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Abstract: Periodontitis, an inflammatory disease, is caused by biofilms with a mixed microbial
etiology and involves the progressive destruction of the tooth-supporting tissues. A rising number
of studies investigate the clinical potential of photodynamic therapy (PDT) as an adjunct during
active therapy. The aim of the present review was to evaluate the available literature for the in vitro
antimicrobial efficacy of photodynamic therapy focusing on the periodontopathogenic bacteria
Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum. The
focused question was: “Is it possible to decrease (at least 3 log steps or 99.9%) or even eliminate
bacterial growth by photodynamic therapy in vitro when compared to untreated control groups or
control groups treated by placebo?” In general, PDT resulted in a substantial reduction of surviving
bacteria. However, not all studies showed the desired reduction or elimination. The ranges of
log10-reduction were 0.38 (58%) to a complete eradication (100%) for P. gingivalis, 0.21 (39%) to
100% for A. actinomycetemcomitans and 0.3 (50%) to 100% for F. nucleatum. In conclusion, further
and particularly more comparable studies are needed to evaluate if PDT can be clinically successful
as an adjuvant in periodontal therapy.
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1. Introduction

Periodontitis is an inflammatory disease caused by biofilms with a mixed microbial etiology and
leads to a progressive destruction of the teeth-supporting tissues. The main objective of periodontal
treatment is the removal of the supra- and subgingival biofilm from the root surface in order to
eliminate the pathogenic bacteria, which initiate and cause the progression of periodontal disease [1].
At present, the most widely used treatment to achieve this goal is the mechanical instrumentation of
the root surface, i.e., scaling and root planning (SRP). However, residual calculus is often observed
after this treatment, especially in deep pockets and in posterior teeth [2]. Further, some pathogens
are able to invade the surrounding soft tissues of the periodontal pocket, and re-colonization of
treated sites may occur if intraoral niches remain untreated [3]. Therefore, new treatment approaches,
such as the antimicrobial PDT (aPDT) have been proposed for a more efficient elimination of the
pathogenic biofilm.

Antimicrobial PDT is considered a non-invasive therapeutic method able to selectively target
periodontal pathogens, thus avoiding damage to the host tissues [4]. It involves the localization of
a photoactivable agent—the photosensitizer—in a target region prior to activation by light of the
appropriate wavelength. Singlet oxygen and free radicals are generated upon illumination, which
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are cytotoxic to microorganisms and their by-products [5]. Today, for curative applications, the
photodynamic effects are used for cancers as an alternative to chemo- or radiotherapy; however,
local infections such as those that occur within the oral cavity are also increasingly popular fields of
application of the aPDT [6]. In the treatment of periodontitis, the additional benefits of the aPDT
to the classical scaling and root planning are not completely clear [7]. Therefore, the aim of this
review was to evaluate the available literature for the in vitro antimicrobial efficacy of photodynamic
therapy against periodontopathogenic bacteria. It was analyzed if it is possible to decrease or even
stop bacterial growth under laboratory conditions compared to non-treated controls or compared to
control groups treated by placebo.

2. Results and Discussion

2.1. Search and Screening

A total of 306 titles from the electronic databases and 20 titles from the hand search were
identified (Figure 1). The full texts of 94 publications were further analyzed. Full text analysis led to
exclusion of further 25 studies. Only 6 of the remaining 69 papers complied with the inclusion criteria.

2.2. Description of Studies

Five out of the six included studies used methylene blue as a photosensitizer [8–12], one applied
toluidine blue [13]. The effect of PDT on Aggregatibacter actinomycetemcomitans only was investigated
in two studies [11,12], Porphyromonas gingivalis only was studied in one trial [8]. Two studies
investigated three pathogens, i.e., Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and
Fusobacterium nucleatum [9,10]. One study investigated Aggregatibacter actinomycetemcomitans and
Porphyromonas gingivalis [13].
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2.3. Antimicrobial Effects of Photodynamic Therapy (PDT) on Porphyromonas Gingivalis

The summarized data set regarding P. gingivalis is presented in Table 1.
Chan and Lai [9] performed experiments with methylene blue (MB) as a dye and three different

light sources, i.e., a He–Ne laser (632.8 nm) with a 30 mW power output, a 100 mW diode laser at
665 nm, and a 100 mW diode laser at 830 nm. Incubation with MB alone without light irradiation
resulted in a statistically significant decrease of P. gingivalis [9]. Light irradiation alone without
previous incubation with MB showed statistically significant decrease for both diode lasers [9].
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Using a MB and light application, all test arrangements led to a statistically significant decrease of
P. gingivalis [9]. The most efficient combination was MB 0.01% with the diode laser at 665 nm.

