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Notations

a price of replication asset
a(1); :::; a(bn) prices of replication assets 1 to bn
a1; :::; abn prices of replication asset in states 1 to bn
b company cash �owc�b maximum negative cash �ow barrierbbsum sum of maximum negative cash �ows
B company cash �ow matrix
B0 bond price
Beta relative uncertainty to the overall market portfolio
�i payout out of replication portfolio at vertex i
C call
d down jump/lower node
df discount factor
� delta
e natural logarithm
f function
fi(w) value function (e.g. minimum shortfall achievable at all vertices vj)
F forward price
g additional expenditure in the real option settingbg maximum additional expenditure in the real option setting
gfadd additive real option factor
gfmulti multiplicative real option factor
I investment
irr cost of capital of the company
i; j = 1; :::; n assets or items numbered from 1 to n
k1:::n number of replication assets in states 1 to n or number of items in knapsack
k� optimal policy of number of replication assets or items in knapsack
K strike price
� growth rate
m min. number of upwards moves of S for a call C to �nish in-the-money
n vector of numeraire
O
�
nk
�

polynomial time computable problems

 omega, number of states
p probability
q risk-neutral probability
Q vector of risk-neutral probabilities
r risk-free interest
R real numbers
R2 correlation coef�cient
S price of underlying/asset price
S (t) stock price process
� volatility
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t time
T time at expiration
u up jump/upper node
U upper bound
v vertex or state
Vi corresponding vertex set of all vertices vj
w utilised capacity in the knapsack
wi value, wealth or capacity at vertex vi
wmin minimum wealth
wcomp company value in t0 after deducting the additional investment g
Wj set of all possible utilised capacities in the knapsack
X cash �ow matrix of replication portfolio
y portfolio of traded non-company assets
Yi set of all portfolios of traded non-company assets that can be bought in vi
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Abstract

This thesis presents an approach for company valuation by a replication
portfolio of traded assets in discrete time. The model allows us to value com-
panies with an uncertain cash �ow stream without having to revert to any dis-
count rates including premia. Modelling of asset values can be achieved in two
steps: (i) Choosing a suitable stochastic process and calibrating its parameters
to �t the historical asset time series behaviour, and (ii) generating a state space
transition graph to implement the stochastic process dynamics in discrete time.
For company valuation, a selected number of "assets" (economic, �nancial,

and other factors) should be captured that may reasonably be assumed to in-
�uence future cash �ows of the company. Each vertex of the transition graph
represents a "state of the world" and is accompanied with a corresponding cash
�ow caused by the sales (or other company activities) at that vertex. These pos-
sible future company cash �ows can be "replicated" (without the existence of
the company) by investing in a self-�nancing portfolio of non-company assets
at the beginning, and trading this portfolio as the future evolves. The minimum
cost of such a self-�nancing portfolio equals the value of the company. A dy-
namic programming algorithm for this valuation problem has been derived in
discrete time. Due to the fact that an exact duplication is not possible for all
cases, the replication strategy will be generated by minimising the deviations
in each state to approximate an exact replication.
The company valuation algorithm in discrete time is based on two main

ideas: The replication approach for arbitrage-free valuation as it is known for
the valuation of contingency claims (Cox, Rubinstein 1985) as well as an opti-
misation to compute the least value replication portfolio following an approach
originally established by Alexander Christo�des (Christo�des A. 2004). The
research results derived in this thesis contribute to the further integration of
some methodologies for contingent claim valuation and optimisation tech-
niques. The derived algorithm has been applied for the valuation of companies
with a high uncertainty in their expected cash �ows (like start-up companies),
and gives further insight in the valuation of non-traded companies. With the
application of the derived company valuation algorithm, the limitations and
shortcomings of determining the companies' weighted average cost of capital
(WACC) can be by-passed.
In a further step, the algorithm has been extended to calculate the potential

value contribution of the companies' real options. Part of the contribution is the
generalisation of the algorithm in the way that decision-making strategies from
the capital markets, as well as strategic decisions from inside corporates can be
implemented and evaluated. The optimal timing of the additional investment
can be computed, and the attached additional value of the "optimal" execution
of these investment options is calculated. The implementation of the algorithm
is performed in C++.
The extended algorithm has been applied for two high growth companies in

the area of Life Sciences, con�rming the applicability of the algorithm. Results
will be reported for Qiagen and GPC Biotech.

xv



Chapter 1

The Valuation Framework

One of the most basic and often encountered problems in quantitative �nance is

concerned with the modelling of asset values. Asset values vary stochastically with

time, but the nature of the underlying price dynamics depends on the nature of the

asset. Stock prices, for example, are reasonably approximated (to a �rst degree) by

geometric brownian motion which is the underlying process used for valuing options

according to the Black Scholes pricing formula (Black, Scholes 1973). A direct

consequence of assuming geometric brownian motion for stock prices is that returns

at any future time t are normally distributed. If the "asset" is an interest rate (or a

commodity like oil, steel, electricity), its value may not exhibit growth in the long

run, but tends to revert to a long termmean. These dynamics are modelled by a mean-

reverting deterministic equation (Vasicek 1977). Yet, mean-reverting processes and

stochastic processes which are able to cover the probability of extreme events ("fat-

tails"), whose occurrence is underestimated (Campbell, Lo and MacKinlay 1997) are

not taken into consideration in the forthcoming work.

Black Scholes assumes that the stock price process S (t) follows a geometric

brownian motion, a riskless bond paying interest at a constant rate r is available and

that funds may be transferred from bank to stock and vice versa without restrictions

or costs. In this described environment, perfect hedging or duplication is possible.

A dynamic (time-varying) self-�nancing portfolio of holding the riskless bond and

stocks can be formed which yields a value equal tomax (S (T )�K; 0) with a prob-

ability of one at the time of expiration, de�ned as T (Black, Scholes 1973) where

1



K is de�ned as the strike price. Hence, the value of the option at time t < T is the

cash value w (t) of the duplication portfolio at that time. Any deviation of the op-

tion price w (t) leads to an arbitrage opportunity. The ability to replicate arbitrary

contingent claims is described as completeness of the market which is not necessar-

ily given for the valuation of a private company (Karatzas Ioannis 1989). Dynamic

programming1 involves formulating the investment problem in terms of a Hamilton-

Jacobi-Bellman equation and computing the value of the asset by backward induc-

tion2 (Bellman 1957). Solving the one period optimisation problem and then moving

backwards, ensures the optimal solution for the entire company valuation.

1.1 Basic Idea

The company valuation algorithm in discrete time is based on two main ideas;

the duplication approach for arbitrage-free valuation3 as well as an optimisation al-

gorithm to overcome the incomplete market condition. The algorithm is solved by

dynamic programming in discrete time with a recursive structure (Duf�e 1996).

The idea based upon the company valuation algorithm is presented in a general

setting. In a �rst step, the replication procedure of cash �ows in discrete time will

be derived and in the second step, the applied optimisation technique by Alexander

Christo�des (Christo�des A. 2004) will be introduced. As a result of the integration

of the two concepts, a company valuation algorithm is derived. It allows to calculate

1 The term was originally used by Richard Bellman to describe the process of solving problems where
one needs to �nd the best decisions one after another.

2 The principle of backward induction describes the concept of solving a problem starting in at the end
of the tree in time T and folding it back one step at a time. Backward induction is a general solution
concept for games of perfect information.

3 The essence of the technical sense of arbitrage-free is that it should not be possible to guarantee a
pro�t without exposure to risk. Were it possible to do so, the market would not be arbitrage-free
anymore.
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the least value replication portfoliow (t) of the company's expected future cash �ows

which is equal to the current worth of the company (Brealey 1991). Throughout

the thesis the algorithm will be extended and generalised to allow for real option

valuation and identi�cation of its optimal exercise.

1.2 Replication of Contingent Claims

Replication is the strongest assumption for arbitrage-free valuation and is based

on the "Law of One Price" 4. Two general strategies can be considered for buying

an underlying S at the time of expiration T . Strategy one is buying a forward which

results in no cash �ow in t0 and a payment of VT = ST � F0 (T ) in t = T , where F

is de�ned as the forward price. The convention that the forward contract value V0 at

origin is zero leads to

V0 = V0(ST � F0 (T )) � 0 (1.1)

Strategy two is buying the underlying S in t = 0 and borrowing the same amount

F0 (T )B0 (T ) what results in no cash �ow in t = 0 again. Here again the forward

contract value has to be zero.

V0(ST � F0 (T )) = S0 � F0 (T )B0 (T ) (1.2)

, F0 (T ) = S0B
�1
0 (T )

Now the forward price F0 (T ) is equal to the price of the underlying S0 in addition

to the accrued interest S0B�10 (T ) � S0: The equation in T , when the loan will be

repaid, will be the difference between the price of the underlying ST and the costs

4 In an ef�cient market, all identical goods must have only one price, independent on how they were
created.
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for repaying the money including the accrued interest S0B�10 (T ): ST � S0B�10 (T ).

To eliminate arbitrage opportunities, the Law of One Price must hold which means

the forward price �xed in t = 0 must be equal to the repayment value K0 (T ) =

S0B
�1
0 (T ).

For a call option C the least price is C � max fS �KB0 (T ) ; 0g, where K is

de�ned as the strike price. The proof will be outlined in the following: Portfolio A

consists of a call C (T ) and money in a money accountKB0 (T ) , portfolio B of the

underlying S itself. In t = T two cases can be investigated.

t = T Case I: ST � K Case II: ST � K
Portfolio A K ST �K +K
Portfolio B ST ST

A� B A= B

Table 1.1: Replication Portfolio for a Call Option

In t0 portfolio A has to be more valuable than portfolio B assuming non-negative

interest rates C0 +KB0 (T ) � S0, C0 � S0 �KB0 (T ).

The widely applied models for option pricing are the Black Scholes model as well

as the binomial model from Cox, Ross and Rubinstein. The latter model has been

developed within the discrete time framework. The risk neutrality will be proven by

applying a replication approach illustrated by the following example. The price of

the underlying S0 = 10 will change to either ST = 14 or ST = 6 in one year from

now. The risk-free interest rate is assumed to be r = 6%.

4



S0=10

ST=14

ST=6
Figure 1.1: Price Path of an Underlying in a Binomial Tree

In the following the price of an European call with a strike of K = 12 will be

calculated. In the case the share price rises to ST = 14 the call would be worth

CT = 2, in the case of a share price decline the call would be worthless CT = 0

(Cox, Rubinstein 1985).

C0=?

CT=2

CT=0
Figure 1.2: Calculation of the Call Price within a Binomial Tree

To solve for C0 a replication portfolio will be setup which will independently of

the state of S in time T earn the risk free interest. Therefore the portfolio exists of

a short position of the call �C and a long position of the underlying share �S: Due

to the risk neutrality condition the portfolio value is independent of the share price

development. Therefore the equation will be

14��� 2 = 6��� 0 (1.3)

=) � = 0:25
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The portfolio now consists of one call short�C and� = 0:25 units of the underlying

share long. The value of the portfolio in time T will be 14�0:25�2 = 6�0:25�0 =

1:5: By discounting this portfolio value VT with the risk-neutral interest rate r, the

portfolio value today will be V0 = 1:5e�0:06�1 = 1:41. The call C will therefore be

worth today the difference between the share price today and the portfolio value V0:

�S0 � C0 = V0 (1.4)

0:25� 10��C0 = 1:41

C0 = 1:09

Any deviation of the fair price of the call offers arbitrage opportunities. Generalised

the equation changes to (Cox, Rubinstein 1985)

(�S0u� CTu) e�rT = �S0d� e�rT . (1.5)

It is assumed, that the underlying will be worth S0 in time t0 and will be worth

either uS with probability q or dS with probability 1� q at the time of in T:

S0

uS

dS

q

1q

Figure 1.3: Probability Measure in a Binomial Tree

The option behaves identically. At time of expiration the value of the call will be

the difference of the price of the underlying asset minus the strike price in the case

the difference is positive.
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C0

Cu=max(uSK,0)

Cd=max(dSK,0)
Figure 1.4: Calculation of the Call Price

In the next step a replication portfolio for the call C will be bought, consisting of

the underlying asset S and selling a risk free bond B, to �nance the purchase price

of the underlying asset S.

∆S0+B

q

1q

∆uS0+ertB

∆dS0+ertB

Figure 1.5: Replication Portfolio in a Binomial Tree

By replicating the payout of the call, the price of the call C can be derived. This

will be done by equating the call price with the duplication portfolio (Cox, Rubin-

stein 1985).

�dS0 + e
rTB = Cd (1.6)

�uS0 + e
rTB = Cu

By equating the expression for the price increase and the price decline and solving
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for � and B the equation changes to the following:

� =
Cu � Cd
(u� d)S0

(1.7)

B =
uCd � dCu
(u� d) erT

Due to the no-arbitrage condition the current value of the call C cannot deviate from

the value of the replication portfolio �S0 + B, because the generation of riskless

pro�ts would be possible. If this would be possible, the generation of a riskless

pro�t would be possible with no net investment. Therefore the following equation

has to be true,

C0 = �S0 +B (1.8)

=
Cu � Cd
(u� d) +

uCd � dCu
(u� d) erT

=

��
erT � d
u� d

�
Cu +

�
u� erT
u� d

�
Cd

�
e�rT

which results in a value which is at least as large as S�K: The equation can further-

more be simpli�ed by de�ning probability p �
�
erT � d

�
= (u� d)which can be en-

dogenously calculated within the model; by transforming, 1�p =
�
u� erT

�
= (u� d)

will be derived. Plugging the previous probability equations in equation 1.9 it fol-

lows:

C0 = [pC0 + (1� p)Cd] e�rt (1.9)

It can be seen that the probability p will always be larger or equal to zero and never

be larger than one 0 � p � 1: p describes the probability of the asset price increase

uS0:Within the given expression the only random variable that impacts the price of

the call is the stock price S itself. Based on the assumption of risk-neutrality which

means that the sum of the expected prices in T , adjusted for its probability is equal
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to S0 in addition to the accrued risk-free interest in the time interval of t0 and T

follows:

q (uS0) + (1� q) (dS0) = erTS0 (1.10)

This means that if p has the value of q in equilibrium the investor would be risk

neutral (Cox, Rubinstein 1985). Under this assumption p = (erT�d)
u�d = q and

1 � p = (u�erT )
u�d = 1 � q. Finally the price of the call C can be seen as the ex-

pectation of its discounted future value in a risk-neutral world. It should be pointed

out that the expected return of the call C is different to the return of the risk-free

bond B and it will equal the return of the replication portfolio which can be ex-

plained by the same payout pro�le. The return as well as the risk of the call C equals

the underlying which has been �nanced by selling a risk-free bond B and can be in-

terpreted as a �levered long position� on the underlying. In the following the one

time period case should be extended to a two time period model and thereafter gen-

eralised for multiple time periods. Due to the recombining nature of the Cox, Ross,

Rubinstein binomial model the tree will only have three different prices for the two

time period case (Cox, Rubinstein 1985). In the special case of a one time period

binomial tree the claim can be replicated by a replication portfolio existing of one

asset and a risk-free bond. It has been proven that in the one period setting the econ-

omy is arbitrage-free (Cox, Rubinstein 1985). The special case of the economy in

one period can be generalised for multi periods which leads to the conclusion that

a self-�nancing strategy can be established where the portfolio is adjusted period

by period without considering any cash in or out�ows at any time. In a multi pe-

riod binomial tree the capital market is considered to be incomplete on a static view

but dynamically complete. To overcome this hurdle the replication portfolio will be
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dynamically readjusted without considering any external cash �ows. Therefore the

dynamic adjustments are called self-�nancing strategies. The capital market is de-

�ned as dynamically complete if each single time period is complete (Schlag 2004).

S

uS

dS

d2S

u2S

duS

Figure 1.6: Price Development in a Two Time Period Binomial Tree

The same will be for the call C.

Cd

Cuu=max(u2SK,0)

Cdu=max(duSK,0)

Cdd=max(d2SK,0)

C

Cu

Figure 1.7: Calculation of the Call Price in a Two Time Period Binomial Tree

For example Cdd is de�ned as the value of the call in two time periods from t0

in the case the stock price moves downwards in each time period the analogues will

be true for Cdu and Cuu. Using the equal algorithm as derived so far for the one-

period case the calculation will start recursively from T to compute the results in the
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previous nodes in time t1.

Cu = [pCuu + (1� p)Cud] erT (1.11)

and Cd = [pCdu + (1� p)Cdd] erT

The replication portfolio will look the same. After one time period the replication

has to be rebalanced which means�S and B will be adjusted depending on the state

without considering any cash in-/ or out�ow. � and B will be adjusted in the same

way in each period, so the current price of the call in state u and d in time t1 will be

again C = [pCu + (1� p)Cd] erT : The payout pro�le for the call price C in time t0

in a world with positive interest rates and without any dividends will extend to the

following

C0 =
�
p2Cuu + 2p (1� p)Cud + (1� p)2Cdd

	
e�2rT (1.12)

=

�
p2max [u2S �K; 0] + 2p (1� p)max [d S�K; 0]

+ (1� p)2max (d2S �K; 0)

�
e�2rT

In the last step the two time period case n = 2 will be generalised for any number

of time periods. The solving procedure will always remain the same by starting at

expiration in T and working backwards to t0. As the price follows a transformed

discrete density function f (i) within the binomial model the generalised expression

for n is derived according to (Bronstein 2001):

f (i) =

�
n

i

�
p (1� p)n�1 (1.13)�

n

i

�
=

n!

i! (n� 1)!

f (i) =
n!

i! (n� 1)!p (1� p)
n�1

11



For the sum of the probabilities in each time step the sum always will be
nX
i=1

�
n!

i! (n� 1)!

�
pi (1� p)n�i = 1 (1.14)

Replacing the two-step variables by the derived generalised equation for any n leads

in the limits to equation 1.15:

C0 =

(
nX
i=1

�
n!

i! (n� 1)!

�
pi (1� p)n�i

�
uidn�iS �K

�)
e�nrT (1.15)

For calculating the value of the callC only the states have to be considered where the

call is in the money which means St�K > 0 otherwise the call C defaults worthless

in T (Cox, Rubinstein 1985). De�ningm as the minimum number of upward moves

that the stock price must make over the next n periods for the call to �nish in the

money. According to equation 1.15 all states wherever the call C is in the money

can be described by the following inequality:

umdn�mS > K (1.16)

By equating the algorithm and taking the natural logarithm

m =
ln
�
K
Sdn

�
ln
�
u
d

� . (1.17)

For all i < m the price of the call C is zero, for all i > m the price of the call is

C0 = u
idn�iS �K which leads to starting the index atm instead of 0: Therefore,

C0 =

(
nX
i=m

�
n!

i! (n� 1)!

�
pi (1� p)n�i

�
uidn�iS �K

�)
e�nrT : (1.18)

Even in the case it might happen that the stock price moves up in each state and

a > n: This means that the stock will �nish out-of-the-money and the price of the

call C must be 0. By splitting the binomial equation into two parts the equation can
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be further simpli�ed:

C0 = S0

"
nX
i=m

�
n!

i! (n� 1)!

�
pi (1� p)n�i

�
uidn�i

erTn

�#
(1.19)

�Ke�rTn
"

nX
i=m

�
n!

i! (n� 1)!

�
pi (1� p)n�i

#
(1.20)

Both parts of the equation can be expressed as a binomial distribution ofm;n; p and

p0 respectively. By replacing the second part of the equation by the complementary

binomial distribution function � [m;n; p] and the �rst part of the equation by the

complementary binomial distribution function � [m;n; p0] where p is de�ned as p0 ��
ue�rT

�
p and (1� p0) =

�
de�rT

�
(1� p) the equation will change to

pi (1� p)n�i
�
uidn�i

erTn

�
= p0 (1� p0)n�i (1.21)

The following equation is the generalised form of the binomial equation from Cox,

Ross and Rubinstein (Cox, Ross and Rubinstein, 1979)

C0 = S0� [m;n; p
0]�Ke�rTn� [m;n; p] (1.22)

Furthermore it is de�ned p � (erT�d)
u�d , p0 � uerTp and m is de�ned as the smallest

integer index which is larger than log
�
X
Sdn

�
= log

�
u
d

�
(Cox, Rubinstein 1985):

Finally the calculation of the price of a call C will be shown for a one time period

as well as a two time period case. Supposing the following example S0 = 10;

u = 1:4; d = 0:6, r = 6%, K = 12 and considering either an expiration in n = 1 or

respectively in n = 2: The calculation of the probability p yields:

p =
erT � d
u� d =

e0:06�1 � 0:06
1:4� 0:6 = 0:577 (1.23)

By inserting in the basis equation the following call price will be calculated:

C0 = [0:577� 2 + (1� 0:577)� 0] e�0:06�1 = 1:087 (1.24)
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As expected the call price C0 is equal to the one calculated at the beginning of the

derivation of the algorithm. For the two time period case the result changes accord-

ingly:

C0 =
�
0:5772 � 7:6 + 2� 0:577 (1� 0:577)� 0 + (1� 0:577)2 � 0

�
e�0:06�2 = 2:244

(1.25)

By increasing the number of timesteps per period the prices calculated within the

discrete binomial model from Cox, Ross and Rubinstein converge to the fair price

calculated by the Black and Scholes model in continuous times.

