;

}

0 = name

J Sue Ashworth Page 167 of 174

 Appendices A Complex Situation in Data Recovery

1 = bytes
2 = offset
3 = sectors
4 = records
5 = text string
6 = rect
7 = colour
8 = border

#my $rollingoffset = $outerarray[0][2];
my $fat;
my $blocks;
my $indexes;

use Switch;

for ($i = 0; $i < @outerarray; $i++) {

if ($outerarray[$i][1] != $outerarraygen[$i][1]) {
$outerarray[$i][7] = $wrongcolour;
$errorarray[@errorarray] = "$outerarray[$i][0] - Size wrong";

}

if ($outerarray[$i][2] != $outerarraygen[$i][2]) {
$outerarray[$i][8] = $wrongborder;
$errorarray[@errorarray] = "$outerarray[$i][0] - Start wrong";

}

if ($outerarray[$i][3] != $outerarraygen[$i][3]) {
$outerarray[$i][8] = $wrongborder;
$errorarray[@errorarray] = "$outerarray[$i][0] - Number of sectors

 wrong";
}

if (($outerarray[$i][4] != $outerarraygen[$i][4]) && ($outerarray[$i][4]
 ne "")){

$outerarray[$i][7] = $wrongcolour;
$errorarray[@errorarray] = "$outerarray[$i][0] - Number of records

 wrong";
}

print "$outerarraygen[$i][0], $outerarray[$i][0]\n";

}

my $errorsum = "";
$xtext+=20;

for ($i = 0; $i < @errorarray; $i++) {

$ytext = $yrect + ($height/ 2) + 10;
$errorsum = "$errorsum <text x=\"$xtext\" y=\"$ytext\" font-size=\"20\"

 >$errorarray[$i]</text>\n";
$yrect = $yrect + $height + $seperator;

J Sue Ashworth Page 168 of 174

 Appendices A Complex Situation in Data Recovery

$svgheight = $yrect + 10;

}

#assorted fudge
$svgwidth += 10;
$viewbwidth = $svgwidth;
$viewbheight = $svgheight;
$svgwidth = 0.7 * $svgwidth;
$svgheight = 0.7 * $svgheight;
$header= "<?xml version=\"1.0\" standalone=\"no\"?>\n<svg width=\

"$svgwidth\" height=\"$svgheight\" viewBox=\"0 0 $viewbwidth
$viewbheight\"\nxmlns=\"http://www.w3.org/2000/svg\"

baseProfile=\"tiny\" version=\"1.2\"><title>abslsr</title>\n";

print $OUT $header;
print $OUT $errorsum;

for ($i = 0; $i < @outerarray; $i++) {

print $OUT $outerarray[$i][5];
print $OUT $outerarray[$i][6];
print $OUT $outerarray[$i][7];
print $OUT $outerarray[$i][8];

}

print $OUT "</svg>\n";

}

J Sue Ashworth Page 169 of 174

 References A Complex Situation in Data Recovery

References

Adelstein, F., 2006. Live forensics: diagnosing your system without killing it first.

Communications of the ACM, 49(2), pp. 63-66.

Basili, V. (2007): The Role of Controlled Experiments in Software Engineering Research," in

Empirical Software Engineering Issues, LNCS 4336, (Eds.), pp.33-37.

Basili, V.R., 1996. The role of experimentation in software engineering: past, current, and future,

ICSE '96: Proceedings of the 18th international conference on Software engineering, 1996, IEEE

Computer Society pp442-449.

Berghel, ,Hal, 2007. Hiding data, forensics, and anti-forensics. Communications of the ACM,

50(4), pp. 15-20.

Boyd, C. and Forster, P., 2004/2. Time and date issues in forensic computing—a case study.

Digital Investigation, 1(1), pp. 18-23.

Berners-Lee, T., Fielding, R., and Frystyk, H. 1996. RFC 1945: Hypertext transfer protocol:

HTTP/1.0.[online] Available at: http://www.w3.org/Protocols/rfc1945/rfc1945 [Accessed 22

April 2009].

Canforaharman, G. and Penta, M.D., 2007. New Frontiers of Reverse Engineering, FOSE '07:

2007 Future of Software Engineering, 2007, IEEE Computer Society pp326-341.

Casey, E. and Stellatos, G.J., 2008. The impact of full disk encryption on digital forensics. ACM

J Sue Ashworth Page 170 of 174

 References A Complex Situation in Data Recovery

SIGOPS Operating Systems Review, 42(3), pp. 93-98.

Chikofsky, E.J. and Cross, J.H.,II, 1990. Reverse engineering and design recovery: a taxonomy.