Braham et al. [8] found no antimicrobial effect using MB only. MB in combination with light
irradiation resulted in a decrease of P. gingivalis of (3.8 ˘ 1.3) log10. Another study using a diode laser
with a wave length in the range of 650–675 nm and MB as a dye resulted in an eradication of >99.9%
of planktonic P. gingivalis [10].

The reduction of P. gingivalis is summarized in Table 4, given as reduction in %, which ranged
from 57.97% [9] to 100% [10], as well as log10 reduction, which ranged from 0.38 [9] to 6.8 [10].

2.4. Antimicrobial Effects of Photodynamic Therapy (PDT) on Aggregatibacter Actinomycetemcomitans

A summary of the data is shown in Table 2.
Chan and Lai [9] found no effect against A. actinomycetemcomitans using MB alone in a

concentration of 0.01% without light application. MB in combination with light application resulted
in a statistically significant decrease of A. actinomycetemcomitans with the most efficient combination
being MB 0.01% with a diode laser (665 nm). Light application alone without previous incubation
with MB, however, led to a statistically significant decrease of A. actinomycetemcomitans regardless of
the light source applied (He–Ne laser at 632.8 nm, two different diode laser at 665 nm or at 830 nm)
as well.

When studying A. actinomycetemcomitans organized in a biofilm, Alvarenga et al. [12] could
not find a statistically significant effect on the viable count of the bacteria, irrespective of the use
of dye only (MB), light activation only (diode laser at 660 nm), or dye in combination with a 60 s
light application.

The test arrangement for planktonic growth of Street et al. [10] using a diode laser with a
wavelength of 670 nm and the photosensitizer MB resulted in eradication of >99.9% of planktonic
A. actinomycetemcomitans.

Eick et al. [13] found that toluidine blue and a diode laser (625–635 nm) were effective in
reducing the viability of biofilms of two different strains of A. actinomycetemcomitans. Similarly,
Goulart et al. [11] found that exposure of an A. actinomycetemcomitans bacterial lineage to a dental
photopolymerizer light source (400–500 nm) led to a decrease in bacterial viability both in planktonic
culture and as a cellular aggregate in the presence of MB.

The reduction of A. actinomycetemcomitans is again summarized in Table 4, given as reduction
in %, which ranged from 15% [11] to 100% [10], as well as log10 reduction which ranged from 0.07 [11]
to 4.9 [10].

2.5. Antimicrobial Effects of Photodynamic Therapy (PDT) on Fusobacterium Nucleatum

Table 3 shows the summarized data set regarding F. nucleatum.
Chan and Lai [9] found that treatment with MB alone in the absence of laser irradiation did

not cause a significant reduction in the viability of the bacteria. A statistically significant decrease
of colony forming units was found if a diode laser at a wavelength of either 665 nm or 830 nm
illuminated the probes without previous incubation with MB. If MB and a light source (either a He–Ne
laser at 632.8 nm, or a diode laser at 665 nm or at 830 nm) were applied, all of the three combinations
showed a statistically significant decrease of CFU regarding F. nucleatum, with the most efficient set
being MB 0.01% in combination with the diode laser (665 nm). Only 4% of the amount of CFU (F.n.)
compared to the negative control (no dye, no light) grew on the platelets using this combination.

Street et al. [10] showed that it is possible to kill nearly 100% of F. nucleatum using MB in
combination with a diode laser with a wave length of 650–675 nm. The degree of reduction depended
on the growing model used (planktonic growth or biofilm), where PDT proved to be more effective
in planktonic growing bacteria.

The reduction of F. nucleatum is also presented in Table 4, given as reduction in %, which ranged
from 49.6% [9] to 100% [10], as well as log10 reduction which ranged from 0.3 [9] to 5.2 [10].
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Table 1. Antimicrobial effects of photodynamic therapy (PDT) on P.g.

Reference Photo-Sensitizer
PDT Control 1 Control 2 Control 3

Light Source Bacterial Strain Mean Conditions Mean Conditions Mean Conditions Mean

Braham
et al.