For companies which are either private or exposed to extreme uncertainties, it can-

not be assumed that all cash �ows can be perfectly duplicated. Therefore the market

for the company valuation can be assumed to be incomplete. Knowing that incom-

plete markets weaken the concept of arbitrage-free valuation, the question arises

whether the concept of arbitrage-free valuation can still be applied for those com-

panies, and what costs may arise from the nonexistence of the complete market as-

sumption. At this point the idea of optimising (or in this case minimising the excess

value of) the replication portfolio even in an incomplete market is an appealing ap-

proach to incorporate an approximate no-arbitrage assumption for the valuation of

these companies.

1.3 Dynamic Programming

Already in 1957, Bellman produced the �rst algorithm to exactly solve the 0-

1 knapsack problem (Bellman 1957). Dantzig was able to contribute an ef�cient

approximation solution by relaxing the exact algorithm and determining an upper

bound to the exact solution in 1963 (Dantzig 1963). In the sixties, especially Gilmore
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and Gomory focused on solving knapsack problems by dynamic programming. In

the seventies, the research was dominated by exploring different branch and bound

algorithms to allow for solving problems with large numbers of variables; one of the

most well known was developed by Horowitz and Sahni. The prototype problem is

formulated as follows where fn (w) is the value function:

fn (w) = max

nX
j=1

ajkj (1.26)

subject to
nX
j=1

hjkj � w;

kj = 0 or 1; j = 1; :::; n:

Within the given algorithm, the different items are numbered from 1 to n: 1 to

n translates to the different traded assets within the company valuation algorithm.

a is de�ned as the wealth of the object j or the price of the traded asset within the

company valuation algorithm and hj is de�ned as the the size or weight of the item

j. Finally, w is the overall capacity the knapsack or container can hold and w will

be de�ned as the capacity that has been utilised in the knapsack already. Assigned to

the company valuation w is comparable to the company value. kj (j = 1; :::; n) is a

vector of binary variables, because you can either choose to select the item j; which

means kj = 1 or it will not carried within the knapsack:

kj =

�
1 if object j is selected;
0 otherwise. (1.27)

The intention of the basis knapsack problem is to maximise the overall value

fn (w) which can be carried within the knapsack or container, which is equivalent

to the optimal solution value f �n (w). Within the developed company valuation al-

gorithm the goal will be to minimise the overall wealth that has to be invested in a
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replication portfolio which at least replicates the company cash �ows in all states.

For the prototype problem the value function would have the following form con-

sidering the �rst item to be carried within the knapsack:

f1 (w) =

�
0 for w = 0; :::; h1 � 1;
a1 for w = h1; :::;m:

(1.28)

Generalised, dynamic programming consists of considering n stages one stage

for each item and computing at each stage or for each item the values fn (w) (for w

increasing from 0 to w) using the recursion according to (Bellman 1957):

fn (w) =

�
fn�1 (w) for w = 0; :::; hn � 1;
max (fn�1 (w) ; fn�1 (w � hn) + an) for w = hn; :::; w:

(1.29)

In the following an exact solution by dynamic programming will be developed which

has been applied in the forthcoming company valuation algorithm. It is assumed that

pro�ts aj; sizes hj and capacities w are positive integers. The solution principle of

dynamic programming within the context of the knapsack problem will be demon-

strated by the following example:

f0 (w) = max (3k1 + 4k2 + 2k3 + 3k4) (1.30)

subject to 3k1 + 4k2 + 2k3 + 3k4 � 9

kj 2 f0; 1g j 2 1; :::; 4

kj (j = 1; :::; 4) is again de�ned as a vector of binary variables. At step j will be

decided on kj; kj = 1 means item j will be carried in the knapsack or kj = 0; it

will not. The recursion will start recursively by considering if item j = 4 will be

included in the knapsack or not and will �nish by reaching a decision for j = 1 with
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the goal to compute the optimal solution value f0 (w).

Figure 1.8: Dynamic Programming Solution in a Knapsack Problem

The utilised capacity, will be w4 = 0. The goal is to maximise the value of f0 (w)

in this stepwise process which will be reached by maximising
P
ajkj for j 2 1; :::; 4:

At j = 3 a capacity of maximum w3 = 1 is utilised, corresponding to the set of all

possible used capacities at this stage W3 = f0; 1g. The following steps yield the

utilised capacities in the knapsack W2 = f0; :::; 5g, W1 = f0; :::; 7g and W0 =

f0; :::; 9g ; depending if item j has been included in the knapsack or not. Besides

the capacity the maximum value has been listed which can be calculated as follows:

E.g. for w2 = 5 the value f �2 (5) = max ff �3 (1) ; f�2 (5)g = max f3; 2 + 5g = 5:

The bold arrows represent the optimal solution policies k�1 = k�2 = 1; k�3 = 0,

k�4 = 1 with the maximum possible value f �n (9) = 10: In the following tables the

recursive solution process starting with step j = 4 will be shown. In the �rst column

the possible utilised capacities Wj�1 are listed, in the second column all potential

policies for kj for item j are listed, in the �fth the overall pro�t fj�1 (wj�1) : The

third column holds the utilised capacitiesWj in the knapsack for the states that have

been considered for the previous item j and in the fourth column the change in pro�t

fj (wj)� fj�1 (wj�1) is stated.
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j=4 j=3
M3 k4 M4 f3(m3)f4(m4) f*4(m4) f3(m3) M2 k3 M3 f2(m2)f3(m3) f*3(m3) f2(m2)

{0} 0 * {0} 0 0 0* {0,1} 0 * {0,1} 0 3 3 *
{1} 1 * {0} 3 0 3* {4} 1 {0} 2 0 2

{1} 0 {1} 0 3 3
{5} 1 * {1} 2 3 5 *

j=2 j=1
M1 k2 M2 f1(m1)f2(m2) f*2(m2) f1(m1) M0 k1 M1 f0(m0)f1(m1) f*1(m1) f0(m0)

{0,… ,5} 0 {0,… ,4} 0 5 5 {0,… ,6} 0 {0,… ,6} 0 7 9
{0,… ,6} 1 * {0,… ,4} 4 3 7 * {0,… ,9} 1 * {0,… ,6} 3 7 10 *

{5} 0 {5} 0 5 5 {7} 0 * {7} 0 9 9 *
{7} 1 * {5} 4 5 9 *

Figure 1.9: Recursive Dynamic Programming Solution in a Knapsack Problem

Within the Horowitz and Sahni algorithm the different items are ordered accord-

ing to decreasing pro�ts per unit size so that:

a1
h1
� a2
h2
� ::: � an

hn
: (1.31)

For the company valuation algorithm, sorting by decreasing pro�ts is not feasible

in the given way and will be demonstrated later on. Horowitz and Sahni have de-

veloped a basis principle for more ef�cient computation of the upper bounds which

includes ordering the items according to decreasing pro�ts per unit. The procedure

starts with a so-called forward move by inserting the largest possible set of items

which do not exceed the capacity w: In a next step a backtracking move follows by

removing the last inserted item from the current solution. This iterative procedure

will be initiated as follows. Whenever no further forward move without exceeding

capacity w can be performed, the upper bound U1 corresponding to the current op-

timal policy kj for item j is computed and compared with the best policy so far

k�j : This procedure will be performed to check if a further forward move could lead

to a better solution which means an improved solution value fj (w). In that case a

forward move is performed otherwise a backtracking move follows. After having
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considered the last item the solution procedure is �nished and the optimal solution

has been kept in each iteration. The algorithm stops when no further backtracking

moves can be performed. In the following the notation of the solution algorithm is

summarised (Martello and Toth 1990):

kj = current best policy; (1.32)

fj (w) = current value

 
=

nX
j=1

ajkj

!
;

w = utilised capacity in the knapsack

 
=

nX
hjkj

!
;

k�j = best policy computed so far.

f �j (w) = value of the best solution so far

 
=

nX
j=1

ajkj

!
:

The company valuation algorithm that is going to be developed will have the form

of an unbounded knapsack problem. This means an unlimited number of items of

each asset is available and can be used to at least replicate the company cash �ows.

For solving this algorithm dynamic programming has been applied which allows e.g.

a recursive solution of a complex problem. Dynamic programming offers a solution

procedure to reach an optimal solution for a complex problem by solving a number

of consecutive subproblems. The main characteristics lies within the sequential pro-

cedure through several steps. In any step only the decision within the subproblem

will be considered.

In the following the coding of the algorithm should be explained by an example

in some detail applying dynamic programming for an adjusted unbounded knapsack

problem:
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a1(1): 1
a1(2): 2
b1 : 2

a2(1): 2
a2(2):  1
b2 :   5

a3(1): 1
a3(2):  3
b3 :   6

Figure 1.10: Replication Example

The iteration starts by having no w on hand which is de�ned as the value or the

capacity the knapsack can hold. In this situation no asset or item a1 can be bought

or carried. This implies that the function to calculate the de�cit in the states equals

the overall de�cit, which should be completely recovered e.g. f2 (0) = 5 � 0: The

maximum of the de�cit in both states in the given example is depicted in the last

column of the table. By increasing the capacity w of the knapsack by one unit after

the other more and more items a1 with a weight or price of 1 in the initiating node

can be carried or bought. For e.g. w = 3 the calculation is as follows:

max (f2 (3) ; f3 (3)) = max (5� 3� 2; 6� 3� 1) = 3:

w will be increased to the point that its portfolios consisting only out of a1 at least

replicate the company cash �ows in the vertices v2 and v3 :

max (f2 (w) ; f3 (w)) = 0 (1.33)

With that w = U1. U is de�ned as an upper bound of the problem, i.e. U1 is

the �rst investment which at least replicates the company cash �ows within this state

space. This result is expressed by f(w) � 0: The number of assets a1 that can be
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bought for U1 will be stored.

w a(1) f2(w) f3(w) max(f2(w); f3(w))
0 0 5 6 6
1 1 3 5 5
2 2 1 4 4
3 3 �1 3 3
4 4 �3 2 2
5 5 �5 1 1
6 6 �7 0 0

Table 1.2: First Step Replication Process

In the second step the iteration starts from the now determined upper bound U1.

The goal of the company valuation algorithm will be to minimise the value, weight

or costs w but to reach at least the pro�t of b2 as well as b3 not knowing which root to

follow because of being located in state i: Now so many assets a1 will be sold that at

least one asset a2 can be bought with the remaining wealth U1� ((n1 � 1)� a1) =M

w: The de�cit that remains if only one unit of a2 would be on hand is calculated in

column four in the same way as in the �rst step. This value generation of f2 (6; 1) =

1 will be subtracted from the de�cit, which has been calculated for f2 (6� 2) = �3

in the �rst step of the replication process.

w a(1) a(2) f2(w; a(2)) f2(w) f2(w; a(2)) f3(w) max(f2(w); f3(w))
0 0 0 0 5 6 6 6
1 0 0 0 5 6 6 6
2 0 1 1 4 3 3 4
3 1 1 1 2 3 2 2
4 2 1 1 0 3 1 1
5 3 1 1 �2 3 0 0
6 4 1 1 �4 3 �1 �1

Table 1.3: Second Step Replication Process

The maximum possible de�cit at both nodes will be calculated again. In case the

replication is now more ef�cient, a smaller residual value for the cash �ow replica-

tion in any node will be obtained. The additional investment in a2 will be calculated.

In case U2 < U1, U2 will substitute U1. The related portfolio combination will be

stored accordingly. The iteration stops when no item a2 can be bought anymore for
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the remaining wealth. Within this result, it can be seen, that a reduction in wealth w

can be reached by having replaced 2 items a1 by 1 item a2: The minimum costs to

replicate the pro�t in the next nodes has been reduced now to w = 5.

w a(1) a(2) f2(w; a(2)) f2(w) f2(w; a(2)) f3(w) max(f2(w); f3(w))
0 0 0 0 5 6 6 6
1 0 0 0 5 6 6 6
2 0 0 0 5 6 6 6
3 0 0 0 5 6 6 6
4 0 2 2 2 0 �3 2
5 1 2 2 0 0 �4 0

Table 1.4: Third Step Replication Process

In a third step , the number of items a2 will be increased furthermore. In the case

a better solution will be found the new solution including its bit pattern of number

of each item being bought will be stored. The iteration will run through a1; a2:::an.

As it can be seen, sorting according to its wealth contribution is not feasible for this

way of implementation because the wealth contribution is dependent on the company

cash �ows bi as well as the prices ai of the assets in the outvertices.
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1.4 Real Option Valuation

The contingent claim valuation assumes the existence of a large set of risky assets

so that the stochastic component of the investment project under consideration can

exactly be replicated. Through appropriate long and short positions, a riskless port-

folio can be constructed consisting of the risky project and traded assets which track

the project's uncertainty. In equilibrium with no-arbitrage opportunities, this portfo-

lio must earn the risk-free rate of interest which allows to determine the value of the

investment project. The no-arbitrage assumption avoids the necessity of determin-

ing the appropriate risk-adjusted discount rate. Schwartz states that the contingent

claim approach is the only correct approach to valuing real options: �If what the

decision-maker is trying to get is the market value of the project, then, obviously, a

subjective discount rate will not do the job� (Schwartz, Trigeorgis 2001). According

to the markov property, moving forward from any given state in the tree only de-

pends on the current underlying asset value and not on the history leading up to that

state. The geometric brownian motion is one stochastic process holding the markov

property. According to the Law of One Price, the state cash �ows for these recom-

bined underlying asset price states can be replicated by continuous trading in the

underlying asset and the states risk-free cash without additional cash investments.

The sequence of portfolios formed by the process are called "replicating portfolios",

which are traded according to a "dynamic replication strategy". The relevant condi-

tions, used by Black, Scholes and Merton, are that: First, the term structure of prices

to risk-free cash must be known with certainty; second, the dividends from the equity

and the uncertainty in its price must depend only on time and that price; and third,

the asset price uncertainty must be compact thus continuous replication is feasible.
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Assuming that these conditions are met, the �ve relevant parameters for calculation

of contingent claims are:

(1) the strike price K;

(2) the stock price S;

(3) the risk-free interest rate r;

(4) the amount and timing of any dividend to be paid before exercise T ; and

(5) the uncertainty (or �volatility�) in the stock price �.

Within this framework of contingency claim valuation intensi�ed research has

been undertaken since the eighties. The initial applications and their extensions have

in�uenced much of the early work in the market based valuation approach for real as-

sets. Plenty research was undertaken by drawing analogies to the Black, Scholes and

Merton analysis of equity options. Well known examples of this work include: The

analysis of the option to delay initiation of a project (McDonald and Siegel 1986);

an empirical analysis of the value of offshore oil �eld leases (Paddock, Siegel and

Smith, 1988) and the analysis of the option for premature abandonment of a project

from (McDonald and Siegel, 1985). All of these approaches use the claim to the op-

erating cash �ows of the underlying project as the asset analogous to the corporate

equity in the stock option analysis. Some of them analyse �timing options� by deter-

mining a boundary, possibly dependent on time, between two sets in the underlying

asset price. In one of these sets, on one side of the boundary, the managers should act

to change the state of the project, and in the other set, on the other side of the bound-

ary, they would wait if allowed to do so, but at least not change the state of the project
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as they are forced to do on the other side of the boundary. There are major problems

with this type of approaches. The claim to the operating cash �ows of a real project

has complicated dynamics that are dif�cult to model transparently over time scales.

In particular the assumption that the analogy of the �ow of stock dividends in the

stock option analysis is the operating cash �ow itself, is limited. The Black, Scholes

and Merton condition with the cash �ow at any time depending only on time and

the concurrent value of the claim to the whole stream of cash �ows is very restric-

tive. For example, if the cash �ow is proportional to the value (Majd and Pindyck,

1987), it cannot be negative. The value of the claim to the cash �ow stream should

be modelled in terms of the cash �ows themselves, if possible, and not the other way

around. Furthermore the condition that the uncertainty in the value of the operat-

ing cash �ows depends only on that value is again very restrictive. After this early

work, there was a shift to scenario trees where the scenario tree variables are the de-

terminants of the project cash �ows. As a result, the scenarios in the scenario trees

are more like the ones that would be used in a standard DCF analysis. This type of

scenario trees also provides a much broader modelling environment. The shift had

already begun within the valuation by components framework of (Lessard 1979).

However, the key step was the use of the copper price as a scenario tree variable by

(Brennan and Schwartz 1985) in their real option valuation analysis of copper mines

that can be temporarily closed. They use the copper price in almost the same way

that (Black, Scholes 1973) and (Merton 1973b) use the underlying asset price in their

analysis. Like the underlying asset price in the stock option analysis, it is a variable

that evolves continuously. In their model, a complete understanding of the future

of the copper market moving forward from any given state in the tree only depends
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on the current copper price then, and not on the history leading up to that state. By

this means, they build on the work of (Cox, Ingersoll and Ross 1985-a) who use the

short-term interest rate as a scenario tree variable in a valuation of long-term bonds

and bond options. Brennan and Schwartz also use the remaining amount of copper

in the mine, and the state of the mine (open or closed) as scenario tree variables.

The mine cash �ows and the actions of managers depend on these variables as well

as the copper price. Although they do not have any independent uncertainty in the

Brennan-Schwartz model, these variables do depend on the prior history of copper

prices which would have in�uenced prior opening and closing decisions. Instead of

using the whole price history to index states on the tree, Brennan and Schwartz use

these �auxiliary� scenario tree variables to represent those aspects of the history that

have an in�uence on future cash �ows. They did not include any geological or tech-

nological uncertainty and no independent cost uncertainty. They only use the output

price. In their model the relevant dynamics of that output price is only in�uenced

by itself. No independent uncertainties of interest rates, dividends or other prices

in�uence the future cash �ows. They chose this approach to keep the dynamic pro-

gramming search for optimal opening and closing policies feasible. However, they

allow cash �ows to occur continuously and allow decisions about opening or closing

the mine to take place at any time. In almost all discounted cash �ow (DCF) analy-

ses, cash �ows are modelled to occur at discrete (usually annual) time intervals. In

most decision tree analyses, decisions and payoffs are also restricted to occur at dis-

crete times. In reality, cash �ows occur on an almost continuous basis with some

large �ows at discrete intervals or random discrete times. Most regular planning

decisions occur within the context of a periodic planning cycle, while some extraor-
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dinary decisions occur at random times. The real option valuation can be simpli�ed

signi�cantly if cash �ows and decisions are modelled to occur at discrete intervals as

in typical DCF and decision tree analysis (DTA). If these discrete intervals are con-

sidered, only a �nite number of the characteristics of each scenario on the scenario

tree comes into play, as opposed to a continuously in�nite set. There are other sim-

pli�cations that occur in the analysis of timing options and their effects. The errors

caused by restricting on discrete cash �ows and decisions can be tested by examin-

ing the changes in the results that occur as the time interval is decreased. According

to the undertaken research, the size of the errors involved are acceptable related to

other uncertainties for valuing private companies. The scenario tree variables thus

far involve priced risks. Unpriced risks (i.e., risks for which the price of risk is zero)

can also be important. Recall that these include local, project-speci�c risks that do

not in�uence the risk discounting in �nancial market prices because their effect is

not noticeable in the determinants of the welfare of the marginal well-diversi�ed

investor. Moreover, the timing of their resolution is frequently in�uenced by man-

agement action which makes them �endogenous� uncertainties.

In the real world, most decisions consist of several consecutive decisions, where

the results of the decision in the �rst stage triggers the possible decisions in the

next stage. To solve such consecutive decisions, decision trees are very often used.

The frequently encountered technique is the decision tree analysis. The approach

has several shortcomings. Two major ones are: The decision tree analysis takes the

probabilities into account which can only be estimated, but are generally not known

exactly; second, the decision tree is planned from time t = 0 until T without taking

into account any external in�uences, what means that the approach is not dynamic.
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Nevertheless, by applying the technique of dynamic programming, at least some of

the major shortcomings can be resolved. At each state in the scenario tree, the com-

putational aspects of a dynamic programme are: First, the determination of the value

of the asset for each action available at that state, where the value is the sum of:

a) the cash �ow resulting from that action in that state; and b) the value stemming

from each follow-on state, in case those is any for that action; and second, the de-

termination of the most valuable action. The scenario trees used thus far in most

real option valuation applications are analogues of the trees used by (Black, Scholes

1973) and (Merton 1973b) in their original applications. They partly represent the

resolution of the uncertainty in continuous time in a �nite set of continuous time se-

ries variables involving priced risks. The risk-adjusted movements in these variables

are self-contained and follow a markov process. The uncertainty in the movements

allows for replication which has been already demonstrated. As a result, at each

instant in continuous time, there is a single-dimensional continuum of recombined

states, labelled by the variable involved. This variable will be called the "under-

lying" variable, and their states the "underlying states" of the analysis. For most

applications reported so far, the sum over states is done by numerical integration.

Accuracy, stability, ef�ciency and generality are important considerations in choos-

ing a computational method for this purpose. The Cox, Ross and Rubinstein tree

(Cox, Ross and Rubinstein, 1979) is a recombining tree which performs state pric-

ing calculations. Cox, Ross and Rubinstein use the state prices to calculate the value

of �nancial assets. The method is based on a discrete approximation to the underly-

ing continuous scenario tree. The focus should be on situations with one underlying

variable, where the risk-adjusted process for movement of this variable through time
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is a single-factor geometric brownian motion. These are the dynamics of the underly-

ing variable in the original work of Black and Scholes as well as Merton which have

been applied by Brennan and Schwartz in their price model (Brennan and Schwartz

1985). The time periods in the discrete approximation are small. The continuous

uncertainty at any state is represented in each of these small time periods by two

branches. As a result, the methods are most often called �binomial tree� methods.