Software, IEEE, 7(1), pp. 13-17.

Connolly, T. and Beeg, C., 2002. Database Systems: A practical Approach to Design,

Implementation and Management 3rd Ed. Published by Pearson Education. Essex UK. ISBN: 0

201 70857 4

Defense Security Service, 1995. National Industrial Security Program Operating Manual

(NISPOM), chapter 8: Automated Information System Security. U.S. Government Printing

Office.

D, Mike, 2007. Beginners Guides: Hard Drive Data Recovery.[online] (Last updated: 12th April

2009) Available at: http://www.pcstats.com/articleview.cfm?articleID=1139 [Accessed 21

January 2008]

Duncan, R., 1986. Advanced MS dos Programming, Redmond Washington USA, Microsoft

Press. ISBN 0-914845-77-2

Farmer, D., 2001. Bring Out Your Dead. [online] Available at:

http://www.ddj.com/database/184404444 edn. Dr. Dobb's Journal.[Accessed 22 April 2009]

Fielding, R. Gettys, J. Mogul, J Frystyk, H. Masinter, L. Leach, P. Bernes-Lee,T., 1999. RFC

2616: Hypertext transfer protocol, HTTP/1.1, [online] Available at:

http://www.ietf.org/rfc/rfc2616.txt [Accessed 21 January 2008]

J Sue Ashworth Page 171 of 174

 References A Complex Situation in Data Recovery

Gattei, S., 2008. Karl Popper's philosophy of science : rationality without foundations. New

York: Routledge. ISBN-10: 0415378311 ISBN-13: 978-0415378314

Gilbert D., 2009. The Linux SCSI Generic (sg) Driver [online] (Last updated: 11th April 2009)

Available at: http://sg.danny.cz/sg/index.html [Accessed 16 April 2009]

Gnuplot 2009. gnuplot homepage [online] (last updated March 2009) Available at:

http://www.gnuplot.info/ [Accessed 16 April 2009]

Gomez, R.D., Adly, A.A., Mayergoyz, I.D. and Burke, E.R., 1993. Magnetic force scanning

tunneling microscopy: theory and experiment. Magnetics, IEEE Transactions on, 29(6), pp.

2494-2499.

Gomez, R.D., Adly, A.A., Mayergoyz, I.D. and Burke, E.R., 1992. Magnetic force scanning

tunneling microscope imaging of overwritten data. Magnetics, IEEE Transactions on, 28(5), pp.

3141-3143.

Harrison, W., 2006. A term project for a course on computer forensics. Journal on Educational

Resources in Computing., 6(3), pp. 6.

Hawking, S., 1988. A Brief History of time. London, Bantam Press ISBN:0593 015185

Ieong, R. and Leung, H., 2007. Deriving case specific live forensics investigation procedures

from FORZA, SAC '07: Proceedings of the 2007 ACM symposium on Applied computing, 2007,

ACM Press pp175-180.

ISO/IEC 2006, International Standard - ISO/IEC 14764 IEEE Std, Software Engineering --

Software Life Cycle Processes – Maintenance 14764-2006, E-ISBN: 0-7381-4961-6, ISBN:

J Sue Ashworth Page 172 of 174

 References A Complex Situation in Data Recovery

0-7381-4960-8

Jian-Gang zhu, Luo, Y. and Ding, J., 1994. Magnetic force microscopy study of edge overwrite

characteristics in thin film media. Magnetics, IEEE Transactions on, 30(6), pp. 4242-4244.

Joukov, N., Papaxenopoulos, H. and Zadok, E., 2006. Secure deletion myths, issues, and

solutions, Conference on Computer and Communications Security: Proceedings of the second

ACM workshop on Storage security and survivability, 2006, ACM Press pp. 61-66.

Lister, ,Raymond, 2005. Mixed methods: positivists are from Mars, constructivists are from

Venus. SIGCSE Bull., 37(4), pp. 18-19.

March, S.T. and Smith, G.F., 1995. Design and natural science research on information

technology. Decision Support Systems, 15(4), pp. 251-266.

National Industrial Security Program Operating Manual (DoD 5220.22-M), Dept. of Defense,

1995 [online]. Available: http://www.dss.mil/isec/nispom_195.htm [Accessed 02 February 2009]

NC State University, 2004. LabWrite Glossary [online]. Available:

www.ncsu.edu/labwrite/res/res-glossary.html [Accessed 15 April 2009].

Phillips, ,B.J., Schmidt, ,C.D. and Kelly, ,D.R., 2008. Recovering data from USB flash memory

sticks that have been damaged or electronically erased, e-Forensics '08: Proceedings of the 1st

international conference on Forensic applications and techniques in telecommunications,

information, and multimedia and workshop, 2008, ICST pp1-6.

