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Abstract

We consider the problem of minimizing the diameter of an orientation of a planar
graph. A result of Chvátal and Thomassen shows that for general graphs, it is NP-
complete to decide whether a graph can be oriented so that its diameter is at most two.
In contrast to this, for each constant l, we describe an algorithm that decides if a planar
graph G has an orientation with diameter at most l and runs in time O(c|V |), where c
depends on l.
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1 Introduction

Our work is motivated by an application involving the design of urban light rail networks. In
such an application a number of stations are to be linked with unidirectional track in order
to minimize some function of the travel times between stations and subject to constraints on
cost, engineering and planning. In practice these constraints mean that the choice of which
stations to link may be forced upon us and the only control we have is over the choice of
direction of each piece of track. Since the stations that are linked tend to be those that
are close to each other, we make the simplifying assumption that the travel time along each
single piece of track or link is the same. Consequently the network can be viewed as an
(unweighted) graph in which the vertices represent stations and the edges represent track.
Furthermore planning constraints tend to rule out the possibility of tracks crossing so the
graph is usually planar. The aim is to orient the resulting graph to minimize the maximum
travel time between any two stations.

When the underlying graph is obvious, we use n to denote its numbers of vertices. We
use (G, ω) to denote the directed graph obtained by applying the orientation ω to the edges
of G. Sometimes we abbreviate this to

→
G. We let d(x, y) denote the distance from vertex x

to vertex y. We use diam(
→
G) to denote the diameter of

→
G.

Chvátal and Thomassen [2] showed that determining whether an arbitrary graph may be
oriented so that its diameter is at most two is NP-complete. We establish the contrasting
result that for any fixed constant l, there is a polynomial time algorithm that will take a
planar graph and determine whether it may be oriented so that its diameter is at most l.
The algorithm relies on graph minor theory.
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2 Results

We assume familiarity with the concept of a tree-decomposition [5]. Bodlaender [1] gave an
algorithm for finding tree decompositions of small width.

Theorem 2.1 For each k there is an algorithm running in time O
(
2θ(k3)n

)
that inputs a

graph G and determines whether the tree-width of G is at most k, and if so finds a tree-
decomposition of G with tree-width at most k.

It is not difficult to see that we may assume that in a tree-decomposition (T,W), the tree T
is rooted, each node is either a leaf or has two children and for each edge uv, there is a set
Wl containing both u, v such l is a leaf of T . So we may arbitrarily associate any edge of G
with a leaf of T . If v is a leaf of T then let Ev be the edges associated with v, otherwise let
Ev be the edges associated with the leaves of T that are descendants of v. For any v ∈ T ,
let Yv =

⋃
{Wu|u = v or u is a descendant of v}. Let Gv be the subgraph of G with vertex

set Yv and edge-set Ev.
We now describe an algorithm Diameter that for fixed k and l, inputs a graph G and a

tree-decomposition with width k and determines whether there is an orientation of G with
diameter at most l, running in time O(cn), where c depends on k and l.

Given a directed graph
→
G we let M ′(

→
G) be the shortest path matrix, that is the matrix

whose rows and columns are both indexed by V (
→
G) with zeros on the diagonal and otherwise

(x, y)-entry equal to d(x, y). For the description of the algorithm we will need to introduce the
truncated distance d∗(x, y) from x to y given by d∗(x, y) = min{l + 1, d(x, y)} if d(x, y) < ∞
and d∗(x, y) = l + 1 if d(x, y) = ∞. Then the truncated distance matrix M(

→
G) is defined by

replacing each distance d(x, y) in M ′(
→
G) by d∗(x, y).

The idea of the algorithm is to work upwards through the tree, at each step computing
information about Gv that depends on all the orientations of Gv. The key point is that we do
not need to consider each such orientation because we categorize the orientations according
to what we call their characteristic. We then need to work through the set of characteristics,
the size of which depends only on k and l.