Each branch is designed in the way that the magnitude of the underlying variable in

the state to which the branch leads is proportional to the magnitude of the underly-

ing variable in the state from which it originates. If the constants of proportionality

are time independent, the branching can be designed to recombine. The same num-

ber of up and down movements results in the underlying variable having the same

magnitude, and thus being in the same recombined state, independent of the order in

which the movements occur. Cox, Ross and Rubinstein show how to calculate the

risk-adjusted probabilities on this approximate tree which leads to the limit of small

time steps to a convergence of continuous time risk-adjusted probabilities. If the as-

set cash �ow in any state only depends on the simultaneous underlying variable, the

dynamic programming calculations can then be performed on this discrete approx-

imation using the Cox, Ross and Rubinstein risk-adjusted probabilities. Trigeorgis

describes the stability properties of this process and a logarithmic version of it (Tri-

georgis 1996). To be stable, both require limits on the size of the time step. In the

following a classi�cation of the research on real options and their main contributors

according to (Micalizzi and Trigeorgis 1999) is given:
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Real Options Description Speci�c applications References
Deferment
or temporary
suspension

Option to postpone
the investment out-
lay or to temporar-
ily suspend produc-
tion while preserving
the technical feasibil-
ity of the project

Natural resources and oil,
real estate and vacant
land, launch of new prod-
ucts

Mc Donald & Siegel
(1986), Paddock-
Siegel-Smith (1988),
Ingersoll-Ross
(1992), Triegeorgis
(1990)

Expansion Option to expand the
scale of the project
by investing an addi-
tional amount of cap-
ital as exercise price

Launch of new prod-
ucts or new versions of
the base products, target-
ing new market niches,
entering new geographi-
cal markets, strategic al-
liances

Kester (1984), Mc
Donald & Siegel
(1985), Trigeorgis
(1988) Christo�des
A, (2004)

Switching Option to switch
among alternative
operating modes ac-
cording to the relative
�uctuation of some
reference variables

Research and develop-
ment, geographical di-
versi�cation, global cost
reduction strategy

Kensinger (1988),
Kulatilaka (1988),
Kulatilaka and Tri-
georgis (1993)
Margrabe (1978)

Contraction
and/or aban-
donment

Option to reduce the
scale of the project,
or to abandon it to re-
alise ist scrap value

Altering the R&D
process, withdrawing
from a market niche,
reducing the capital in-
vested in a business
unit

Myers & Majd
(1990)

Table 1.5: Real Options Classi�cation and Major Authors
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Chapter 2

The Company Valuation Algorithm

In this section, the general company valuation algorithm will be developed. The

valuation framework underlying the algorithm is based on the work in (Christo�des

A. 2004) and the general derivative pricing paradigm of (Black, Scholes 1973), (Mer-

ton 1973b), (Ross, 1976), (Cox, Ingersoll and Ross 1985-a) and others.

2.1 The Basic Algorithm

The starting point is the assumption that the value of a company is a function of

its future cash �ows. By far the simplest model in this framework is the discounted

cash �ow model (DCF) where only expected cash �ows are considered (i.e. the un-

certainty in the future realised cash �ows is ignored) and the valuation function is

the discounted value of this expected cash �ow using today's (deterministic) yield

curve as the discounting function. The DCF method is often used because of its sim-

plicity. It is quite accurate for stable cash �ows (and staid) companies. The dif�culty

to choose the right discount factor arises quite often, which is normally derived by

the capital asset pricing model (CAPM). It can be summarised from empirical evi-

dence that the CAPM beta does not completely explain the cross section of expected

asset returns5 cited from (Claessens Dasgupta and Glen 1995). This evidence sug-

gests that at least one further factor may be required to characterise the behaviour

of expected returns and naturally leads to the consideration of multifactor pricing

models. Additionally, theoretical arguments suggest that more than one factor is re-

5 After much testing, numerous empirical anomalies about the CAPM cast doubt on the central hypoth-
esis of that theory: that on a cross-sectional basis a positive relationship exists between asset returns
and assets' relative riskiness as measured by their � .
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quired, since the CAPM will only apply under strong assumptions period by period

(Campbell, Lo and MacKinlay 1997). In the forthcoming of the work, a model based

on the idea of contingent claim valuation should be developed which by-passes the

above mentioned dif�culties and shortcomings of the discount factors derived by the

CAPM and applied for the DCF valuation.

2.1.1 Derivation of the Algorithm

The required valuation procedure for company cash �ows as in option pricing

is independent of the real transition probabilities and depends only on risk-neutral

probabilities. Assuming company cash �ows evolving over time with an increasing

magnitude of uncertainty can be captured in a n-dimensional tree; in the simplest

case in a non-recombining binomial tree. Each vertex v of the transition graph has

a corresponding cash �ow b caused by the sales (or other company activities) at that

vertex. These possible future cash �ows can at least be "replicated", without the

existence of the company by investing in portfolios of traded non-company assets

Yi (a) at the beginning, and trading these portfolios as the future evolves. In general,

starting at the root vertex v0 let Vi be the corresponding vertex set that can be reached

from vertex vi. Furthermore it is de�ned that vj 2 Vi:

V0

vi

v2 vj

Vj

Vj+1

Viv1

^

Figure 2.1: Company Valuation Setting
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At every vertex vi that occurs, an amount �i.will be "paid". The values of �i.are

not given, but it should be assumed that �i "replicates" the computed company cash

�ow bi at that vertex. The remaining wealth (wi � �i) will be invested optimally in

portfolios of assets Yi(wi � �i) = fyi (1) ; yi (2) ; :::g in the way that in the vertex

set Vi the wealth of the portfolio will be at least equal to the company cash �ows bj:

Therefore: wj (yi) � bj: The minimum wealth wi that has to be invested at vertex v0

in portfolios Y0 after paying out �0 = b0 to replicate the current company cash �ow

and all potential future cash �ows of the company bi in the vertex set Vi is equal to

the current value of the company. Therefore, in each state, the portfolio yi is traded

optimally so that �i.will be "paid" to "replicate" the computed company cash �ow bi

at that vertex.

b1 –ß1 = 0 and
w1 –ß1 = a1(1) x k1(1) + a1(2) x k1(2)…

b2 = a2(1) x k1(1) + a2(2) x k1(2)…

b3 = a3(1) x k1(1) + a3(2) x k1(2)…

Figure 2.2: Company Valuation Algorithm

The solution procedure that is shown graphically can be transferred in a matrix

form. The asset price is denominated by a and the number of assets being bought

within one chosen portfolio y is denominated by k: Both variables are labelled by

n = 1; :::; bn for the different assets used within the replication portfolio.
In comparison to building the self-�nancing portfolio within the Cox, Ross and

Rubinstein binomial model which could be bought that exactly "duplicates" the call

C here the situation is slightly different. As stated earlier at least two aspects are

missing for a perfect "duplication" of the company cash �ows bi; �rstly, the market
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is incomplete, and secondly, endogenous company risks which are, e.g. presented by

extreme company cash �ows, so-called outlier cash �ows. Therefore, it is only pos-

sible to replicate as well as possible by searching for the least amount of wi which

�nally minimally "replicates" the company cash �ows. This would mean, the opti-

mal solution of the replication is an upper boundary for the company value, but un-

der some considerations almost equal to the perfect "duplication". The goal can be

achieved by trying to minimise any excess replication. In particular,max[bi� �i; 0];

the "shortfall" at vertex vi should be 0 at every vertex vi:; which results in a repli-

cation of the company cash �ow bi. In the vertices vj; the wealth of the portfo-

lio wj (yi) should be at least as large as the company cash �ow bj and, therefore,

max[bj � wj (yi) ; 0]; the "shortfall" at vertex vj should be 0 as well.

b1 –ß1 ≥ 0 and
w1 –ß1 = a1(1) x k1(1) + a1(2) x k1(2)…

b2 ≥ a2(1) x k1(1) + a2(2) x k1(2)…

b3≥ a3(1) x k1(1)+ a3(2) x k1(2)…

Figure 2.3: Company Valuation Algorithm Adjusted

Combining both requirements for vertex vi as well as for the vertices vj leads to

a function fi (w) which minimises the shortfall achievable at all vertices vj 2 Vi

starting with wealth w at vertex vi, before rebalancing. The following algorithm by

(Christo�des A. 2004) for one time period will be derived,

fi (w) = min
0��i�w

�
max

�
max (bi � �i; 0) ; min

yi�Yi(w��i)

�
max
vj�Vi

[fj (wj (yi))]

���
(2.1)
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where Yi (wi � �i) is written for the set of all portfolios that can be bought for an

amount of money wi��i at vertex vi; and wj (y) is the value of one speci�c portfolio

y at vertex vj . The initialisation of the above recursion is given by

fj (w) = max (bj � w; 0) ; 8 vj�Vi. (2.2)

An overview of equation (2.1) that provides some insight into the recursion is as

follows:

(a) Starting with wealth w at vertex vi implies that we have the choice of "allocat-

ing" an amount of money �i (where 0 � �i � w ) to the process of "replicating" the

payoff of the company at that vertex. The measure of how good this replication is, is

given by (bi � �i; 0) i.e. if �i � bi the company payoff at vi is fully replicated , but

if �i < bi then there is a shortfall in replication of the company payoff at vertex vi:

(b) The wealth remaining at vertex vi after the "allocation" of �i is w � �i: The

portfolios that can be bought at vi with this amount of money are given by the set

Yi (w � �i) : Suppose that portfolio yi 2 Yi (w � bi) is bought at vi: The value of this

portfolio at state vj 2 Vi (if state vj occurs after vi) is wj (yi) and obviously depends

on the asset prices at vj: The minimum shortfall in the replication of the company

payoffs at all vertices vk following vertex vj (i.e. all vertices in the subtree rooted

at vj) is - by de�nition - fj (wj (yi)) : This shortfall clearly depends on the choice

of portfolio yi that was chosen at vi. For a given yi at vi, the best best replication

possible is max
vj2Vi

[fj (wj (yi))] and hence the best replication at all vertices following

vertex vi is

min
yi�Yi(w��i)

�
max
vj�Vi

[fj (wj (yi))]

�
(2.3)

35



as shown by the last term of equation (2.1).

(c) The only arbitrary decision remaining is the amount �i allocated at vi and this

determines if the vertex with the worst replication shortfall is vi or another vertex

following vi hence for a given �i; the worst shortfall is

max

�
max (bi � �i; 0) ; min

yi�Yi(w��i)

�
max
vj�Vi

[fj (wj (yi))]

��
. (2.4)

Hence fi (w) is the minimum value above for all possible choices 0 � �i � w;

which is the recursion (2.1). Note that, in fact, �i is never optimal for �i > bi and

we can write 0 � �i � min (w; bi) instead of 0 � �i � w:

For solving the state space graph, all vertices will be solved recursively starting in

T: The calculated result of the company value of the one time period setting will then

substitute bi at vertex vi in T � 1: It has to be pointed out that the market represented

by the state transition graph is almost certainly incomplete. Would the market be

complete, the valuations had been exact because of the no-arbitrage condition (i.e.

there should be no risk-free pro�ts buying/selling the company and buying/selling

other non company assets). Exact replication would then also be possible. With the

market being incomplete, exact replication is impossible and the above expressions

are not more than upper bounds of the company valuation. Due to the degree of

control over the dimensionality of the state space graph, the out-degree of the vertices

can be kept small which avoids high levels of incompleteness and produces bounds

very close to the company value.

2.1.2 First Example of the Basic Company Valuation Algorithm

In the following, a numerical example will be demonstrated using only integers

as input factors in the basic company valuation algorithm. The company cash �ows
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evolving over time with an increasing magnitude of uncertainty will be captured in

a non-recombining binomial tree in the simplest example. Each vertex vi of the

transition graph has a corresponding company cash �ow bi. These possible future

cash �ows will be "replicated" by a set of portfolios Yi investing in traded non-

company assets ai at the beginning and trading these portfolios as the future evolves.

The minimum cost wmin which enables to replicate the company cash �ows bi is

equal to the value of the company as shown in the following example for a single

time period.

a1(1): 1
a1(2): 2
b1 : 2

a2(1): 2
a2(2):  1
b2 :   5

a3(1): 1
a3(2):  3
b3 :   6

Figure 2.4: Example Valuation One Period

It is known that the least amount of wealth wi to replicate the company cash �ows

has to ful�ll the boundary condition bj�wj � 0: Therefore, wealth wj at time T has

to be at least the amount bj at time T . w1 = 1 will be chosen as a starting value in v1:

This wealth w1 will be split in an investment in replication portfolios Y1 (w1 � �1)

and a payout �1. The value of �1 "replicates" the computed company cash �ow b1.

Therefore, w1 � �1 = 1 � 2 = �1 not even replicates the company cash �ow b1:

The remaining wealth, if there is any, could be invested in portfolios Y1 (w1 � �1).

As an educated guess, w1 = 7 will be chosen. In a �rst step, the company cash

�ow b1 will be replicated by a cash-out�ow �1 which leads to max[b1 � �1; 0] =
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max[2 � 2; 0] = 0: Now the remaining wealth w1 � �1 = 7 � 2 = 5 will be

invested in portfolios Y1 (w1 � �1) with the following asset prices a1 (1) ; a1 (2) in

the chosen example. This yields the following portfolio combinations considering

only investment in integers of an asset; i.e. w1 � �1 = 5 = y1 =
�
0
2:5

�
= k1 (1) �

a1 (1)+k1 (2)�a1 (2) = 0�1+2:5�2: All other portfolio combinations are listed

as followed:

Y1 (w1 � �1) = 5 =
��

0

2:5

�
;

�
1

2

�
;

�
2

1:5

�
;

�
3

1

�
;

�
4

0:5

�
;

�
5

0

��
(2.5)

The �rst portfolio combination yi =
�
0
2:5

�
leads to the following result at vertex v2:

(w2 (y1)) = (0� 2 + 2:5� 1) = 2:5 and (2.6)

f2 (w2 (y1)) = max(b2 � w2; 0)

= max(5� 2:5; 0)

= 2:5

and at v3:

(w3 (y1)) = (0� 1 + 2:5� 3) = 7:5 and (2.7)

f3 (w3 (y1)) = max(b3 � w3; 0)

= max (6� 7:5; 0)

= 0

therefore:

f1 (w1 (y1)) = max [f2 (w2 (y1)) ; f3 (w3 (y1))] (2.8)

= max [2:5; 0]

= 2:5
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This calculation will be conducted with all six portfolio combinations listed above.

The second portfolio combination yi =
�
1
2

�
leads to the following result at vertex v2:

(w2 (y1)) = (1� 2 + 2� 1) = 3 and (2.9)

f2 (w2 (y1)) = max(b2 � w2; 0)

= max(5� 3)

= 2

and at v3 :

(w3 (y1)) = (1� 1 + 2� 3) = 7 and (2.10)

f3 (w3 (y1)) = max(b3 � w3; 0)

= max (6� 7)

= 0

therefore:

f1 (w1 (y1)) = max [f2 (w2 (y1)) ; f3 (w3 (y1))] (2.11)

= max [2; 0]

= 2

The third portfolio combination y1 =
�
2
1:5

�
leads to the following result at vertex v2:

(w2 (y1)) = (2� 2 + 1:5� 1) = 5:5 and (2.12)

f2 (w2 (y1)) = max(b2 � w2; 0)

= max(5� 5:5; 0)

= 0
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and at v3:

(w3 (y1)) = (2� 1 + 1:5� 3) = 6:5 and (2.13)

f3 (w3 (y1)) = max(b3 � w3; 0)

= max (6� 6:5; 0)

= 0

therefore:

f1 (w1 (y1)) = max [f2 (w2 (y1)) ; f3 (w3 (y1))] (2.14)

= max [0; 0]

= 0

The portfolio combination y1 =
�
3
1

�
leads to the following result at vertex v2:

(w2 (y1)) = (3� 2 + 1� 1) = 7 and (2.15)

f2 (w2 (y1)) = max(b2 � w2; 0)

= max(5� 7; 0)

= 0

and at v3:

(w3 (y1)) = (3� 1 + 1� 3) = 6 and (2.16)

f3 (w3 (y1)) = max(b3 � w3; 0)

= max (6� 6; 0)

= 0
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therefore:

f1 (wV1 (y1)) = max [f2 (w2 (y1)) ; f3 (w3 (y1))] (2.17)

= max [0; 0]

= 0

The �fth portfolio combination y1 =
�
4
0:5

�
leads to the following result at vertex v2:

(w2 (y1)) = (4� 2 + 0:5� 1) = 8:5 and (2.18)

f2 (w2 (y1)) = max(b2 � w2; 0)

= max(5� 8:5; 0)

= 0

and at v3:

(w3 (y1)) = (4� 1 + 0:5� 3) = 5:5 and (2.19)

f3 (w3 (y1)) = max(b3 � w3; 0)

= max (6� 5:5; 0)

= 0:5

therefore:

f1 (w1 (y1)) = max [f2 (w2 (y1)) ; f3 (w3 (y1))] (2.20)

= max [0; 0:5]

= 0:5
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The sixth portfolio combination y1 =
�
5
0

�
leads to the following result at vertex v2:

(w2 (y1)) = (5� 2 + 0� 1) = 10 and (2.21)

f2 (w2 (y1)) = max(b2 � w2; 0)

= max(5� 10; 0)

= 0

and at v3:

(w3 (y1)) = (5� 1 + 0� 3) = 5 and (2.22)

f3 (w3 (y1)) = max(b3 � w3; 0)

= max (6� 5; 0)

= 1

therefore:

f1 (w1 (y1)) = max [f2 (w2 (y1)) ; f3 (w3 (y1))] (2.23)

= max [0; 1]

= 1

For an invested wealth of w1 = 7; all company cash �ows in the vertices v2 and

v3; for the up as well as the down movement can be replicated by investing in cer-

tain portfolio combinations. Therefore, the minimum shortfall that can be achieved

with at least one portfolio combination with an investment w1 � �1 = 7 � 2 =

5 is min
yi�Yi(w��i)

�
max
vj�Vi

[fi (wj (Yi))]

�
= 0. The results for the maximum shortfall

fi (wj (yi)) for all investigated portfolio combination with an invested wealth of
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wi � �i = 5 are:

yi�Y (5) = f2:5; 2; 0; 0; 0:5; 1g (2.24)

This shows that two portfolio combinations y1 =
�
2
1:5

�
;
�
3
1

�
with an invested

wealth w1 = 7 are suf�cient to replicate the company cash �ows b in the vertices

v2 and v3: Since two portfolio combinations are suf�cient to replicate the company

cash �ows b; these are the only optimal and, therefore, the upper bound of the com-

pany value in the case of considering integers. With an interpolation, it is possible

to approximate the optimal solution for the company value w1 which will be in the

range between six and seven:

2.1.3 Comparison to Other Approaches

In a �rst step the company valuation algorithm should be validated by some ex-

amples calculated within the DCF as well as the partial differential equation (PDE)

framework. Due to the fact that the established model is based on the Law of One

Price, the discount rate for the comparable DCF calculations will always be per-

formed with the risk-free interest rate r unless anything else is speci�cally men-

tioned.

Considering a simple generic example:

� Opportunity to invest in a project with a duration of T = 10 years

� In t = 0 the project will generate a positive cash �ow of b0 = 100

� After one year the project will generate either a subsequent cash �ow of b2 = 143

if the market moves up or b3 = 78 if the market moves down

� The project cash �ow b follows a multiplicative binomial process
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� The probability that the project moves up is p = 0:53 and that the project moves

down with 1� p = 0:47

� The risk-free rate is r = 6%

� The volatility is � = 0:3

� Assume at least one traded asset exists which has the same risk characteristics

as the given project

Variable Value
b0 100:00
� 0:30
r 0:06
T 10
e(�r��t) 0:94
�t 1:00
u 1:35
d 0:74
p 0:53
1� p 0:47

Table 2.1: Input Parameters and Preliminary Calculations

First proposition: No WACC is needed for valuing this particular uncertain cash

�ow streams. If the cash �ows are modelled to occur at periodic intervals as in

the given case, the valuation exactly parallels a scenario DCF calculation (Salahor

1998) and can be resolved in the following way. In these situations, there is a sin-

gle sum over states of the product of the state cash �ow and state price. The state

price determination is equivalent to the computation of discount factors in the DCF

analysis and the probabilities of the scenarios (Bradley 1998). Therefore, a state

pricing analysis is not more computationally intensive than the typical Net Present

Value analysis anymore, and can be managed in a similar way. The derived cash �ow

stream throughout the ten year time of the project is given in the following table:
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Year 0 1 2 3 4 5 6 7 8 9
100.00 134.99 182.21 245.96 332.01 448.17 604.96 816.62 1102.32 1487.97

74.08 100.00 134.99 182.21 245.96 332.01 448.17 604.96 816.62
54.88 74.08 100.00 134.99 182.21 245.96 332.01 448.17

40.66 54.88 74.08 100.00 134.99 182.21 245.96
30.12 40.66 54.88 74.08 100.00 134.99

22.31 30.12 40.66 54.88 74.08
16.53 22.31 30.12 40.66

12.25 16.53 22.31
9.07 12.25

6.72

Table 2.2: Cash Flow Stream

In the case of a cash �ow stream which is in some way uncertain, three differ-

ent methods are usually applied to calculate the Net Present Value. Firstly one cash

�ow stream can be modelled which will then be discounted by the WACC, deriving

the extent of uncertainty relative to the overall market portfolio which is expressed

by Beta: The shortcomings of this broadly applied method are commonly known.