Ramos, C.S., Oliveira, K.M. and Anquetil, N., 2004. Legacy software evaluation model for

outsourced maintainer. CSMR 2004. Proceedings. Eighth European Conference on Software

J Sue Ashworth Page 173 of 174

 References A Complex Situation in Data Recovery

Maintenance and Reengineering CSMR 2004, pages 48–57,

Sammes, T. Jenkinson, B. 2007. Forensic Computing A Practitioner's Guide, 2nd ed. London,

Springer ISBN-10: 1852332999, ISBN-13: 978-1852332990

Sobey, Charles H. 2004-04-14, 2004-last update, drive-independent data recovery [Homepage of

ChannelScience], [Online]. Available: http://www.actionfront.com/whitepaper/Drive-

Independent%20Data%20Recovery%20Ver14Alrs.pdf [Accessed 9th June 2007].

Sobey, C.H., Orto, L. and Sakaguchi, G., 2006. Drive-independent data recovery: the current

state-of-the-art. Magnetics, IEEE Transactions on, 42(2), pp. 188-193.

Steven Bauer, Nissanka B. Priyantha, 2001-05-14, 2001-last update, Secure data deletion for

Linux file systems [Homepage of Proceedings of the 10th USENIX Security Symposium, August

13–17, 2001, Washington, D.C., USA], [Online]. Available:

http://www.usenix.org/publications/library/proceedings/sec01/full_papers/bauer/bauer_html/inde

x.html [Accessed 9th June 2007].

Symantec Corporation, 2009. Norton PartitionMagic™ 8.0 [online] Available at:

http://www.symantec.com/norton/partitionmagic [Accessed 16 April 2009]

W3C 2008 Scalable Vector Graphics (SVG) Tiny 1.2 Specification: W3C Proposed

Recommendation 17 November 2008 [online]. Available: http://www.w3.org/TR/2008/PR-

SVGTiny12-20081117/ [Accessed 15th April 2009]

J Sue Ashworth Page 174 of 174

	Glossary
	Abbreviations and Acronyms
	Unix Commands
	RAID – Quick Overview

	1Introduction
	1.1This research
	1.2Context of the Problem – Telephone Voice Recording
	1.3The Problem
	1.4This Situation - Context and Research Environment
	1.5Objectives
	1.6Structure of Thesis

	2Background of this Research
	2.1Introduction
	2.2A Typical PC: Functioning and Data Storage
	2.3The Recording System: Functioning and Data Storage
	2.4When Something Goes Wrong: The Operating System
	2.5When something Goes Wrong: the Data Partition
	2.6Causes of Failure
	2.7Company Work Practices and Data Recovery Future Plans
	2.8Disk fingerprinting
	2.9Chapter Summary

	3Visualising the data structures
	3.1Background
	3.2Introduction
	3.3The abslsr.txt
	3.4Design Decisions
	3.5First Iteration
	3.6Non Linear Representations
	3.7The Most Pertinent Information
	3.8Added Value
	3.9Conclusions and Lessons Learnt

	4Disk Exploration and Fingerprinting
	4.1Background
	4.2Introduction
	4.3Missing Information
	4.4Practical Considerations
	4.5Searching the Disk
	4.6Putting the Theoretical Values to the Test.
	4.7Wider Considerations
	4.8Disk Fingerprinting
	4.9Chapter Conclusions

	5Calculating the Correct File Sizes
	5.1Background
	5.2Introduction
	5.3The Code
	5.4The Files and their Calculations
	5.5Testing
	5.6Using the Information – Design and Implementation
	5.7Using the Information as Part of the Repair Process
	5.8An Example Beyond Repair
	5.9One Final Consideration
	5.10Chapter Summary

	6Disk Fingerprinting – An Exploration
	6.1Background
	6.2Introduction.
	6.3Common Methods
	6.4Disk 1 General
	6.5Comparing Two C: Drives
	6.6Formatting a FAT 16 Drive
	6.7A Linux Disk
	6.8Two Fresh Installs of Linux
	6.9Similarities in File Storage
	6.10Disk Fingerprinting Round Up

	7Summary and Conclusions
	7.1Introduction
	7.2Summary
	7.3Achievements
	7.4Enabled and Future work
	7.5Contributions

	Appendices
	Appendix A –Data Storage
	Appendix B – Description and Source Code of Sample Puzzle
	Appendix C – Source Code for SVG Generation
	Appendix D – Source Code for Disk Iterating Script
	Appendix E – Source code for Web Server Calculator

	References