Given a graph G, X ⊂ V (G) and ω an orientation of E(G), we define the characteristic
c(G, X, ω) as follows. Suppose without loss of generality that X = {v1, ..., vk+1}. Let v ∈
V (G)\X. First we define the distance vector of v to X and the distance vector of v from X.
Let

→
d(G, X, ω, v) = (

→
d1, ...,

→
dk+1) and

←
d(G, X, ω, v) = (

←
d1, ...,

←
dk+1) where for 1 ≤ j ≤ k+1,

→
dj = d∗(v, vj) and

←
dj = d∗(vj , v). Then c(G, X, ω) is a 4-tuple (

→
S,
←
S, M, F ) defined as

follows:

•
→
S and

←
S are subsets of [l + 1]k+1 with

→
S = {

→
d(G, X, ω, v)|v ∈ V (G)\X} and

←
S =

{
←
d(G, X, ω, v)|v ∈ V (G)\X}.

• M is the submatrix of the truncated distance matrix of (G, ω) corresponding to the
vertices of X.

• F ⊆
→
S×

←
S such that (s, t) ∈ F if and only if there are vertices v, w ∈ V (G)\X such that

the distance vector of v to X is s, the distance vector of w from X is t and d(v, w) > l.

So F keeps track of pairs of vertices in V (G)\X that are not yet joined by a short enough
path. It turns out not to be necessary to store the identities of these vertices, since the
information in F is enough.

Let Ω(G) be the set of all possible orientations of G. Now define the characteristic of
v ∈ V (T ) to be c(v) = {c(Gv,Wv, ω)|ω ∈ Ω(Gv)}. Because the members of c(v) are distinct
characteristics, each one may correspond to many orientations of Gv. The algorithm works
upwards from the leaves of T computing c(v) for each v until finally c(r) is computed. Let
h(l, k) = (l + 1)k(k+1)2[2(l+1)k+1+(l+1)2k+2].
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Theorem 2.2 The algorithm Diameter correctly determines whether the oriented diameter
of a graph G with tree-width k is at most l and runs in time O(nk2(l + 1)2k+2h(l, k)2).

The theorem follows from the following claims:

• c(v) can be computed for a leaf node v in time O(k3 · 2 k2+k
2 );

• for any non-leaf v with children v1 and v2, c(v) can be computed in time O(k2(l +
1)2k+2h(l, k)2) from c(v1) and c(v2);

• from c(r) we can determine in time O(k(l + 1)k+1h(l, k)) whether the graph can be
oriented as required.

Clearly the algorithm could easily be modified to find an orientation of minimum diameter
for those graphs of tree-width at most k where there is an orientation of diameter at most l.

Our result for planar graphs follows by exploiting the well-known relationship between the
diameter and the tree-width of a planar graph [4]. In [3] a general framework is introduced
for parameters for which this technique will work. We require the following two results: the
first follows because the diameter of a graph cannot increase if an edge is contracted, i.e.
diameter is contraction-bidimensional [3], and the second is from [6].

Lemma 2.3 There is no planar graph G with a (2l + 1) × (2l + 1)-grid-minor and having
diameter less than l.

Theorem 2.4 Every planar graph with no g × g-grid-minor has tree-width at most 6g − 5.

We now establish our main result.

Theorem 2.5 For every l, there is an algorithm that inputs a planar graph G and determines
whether it may be oriented so that the diameter is at most l, running in time O

(
nl2(l +

1)24l+28h(l, 12l + 13)2
)
.

Proof: Let G be a planar graph. Using Bodlaender’s algorithm we can determine in
time O

(
2θ(l3)n

)
if G has tree-width at most 12l+13. If so then it will also find a corresponding

tree-decomposition if one exists and then the algorithm Diameter may be used to determine
whether G can be oriented so that its diameter is at most l.

On the other hand if G has tree-width at least 12l + 14, then by Theorem 2.4, it has
a (2l + 3) × (2l + 3)-grid-minor and therefore diameter at least l + 1, so clearly there is
no orientation with diameter at most l. 2 A consequence of our result is that determining
whether a planar graph can be oriented so that its diameter is at most l is fixed parameter
tractable with respect to l.

3 Conclusion

It would be interesting to try to find a more efficient algorithm, not depending on graph
minor theory, and also to determine the complexity when l is part of the input. Furthermore,
the proof of Theorem 2.2 could be shortened if the problem could be formulated in monadic
second order logic. We have not really pursued this but finding such a formulation seems far
from simple due to the need to quantify over all orientations of the edges.

References

[1] Bodlaender, H. L., A linear time algorithm for finding tree-decompositions of small
treewidth, SIAM J. Comput. 25 (1996), pp. 1305–1317.

3
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