Secondly, the uncertainty is expressed in a scenario analysis by discounting several

expected scenarios of the cash �ow stream. The discounting will be undertaken by

the same WACC, and in addition be multiplied by its estimated probability. Thirdly,

the potential cash �ow scenarios can be generated stochastically by using the ex-

pected grade of uncertainty which is expressed by the volatility �: By applying a

stochastic process, all generated cash �ow streams will be discounted by the WACC

again multiplied by its probability. Using the method in discrete time, the binomial

tree is favoured to calculate the wealth of the overall cash �ow stream. The third

method within an arbitrage-free setting is closest to the approach developed in the

previous chapters of the thesis. Bradley discusses how �nancial data can be used in

the determination of state prices in some simple situations where the scenario tree is

constructed so that portfolios of assets with known prices can be dynamically traded

to replicate the consequences of holding each of the relevant state assets (Bradley
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1998). Further Baker elaborates on Bradley's discussion (Baker Gibbons and Mur-

phy 1998) and a detailed description is given by Laughton (Laughton 1998). In the

following results from applying method two will be presented. The table shows the

results of the expected project cash �ows which have been generated by a stochastic

process.

Year 0 1 2 3 4 5 6 7 8 9
840.79 941.73 1041.91 1134.88 1211.07 1256.65 1251.96 1169.48 971.19 604.96

516.83 571.81 622.83 664.65 689.67 687.09 641.83 533.00 332.01
313.82 341.82 364.77 378.50 377.08 352.24 292.52 182.21

187.59 200.19 207.72 206.95 193.31 160.54 100.00
109.87 114.00 113.58 106.09 88.10 54.88

62.57 62.33 58.23 48.35 30.12
34.21 31.95 26.54 16.53

17.54 14.56 9.07
7.99 4.98

2.73

Table 2.3: Value by Applying a WACC of Ten Percent

The project value will be calculated by discounting with the WACC as well as

multiplying by their probability. The traditional method results in a value of w0 =

840; 79.

Year 0 1 2 3 4 5 6 7 8 9
1000.00 1144.12 1292.86 1438.10 1567.02 1660.06 1688.28 1609.67 1364.19 867.11

627.91 709.54 789.25 860.00 911.06 926.55 883.40 748.68 475.88
389.40 433.15 471.98 500.00 508.50 484.82 410.89 261.17

237.72 259.03 274.41 279.07 266.08 225.50 143.33
142.16 150.60 153.16 146.03 123.76 78.66

82.65 84.05 80.14 67.92 43.17
46.13 43.98 37.27 23.69

24.14 20.46 13.00
11.23 7.14

3.92

Table 2.4: Value by Applying the Risk-Free Interest Rate of Six Percent

As already mentioned, the company valuation approach has been developed within

the framework of arbitrage-free setting and, therefore, discounting with the risk-free

interest rate would be closest to the approach used in the company valuation algo-
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rithm. Discounting with the risk-free interest rate yields a value of w0 = 1000. The

result of the programmed basis company valuation algorithm yields for the same pa-

rameters a value of w0 = 1078; if at least three replicating assets are available which

do have volatilities within the range of � = 25% and � = 35%: The deviation in the

result arises from the incomplete replication as well as the restriction of the model to

integers. It can be assumed at this point that the model overstates the project wealth

by around 8% compared to a contingent claim valuation according to Cox, Ross and

Rubinstein.

2.2 The Real Option Extension

In the following step, the established algorithm will be extended to the possibil-

ity of valuing real options. This implies that the management can actively decide

to invest additional money to enhance the overall company value. The question is

whether additional money spent increases the company value. Therefore these real

options can be compared to �nancial options in some ways. With �nancial options,

the holder of a call option on an underlying asset has the right to buy the underly-

ing asset for an agreed exercise price until the expiration date. In this case the more

precise question is, what amount of money additionally invested at what time and in

which scenario will enhance the company's value most. Depending on the company

itself and its industry, the additional investment can be made e.g. to fund further

marketing expenditures or to spent on further R&D.

Due to the holders right, the maximum loss is limited to the price that the option

holder has paid to obtain the option. The value of the option implies the so-called

asymmetric distribution. In analogy to the �nancial options, the management for
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example, has the possibility to decide whether to invest in a further production plant

right away or to delay the decision. Holding the option to delay the investment

decision is described as a deferral option. Exercising the option amounts to paying

for the investment e.g. the new production plant and exchanging the option value

for the value of the free cash �ows the project generates in the future as part of the

companies operations. Like a �nancial call, the value of a deferral option is highly

dependent on the variability/volatility of the expected payoffs or free cash �ows

expected to be generated by the additional investment.

So far, the company valuation algorithm "solely" considered the present value

wo of the expected cash �ows in an uncertain environment. In the next step, the

potential additional value of an investment project which can be undertaken some

time in the future should be considered. Therefore, the value of the option to invest

in some projects with a positive can sometimes add further value to the company

compared to the same company without these further investment opportunities which

have been calculated already within the basic valuation algorithm. In the following,

the algorithm will be extended to incorporate these operating options. The additional

value of these options stems from the free cash �ows that the investment generates,

if exercised, and the value to defer the investment (deferral options) which saves the

investment in case it is not optimal to exercise. Options to abandon or to shut down

some of the existing operations should not be considered in this work and would be

of interest for further research within this model framework.

As the underlying model is based on a non-recombining binomial tree, the call

options can be seen as leveraging good vertices and put options as cancelling out

vertices which would not recover the investment. Therefore, the evaluated operating
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options can mainly mitigate capital investment risk and be seen as expansion options.

One further important aspect of operating options is that they are almost every time

only internally existing and that they are not or only exclusively tradeable with high

transaction costs. To determine the companies operating options and the necessary

input parameters, the following steps should be considered:

(1) Evaluate the main investment opportunities the company has

(2) Consider potential overlaps or synergistic acting investment opportunities

(3) Estimate the necessary investment to exercise these investment opportunities

(4) Derive a linear algorithm to calculate the new expected cash �ow upon exercis-

ing the option for all future time steps

(5) Evaluate the impact of the additional investment for different evolving scenarios.

(6) De�ne the maximum additional investment volume

The real option value of the potential investment projects then is the value of

the replication portfolio for the adjusted company cash �ows minus the basis value

for the non-adjusted company cash �ows. This calculation follows the assumption

of perfect capital markets what means that the price of the new asset has to equal

the value of the least cost replication portfolio. In general, it is assumed that the

investment projects can be postponed inde�nitely. In the given valuation model, this

postponement is limited to T � 1: Therefore, the contribution to the company value

decreases in the case of postponing the investment decision because there will be

fewer future additional cash �ows from the investment projects contributing to the

company value.
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Cash Flows of Investment  Project

b1: Pos
b3: Pos.

b4: Pos

b2: Pos
b5: Neg.

b6: Neg.

Exercise of
Investment

Project
b0: Zero

Figure 2.5: Real Option Impact of Deferral Options I

Economically spoken, waiting to invest mitigates the capital investment risk which

is depicted in the following �gure, but on the opposite side by waiting near term pos-

itive cash �ow contributions are resigned and will be lost forever.

Cash Flows of
Investment  Project

Exercise of
Investment

Project
b1: Pos

b3: Pos.

b4: Pos

b2: Pos
b5: Neg.

b6: Neg.

b0: Zero

Figure 2.6: Real Option Impact of Deferral Options II

The variance or the uncertainty for the operating options are assumed to be the

same as the one of the company's cash �ows itself in the multiplicative case, and

independent in the additive case. The probability distribution for the future cash

�ows depends only on the current cash �ow of the process. The changes in two

different time intervals are independent of each other. It is furthermore assumed that
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the impact on the future cash �ows is linear to the amount invested. For the additive

case the contribution is constant in any future node, for the multiplicative case the

contribution is linear to the company cash �ows itself. The cash �ows from the

additional investment projects are considered in perpetuity, respectively, until t = T .

Therefore, the expected cash �ows are exposed to the same source of uncertainty.

The possibility that projects are exposed to different sources of uncertainty requires

a further increase in complexity and could be of interest to further research.

The optimal investment decision, in respect when exercising operating options,

should be undertaken in the states where it is most value enhancing. This is the case

if exercising is more valuable than waiting and even more valuable than exercising

at any other state. The current expected probabilities of the contingent cash �ows

are replaced by risk-neutral probabilities and the risk-free discount rate can be used

again. For real options which are generally not traded, the question can be raised

whether these assumptions also hold. For �nancial options on traded assets, the no-

arbitrage condition enforces risk-neutral probabilities and the risk-free discount rate.

According to Amran and Kulatilaka, this issue becomes less critical as a result of

increasingly more investment risks being traded by the �nancial markets (Amran,

Kulatilaka 1999).

2.2.1 Derivation of the Real Option Company Valuation Algorithm

Often the impact of exercising an investment opportunity can be divided into two

main categories. In the �rst category, an exercise enhances the cash �ows in all out-

vertices by a certain amount or a certain percentage of the basis cash �ows e.g. the

investment in a sales or marketing campaign for an already marketed product. In the

51



second category, the cash �ows will be signi�cantly increased in only one or max-

imum at a very limited number of outvertices e.g. for the investment in additional

R&D expenditure. For R&D, the impacted nodes represent the outcome of a suc-

cessful development which leads to a marketable product with signi�cant sales and

respectively free-cash �ows. All other vertices would be unaffected by the additional

R&D expenditure. The additional R&D expenditure does not lead to positive devel-

opment outcome in these other nodes, which results in a termination of the project

and, therefore no positive cash �ow generation. The additional real option expendi-

ture g is considered to be separated to w.

It is assumed that an extra expenditure g leads to a company cash �ow bj (g) at

least as large as the company cash �ow bj: The maximum additional expenditure is

limited to bg. It is considered that for g1 < g2 the company cash �ows are bj (g1) �
bj (g2) : Now the minimum shortfall fi (w; g) achievable at all vertices vj 2 Vi is

dependent on the wealth w as well as the discretionary amount g: The recursion

from (Christo�des A. 2004) derived by having considered the previous assumptions

leads to:

fi (w; g) = min
0��i�w

24max
0@ max (bi (bg � g)� �i) ;

max
0�gi�g

�
min

yi�Yi(w��i)

�
max
vj�Vi

[fj (wj (yi) ; g � gi)]
�� 1A35
(2.25)

The initialisation of the above recursion is given by:

fj (w; g) = max (bj (g)� w; 0) ; 8vj�Vi; 0 � g � bg (2.26)

An overview of equation (2.25) that provides insight into that recursion closely
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follows the overview of equation (2.1). We will, therefore deal only with the differ-

ences between the two recursions. In this case, in addition to the wealth w available

(at vertex vi) to "replicate" the company payoff, we also have a separate "budget"

for enhancing the company payoffs themselves. The objective is to maximally en-

hance these payoffs so that the replication wealth required (and hence the value of

the company) is maximised.

In the �rst instance, we use bj (g) to be the company payoff at any vertex vj in the

subtree rooted at vi; when the amount g is expended at vi to enhance the company

payoffs. Note that if g is available at vi; it means that bg�g must have been expended
prior to vi and hence the term max (bi (bg � g)� �i) in equation (2.25).
If an amount gi is expended at vi for payoff enhancement then g � gi is left for

expanding at vertices vj 2 Vi; hence the last term in equation (2.25). Finally, a deci-

sion as to what amount gi should be expended at vi must be made; hence the operator

max
0�gi�g

[�] in equation (2.25). Note, that although conceptually the recursion (2.1) and

(2.25) are similar, recursion (2.25) is much more computationally demanding be-

cause of (i) the extra optimisation (over gi) as mentioned above, and (ii) because the

memory requirement increases drastically due to the increase (by 1) in the dimen-

sionality of the state space. Even if bg is discretised in just 10 timesteps, the size of
the state space is increased 10 fold and the computational effort (in computing time)

increases a lot more than that.

It should be pointed out, that the cost for raising the additional money g which

has been invested has to be subtracted from the computed company value w0. It is

assumed that the impact of the discretionary expenditure on the company cash �ows
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occurs with a time lag of one period. The boundary condition, which means the

value between postponing the investment decision or exercising right away, has to

be determined again in any node. Therefore, the calculation of the aggregate value

from the adjusted cash �ows should be considered because of being more precise

in an incomplete market setting. Many other approaches assume that the decision

to invest can be postponed by in�nity either without having any costs or taking any

penalty into account. The �rst approach lacks the applicability in most of the cases

and the second accepts further complexity. In the derived algorithm, the advantage

of not considering any perpetuity is that by further postponing the investment deci-

sion, the company gives away cash �ows from the investment project in the states

prior exercising it. In the given model, the valuation is limited to countable time

periods which, nevertheless, does not necessarily restrict the attractiveness of the ap-

proach. On the one hand, the main differences that can be justi�ed occur within a

forecast period of less than ten years and on the other hand, the residual value in the

case of companies with long-term stable cash �ows can be added by applying tra-

ditional well established valuation techniques like the DCF, if required. According

to internal research of DZ BANK, the contribution of cash �ows beyond 25 years

in the future accounts for on average less than 20% of the current DCF valuation, if

applied to the German DAX companies. The number is still high in comparison to

other asset classes as a result of the expected long term growth rate above the risk

free interest rate r: This adds one further argument that there is only limited neces-

sity for considering a terminal value in case a reasonably long forecasting period can

be considered. To �nd an optimal dynamic investment policy, the value of the option

to invest has to be computed for every project, in every state, in every point of time.
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2.2.2 1. Example of the Real Option Company Valuation Algorithm

In a �rst example for the extended real option company valuation algorithm, the

valuation process should be clari�ed. It should be assumed that an additional expen-

diture of g = 2 which is made in vertex vi adds 1 unit of cash �ow in the outvertices

to all company cash �ows bj in all future nodes. Therefore, the adjusted company

cash �ows bj lead to:

bj (g) = bj + gfadd � g (2.27)

bj (2) = 5 + 0:5� 2

bj (2) = 6

in the upper node and:

bj (2) = 6 + 0:5� 2 (2.28)

bj (2) = 7

in the lower node for example. In this case, the previous example changes accord-

ingly:

a1(1): 1
a1(2): 2
b1 :  2
g: 2

a2(1): 2
a2(1) :   1
b2(g):   6= 5+1

a3(1): 1
a3(1):   3
b3 (g):  7= 6+1

Figure 2.7: Example Real Option Company Valuation in One Period

A wealth w1 = 7 in v1 should be chosen as a starting point which has been the
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solution in the previous basic company valuation example. This wealth wi will be

split in an investment in the replication portfolios Yi (wi � �i) and a payout �i: The

value of �i."replicates" the computed company cash �ow bi at that vertex. Therefore

the payout �1 is equal to b1 = 2 in the given example. The remaining wealth w1 �

�1 = 7 � 2 = 5 will be invested in portfolios Y1 (w1 � �1) with the following

asset prices a1 (1) ; a1 (2) in the chosen example. This yields the following portfolio

combinations considering only investments in integer units in the assets i.e. w1 �

�1 = y1 = 5 =
�
0
2:5

�
= k1 (1)� a1 (1)+ k1 (2)� a1 (2) = 0� 1+ 2:5� 2: All other

portfolio combinations are listed as followed:

Yi (wi � �i) = 5 =
��

0

2:5

�
;

�
1

2

�
;

�
2

1:5

�
;

�
3

1

�
;

�
4

0:5

�
;

�
5

0

��
(2.29)

The �rst portfolio combination y1 =
�
0
2:5

�
leads to the following result at vertex

v2:

(w2 (y1)) = (0� 2 + 2:5� 1) = 2:5 and (2.30)

f2 (w2 (y1)) = max(b2 � w2; 0)

= max (6� 2:5; 0)

= 3:5

and at v3:

(w3 (y1)) = (0� 1 + 2:5� 3) = 7:5 and (2.31)

f3 (w3 (y1)) = max(b3 � w3; 0)

= max (7� 7:5; 0)

= 0
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therefore:

f1 (w1 (y1)) = max [f2 (w2 (y1)) ; f3 (w3 (y1))] (2.32)

= max [3:5; 0]

= 3:5

The second portfolio combination y1 =
�
1
2

�
leads to the following result at vertex v2:

(w2 (y1)) = (1� 2 + 2� 1) = 4 and (2.33)

f2 (w2 (y1)) = max(b2 � w2; 0)

= max(6� 4; 0)

= 2

and at v3:

(w3 (y1)) = (1� 1 + 2� 3) = 7 and (2.34)

f3 (w3 (y1)) = max(b3 � w3; 0)

= max (7� 7; 0)

= 0

therefore:

f1 (w1 (y1)) = max [f2 (w2 (y1)) ; f3 (w3 (y1))] (2.35)

= max [2; 0]

= 2
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The third portfolio combination y1 =
�
2
1:5

�
leads to the following result at vertex v2:

(w2 (y1)) = (2� 2 + 1:5� 1) = 5:5 and (2.36)

f2 (w2 (y1)) = max(b2 � w2; 0)

= max(6� 5:5; 0)

= 0:5

and at v3:

(w3 (y1)) = (2� 1 + 1:5� 3) = 6:5 and (2.37)

f3 (w3 (y1)) = max(b3 � w3; 0)

= max (7� 6:5; 0)

= 0:5

therefore:

f1 (w1 (y1)) = max [f2 (w2 (y1)) ; f3 (w3 (y1))] (2.38)

= max [0:5; 0:5]

= 0:5

The fourth portfolio combination y1 =
�
3
1

�
leads to the following result at vertex v2:

(w2 (y1)) = (3� 2 + 1� 1) = 7 and (2.39)

f2 (w2 (y1)) = max(b2 � w2; 0)

= max(6� 7; 0)

= 1
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and at v3:

(w3 (y1)) = (3� 1 + 1� 3) = 6 and (2.40)

f3 (w3 (y1)) = max(b3 � w3; 0)

= max (7� 6; 0)

= 1

therefore:

f1 (w1 (y1)) = max [f2 (w2 (y1)) ; f3 (w3 (y1))] (2.41)

= max [1; 1]

= 1

The �fth portfolio combination y1 =
�
4
0:5

�
leads to the following result at vertex v2:

(w2 (y1)) = (4� 2 + 0:5� 1) = 8:5 and (2.42)

f2 (w2 (y1)) = max(b2 � w2; 0)

= max(6� 8:5; 0)

= 0

and at v3:

(w3 (y1)) = (4� 1 + 0:5� 3) = 5:5 and (2.43)

f3 (w3 (y1)) = max(b3 � w3; 0)

= max (7� 5:5; 0)

= 1:5

59



therefore:

f1 (w1 (y1)) = max [f2 (w2 (y1)) ; f3 (w3 (y1))] (2.44)

= max [0; 1:5]

= 1:5

The sixth portfolio combination y1 =
�
5
0

�
leads to the following result at vertex v2:

(w2 (y1)) = (5� 2 + 0� 1) = 10 and (2.45)

f2 (w2 (y1)) = max(b2 � w2; 0)

= max(6� 10; 0)

= 0

and at v3:

(w3 (y1)) = (5� 1 + 0� 3) = 5 and (2.46)

f3 (w3 (y1)) = max(b3 � w3; 0)

= max (7� 5; 0)

= 2

therefore:

f1 (w1 (y1)) = max [f2 (w2 (y1)) ; f3 (w3 (y1))] (2.47)

= max [0; 2]

= 2

The results for the maximum shortfall f1 (w1 (y1)) for all investigated portfolio com-

binations with an invested wealth of w1 � �1 = 5 are:

yi�Y (5) = f3:5; 2; 0:5; 1; 1:5; 2g (2.48)
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This shows that an invested wealth w1 = 6 is not suf�cient to replicate the company

cash �ows in the vertices v2 and v3: Therefore, the invested wealth w1 in v1 will be

increased by one integer to 8:Now the remaining wealth w1��1 = 8�2 = 6will be

invested in portfolios Y1 (w1 � �1) again with the asset prices a1(1) and a1 (2). This

yields the following portfolio combinations considering only investment in integers

in the �rst asset:

Y1 (w1 � �1) = 5 =
��
0

3

�
;

�
1

2:5

�
;

�
2

2

�
;

�
3

1:5

�
;

�
4

1

�
;

�
5

0:5

�
;

�
6

0

��
(2.49)

The results for the maximum shortfall f1 (w1 (y1)) for all investigated portfolio com-

binations Vi with an invested wealth of w1 � �1 = 6 are:

yi�Y (6) = f3; 1:5; 0; 0; 0; 0:5; 1g (2.50)

For an invested wealth of w0 = 8; all company cash �ows in the vertices v2 and

v3 can be replicated by investing in at least one portfolio combination. Therefore,

the minimum shortfall that can be achieved with at least one portfolio combination

with an investment

w1 � �1 = 8� 2 = 6 is min
yi�Yi(w��i)

�
max
vj�Vi

[fi (wj (Yi))]

�
= 0: (2.51)

At this point, the iterative replication procedure could be either re�ned to invested

wealth w0 between 7 and 8 in fractions of an integer, or the optimal wealth w0 could

be determined by interpolation. The same result will be computed by the algorithm

implemented in C++. Nevertheless, one more step has to be considered until having

the �nal result for the company value with an additional expenditure of g = 2:

This expenditure has to be deducted from the computed value w: Therefore the �nal

company value is de�ned aswcomp � w0�g = 8�2 = 6 in the given example. In this
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example it is only considered that one time step is impacted by the additional amount

of money of g = 2 at time t = 0 the company value w0 would decrease by one

unit compared to the basic example after deducting the additional expenditure: As a

result it is not bene�cial to have the previous option in hand and even decremental

to exercise it.