[8]

MB 0.01% at
dilution 0.03

Diode laser λ:
670 nm P: 150 mW ATCC 33277 log10 reduction

3.8˘ 1.3 * N/A N/A N/A N/A photosensitizer
only no effect

Chan
and

Lai [9]
MB 0.01%

He–Ne laser λ:
632.8 nm P: 30 mW

He: 6.4 J/cm2 ATCC 33277

Viable count
CFU 16˘ 5

negative control
no

photosensitizer
no light

exposure

Viable count
CFU 129˘ 7 light only

Viable count
CFU 132˘ 8 photosensitizer

only

Viable count
CFU 108˘ 12

Diode laser λ:
665 nm P: 100 mW

He: 21.2 J/cm2

Viable count
CFU 1˘ 0.3

Viable count
CFU 117˘ 8

Viable count
CFU 67˘ 8

Viable count
CFU 111˘ 13

Diode laser λ:
830 nm P: 100 mW

He: 21.2 J/cm2

Viable count
CFU 58˘ 6

Viable count
CFU 138˘ 8

Viable count
CFU 81˘ 6

Viable count
CFU 126˘ 4

Eick
et al.
[13]

TB 0.1 mg/mL
LED lamp λ:

625–635 nm E:
2 W/cm2

ATCC 33277

Viable count
CFU

(8.17˘ 1.01)
log10

negative control
no

photosensitizer
no light

exposure

Viable count
CFU

(9.73˘ 0.46)
log10

light only

Viable count
CFU

(9.59˘ 0.64)
log10

photosensitizer
only

Viable count
CFU

(9.08˘ 0.25)
log10

M5-1-2
Viable count
CFU (2.73˘
3.16) log10

Viable count
CFU

(9.73˘ 0.65)
log10

Viable count
CFU

(9.71˘ 0.48)
log10

Viable count
CFU

(5.22˘ 4.03)
log10

Street
et al.
[10]

MB 0.01%
Diode laser λ:

670 nm He:
9.4 J/cm2

planktonic
ATCC 33277

log10 reduction
6.8˘ 0.7 N/A N/A N/A N/A N/A N/A

MB 0.01% Diode laser λ:
670 nm He: 6 J/cm2

biofilm
ATCC 33277

log10 reduction
4.5˘ 1.2 N/A N/A N/A N/A N/A N/A

MB: Methylene Blue; TB: Toluidine Blue; λ: wavelength; P: Power Output; E: Irradiance; He: Radiant exposure; min: Minutes; CFU: colony forming units; *: value taken from
diagram; P.g.: Porphyromonas gingivalis; Exposure time always 60 s unless otherwise specified.
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Table 2. Antimicrobial effects of photodynamic therapy (PDT) on A.a.

Reference Photo-Sensitizer Light Source Bacterial Strain
PDT Control 1 Control 2 Control 3

Mean Conditions Mean Conditions Mean Conditions Mean

Chan
and

Lai [9]
MB 0.01%

He-Ne laser λ: 632.8 nm
P: 30 mW He:

6.4 J/cm2 ATCC 29522

Viable count
CFU 17˘ 6

negative
control no

photosensitizer
no light

exposure

Viable count
CFU 136˘ 12 light only

Viable count CFU
116˘ 5 photosensitizer

only

Viable count CFU
141˘ 10

Diode laser λ: 665nm P:
100 mW He: 21.2 J/cm2

Viable count
CFU 6˘ 3

Viable count
CFU 132˘ 12

Viable count CFU
88˘ 5

Viable count CFU
137˘ 11

Diode laser λ: 830 nm P:
100 mW He: 21.2 J/cm2

Viable count
CFU 76˘ 5

Viable count
CFU 125˘ 11

Viable count CFU
65˘ 10

Viable count CFU
128˘ 8

Eick
et al.
[13]

TB 0.1 g/mL
LED lamp λ: 625–635 nm

E: 2 W/cm2

Y4
Viable count
CFU 7.47˘
1.24 log10

negative
control no

photosensitizer
no light

exposure

Viable count
CFU 9.27˘
0.14 log10

light only
Viable count CFU
9.36˘ 0.08 log10

photosensitizer
only

Viable count CFU
8.7˘ 0.41 log10

J7
Viable count
CFU 4.11˘
2.77 log10

Viable count
CFU 6.77˘
0.78 log10

Viable count CFU
6.86˘ 0.8 log10

Viable count CFU
5.73˘ 0.21 log10

MB 0.5
µmol/L

Dental
photo-polymerizer λ:

400–500 nm
E: 350–500 mW/cm2 He:

0.65 J/cm2

planktonic JP2
30 min

incubation 15%
cell death

N/A N/A N/A N/A

photosensitizer
onlyď0.1

µmol/L 10 min
incubation 30

min incubation

0% reduction

Goulart
et al.
[11]

MB 1 µmol/L

Dental
photo-polymerizer λ:

400–500 nm
E: 350–500 mW/cm2 He:

0.65 J/cm2

planktonic JP2
30 min

incubation 25%
cell death

N/A N/A N/A N/A

photosensitizer
only 10 min

incubation 30
min incubation

19% reduction *
25% reduction *

MB 10
µmol/L N/A planktonic JP2 N/A N/A N/A N/A N/A

photosensitizer
only 10 min

incubation 30
min incubation

23% reduction *
31% reduction *

MB 20
µmol/L N/A N/A N/A N/A N/A N/A

photosensitizer
only incubation

time unclear
50% reduction

MB 0.5
µmol/L

Dental
photo-polymerizer λ:

400–500 nm
E: 350–500 mW/cm2 He:

0.65 J/cm2

biofilm JP2

30 min
incubation 73%

reduction of
absorbance *

N/A N/A N/A N/A
photosensitizer

only 30 min
incubation

73% reduction of
absorbance *

MB 1 µmol/L biofilm JP2

30 min
incubation 58%

reduction of
absorbance *

N/A N/A N/A N/A
photosensitizer

only 30 min
incubation

60% reduction of
absorbance *
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Table 2. Cont.

Reference Photo-Sensitizer Light Source Bacterial Strain
PDT Control 1 Control 2 Control 3

Mean Conditions Mean Conditions Mean Conditions Mean

Street
et al.
[10]

MB 0.01%
Diode laser λ: 670 nm

He: 9.4 J/cm2
planktonic

ATCC 33384
log10 reduction

1.9˘ 0.6 N/A N/A N/A N/A N/A N/A

Diode laser λ: 670 nm
He: 6 J/cm2

biofilm ATCC
43717

log10 reduction
4.9˘ 1.4 N/A N/A N/A N/A N/A N/A

Alvarenga
et al.
[12]

MB 100 µM L: Diode laser λ: 660 nm
P: 100 mW He: 15 J/cm2 ATCC 29523 log10

reduction 0.3

negative
control no

photosensitizer
no light

exposure

(cfu/mL)
8.87˘ 0.34

log10

light only (cfu/mL)
8.13˘ 0.67

photosensitizer
only

(cfu/mL)
8.47˘ 0.06

MB: Methylene Blue; TB: Toluidine Blue; λ: wavelength; P: Power Output; E: Irradiance; He: Radiant exposure; min: Minutes; CFU: colony forming units; *: value taken from
diagram; A.a.: Aggregatibacter actinomycetemcomitans; Exposure time always 60 s unless otherwise specified.

Table 3. Antimicrobial effects of photodynamic therapy (PDT) on F.n.

Reference Photosensitizer Light Source Bacterial Strain
PDT Control 1 Control 2 Control 3

Mean Conditions Mean Conditions Mean Conditions Mean

Chan
and

Lai [9]
MB 0.01%

He-Ne laser λ:
632.8 nm;
P: 30 mW;

He: 6.4 J/cm2 ATCC 23726

Viable count
CFU 19˘ 3

negative control
no

photosensitizer
no light

exposure

Viable count
CFU 117˘ 9 light only no

photosensitizer

Viable count
CFU 113˘ 6 photosensitizer

only no light

Viable count
CFU 112˘ 9

Diode laser
λ: 665 nm;

P: 100 mW He:
21.2 J/cm2

Viable count
CFU 4˘ 2

Viable count
CFU 106˘ 14

Viable count
CFU 65˘ 9

Viable count
CFU 96˘ 6

Diode laser
λ: 830 nm;

P: 100 mW He:
21.2 J/cm2

Viable count
CFU 61˘ 4

Viable count
CFU 121˘ 9

Viable count
CFU 67˘ 11

Viable count
CFU 117˘ 9

Street
et al.
[10]