2.3 Extension to Multiple Time Steps

So far, the algorithm was only applied for one time step examples. For solving

multi period scenarios, all vertices will be solved recursively starting with the ver-

tices in T: The calculated result of the company value w0 of the one time period

setting will then substitute bi at vertex vi in T � 1:

2.3.1 2. Example of the Real Option Company Valuation Algorithm

With the following company cash �ows b and asset prices a; the company value

w0 should be calculated.

a1(1): 1
a1(2) :  2
b1 :  2

a3(1): 2
a3(2): 1
b3 5

a4(1): 1
a4(2): 3
b4 : 6

a2(1): 2
a2(2):  1
b2 :  3

a5(1): 2
a5(2): 2
b5 :  2

a6(1): 2
a6(2): 1
b6 :  4

a0(1): 1
a0(2): 1
b0:     0

Figure 2.8: First Step - Two Period Real Option Company Valuation

The same calculation procedure as in the previous examples will be applied for
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the vertices ending in T: For vertex v1 a wealth of w1 = 7 is the least wealth repli-

cating all company cash �ows in the vertex v1 and its outvertices Vi with at least one

portfolio combination. For v2; the least wealth that can be calculated to be suf�cient

to replicate company cash �ows is w2 = 7 as well. As a result of the recursive struc-

ture, the company cash �ows b2 and b3 are now going to be replaced by the calculated

least wealth w1 = 7 and w2 = 7:

a1(1): 1
a1(2) :  2
b1 :  7

a3(1): 2
a3(2): 1
b3 5

a4(1): 1
a4(2): 3
b4 : 6

a2(1): 2
a2(2):  1
b2 :  7

a5(1): 2
a5(2): 2
b5 :  2

a6(1): 2
a6(2): 1
b6 :  4

a0(1): 1
a0(2): 1
b0:     0

Figure 2.9: Second Step - Two Period Real Option Company Valuation

In the next step, the wealth that has to be invested at least to replicate the company

cash �ows b1 and b2 will be calculated. Now w0 = 5 as an educated guess should

be chosen as a starting point. The remaining wealth w0 � �0 = 5 � 0 = 5 will be

invested in portfolios Y0 (w0 � �0) consisting of two assets with prices a0 (1) and

a0 (2) again.

This yields the following portfolio combinations considering only investment in

integers in asset 1: w0 � �0 = 5 =
�
0
5

�
= k0 (1) � a0 (1) + k0 (2) � a0 (2) =

0� 1 + 5� 1: All other portfolio combinations are listed as followed:

Y0 (w0 � �0) = 5 =
��
0

5

�
;

�
1

4

�
;

�
2

3

�
;

�
3

2

�
;

�
4

1

�
;

�
5

0

��
(2.52)
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The �rst portfolio combination y0 =
�
0
5

�
leads to the following result at vertex v0:

(w1 (y0)) = (0� 1 + 5� 2) = 10 and (2.53)

f1 (w1 (y0)) = max(b1 � w1; 0)

= max(7� 10; 0)

= 0

and at v2:

(w2 (y0)) = (0� 2 + 5� 1) = 5 and (2.54)

f2 (w2 (y0)) = max(b2 � w2; 0)

= max (7� 5; 0)

= 2

therefore:

f0 (w0 (y0)) = max [f1 (w1 (y0)) ; f2 (w2 (y0))] (2.55)

= max [0; 2]

= 2

The second portfolio combination y0 =
�
1
4

�
leads to the following result at vertex v1:

(w1 (y0)) = (1� 1 + 4� 2) = 9 and (2.56)

f1 (w1 (y0)) = max(b1 � w1; 0)

= max(7� 9; 0)

= 0
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and at v2:

(w2 (y0)) = (1� 2 + 4� 1) = 6 and (2.57)

f2 (w2 (y0)) = max(b2 � w2; 0)

= max (7� 6; 0)

= 1

therefore:

f0 (w0 (y0)) = max [f1 (w1 (y0)) ; f2 (w2 (y0))] (2.58)

= max [0; 1]

= 1

The third portfolio combination y0 =
�
2
3

�
leads to the following result at vertex v1:

(w1 (y0)) = (2� 1 + 3� 2) = 8 and (2.59)

f1 (w1 (y0)) = max(b1 � w1; 0)

= max(7� 8; 0)

= 0

and at v2:

(w2 (y0)) = (2� 2 + 3� 1) = 7 and (2.60)

f2 (w2 (y0)) = max(b2 � w2; 0)

= max (7� 7; 0)

= 0

65



therefore:

f0 (w0 (y0)) = max [f1 (w1 (y0)) ; f2 (w2 (y0))] (2.61)

= max [0; 0]

= 0

The fourth portfolio combination y0 =
�
3
2

�
leads to the following result at vertex v1:

(w1 (y0)) = (3� 1 + 2� 2) = 7 and (2.62)

f1 (w1 (y0)) = max(b1 � w1; 0)

= max(7� 7; 0)

= 0

and at v2:

(w2 (y0)) = (3� 2 + 2� 1) = 8 and (2.63)

f2 (w2 (y0)) = max(b2 � w2; 0)

= max (7� 8; 0)

= 0

therefore:

f0 (w0 (y0)) = max [f1 (w1 (y0)) ; f2 (w2 (y0))] (2.64)

= max [0; 0]

= 0
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The �fth portfolio combination y0 =
�
4
1

�
leads to the following result at vertex v1:

(w1 (y0)) = (4� 1 + 1� 2) = 6 and (2.65)

f1 (w1 (y0)) = max(b1 � w1; 0)

= max(7� 6; 0)

= 1

and at v2:

(w2 (y0)) = (4� 2 + 1� 1) = 9 and (2.66)

f2 (w2 (y0)) = max(b2 � w2; 0)

= max (7� 9; 0)

= 0

therefore:

f0 (w0 (y0)) = max [f1 (w1 (y0)) ; f2 (w2 (y0))] (2.67)

= max [1; 0]

= 1

The sixth portfolio combination y0 =
�
5
0

�
leads to the following result at vertex v1:

(w1 (y0)) = (5� 1 + 0� 2) = 5 and (2.68)

f1 (w1 (y0)) = max(b1 � w1; 0)

= max(7� 5; 0)

= 2
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and at v2:

(w2 (y0)) = (5� 2 + 0� 1) = 10 and (2.69)

f2 (w2 (y0)) = max(b2 � w2; 0)

= max (7� 10; 0)

= 0

therefore:

f0 (w0 (y0)) = max [f1 (w1 (y0)) ; f2 (w2 (y0))] (2.70)

= max [2; 0]

= 2

The amount invested in the asset portfolio is suf�cient to replicate the company

cash �ows. Solving for the minimum wealth w0 which at least replicates the com-

pany cash �ows b1 = 7 and b2 = 7; w0 = 5; will be derived. For an invested

wealth of w0 = 5 all company cash �ows in the vertices v1 and v2 can be replicated

by investing in the optimal portfolio combination. Therefore the minimum short-

fall that can be achieved with at least one portfolio combinations with an investment

w0 � �0 = 5 � 0 = 5 is min
yi�Yi(w��i)

�
max
vj�Vi

[fi (wj (Yi))]

�
= 0. The results for the

maximum shortfall fi (wj (yi)) for all six portfolio combinations with an invested

wealth of w0 � �0 = 5 are:

yi�Y (5) = f2; 1; 0; 0; 1; 2g (2.71)

Finally, the company value is wcomp = 5.

Assuming that an additional expenditure of g = 2 is made in vertex v0 in t = 0
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again. This investment project now leverages the company cash �ow in a multi-

plicative way by increasing every following node bj (g) by 40% per unit invested.

Therefore:

bj (2) = (1 + (g � gfmulti))� bj (2.72)

for t = 2: Finalising the calculation of the adjusted company cash �ows b leads to

b3 (2) = (1 + (2� 0; 40))� 5 (2.73)

b3 (2) = 1; 8� 5 = 9

in vertex v3,

b4 (2) = (1 + (2� 0:4))� 6 (2.74)

b4 (2) = 1:8� 6 � 11

vertex v4 and

b5 (2) = (1 + (2� 0:4))� 2 (2.75)

b5 (2) = 1:8� 2 � 4

in vertex v5 and so on.

a1(1): 1
a1(2) :  2
b1(g):  4

a3(1): 2
a3(2): 1
b3(g): 9

a4(1): 1
a4(2):   3
b4 (g): 11

a2(1): 2
a2(2):  1
b2(g): 6

a5(1): 2
a5(2): 2
b5(g): 4

a6(1): 2
a6(2): 1
b6(g): 7

a0(1): 1
a0(2): 1
b0:     0
g: 2

Figure 2.10: Third Step - Two Period Real Option Company Valuation
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In this example the company cash �ows bi in t = 1 as well as in t = 2 have

been increased as a result of the real option expenditure already in t = 0. The

same solution procedure as for the previous example without real options will apply.

Within the recursive solution procedure the company wealth in t1 in vertex v1 yields

w1 = 13 which replicates all company cash �ows in vertex v1 and its outvertices V1

with at least one portfolio combination. For v2; the least wealth that can be calculated

being suf�cient to replicate company cash �ows is w2 = 13: As a result of the

recursive structure, the company cash �ows b1 and b2 are now going to be replaced

by the calculated least wealth w1 = 13 and w2 = 13:

a1(1): 1
a1(2) :   2
b1(g):  13

a3(1): 2
a3(2): 1
b3(g): 9

a4(1): 1
a4(2):   3
b4 (g): 11

a2(1): 2
a2(2):   1
b2(g): 13

a5(1): 2
a5(2): 2
b5(g): 4

a6(1): 2
a6(2): 1
b6(g): 7

a0(1): 1
a0(2): 1
b0:     0
g: 2

Figure 2.11: Fourth Step - Two Period Real Option Company Valuation

In the next step, the wealth that has to be invested at least to replicate the com-

pany cash �ows b1 and b2 will be calculated. Now w0 = 9 should be chosen as

a starting point. The remaining wealth w0 � �0 = 9 � 0 = 9 will be invested

in portfolios Y0 (w0 � �0) holding again only two assets. This yields the follow-

ing portfolio combinations considering only investment in integers in asset 1; i.e.

w0 � �0 = 11 =
�
0
9

�
= k0 (1)� a0 (1) + k0 (2)� a0 (2) = 0� 1 + 9� 1: All other

portfolio combinations are listed as followed:
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Y0 (w0 � �0) = 7 =
��
0

9

�
;

�
1

8

�
;

�
2

7

�
;

�
3

6

�
;

�
4

5

�
;

�
5

4

�
;

�
6

3

�
;

�
7

2

�
;

�
8

1

�
;

�
9

0

��
(2.76)

The results for the maximum shortfall f0 (w0 (y0)) for all three portfolio combination

with an invested wealth of w0 � �0 = 9 are:

yi�Y (5) = f4; 3; 2; 1; 0; 0; 1; 2; 3; 4g (2.77)

This shows that two portfolio combinations Y0 with an invested wealth w0 � �0 = 9

are suf�cient to replicate the company cash �ows in the vertices v1 and v2: The

wealth w0 = 9 invested in the asset portfolio is suf�cient to replicate the company

cash �ows. With this invested wealthw0 all company cash �ows in the vertices v1 and

v2 can be replicated by investing in the optimal portfolio combinations. Therefore

the minimum shortfall that can be achieved with at least one portfolio combination

with an investment w0��0 = 9�0 = 9 is min
yi�Yi(w��i)

�
max
vj�Vi

[fi (wj (Yi))]

�
= 0. The

company value in the case of exercising the investment opportunity would �nally be

wcomp = w0 � g = 9 � 2 = 7: Therefore, the company value �nally changes to

wcomp = max(wcomp;wcomp(g)) = max(6; 7) = 7; because the positive impact on

future cash �ows of the additional investment project outweighs its investment costs

of g = 2: Hence, the real option of the company adds 1 unit additional wealth to the

basis company value. In the forthcoming work, some examples will be investigated

where an early investment is value enhancing as well as a potentially later investment

is more valuable than the investment in vertex v0 at t0: In these situations hurdle rates

can be determined at which levels it is feasible and value creating to invest additional

money.
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Chapter 3

Further Additions to the Company Valuation Algorithm

As an extension to the results shown so far, �rstly a self assembling tree with

stochastic asset price generation will be implemented and secondly a generalisation

should allow for incorporating negative company cash �ows. Thirdly the process to

determine the optimal investment decision should be derived including some exam-

ples.

3.1 Generic Tree Generation

For the asset price evolution, a self assembling tree with asset values has been

implemented according to Cox, Ross and Rubinstein (Cox, Ross and Rubinstein,

1979). The binomial model assumes that the asset prices can only move upwards

or downwards in the next discrete time step, therefore, the distribution is called bi-

nomial. The derivation of building the riskless replication or hedging portfolio has

been explained in chapter 1. The one step view is extended to several steps with a

decreasing time span between each time step. It is still assumed that in each time

step the stock can only move upwards or downwards. The next asset values are de-

noted Su and Sd: The probability for an up movement will be denoted by p and

of a down movement by 1 � p: As a reminder of the "risk-neutral-valuation" prin-

ciple: The probability p is such that, the expected return of the traded assets is the

risk-free interest rate, and future cash �ows can be valued by being discounted with

the risk-free interest rate. First of all, the input parameters p, u, and d are calculated

in a risk-neutral setting which means:
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Ser�t = pSu+ (1� p)Sd (3.1)

er�t = pu+ (1� p) d

The percentage change of the asset price in one time step is ��t: The variance of a

variable Q is de�ned as E (Q2)� [E (Q)]2 ; therefore:

pu2 + (1� p) d2 �
�
pu+ (1� p) d2

�
= �2�t (3.2)

Substituting for p from the previous equation leads to:

er�t (u+ d)� ud� e2r�t = �2�t (3.3)

Furthermore, Cox, Ross and Rubinstein state the condition

u =
1

d
(3.4)

to recombine the tree. This leads to the conditions for p; u; and d:

p =
a� d
u� d (3.5)

u = e�
p
�t

d = e��
p
�t

where:

a � er�t (3.6)

For the implementation, this means that any asset price can be calculated by forward

iteration

Sujdi�j for j = 0; 1; :::; i (3.7)
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In case of the implemented company valuation model, the relationship

u =
1

d
(3.8)

could be relaxed due to the fact that we are working with a non-recombining tree.

If the number of subnodes in each state is increased to three the generalisation of

the binomial tree according to (Clewlow and Strickland 1998) has been applied.

The case of considering 4 subnodes in each state according to (Clewlow and

Strickland 1998) is as shown in the following �gure (3.1):

a0(1),a0(2)

pud

puu

pdd

pdu

a1(1)+ ∆a1(1), a1(2)  ∆a1(2)

a1(1) + ∆a1(1), a1(2) + ∆a1(2)

a1(1)  ∆a1(1), a1(2)  ∆a1(2)

a1(1)  ∆a1(1), a1(2)+ ∆a1(2)

Figure 3.1: Potential Price Process in a Four Subnodes Szenario

3.2 Incorporation of Negative Cash Flows and Their Impact

In the meantime the algorithm has been generalised to allow for stochastic tree

generation. The given algorithm does only work with positive numbers so far. This

limits the use to positive company cash �ow processes. Especially for high growth

start-up companies, it is required to include negative cash �ows at least in the initi-

ating phase. Therefore, the stochastic price process has been adopted. For a given

b� > 0; the quantity eb = b+ b� is modelled by the binomial tree, thus eb > 0, i.e.

b > c�b. Here c�b is the maximum level of negative company cash �ows. Instead of
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b0 > 0; now b0 > c�b is required, thus initial allowing negative cash �ows. This ap-
proach even allows to model increasing losses in the vertices going downwards. In

the given example, a starting cash �ow b0 = �5 has been assumed having a volatil-

ity of � = 0:2 and a growth rate of r = 0:06. The maximum negative cash �ow

barrier has been set on the left side of the �gure at c�b = �10 and on the right side at
c�b = �15:Higherc�b relative to the negative starting cash �ow b0 applying the same
growth rate � as well as volatility � leads to higher absolute values of the generated

cash �ows in the outvertices. This should be kept in mind, applying this model for

e.g. valuing a start-up company.

b0: 5

b1: 2

b2: 6

b6: 7

b5: 4

b3: +2

b4: 4

b0: 5

b1: 3

b2: 6

b6: 6

b5: 4

b3: 2

b4: 4

Figure 3.2: Adapted Stochastic Cash Flow Process Allowing Negative Values

With this procedure also negative company cash �ows can be considered without

the necessity to adopt a different stochastic process. For application to real case

scenario this implies, the negative cash �ows could potentially sum up to an amount

of money no investor is willing to pay for the investment scenario. As a result a

sum of maximum negative cash �ow bbsum is de�ned which limits the aggregation
of losses to a certain amount the investor is willing to carry. The overall value of

the company w0 then is only calculated for the branches which do not exceed bbsum:
This additional assumption which has been implemented in the algorithm strongly
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improves its applicability for scenarios which do include a time span with negative

cash �ows as well. In the following a scenario of a company which allows unlimited

negative cash �ow aggregation should be presented:

b0: 5

b1: 2

b2: 6

b6: 15

b5: 25

b3: +2

b4: 4

Figure 3.3: Company Cash Flow with Unlimited Negative Cash Flow Aggregation

Having computed the value of this scenario by a generic replication setting, the

company is worthw0 = 6: The well established investment theory considers to invest

in such a project. Nevertheless the question remains if the investor is willing to bear

the risk of pouring additional 6 units money in the investment project, if vertex v2

will be reached after having already invested 5 units in t0. The investor could decide

to do so on back of the potential, that the company will be sold for a high premium in

vertices v5 and v6: The overall maximum investment the investor has to provide for

this scenarios would bebbsum = 11: In the case the the investor has only free liquidity
in the extent of e.g. bbsum = 10; the lower branch would be cancelled out and the

overall company value w0 << 0 would be strongly negative.

76



b0:5

b1: 2

b2: 6

b6: 15

b5: 25

b3: +2

b4: 4
Remaining

Branch

Figure 3.4: Company Cash Flow Process with Limited Negative Cash Flow Aggregation

The opposite case could happen as well; by limiting bbsum for the basis company
cash �ow scenario, the investor improves his return by cancelling out loss making

branches, which will probably happen more often.

3.3 Determination of the Optimal Investment Strategy

So far the algorithm determines the real option value if an additional investment

increases the company value in general. Nevertheless, the practical application has

not been solved, showing the point in time and scenario that is most value enhancing,

in case an additional investment enhances the company value at all. Calculating the

results again within a recursive structure, at least two company values replicating

all future cash �ows have to be stored instead of one in every state: The so-called

basic company cash �ow bi (0) will be replaced by the company value wi which is

calculated throughout the recursion as shown in chapter 3. Therefore bi (0) is equal

to bi which is already known from the previous chapter. For any real option scenario

the company value bi (g) will be calculated for the situation where the project is

exercised in vi and where the investment project has been exercised in any previous
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vertex. In almost all cases, the company value where the investment project has

been exercised in any earlier state yields a higher value because bi (bg) � bi (g) and
larger than bi (0) as well. To �nd the dominating scenario the company value for

the scenario of an exercise in vi will be compared to bi (0) : The investment scenario

bi (g) which exceeds bi (0) most, will be stored.

In the chosen setting, the maximum additional investment bg = 3 will be limited
to three units and it is assumed that each additional project requires an investment of

one unit. It is supposed as described in chapter 3 that the projects can be exercised

in any node except in T . As a result in vertex v1 four investment possibilities are

evaluated which are g = 0; 1; :::; bg. The value of the company in the case of an
exercise of the investment g in v1 is depicted in the second column named "inv".

Furthermore the so far optimal scenario is stored which would be b1 (2) in the

given example all other results in column inv. are discarded. Storing, e.g. of b1 (1)

in column inv. is not required because the company wealth potentially generated is

dominated by the company wealth generated by b1 (2) : b1 (3) in column inv. is also

not stored because it does not deliver any additional value and reduces the investment

�exibility in previous nodes. In v2 no further result in column inv. will be stored

because they failed to exceed b0 (0). In the root node v0 �nally all combinations of

the so far dominating scenarios are evaluated and the scenario yielding the highest

company value wcomp = b0 (g)� g which is the optimal investment strategy will be

determined.
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Figure 3.5: Optimal Exercise and Dominating States

In the given example the company value would reach wcomp = 11 in the case that

the company will follow its a priori determined optimal investment which will be

exercising the �rst project right away in the root node expressed by b0 (1) and two

project in the vertex v1:
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In the following the impact on the optimal exercise of different assumptions on

the real option investments should be computed for some examples. It is assumed

that the company cash �ow depicted in the graph are given as a basis assumption.
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Figure 3.6: Assumed Basis Company Cash Flows

These cash �ows will be replicated in a next step by three replication assets. Their

price process should be approximated by a GBM with the following parameters:

Parameter Asset 1 Asset 2 Asset 3
Price a 5 6 7
Interest Rate r 6% 6% 0%
Volatility � 20% 30% 10%

Table 3.1: Input Parameter of Replication Assets

The developed company valuation algorithm yields the following results for the

basis values wi of the company in the equivalent nodes:
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Figure 3.7: Computed Basis Company Value

The expected cash �ows in the different scenarios translate to the computed basis

values of the company in each node. Figure 3.7 clearly indicates that the main value

accumulation of this e.g. start-up company scenario occurs in the upper nodes: In

the next step the company investigates some further investment projects which can

be exercised anytime between t0 and T � 1: In a �rst scenario it is assumed that

the investments increase the company basis cash �ow by the additive factor gfadd

as described in chapter 2.2. The maximum additional expenditure is limited to bg =
20 which can be invested two times in a project that costs g = 10 and increases

the company cash �ows b (g)j after exercising the investment project by 50% per

invested unit in all future nodes. Therefore, the adjusted company cash �ows bT in

the upper node would lead to equation 3.9:
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bj (bg) = bj + gfadd � g (3.9)

bT (20) = 50 + 0:5� 20

bT (2) = 60

The following results are shown to give the reader the full picture of the computation

of the algorithm. The only company value which is directly comparable to the basis

company values is the one in node v0 in t0; in all other nodes the costs for investing

in the additional projects have not been deducted as seen in �gure 3.5. If the project

is value creating its investment will be deducted in the root node v0:
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Figure 3.8: Additive Real Option Company Value Scenario and Optimal Exercise

The result shows that an additional amount of money bg = 20 is suf�cient to in-

crease the company value by 20:5% in the case the investment projects are exercised

optimal. On the right hand of the graph the optimal exercise of the real option invest-
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ments is computed. For the given example it would be optimal to invest two times in

the investment project in node v1.

In the following scenarios it is assumed that exercising the two identical invest-

ment projects increases the current company cash �ows bj by a certain percentage

gfmulti. The more successful the company is in terms of cash �ow generation, the

more valuable is the further investment project that has been exercised in any pre-

vious node. In the �rst scenario each unit invested money g increases all future

company cash �ows bj by gfmulti = 25%:

b (bg)j = (1 + (g � gfmulti))� bj (3.10)

b (20)T = (1 + (20� 0:25))� bT

300 = 6� 50
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Figure 3.9: 1. Multiplicative Scenario: Real Option Company Value and Optimal Exercise
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As expected the overall company value increases strongly due to the high leverage

of the additional investment opportunity. As it can be seen the availability of further

bg = 20 units of cash within this quite optimistic and arti�cial setting would multiply
the company value by a factor of almost 5 in the case the investment options would

be exercised optimal; which is in the given case again in t1 independent of the branch

the company follows and therefore in vertex v1 as well as v2.

In the meantime e.g. the economic environment has slowed down and the addi-

tional investment projects were reevaluated again. It has to be stated that the �rst

assumptions were overly optimistic and the new expectations only leads to an in-

crease of the basis cash �ow bj by 10% per invested unit in all future nodes. All

other assumptions including the basis company cash �ows are unchanged:

b (20)T = (1 + (20� 0:10))� bT (3.11)

150 = 3� 50
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The computation changes accordingly:
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Figure 3.10: 2. Multiplicative Scenario: Real Option Company Value and Optimal Exercise

The overall real option company value now yields w0 = 289 in the case of opti-

mal exercise of the investment projects. Interesting is, that it is not optimal at this

stage to exercise the investment projects in t1 independent of the state. Now it is

optimal to invest in both projects in t1 in vertex v1 and only in one project in the

v2. In t2 it is value enhancing to invest additionally in one project in v5 and in t3

it is furthermore optimal to exercise the investment project in v13. For an investor,

especially in young start-up companies like a venture capitalist, the risk mitigation

effect of knowing about the optimal exercise of the real options will be invaluable.

The plain value aspect yields 6 units more in company value by exercising optimal

instead of investing g = 20 right away in t0.

Further investigation brings up e.g. that another competitor plans to establish
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the same additional technology which the company planned to invest in by its two

investment projects, which leads to even more conservative assumptions regarding

these additional investment opportunities:

b (20)T = (1 + (20� 0:04))� bT (3.12)

90 = 1:8� 50

The value of the further two investment opportunities in t0 is now even more

reduced and delivers "only" 54% additional value to the company if both investment

projects are going to be exercised in vertex v1.
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Figure 3.11: 3. Multiplicative Scenario: Real Option Company Value and Optimal Exercise

Assuming the company would have followed the lower branch and an investment

in v2 would have been made, this results in a 4 unit lower company value, which

equals around 8% of the additional real option value.
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In a last example some more insight in the situation of e.g. a strongly R&D re-

lated investment should be given, where the additional spent money only increases

the company cash �ows in one single branch. Such a scenario applies if the addi-

tional R&D investment solely increases the cash �ows if the underlying project is

successful at all, which happens in one single branch only. It is assumed that each

unit invested money g increases the future company cash �ows bj by 10% only in

the best branch.
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Figure 3.12: 4. Multiplicative Scenario: Real Option Company Value and Optimal Exercise

On the one hand the overall value contribution is strongly reduced which is not

a surprise at all. On the other hand it is now only value enhancing to exercise the

investment project in v1. By these simple examples it has be shown how different

optimal exercises of investment projects can be, only by differing investment project

assumptions. Furthermore the algorithm computes these optimal exercises in any
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given scenario and therefore facilitates decision makers as well as investors. By this

a priori certain hurdle rates for further milestones in a project can be determined and

scenarios where it is more valuable to stop a further investment. This will be reached

by computing the value proposition of the project as well as the optimal states to

exercise the project a priori.

3.4 Comparison to Other Real Option Valuation Approaches

According to Hartmann's (Hartmann 2006 ) �ndings, real option valuation tools

are still not widely accepted by practitioners in �nancial service �rms and the indus-

try itself. The majority of practitioners see real option valuation tools as an auxiliary

tool in addition to the DCF approach.

According to his research, most applied real option models fall in the two cate-

gories: Black Scholes and binomial lattices. As it is well known, by using a constant

discount rate contingent claim valuation and dynamic programming will yield differ-

ent results. Explanations are provided by Ingersoll (Ingersoll 1987) and Trigeorgis

(Trigeorgis 1996). Trigeorgis proofs that using a constant risk-adjusted discount rate

implies that the market risk born per period is constant or, in other words, the total

risk increases at a constant rate through time. This will not usually be the case for

real option problems which involve multiple embedded options that can be exercised

at different points in time. Fama (Fama 1977) shows that correctly risk-adjusted dis-

count rates implied by the CAPM model will not be constant in general, but must

evolve deterministically through time. However, the use of a constant risk-adjusted

discount rate may be a reasonable approximation in certain situations. This is not the

likely case when a management has to make the decision of, e.g. to delay, expand,
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or contract an investment. It appears that dynamic programming using a constant

discount rate and the contingent claim valuation will not yield the same answers

for the investment project, except under certain restrictive assumptions. When us-

ing the two approaches the optimal exercising nodes can differ signi�cantly. Both

approaches are based on the idea to look at the options payoff with a known de-

pendence on a large number of uncertain variables where the timing is optional.

Longstaff and Schwartz (Longstaff and Schwartz 1999) work backward in time dis-

cretely along a random sample of scenarios to �nd out when the option should be

exercised in each scenario. The value of waiting at each time in each scenario is

determined by regressing across the sample of the scenarios. The regression will

be performed between the future value of waiting against a �nite set of basis func-

tions for an in�nite dimensional space of functions on the underlying state space.

One of the �rst real option valuation applications in the upstream petroleum indus-

try, was the analysis of U.S. offshore leases by Paddock, Siegel and Smith (Paddock,

Siegel and Smith, 1988). They use the value of the developed �eld as an underly-

ing variable. Their argument that the volatility in the value of the developed �elds

is the same as that for crude oil. They calculate the rate-of-return shortfall for the

developed reserves by assuming that there are no leverages or other differences in

the bene�ts and costs of holding oil above or below ground. There is no single

reversion in their valuation model. It has been presumed that development begins

immediately upon the end of exploration and that production begins after a prede-

termined lag once development has begun. The exploration/development decision

may be made at any time during the lease, and the owner may walk away from the

lease. Pickles and Smith (Pickles and Smith 1993) continue in this vein by allowing
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an option in the timing of development rather than exploration. They use a binomial

lattice method for performing valuations. Bjerksund and Ekern (Bjerksund and Ek-

ern 1990) use the Brennan-Schwartz price model (Brennan and Schwartz 1985) to

build simple models of: First, �xed-time options to develop a �eld for which they

use the Black, Scholes formula; and second, inde�nite leases for which they use the

Merton formula for an inde�nite call on a dividend-paying stock. Smith and McCar-

dle compare the results obtained from an real option evaluation and an equivalent

decision tree analysis (DTA) where the cash �ows are discounted using DCF meth-

ods with a single discount rate. The exploration and delineation leases are also more

valuable with increased geological uncertainty if actions can be taken to respond to

the resolution of that uncertainty. The simplest method used to price real options is

the DTA. This method exhibits two major drawbacks. First, the decision tree struc-

ture becomes complicated even in simple real world situations, second the decision

tree analysis uses real probabilities and risk-adjusted interest rates. According to

Trigeorgis (Trigeorgis 1996) DTA can be seen as an advanced version of DCF. Fur-

thermore, he adds that the asymmetry resulting from operating �exibility and other

strategic aspects can, nevertheless, be properly analysed by thinking of discretionary

investment opportunities as options on real assets through the technique of contin-

gent claim analysis. These main drawbacks are eliminated in the contingent claim

analysis by using risk-neutral probabilities as well as the risk-free interest rate.

3.5 Sensitivity Analysis of the Real Option Company Valuation Algorithm

The contingent claim analysis is based, as already mentioned, on the replication

idea which means the replication of the payoff structure of the project/company and
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its inherent options via traded assets and �nancial transactions within this replication

portfolio. According to Trigeorgis the Cox, Ross and Rubinstein binomial tree is

one broadly applied model within the contingent claim analysis. In the following

the Cox, Ross, and Rubinstein (CRR) model should be applied for the case of an

expansion option and compared to the developed company valuation algorithm:

S = 104 price of the traded asset that is almost perfectly correlated with w

r = 8% risk-free interest rate

I = 104 equates the original investment opportunity as the initial-scale

project plus a call option on a future opportunity
g = 40 is the �rm's option to invest an additional 40 outlay one year

after the initial investment

T = 1 Time

p risk-neutral probability for an up movement per period

u multiplicative factor for an up movement per period

d multiplicative factor for an down movement per period

w total value of the project

Table 3.2: Input Parameter for Model Comparison

The total value of the project can be calculated by applying the following algo-

rithm, which was already derived in chapter 1:

w0 = (p� biu + (1� p)� bid))� df � I (3.13)

The given input factors lead to the following parameters: u = 1:73; d = 0:58;

S1u = 180, S1d = 60; df = exp(�r � T ) = 0:923; p = 0:44; 1� p = 0:56; and the

wealth w0 = 0 without considering the growth option. The following graph depicts

the structure within the Cox, Ross, Rubinstein framework for an option to expand

(growth option), which means the right to make follow-on investments.
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w0=?

b iu=(S1u V S1ux(1+rofmulti x ro)ro)

p

1p

b id=(S1d V S1dx(1+rofmulti x ro)ro)

Figure 3.13: Valuation of an Expansion Option within the CRR Framework

Interpret the original investment opportunity as the initial-scale project plus a call

option on a future opportunity, and suppose the �rm has the option to invest an

additional g = 40 outlay one year after the initial investment which adds a range of

percentage points (0%� 100%) to the scale and value of the project.

w0 = max(((p� biu + (1� p)� bid))� df � I; ((p� b (g)iu

+(1� p)� b (g)id))� df � (I + a)

The results show that the newly developed company valuation algorithm generates

robust results which converge to the results generated by the Cox, Ross, Rubinstein

model with increasing option values. For low option values, the deviation is the

result of the optimisation by integers and by cutting the fractions of an integer in the

programming instead of rounding.
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Figure 3.14: Model Comparison for One Step Expansion Option

Within the developed model expansion options for multiple time steps are not di-

rectly comparable due to the nature of the developed model. In the developed model,

the value of the overall cash �ows throughout the valuation period will be computed

instead of taking the value of the project in t = T as the basis for calculating the

wealth of the option. Deferable options are also not directly comparable to estab-

lished other real option valuation models. The same argument is valid as mentioned

above in addition to the fact that there is always a delay of one time period between

investment and the improved value of the investment or its underlying cash �ow

stream. This assumption, even though not directly comparable to other applications

at this point, takes a more realistic approach into account.

In the following, a sensitivity analysis for a generic expansion option for multiple

time steps should be performed. The analysis for the given generic example shows

that any changes in r and � do not have an impact on the option value of the project

or company.

As expected, an increase in b is linearly correlated and an increase in g is nega-
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Variable Value
Company cash �ows
bo 10
r 6%
T 1� 10
� 20%
Real options
g 10
gfmulti 50%
Replications assets
r 6%
� 15%=20%=25%

Table 3.3: Input Parameter for Sensitivity Analysis

tively correlated to the wealth of the projects expansion option.
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Figure 3.15: Sensitivity of the Expansion Option Value by Time

For the multiplicative case, it can be shown that by increasing the number of

time steps the proportion of the option value increases, but with a decreasing relative

magnitude.
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Chapter 4

Evaluation of the Developed Algorithm to Two Case Studies

In the following, two real-world companies are analysed and valued. Both compa-

nies are listed, high growth Life Science companies. In this work, the focus should be

on applying and furthermore validating the valuation algorithm which can be shown

easier within the framework of traded assets compared to non-traded assets. This

experience can then be transferred to the application of the company valuation algo-

rithm on non-traded private companies. Life Science companies were mainly chosen

because of three reasons: First, their R&D process is comparably costly and com-

plex which makes the application of real option valuation techniques most valuable.

Second, young publicly start-up companies are existing, and third, my personal aca-

demic as well as working experience is leveraged heavily towards the valuation of

life science companies. The last aspects should help to reduce pitfalls as a result of

a lack of industrial experience.

4.1 Generic Marketing Example

4.1.1 Description

Qiagen is one of the market leaders for supplying puri�cation technologies in the

laboratory medicine market and has a strong presence in molecular diagnostics. The

company has established a high market penetration within diagnostic laboratories as

well as blood banks. Qiagen has acquired the American �rm Digene in June 2007

for around USD 1:6 billion (55% in cash and 45% in shares). Digene is a molecular

diagnostics company, with the only human papilloma virus (HPV) test approved by
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the FDA. The HPV test is used to detect the risk of cervical cancer in women. The

acquisition will increase Qiagen's sales of diagnostic tests by USD 270 million in

2008 boosting the company's total sales by almost 50%. Digene's sales from HPV

tests should reach around USD 180 million in full year 2006/07 which translates to

an organic growth rate of 42% year over year. The market share of HPV testing of

Digene is estimated at around 90% since the only signi�cant competitor is Roche

Diagnostics having one product on hand which is only approved in Europe so far.

According to analyst estimates, the total market for the HPV test should reach around

USD 200 million, which equates to a compounded annual growth rate (CAGR) of

around 30% for the next �ve years. In the U.S., the HPV test is recommended as

part of the �rst-line diagnostics, in Europe the HPV test is only an additional out

of the pocket testing option for cancer prevention. With the acquisition of Digene,

Qiagen will achieve around 45% of its sales in the more attractive market segment

of molecular diagnostics, due to higher pre-tax margins and higher expected growth

rates.

4.1.2 Forecasting Company Cash Flows

The free cash �ow is that part of a company's cash �ow that is earned in excess

to the cash �ow that is required to carry out its own business plan including the

required expansion costs. Thus, the free cash �ow can be withdrawn by the investors

throughout the life span of the company. According to the well established DCF

valuation, the free cash �ow expectations discounted with the appropriate WACC to

the present time is equivalent to the value of a company. In the derived company

valuation model, the same free cash �ow will be used as a basis for the calculation

of the company value. In general the free cash �ow will not be explicitly estimated

96



by analysts, but it can be derived by different pro�t and loss �gures like the EBIT.

The estimates most widely available in I/B/E/S or Datastream are sales, EBIT, and

net income. Therefore, a robust choice will be to use the net income as a basis for

calculating the free cash �ow of Qiagen.

Net Income
+ Depreciation/Amortisation
- Change in Working Capital
- Capital Expenditure
= Free Cash Flow

Table 4.1: Free Cash Flow Derivation

For further expanding business from its current status, no signi�cant further in-

vestments above the magnitude of the depreciation/amortisation should be required.

The change in working capital should be in the area of around 5� 15% of the sales

increase and, therefore, reduces the free cash �ow in the initiating node but will off-

set this effect partly by a slightly higher growth rate of the free cash �ow compared

to not taking the change in working capital into account. This effect results of in-

creasing margins throughout the estimate period. The average of the net income

estimates, being provided by ten different analysts, shows a net income CAGR of

22% for the next four years. The standard deviation or volatility of the estimates

counts for an average of � = 20% per year. The volatility on the historical share

price is � = 24% for a one year period calculated on 260 trading days.

For the coming twelve months, the share price of Qiagen will mainly be driven

by three factors. Firstly, the progress on integrating the Digene acquisition, sec-

ondly the expected margin improvements in their core business laboratory puri�ca-

tion technologies, and thirdly the overall sentiment for European high growth equity

investments.
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Year 2007e 2008e 2009e 2010e 2011e
Net Income estimates 90; 102 112; 444 148; 568 174; 244 201; 066

+ Depreciation/Amortisation 34; 000 34; 500 35; 000 35; 500 36; 100
- Change in Working Capital 6; 000 6; 600 7; 260 7; 986 8; 785
- Capital Expenditure 34; 000 34; 500 35; 000 35; 500 36; 100
= Free Cash Flow 84;102 105;844 141;308 166;258 192;282

CAGR 23:0%
Volatility 19:7%

Table 4.2: Qiagen Free Cash Flow Derivation

4.1.3 Replication Assets

For the replication portfolio, traded assets which are closely linked to the perfor-

mance of the company should be chosen. The attributes of a good predictor vari-

able are: It is closely related to the dependent variable and is not highly related to

other independent predictor variables which then would be referred to as collinear-

ity. Therefore, the collinearity of the replication assets will be taken into account as

well. Finally, the intercorrelation of the selected assets should be limited but should

explain most of the value of the company w that has to be calculated by

w = k0 + k1a1 + k2a2 + k2a3:::+ � (4.1)

where a is de�ned as the asset price value, k1:::n are the optimal weights, and � is

the error or residual term. It should be searched for a replication portfolio which

minimises � to achieve a result which is closest to a complete market setting.

Being one of the leading suppliers in laboratory puri�cation technologies as well

as a meaningful player in the molecular diagnostics market, the �rst idea is to in-

clude the closest comparator of Qiagen in both segments which could be Applied

Biosystems (ABI) as well as Cepheid (CPHD). Because Qiagen (QIA) is not di-

rectly comparable to any other listed company on the market two indices created by
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DZ BANK, the Supply 6 index as well as the Diagnostics 7 index have been investi-

gated. As Qiagen's operations mainly focus on these two segments it looks attractive

to replicate Qiagen's cash �ows by the performance of the indices. In 4.3 some in-

dices like the Nasdaq Biotechnology Index (NBI), and the FTSE World Pharmaceu-

tical index (F3PHRM) have been tested due to the sector relation of Qiagen and the

dependence on the same approval authorities as well as reimbursement schemes for

diagnostics and new drugs. The FTSE World Pharmaceutical index consists of the

25 largest pharmaceutical companies with an overall market capitalisation of well

above USD 1:000 billion, holding by far the largest market share of the worldwide

pharmaceutical market. This market had sales of USD 570 billion in 2006 and is ex-

pected to grow at a rate of around 7% per year for the coming �ve years. Due to

Qiagen's focus on German high growth companies, the TecDax (TDXP) index has

been evaluated for inclusion as well.

The analysis of their correlation yields results between 0:417 to 0:847 as shown

in the correlation matrix (4.3) for the chosen eight potential replication assets. The

assets suited best for replication at a �rst glance would be the German TecDax Index

and the DZ BANK Supply Index.

6 The DZBANKBiotech Supply index has the following members: Applied Biosystems Group-Applera
Corp, Bruker Corp., Invitrogen Corp., Millipore Corp, Tecan, Techne Corp., Waters Corp., Affymetrix,
Caliper Life Sciences Inc., Mettler Toledo Intl, Perkinelmer Inc, Sigma Aldrich Corp, Qiagen, Sarto-
rius AG, Illumina, Luminex Corp., Nanogen Inc, Geneart AG, Thermo Fisher Scienti�c Inc., Abcam,
Tepnel Life Sciences, Bio Rad Laboratories

7 The DZ BANK Biotech Diagnostics index has the following members: Biosite Inc, Cytyc Corp.,
Digene Corp., Diagnostic Products, EXACT Sciences Corp., Innogenetics, Pharmanetics, Quidel
Corp., Qiagen, Medtox Scienti�c, Trinity Biotech, Third Wave Tech Inc, Ventana Medical Syst Inc,
Affymetrix, Sequenom, Techne Corp., Idexx Laboratories Inc, Given Imaging Ltd., Orasure Tech-
nologies Inc, Bioveris Corp., Nanogen Inc, Neogen Corporation, Quinton Cardiology Systems Inc,
Cholestech Corporation, Biotest AG, Diagnostic Medical Systems, Cytogen Corp, GenProbe Incor-
porated, Applied Imaging Corp., Clarient Inc, MZT Holdings, Cepheid, Diagnocure, Immunicon,
Epigenomics AG, Biomerieux Inc, Beckman Coulter, Dade Behring Inc, Genomic Health Inc., Inver-
ness Medical Innovations, Immucor Inc, Meridian Bioscience Inc
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Assets/Ind. QIA NBI F3PHRM TDXP CPHD ABI EUR12M JITX Supply
NBI 0:428
F3PHRM 0:065 �0:261
TDXP 0:847 0:542 �0:213
CPHD 0:417 0:395 �0:341 0:724
ABI 0:461 0:168 0:352 0:367 0:158
EUR12M 0:788 0:252 0:093 0:832 0:572 0:731
JITX 0:812 0:336 0:083 0:828 0:446 0:674 0:944
Supply 0:841 0:460 �0:137 0:934 0:644 0:597 0:943 0:934
Diagn. 0:748 0:489 �0:376 0:940 0:801 0:334 0:811 0:762 0:927

Table 4.3: Correlation Matrix for Two Years Historical Prices

One major dif�culty as already mentioned by e.g. choosing these indices for repli-

cation is the high collinearity. Therefore, the best replication with two assets will be

reached by the German TecDax and the FTSE World Pharmaceutical index offer-

ing the highest explained contribution to the historical share prices of Qiagen with

an overall R2 = 78:1%. In a second trial, the best three replicating assets will be

chosen which would be the two previous mentioned assets and Cepheid explaining

R2 = 83:1% on historical prices. In case of choosing four assets the optimal repli-

cation portfolio would hold the German TecDax, Cepheid, the FTSE World Pharma

Index and the DZ BANK Diagnostic Index explaining an overall R2 = 84:1% to the

historical share price of Qiagen. It is assumed that all selected assets/indices fol-

low a GBM. It can be seen that the additional explanation of the third and fourth

asset/index being included as an replication asset is relatively small.

4.1.4 Results Base Case

The current market capitalisation of Qiagen accounts for USD 2:5 billion as of

August 1st 2007. For calculating the value of Qiagen without considering further real

options, a CAGR of 23% in free cash �ows over the valuation period was considered.

The applied volatility range is geared to the expected volatility that can be derived,

taking all analyst earnings expectations for the coming years into account, with � =
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20% and the historical volatility for the last two years at � = 24% per year. In the

following the overview of the chosen input parameters is given.

Parameter QIA TDXP F3PHRM
adj. FCF/Price 84; 104 921 8; 271
CAGR/Interest Rate 23% 6% 6%
Volatility 15%� 30% 18:77% 16:53%

Table 4.4: Overview of Qiagen Input Parameter

The table outlines that the results are highly sensitive regarding the chosen volatil-

ity �. The rise in value on the high side of the cash �ow volatility is a result of an

increasing excess replication in some nodes and can be viewed as a high incom-

pleteness of the market. The excess replication value would even further increase by

assuming that the replication assets versus the company cash �ow are not perfectly

correlated.

Volatility 15% 20% 25% 30%
10 timesteps 1; 368 1; 572 1; 875 2; 313
9 timesteps 1; 191 1; 353 1; 581 1; 902
8 timesteps 1; 032 1; 155 1; 320 1; 554
7 timesteps 882 969 1; 095 1; 254
6 timesteps 744 807 891 999
5 timesteps 612 657 708 783

Table 4.5: Qiagen Base Case Company Valuation with Two Replication Assets

The lowest replication values are going to be achieved at the lowest volatility of

� = 15% per year. In the following chart, it can be seen that the sensitivity on a

change in � increases by adding further time periods because the excess replication

value accumulates over time.
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Figure 4.1: Qiagen Base Case Valuation Sensitivity Chart on Volatility Changes

The added value for further time periods increases in absolute terms for each

additional time period. The relative contribution ranges from 15% to more than

25% by adding a further timestep. The sensitivity regarding the addition of further

timesteps decreases for higher number of timesteps which was expected because

cash �ows far out in the future do contribute less to the company than near term

cash �ows. In this example the sensitivity of the value change is higher by assuming

higher volatility for Qiagen. This effect is mainly attributed from a low volatility

replication portfolio which can be seen later on.

Volatility 15% 20% 25% 30%
10 timesteps 15% 16% 19% 22%
9 timesteps 15% 17% 20% 22%
8 timesteps 17% 19% 21% 24%
7 timesteps 19% 20% 23% 26%
6 timesteps 22% 23% 26% 28%

Table 4.6: Qiagen Base Case Val.: Relative Contribution for Increasing N.o. of Time Periods

The given results were based on two replicating assets/indices; in a next step,

it should be investigated whether the excess replication can be reduced by adding

the third selected replication asset, Cepheid, to the replication portfolio. With a
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historical volatility of � = 44:53% this index is expected to reduce the increase in

the replication value for the scenarios with expected volatilities on the high side.

Nevertheless, it should be pointed out that the additional explanatory value for the

Qiagen share price is very limited, as the R2 only increases by around 5% percent

points to R2 = 83% as mentioned before.

Parameter QIA TDXP F3PHRM CPHD
adj. FCF/Price 84; 104 921 8271 14:75
CAGR/Interest Rate 23% 6% 6% 6%
Volatility 15%� 30 18:77% 16:53% 44:53%

Table 4.7: Overview of Qiagen Input Parameter with Three Assets

The following graph shows that including the third replication asset with a high

volatility decreases the replication values signi�cantly for examples assuming high

volatilities for the Qiagen's future cash �ows.

Volatility 15% 20% 25% 30%
10 timesteps 766 792 832 880
9 timesteps 701 730 764 814
8 timesteps 642 671 708 749
7 timesteps 585 609 643 669
6 timesteps 528 555 581 596
5 timesteps 472 490 516 523

Table 4.8: Qiagen Base Case Company Valuation with Three Replication Assets

The derived company values are almost constant independent of the underlying

volatility of the company cash �ows ranging between � = 15% and � = 30%: This

result can again only be achieved under the assumption of perfect correlation of asset

price and cash �ow development.
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Volatility 15% 20% 25% 30%
10 timesteps 9% 9% 9% 8%
9 timesteps 9% 9% 8% 9%
8 timesteps 10% 10% 10% 12%
7 timesteps 11% 10% 11% 12%
6 timesteps 12% 13% 13% 14%

Table 4.9: Qiagen Base Case Company Relative Value Increase with Three Replication Assets

It remains open what is the best scenario the investor should use to value Qiagen

for the base case. The expected volatility does not have an impact on the company

value within a broad volatility range especially if the number of replicating assets

will be increased in each state.
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Figure 4.2: Reduced Excess Replication by Increased Number of Replication Assets

An increased number of subnodes by itself does not change the company value

if the price path of the replicating assets as well as the company cash �ows are

100% correlated. In the case where more than two basis scenarios for the company

cash �ows are expected in every state the number of subnodes should be increased

accordingly.
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Figure 4.3: Company Value for Increasing Number of Subnodes

The company value, therefore, is only highly sensitive and strongly correlated to

an increasing number of time steps. By having assumed an above market growth rate

of the company's cash �ows, the result is obvious. The answer has been investigated

in several econometric models and is valid for this company valuation model, too.

The above market growth rate of the company being considered for valuation will

deteriorate and converge to the market growth rate over time. It seems to be reason-

able to take an above market growth rate for 5 � 25 years into account, depending

on the company and its industry. It would be optimal to include a smoothing factor

for the company growth rate which would lead to the most realistic scenario. The

market capitalisation of Qiagen on the 1st of August 2007 was USD 2:5 billion and

therefore about 33% higher than the computed company value with � = 25% and

a growth rate of � = 24% p.a. for ten time periods with 2 replication assets and 2

subnodes for each state. The difference dramatically increases if the number of repli-

cation assets will be increased but not if only the number of subnodes for each state

will increase. The second argument is highly dependent on the assumed underlying

price path. Some value difference between the market and the model can potentially
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be explained by the companies real options.

4.1.5 Real Option Assumptions and Evaluation

So far, the value for Qiagen has been calculated on a set of scenarios mainly

taking the organic growth into account. Firstly, the company's main investment op-

portunities beyond the organic growth, should be evaluated. This can be achieved

either by raising further capital and, e.g. buying another competitor like Digene, or

heavily expanding the product base through inhouse research which could be sold

through their sales force. Furthermore the management could consider to broaden

its franchise by buying further market players in the �eld of molecular diagnostics in

the US or Europe which would enable the company to capture an additional market

share in this high margin market segment. Therefore, one real option the company

could consider would be to buy either Gen-Probe, a large US molecular diagnostics

company with a current market capitalisation of USD 3:2 billion, or some smaller

molecular diagnostics companies. Although most of them are still loss-making, an

acquisition could be attractive due to their innovative diagnostics technologies. Al-

most all of these companies are currently valued at around USD 100 million and

generating sales of USD 20 � 35 million. With such an acquisition, Qiagen would

not only be able to add these sales and generate some cost synergies, but most im-

portantly, the company could broaden the product portfolio in molecular diagnostics

of their sales forces in the US as well as Europe. Based on the valuation parameters,

it can reasonably be assumed that Qiagen's free cash �ow b will improve by around

9% through an acquisition for USD 100 million.

Taking a brief look on the balance sheet, the company was almost net debt free
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prior to the Digene acquisition. It seems to be reasonable to raise further capital

through a secondary in the extent of minimum 10%, which would give Qiagen at least

the potential for further investments of USD 300 million. Raising this 10% capital

would be possible for the Qiagen management even in market situations which do

look far less favorable than nowadays.

The second feasible opportunity Qiagen has, is to reach an approval for its multi-

respiratory disease diagnostic and sell this new product throughout their US as well

as European sales force. Industry experts expect Qiagen to be able to market its di-

agnostic test to simultaneously detect several respiratory diseases in the U.S. within

the next two to three years from now. The test is based on Qiagen's own technology

platform and the market penetration can be improved signi�cantly by combining Qi-

agen's and the newly acquired Digene sales forces. The required investment would

stay below USD 50 million for the respiratory diagnostics, but could add 4:5 percent

points in free cash �ow. Both options should be considered and valued regarding its

potential value contribution to Qiagen.

Even though this procedure is quite generic and limits the input parameters to a

few, it gives the opportunity to rate different investment opportunities regarding the

attractiveness in value terms. Furthermore the computation of the optimal exercise

based on an outlay of information the executive management has agreed upon offers

further insight into the implications of preferring one investment opportunity over

another.

4.1.6 Results Real Option Valuation

In the following, the two evaluated strategic options are being considered and
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their potential value contribution will be calculated. In a �rst scenario the calculation

will performed in a binomial setting as a starting point as well. The replication will

performed again by the German TecDax and the FTSE World Pharmaceutical index.

Changes in real option values by increasing the number of replication assets and the

number of subnodes per state to 3 or 4 are evaluated at the end of chapter 4.

Volatility 15% 20% 25% 30%
10 timesteps 1; 461 1; 716 2; 106 2; 649
9 timesteps 1; 242 1; 437 1; 731 2; 136
8 timesteps 1; 035 1; 185 1; 404 1; 686
7 timesteps 882 969 1; 107 1; 308
6 timesteps 744 807 891 999
5 timesteps 612 657 708 783

Table 4.10: Qiagen Extended Real Option Valuation

The results do show an increasing impact of the real options with an increasing

number of timesteps but do not differ from the basis company values if the valuation

is limited to 5 and 6 timesteps. By limiting the valuation to 5 or 6 timesteps the real

options expire worthless in any scenario.

Volatility 15% 20% 25% 30%
10 timesteps 7% 9% 12% 15%
9 timesteps 4% 6% 9% 12%
8 timesteps 0% 3% 6% 8%
7 timesteps 0% 0% 1% 4%
6 timesteps 0% 0% 0% 0%
5 timesteps 0% 0% 0% 0%

Table 4.11: Qiagen Extended Real Option Relative Value Contribution

Exercising the �rst option up to three times and considering up to 10 timesteps

adds up to 15% to the company's basis value wcomp. The calculation yields the result

that the optimal exercise of the expansion option to acquire other small competitors

is only value enhancing in some better developing nodes. Two results are depicted

in the following graph: On the left side the scenario with 7 timesteps and a assumed
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volatility of � = 30% and on the right side of the �gure for 8 timesteps and a

volatility of the company's cash �ows of � = 25%.

Figure 4.4: Qiagen Optimal Exercise

All other results for optimal exercise are listed in the appendix. Sticking to a

valuation by considering ten time periods, it can be seen that the maximum com-

pany value including both real options increases to USD 2:1 billion which would

only be 16% below the market capitalisation of USD 2:5 billion end of July 2007.

It can be assumed, that either the investor expects the company to carry out these

real options near term or the time period with above market growth is expected to

be sustainable over a time period of more than ten years. In the meantime the Qi-

agen market capitalisation has even increased to USD 3:5 billion until the 15th of

March 2008 within an overall weak market environment for equities. The perfor-

mance was mainly driven by better prospect for the integrated company as well as

an upbeat market sentiment for diagnostics companies with strong M&A activity at
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high multiples.

Finally it has been determined that even up to 10 timesteps with 3 and 4 subnodes

for each state applying the same correlated price process as for the basis Qiagen

valuation no additional value has been generated. This is due to the multiplicative

assumption of the real option investment projects.

4.1.7 Computational Performance

The computational performance of the previous valuation of Qiagen is presented

in the following tables. The computation was performed on a machine with one

Intel Pentium with a 1:86 GHz processor. The results always have been displayed in

seconds.

The computational time for the basis valuation of Qiagen with 2 replication assets

and 2 subnodes in each state is listed in the following table:

Volatility 15% 20% 25% 30%
10 timesteps 161:94 237:94 299:03 452:66
9 timesteps 67:42 87:92 120:66 156:74
8 timesteps 24:06 30:41 44:17 61:98
7 timesteps 10:00 12:03 15:09 22:92
6 timesteps 4:08 5:11 8:00 7:16
5 timesteps 1:67 1:88 2:16 2:72

Table 4.12: Qiagen Base Case Valuation: Computational Time in Seconds

By adding one further timestep the time for computing the algorithm increases

by on average 167%, which clearly con�rms the better than exponential increase in

computing time for the algorithm implemented by applying dynamic programming.
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Volatility 15% 20% 25% 30%
10 timesteps 140% 171% 148% 189%
9 timesteps 180% 189% 173% 153%
8 timesteps 141% 153% 193% 170%
7 timesteps 145% 135% 89% 220%
6 timesteps 144% 173% 271% 163%

Table 4.13: Qiagen Base Case Valuation: Relative Change in Computational Time

The following table depicts the computational time for the real option setting

which is coded by sequentially computing the basis scenario and then the real option

scenario which is much more computationally demanding. The two main reasons

are (i) the extra optimisation (over gi); and (ii) because the memory requirement

increases drastically due to the increase (by 1) in the dimensionality of the state

space. Even if bg is discretised in just 10 timesteps, the size of the state space is
increased 10 fold and the computational effort (in computing time) increases a lot

more than that. As the basis scenario 2 replication assets and 2 subnodes in each

states are being considered.

Volatility 15% 20% 25% 30%
10 timesteps 547:33 624:49 972:39 1; 494:88
9 timesteps 180:83 263:81 384:44 546:37
8 timesteps 77:25 101:53 124:92 172:25
7 timesteps 35:47 39:67 46:05 65:55
6 timesteps 15:98 15:63 20:36 24:09
5 timesteps 4:83 6:17 7:53 8:50

Table 4.14: Qiagen Real Option Valuation: Computational Time for 2 Assets and 2 Subnodes

The comparison to the basis scenario shows an increase of only up to 292% in

computational time which is far better than expected and is mainly result of focusing

on dominating results within the dynamic programming algorithm.
volatility 15% 20% 25% 30%
10 timesteps 238% 162% 225% 230%
9 timesteps 168% 200% 219% 249%
8 timesteps 221% 234% 183% 178%
7 timesteps 255% 230% 205% 186%
6 timesteps 292% 206% 154% 237%
5 timesteps 189% 229% 249% 213%

Table 4.15: Qiagen Real Option Valuation: Increase in Computational Time to Basis Scenario
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The next table depicts the computational time for the real option setting again in

a scenario with 3 replication assets and 2 subnodes in each states.

Volatility 15% 20% 25% 30%
10 timesteps 308; 531 352; 024 548; 138 842; 664
9 timesteps 116; 050 122; 416 189; 631 280; 152
8 timesteps 48; 354 76; 589 91; 282 128; 987
7 timesteps 41; 047 45; 912 53; 290 79; 234
6 timesteps 15; 606 13; 206 17; 920 21; 784
5 timesteps 6; 745 8; 623 10; 523 11; 875

Table 4.16: Qiagen Real Option Valuation: Computational Time for 3 Assets and 2 Subnodes

The following table shows the computational performance of the scenario with 2

replication assets and 3 subnodes in each state. The computational time increases

on average by a factor of more than 2 which clearly indicates further improvement

potential regarding the computational performance of the implementation of the al-

gorithm.

Volatility 15% 20% 25% 30%
10 timesteps 960; 020 1; 095; 352 1; 705; 581 2; 622; 024
9 timesteps 473; 664 691; 037 1; 007; 005 1; 431; 165
8 timesteps 353; 266 464; 303 571; 271 787; 703
7 timesteps 159; 203 178; 073 206; 688 294; 212
6 timesteps 48; 088 47; 007 61; 250 72; 483
5 timesteps 18; 495 23; 644 28; 854 32; 562

Table 4.17: Qiagen Real Option Valuation: Computational Time for 2 Assets and 3 Subnodes

The last table depicts the computational time for the real option setting in an

scenario with 3 replication assets and 3 subnodes in each state.

Volatility 15% 20% 25% 30%
10 timesteps 3; 521; 246 4; 017; 630 6; 255; 880 9; 617; 292
9 timesteps 1; 163; 359 1; 697; 243 2; 473; 285 3; 515; 057
8 timesteps 496; 989 653; 201 803; 687 1; 108; 172
7 timesteps 220; 416 246; 541 286; 159 407; 335
6 timesteps 95; 340 93; 199 121; 435 143; 708
5 timesteps 27; 576 35; 253 43; 021 48; 550

Table 4.18: Qiagen Real Option Valuation: Computational Time for 3 Assets and 3 Subnodes
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4.2 Case Study in the R&D Arena

In a second case study, a company heavily driven by R&D should be evaluated

and the differences regarding the company's real options should be elaborated.

4.2.1 Description

GPC Biotech is a publicly traded biopharmaceutical company focused on discov-

ering, developing, and commercializing new anticancer drugs. GPC Biotech's lead

product candidate Satraplatin is currently in a phase 3 registrational trial for second-

line hormone-refractory prostate cancer. Beside its lead compound, the company is

also developing a monoclonal antibody with a novel mechanism-of-action against a

variety of lymphoid tumors, currently in clinical phase 1 development. The company

does not own technologies beside its two drug candidates which currently contribute

signi�cantly to the company value. The company planned to submit its phase 3 reg-

istrational data of Satraplatin to the U.S. Food and Drug Administration (FDA) in

July 2007. The data which was published prior to registration showed a signi�cant

effect on its primary clinical endpoint progression free survival (PFS) compared to

the standard treatment arm of the trial (GPC Biotech). Nevertheless, the Oncologic

Drugs Advisory Committee (ODAC) which holds an important stake within the ap-

proval process of oncology drugs in the U.S. recommended the FDA to wait with

an approval decision until the �nal overall survival (OS) data of the phase 3 regis-

tration trial will be released (FDA Brie�ng Documents for ODAC). This outcome

unexpected by most of the investors so far, led to a slump in the company value by

more than 63% from EUR 843 million on the 19th July 2007 to its lowest level on

the 27th of July at a market capitalisation of EUR 301 million. The reason for the
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decline in company value was the reduced expectation of the investors regarding an

approval of Satraplatin. Satraplatin was the only product expected to generate posi-

tive cash �ows for GPC Biotech near term. Furthermore, the company was burdened

by being sued in an U.S. class action lawsuit on behalf of some investors. The com-

plaint alleges GPC Biotech made false public statements relating to the prospects of

Satraplatin, and thereby arti�cially in�ating the company value.
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Figure 4.5: GPC Biotech Performance Chart

4.2.2 Forecasting Company Cash Flows

As already used for the Qiagen case, the most robust �gure to get to the free cash

�ow is to use the I/B/E/S net income analyst expectations. For further expanding its

business from its current status, GPC Biotech neither requires a signi�cant further in-

vestment nor allows for strong reduction of further investments and therefore leads to

investments in the magnitude of the depreciation/amortisation. The change in work-
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ing capital is estimated to be at around 10% of the sales increase which leads to a re-

duction of the growth in free cash �ow compared to the expected net income growth

by on average 20 percent points. The average of the net income estimates, being pro-

vided by seven different analysts, states an increased net loss for 2007 compared to

2006 as a result of higher operating costs for the phase 3 study, pre-marketing ex-

penditures, and the delayed approval of Satraplatin (Bloomberg 2007). For 2008 and

the following years the variance between the different estimates is signi�cant. This

is the result of the high uncertainty regarding the outcome of Satraplatin showing

a signi�cant survival bene�t over the current treatment standard (standard of care)

and the subsequent uncertainty about the approval or non-approval decision from the

FDA in the US and the European Medicines Agency (EMEA). Finally, uncertainty

arises of the time period of the exclusivity rights of the product and the validity of

the intellectual property (IP) position in case a generic version potentially infringes

some IP of Satraplatin for the treatment of hormone-refractory prostate cancer. The

average of the analysts estimates an increase of the free cash �ow from minus EUR

83 million in 2007 to EUR 22 million in 2010. The standard deviation or volatil-

ity of the estimates for the next four years is in average 43% per year for sales. The

one year historical share price volatility amounts to 80%. For the coming twelve

month, the share price of GPC Biotech will mainly be driven by two factors. Firstly,

the outcome of the phase 3 overall survival bene�t with the subsequent reaction of

the approval authorities and secondly, whether claims regarding the class action law

sued will be discovered or the lawsuit will be settled.

Regarding the input parameters, the usual GBM will be used as an underlying

cash �ow process again. To solve this aspect the lognormal cash �ow distribution
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will be shifted by a constant factor �b, in our case EUR 100 million for the free

cash �ow. Now the growth rate � can be calculated by plugging in the real estimates

as well. Finally, this leads to a � = 36% for the adjusted free cash �ow �gure for

the time period 2006 until 2010 and an adjusted volatility of � = 30% based on the

analyst estimates. As the adjusted free cash �ow in 2006 EUR 28:6 million were

calculated.

4.2.3 Replication Assets

At a �rst glance, the drivers for the future expected cash �ows are fairly indepen-

dent from the performance of other industries or assets. This aspect is underpinned

by an on average lower correlation to some industry speci�c indices compared to the

correlation dataset of Qiagen in the �rst case study.

Assets/Ind. GPC NBI F3PHRM TDXP DAX EUR003M JITXE5XU
GPC 1:000
NBI 0:633 1:000
F3PHRM 0:356 0:498 1:000
TDXP 0:835 0:730 0:573 1:000
DAX 0:746 0:644 0:713 0:937 1:000
EUR003M 0:790 0:542 0:634 0:895 0:952 1:000
JITXE5XU 0:838 0:680 0:684 0:890 0:940 0:930 1:000

Table 4.19: Correlation Matrix for Historical Prices Since January 2004

By selecting only two replication assets, the combination of TecDAX and the

iTraxx Crossover 5-Year Performance Index (JITXE5XU) yields the highest ex-

plained contribution to the historical share prices of GPC Biotech with an overall

R2 = 75:2%. Interesting is that for GPC Biotech the two asset combinations which

explain most of the historical share price include an index that expresses the price

for default risk of traded �xed income products. Two reasons can be drawn from this

result: Firstly, coincidentally the iTraxx signi�cantly fell as a result of the subprime

crisis in the US in the same time period when GPC Biotech plunged, or secondly, the
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ability to raise money for a biotech-company like GPC Biotech is highly correlated to

the price differential for non-investment grade loans to "riskless" government bonds.

Analysing the time period prior to the events which have taken place in July 2007

leads to the result, that the iTraxx Crossover 5-Year Performance Index is not any-

more the replication asset having the second highest explanatory value to the GPC

Biotech share price. In case the 3-month money market performance would be the

index correlated second highest to the replication asset. In general, equity �nanc-

ing is easier in a low interest environment compared to a high one. Nevertheless, for

the given case study the iTraxx Crossover 5-Year Performance Index will be chosen

as a second replication asset. In a second trial, the computation will be performed

by including three replication assets explaining maximum R2 = 80:6% of the GPC

Biotech historical share price. In addition to the TecDAX and the iTraxx Index, the

FTSE World Pharma Index was included. The additional explanation of the third as-

set being included as an replication asset only yields an additional R2 of around 5%

to the share price of GPC Biotech throughout its history. The main reason for includ-

ing the third asset is due to its tracking error reducing effect. It is assumed that all

selected indices follow a GBM. In comparison to the TecDAX and the FTSE World

Pharma Index, the iTraxx Index is assumed not to encounter any growth rate �:
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4.2.4 Results Base Case

In the following the overview of the chosen input parameters is given.

Parameter GPC Biotech F3PHRM TDXP JITXE5XU
adj. FCF/Price 29 8271 921 115
CAGR/Interest Rate 36:0% 6:0% 6:0% 0:0%
Volatility 0:0%=29:6%= 15:8% 18:8% 36:6%

50:0%=78:8%

Table 4.20: Overview of GPC Biotech Input Parameter

For calculating the value of GPC Biotech without considering further real options

an adjusted CAGR of � = 36% in free cash �ow over the valuation period was

considered. Regarding the volatility the potential range lies between � = 79% for

the historical volatility for the last twelve month and � = 30% per year for the

adjusted volatility that can be derived by taking all analyst earnings expectations for

the coming years into account. The strong deviation between the historical volatility

and the expected is hard to justify. At a �rst glance it could be assumed that the

shaky history is not expected to continue for the future.

Historical: Estimated:
Volatility 79% 50% 30% 20% 0%
10 timesteps 4; 987 661 165 69 30
9 timesteps 3; 225 481 109 33 0
8 timesteps 2; 169 325 49 0 0
7 timesteps 1; 299 198 9 0 0
6 timesteps 735 97 0 0 0
5 timesteps 373 13 0 0 0

Table 4.21: GPC Biotech Preliminary Basic Company Values

GPC Biotech had a market capitalisation of EUR 381 million on the 1 August,

2007. The results do not match the reality because the assumptions on the CAGR

� = 36% are being derived from the analyst estimates for the next �ve years as well

as the high volatility range of � = 30% to 79% .
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This leads to a potential net company cash �ows of bT = 1135 for � = 10%

and bT = 6:826 already for � = 30% in the last year of a ten year planning period.

As it can be seen a volatility of � = 30% or above, returns unreasonable net cash

�ow projections at least. The available time period for analyst estimates is the period

when GPC Biotech will either be able to successfully market Satraplatin after having

received an approval, or will go bankrupt. For the time period of �ve to ten years

ahead, GPC Biotech will try to maximise the return of the then approved product

until generic competition will deteriorate their margins on the product. Even the most

optimistic peak sales estimates from analysts for Satraplatin did not signi�cantly

exceed EUR 1 billion per year. In the following, the potential maximum net cash

�owwhich can be generated from the drug will be calculated. For the EU, Satraplatin

has been licensed to Pharmion in exchange to a royalty rate of between 26� 34% of

net sales. In the U.S., GPC Biotech initially planned to sell the product through their

own sales force which yields higher net cash �ow margins.

Markets EU EU US US Worldwide
in % in EUR m in % in EUR m in EUR m

Maximum Peak-Sales Estimates 100% 400 100% 600 1000
Costs of Goods Sold �7% �28 �7% �42 �70
Royalties from Pharmion (26� 34%) 30% 120 0% 0 120
Royalties to Spectrum Pharmaceuticals �8% �32 �8% �48 �80
Marketing and Sales Costs 0% 0 �30% �180 �180
EBT 15% 60 55% 330 390

Working Capital 0% 0 �10% �60 �60
Taxes �30% �18 �30% �99 �117
Free Cash �ow (FCF) 11% 42 29% 171 213

Table 4.22: Calculation of Best Case Free Cash Flow Scenario of Satraplatin
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The net cash �ow GPC Biotech could generate through a successful launch of

Satraplatin is limited to EUR 213 million in the most optimistic case. Corporate

costs for, e.g. administration and other development projects which are still loss

making were not taken into account in this simpli�ed calculation. Therefore this

number should be seen as the maximum net cash �ow the company could generate

in the best case scenario. This number impressively shows that the derived CAGR

as well as the volatility derived from the analyst estimates for the coming �ve years

is not a good estimate for the ten year period. To reach this �gure in the upper node

of the tree either the CAGR � or the volatility � can be decreased. Therefore, the

following results are being calculated with different combinations of � and � which

all yield a free cash �ow of around EUR 213 million in t = 10 in the upper node.

Maximum Extrapolation of Combinations based on best
cumulated analyst estimates case scenario for Satraplatin
negative � 36:0% 25:0% 10:0% 0:0%
cash �ows � 30:0% 0:0% 13:0% 22:0%
143 10 timesteps 99 0 0 0
160 10 timesteps 99 0 0 0
180 10 timesteps 165 0 0 0

unlimited 10 timesteps 165 0 0 0

Table 4.23: Company Valuation Results of Best Case Sceanrio of Satraplatin FCF Expectations

Any combination of volatility � and expected growth rate � which would not

exceed the most optimistic free cash �ow scenario in t = 10 yields a positive com-

pany value. Furthermore the results show that the potential amount of cash available

to carry out a risky investment in�uences the overall wealth w of the company as

well, which can be seen in the �rst column. With restricted amount of cash avail-

able, the losses are limited but sometimes cut out branches which would contribute

to the company value later on. The free liquidity of GPC Biotech end of July 2007
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was estimated at EUR 60 million for the end of 2007. Therefore, EUR 143 million

is the amount the company can still spent before going bankrupt at most, which is

the sum of the expected negative net cash �ow of EUR 83 million in 2007 plus the

remaining cash position. Another source of funds could be money in�ow from a cap-

ital increase. Assuming the capital markets to be rational, the investor would invest

further money in the company only if the company generates a potential excess re-

turn. This implies, an investor will only invest further money if the company follows

a good branch (approval of Satraplatin) and will not invest in any "bad" branches

(non-approval of Satraplatin). Only an additional investment of at least EUR 17

million through a capital increase would increase the company value to w = 165

million Euro for the unrealistic case of a growth rate of � = 36% and a volatility of

� = 30%: The likelihood for an approval of Satraplatin is expected at the beginning

of August 2007 at around 50% which is the prerequisite of the company to gener-

ate positive net cash �ows. Interpreting the results clearly states that the wealth of

GPC Biotech is zero, assuming the current market estimates to be reasonable. In the

following, the company cash �ows will be modelled directly focusing only on two

simpli�ed scenarios which have a high likelihood according to analyst reports.

Scenarios 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Best Case �71:0 �83:2 �22:1 �7:6 21:8 31:9 46:6 68:1 99:6 145:7 213:0
Worst Case �71:0 �117:3 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0 0:0

Table 4.24: Simpli�ed Discrete Modelled GPC Biotech Cash Flow Scenarios

Therefore, GPC Biotech has been valued in a second way by considering only

two branches which do have the highest likelihood: The best case scenario was

modelled according to the analyst estimates and the inherent volatility for the next
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ten years. The second branch is the worst case scenario which assumes GPC Biotech

will not get an approval for Satraplatin from the FDA and the EMEA until end of

2008. In this case, the company will go bankrupt by the end of 2008 and, therefore

no further negative or positive cash �ows in this branch have been considered. The

company valuation algorithm yields a company value of w0 = 98 million Euro in

this case assuming the same replication assets as in the stochastic process. Apply-

ing a simpli�ed risk-adjusted DCF valuation with a probability of 50% for the best

case branch, 50% for the worst case branch and a risk-free discount rate of r = 6%

yields a company value of w0 = 91 million Euro. In the case of applying a WACC

of irr = 10%; the company wealth would decline to w0 = 44 million Euro. In com-

parison to the DCF valuation technique, the new company valuation algorithm by

applying the risk-free interest rate of r = 6% and using the above shown company

cash �ows as two branches, yields with 8% deviation, almost the same result: This

furthermore indicates the good applicability of the developed algorithm. The results

for the company valuation algorithm based on stochastically modelled net company

cash �ows are signi�cantly lower applying reasonable assumptions. This is mainly

due to the assumed constant volatility over all future time steps which is not con-

sistent to the expectations which would apply in reality. A stochastic process with,

e.g. a mean-reverting volatility would lead to a better applicability in cases of highly

changing volatility scenarios like in maturing high growth companies or turn-around

situations.

4.2.5 Real Option Assumptions and Evaluation

So far, the values for GPC Biotech have been calculated on a set of scenarios tak-

ing the current setting into account. But beside these mainly digital expectations,
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the question remains whether there are further investment opportunities. Two sce-

narios can be considered: The options in case of an approval of Satraplatin and the

options in the case of a non-approval. If Satraplatin will be approved until end of

2008, GPC Biotech could try to start another clinical trial in a cancer indication with

Satraplatin, where the company expects to hold a solid IP position which at least

does not expire before 2018. Secondly, the opportunity could be generated to speed

up the development of its phase 1 monoclonal antibody by assigning more resources

to its development. This option is not valid for generating sustainable cash �ows

within the next ten year time horizon. Thirdly, GPC Biotech could acquire another

marketed product in a cancer indication to generate synergies by a higher utilisation

of its already established U.S. sales force.

Real Options if
Satraplatin Gets
Approved

Prerequirements Investment
(in EUR
m)

Free Cash Flow
Contribution p.a.
(in EUR m)

Additive/
Multi-
plicative

Comment

Phase 2 trial in
further cancer in-
dication

Solid IP on line
extensions for
satraplatin valid
>2018

40 59 multi potentially

Accelerate devel-
opment

Good safety pro-
�le in phase I

50 150 add takes to
long

Acquisition
of marketed
product

Successful large
capital increase

220 30 add potentially

Table 4.25: Potential Real Options in the Case of an Approval of Satraplatin

In case Satraplatin will not get an approval, the company will not have many op-

tions remaining because it will run out of money in 2008. Starting a new phase 3 trial

for Satraplatin is not a valid option anymore, even if the company could raise the re-

quired �nancing. The limited time for an exclusive marketing of the drug on basis

of valid IP claims protecting the product from generic competition is simply to short

to recover a further investment. On a stand-alone basis GPC Biotech would not have
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any substantial options left. Even to lay off most of their 280 employees and selling

the remaining assets would not change much. The opportunity to raise a signi�cant

amount of money would have been foregone. Therefore, it can be assumed that in

case of a non-approval decision, GPC Biotech will have to leave the market forever.

A different scenario could be considered if a strategic investor views GPC Biotech

as a platform to establish a midsize specialty pharmaceutical company. In this case,

the question will be if any value can be generated within GPC Biotech by further

investing in the �rm. A potential strategy could be to bring in a well-established spe-

cialty cancer drug, which has not been promoted to that extent by its prior owner, and

where GPC Biotech is considered to promote the drug more effectively. Therefore,

this strategy could be reduced to the question if a bargain buy is feasible and what

additional cash �ows can be squeezed out by stronger marketing efforts utilising the

recently built up GPC Biotech US sales force. A second factor could potentially in-

�uence the investment decision positively; GPC Biotech's carry forward losses. By

year end 2006, the testi�ed losses carried forward amounted to EUR 92 million. By

the end of 2007, losses carried forward in the range of around EUR 150 million are

assumed.

Real Options if
Straplatin Won't
Get Approved

Prerequirements Investment
(in EUR
m)

Free Cash Flow
Contribution p.a.
(in EUR m)

Additive/
Multi-
plicative

Comment

Acquisition
of marketed
product

Pos. decision
of strategic in-
vestors plus large
capital increase

220 30 add potentially

Table 4.26: Potential Real Options in the Case of a Non-Approval of Satraplatin

4.2.6 Results Real Option Valuation

The option for a further phase 2 trial is multiplicative connected to the basis cash
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�ows of GPC Biotech, which means the potential positive effect only occurs when

Satraplatin already generates positive net cash �ows for GPC Biotech, but not in case

of a non-approval of the product. The acquisition of a marketed product is mainly

independent of the approval of Satraplatin, thus its cash �ows contributions have

been considered to be independent and, therefore, additive to the basis cash �ow

of GPC Biotech. The real option results were calculated for the discrete cash �ow

example for GPC Biotech. The real option results were calculated for the discrete

cash �ow example because the stochastically generated cash �ows do not meet the

real world requirements close enough in this speci�c example.

Real Options Prerequirements Investment
(in EUR
m)

Free Cash
Flow Con-
tribution
p.a. (in
EUR m)

Additive/
Multi-
plicative

Company
Value

Value
contri-
bution

Phase 2 trial in
further cancer in-
dication

Solid IP on line
extensions for
satraplatin valid
>2018

40 59 multi 136 39%

Accelerate devel-
opment

Good safety pro-
�le in phase I

50 150 add - -

Acquisition
of marketed
product

Successful large
capital increase

220 30 add 261 166%

Table 4.27: GPC Biotech Company Value Considering Real Options

The computed results con�rm the expectations that even in case of a high return

of the additional cancer trial, the impact is by far smaller than the contribution of the

acquisition of the marketed product which is independent of the Satraplatin approval.

Furthermore, the result derives the optimal decision scenario which states that for

the second cancer trial the investment should be carried out only for the company

following the best case branch in time step t = 3 which equates to the year 2009.

For the acquisition of the marketed product, the investment would be optimal to
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carry out right away. This real option would rescue the company and generate an

additional company wealth following the best case branch as well as the worst case

branch.

4.2.7 Retrospective View

OnOctober the 31st 2007, GPC Biotech announced the �nal results from its ongo-

ing phase 3 trial. The results did not show any statistically signi�cant improvement

of the overall survival between the group treated with Satraplatin and the standard

care group. The share price dropped furthermore by 60% from EUR 7:96 to EUR

3:22 per share. The overall market capitalisation was EUR 119million at the closing

of the markets of October 31. The result at least partly con�rm the previous calcula-

tions with the newly developed company valuation approach. The remaining market

capitalisation can be interpreted as the hope of some investors of a rescue plan to

utilise the losses carried forward in the range of around EUR 150 million at the end

of 2007 as well as generating some value of the sales of the remaining assets, i.e.

mainly the antibody project in clinical phase 1.

In the meantime even this hope diminished and the only news from the company

side is the announcement of another restructuring program. The market capitalisa-

tion has reached a new low at EUR 85 million on 6 of March 2008 and the company

therefore is trading at around EUR 20 million above cash.
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Figure 4.6: Retrospective View on GPC Biotech Performance
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Chapter 5

Conclusions

This thesis expands the literature on the integration of option pricing theory and

optimisation in the area of operations research. In a further step, this thesis con-

tributes by the application of real options theory to reduce its complexity of calcu-

lating the value preposition and determining the optimal exercise based on a generic

set of input parameters. Previous research primarily focused on the motivation of

real options theory in general and its application to speci�c situations and different

techniques for evaluation of real options.

The model integrates the valuation of predictable cash �ow scenarios within al-

most any project only by applying appropriate stochastic price processes of traded

assets which are able to replicate the cash �ow scenarios at least to a certain extent.

In a second step additional investment scenarios can be valued and the ones being

most value enhancing within the additional investment budget can be chosen. One

dif�culty facing organisations is the question of the optimal exercise. Within the es-

tablished algorithm the optimal exercise of the additional investments will computed.

And last the amount of additional investment for these additional investments can be

chosen and therefore the amount of additional risks the company or the investor is

willing to carry. The algorithm contributes to some further answers to the quite

generic question: "What is the optimal investment strategy within the framework

of budgeting constraints and different future scenarios?" The developed algorithm

therefore enables decision makers, analysts, and other interested parties to determine

the optimal time and scenario to undertake the investment project as well as its value
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contribution a priori. Depending on the branch the company follows throughout the

time, the input parameters can be updated and the optimal exercise/no-exercise de-

cisions can be adjusted to enhance the company value throughout the evolving time.

Focusing on the few most valuable real options allows for an easier communication

of the underlying assumptions and its value contribution. Nevertheless, a thoroughly

evaluation of the underlying options is prerequisite to generate valuable outcomes.

The algorithm therefore supports organisations as well as investors to mitigate invest-

ment risks. At this stage milestones already trigger further investments in a variety

of projects, even though these milestones are �xed for reaching certain goals within

one project. Supported by the newly developed algorithm the value of reaching a

variety of various possible future milestones could be calculated and therefore the

related payment could be �xed more precisely.
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Appendix

Estimates on Qiagen:

Year 2007 2008 2009 2010 2011
Analyst 1 92; 240 113; 240 146; 070
Analyst 2 116; 806 141; 354 176; 520 214; 500 214; 500
Analyst 3 75; 300 172; 600 216; 300
Analyst 4 88; 090 113; 010 134; 240 160; 500
Analyst 5 74; 120 90; 430 104; 510 203; 513 238; 065
Analyst 6 81; 300 10; 400 123; 900 138; 700 153; 300
Analyst 7 89; 328 118; 009 144; 694
Analyst 8 95; 431 114; 956 191; 000
Analyst 9 86; 916 120; 484 133; 005 166; 800 198; 400
Analyst 10 96; 992 118; 400
Analyst 11 94; 600 124; 000 154; 000
Mean 90;102 112;444 148;568 174;244 201;066

Volatility 12% 34% 22% 16% 15%

Table 5.1: I/B/E/S Net Income Estimates for Qiagen from 30th of July 2007
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Optimal Exercises of Qiagen Real Option Scenario:

Volatility 15% 20% 25% 30%
10 timesteps 300 in 7 300 in 7 see 300 in 7

300 in 17 300 in 17 graph 300 in 17
300 in 19 300 in 19 300 in 19
300 in 23 300 in 23 300 in 23
300 in 37 300 in 37 300 in 37
300 in 41 300 in 41 300 in 41
300 in 43 300 in 43 300 in 43
300 in 49 300 in 49 300 in 49
300 in 51 300 in 51 300 in 51
300 in 55 300 in 55 300 in 55

9 timesteps 300 in 7 300 in 7 100 in 3 300 in 3
300 in 17 300 in 17 200 in 7 300 in 11
300 in 19 300 in 19 100 in 9 300 in 27
300 in 23 300 in 23 100 in 11

200 in 17
200 in 19
100 in 21
200 in 23
100 in 25
100 in 27
200 in 37
200 in 41
200 in 43
200 in 49
200 in 51
200 in 55

8 timeteps 300 in 7 300 in 7 100 in 3 300 in 3
200 in 7 300 in 9
100 in 9 300 in 11
100 in 11
200 in 17
200 in 19
200 in 23

7 timesteps 0 0 100 in 3 300 in 3
200 in 7

6 timesteps 0 0 0 0

5 timesteps 0 0 0 0

Table 5.2: Qiagen Extended Real Option Optimal Exercise
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Qiagen Optimal Exercise

137



Estimates on GPC Biotech:

Year 2007 2008 2009 2010
Analyst 1 -89.30 -70.10 -30.40
Analyst 2 -76.10 -17.60
Analyst 3 -92.66 -15.17 18.60
Analyst 4 -89.80 30.00
Analyst 5 -69.90 -8.90
Analyst 6 -82.50 -28.90 -9.60 28.10
Analyst 7 -72.40 -41.10 -8.10 9.70
Analyst 8 -93.20 -68.00 -10.10 27.50
Mean -83.23 -27.47 -7.92 21.77

Table 5.3: I/B/E/S Net Income Estimates for GPC Biotech from 30th of July 2007
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