MB 0.01%

Diode laser
λ: 670 nm

He: 9.4 J/cm2

planktonic
ATCC 25586

log10 reduction
5.2˘ 0.6 N/A N/A N/A N/A N/A N/A

Diode laser
λ: 670 nm

He: 6 J/cm2

biofilm ATCC
25586

log10 reduction
3.4˘ 1.1 N/A N/A N/A N/A N/A N/A

MB: Methylene Blue; TB: Toluidine Blue; λ: wavelength; P: Power Output; E: Irradiance; He: Radiant exposure; F.n.: Fusobacterium nucleatum; Exposure time always 60 s.
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Table 4. Overview of the results (percentage reduction and log reduction) of all included studies.

Reference Bacteria Investigated

PDT P.g. A.a. F.n.

Photosensitizer Light Source Reduction
in %

Log10
Reduction

Reduction
in %

Log10
Reduction

Reduction
in %

Log10
Reduction

Braham
et al. [8] P.g. MB 0.01% at

dilution 0.03 Diode laser λ: 670 nm; P: 150 mW 99.98 3.8 * N/A N/A N/A N/A

Chan
and Lai

[9]
P.g. A.a. F.n. MB 0.01%

He–Ne laser λ: 632.8 nm;
P: 30 mW; He: 6.4 J/cm2 90.7 1.03 87.5 0.9 83.76 0.79

Diode laser λ: 665 nm;
P: 100 mW; He: 21.2 J/cm2 99.15 2.07 95.45 1.3 96.23 1.42

Diode laser λ: 830 nm;
P: 100 mW; He: 21.2 J/cm2 57.97 0.38 39.2 0.21 49.59 0.3

Eick
et al.
[13]

P.g. A.a. ATCC 33277 Y4 TB 0.1 mg/mL LED lamp λ: 625-635 nm; E: 2 W/cm2 97.25 1.56 98.42 1.8 N/A N/A

M5-1-2 J7 LED lamp λ: 625-635 nm; E: 2 W/cm2 99.99 7 99.78 2.66 N/A N/A

Street
et al.
[10]

P.g. A.a. F.n. planktonic
MB 0.01%

Diode laser λ: 670 nm; He: 9.4 J/cm2 100 6.8 98.74 1.9 99.99 5.2

P.g. A.a. F.n. biofilm Diode laser λ: 670 nm; He: 6 J/cm2 100 4.5 100 4.9 99.96 3.4

Alvarenga
et al.
[12]

A.a. MB 100 µM L: Diode laser λ: 660 nm; P: 100 mW;
He: 15 J/cm2 N/A N/A 50 0.3 N/A N/A

Goulart
et al.
[11]

A.a.
MB 0.5 µmol/L

Dental photopolymerizer
λ: 400–500 nm; E: 350–500 mW/cm2

He: 0.65 J/cm2
N/A N/A 15 0.07 N/A N/A

MB 1 µmol/L
Dental photopolymerizer

λ: 400–500 nm; E: 350–500 mW/cm2

He: 0.65 J/cm2
N/A N/A 25 0.12 N/A N/A

MB: Methylene Blue; TB: Toluidine Blue; λ: wavelength; P: Power Output; E: Irradiance; He: Radiant exposure; *: value taken from diagram; Exposure time always 60 s.

27333



Int. J. Mol. Sci. 2015, 16, 27327–27338

2.6. Discussion

The purpose of the present review was to evaluate the available literature for the in vitro
antimicrobial efficacy of photodynamic therapy regarding P. gingivalis, A. actinomycetemcomitans,
F. nucleatum. In the initial search, many studies with different light sources, photosensitizers and
application protocols were found. Only six papers could be found that complied with these.
Originally, also studies assessing C. albicans were planned to be included in this review. Eight
studies, which investigated the effect of PDT against C. albicans, were included in the fulltext
analysis. Finally, however, none of these studies matched the inclusion criteria. Therefore, the
studies concerning C. albicans had to be excluded and no results regarding antifungal efficacy could
be presented.

Only studies were included, which applied either methylene blue or toluidine blue as
photosensitizer. This criterion was chosen because these two dyes rank among the most commonly
used photosensitizers for oral antimicrobial PDT [14,15]. Both dyes have been shown to have no
toxic effect in the commonly used concentration of 0.01%; furthermore, they present with a high
degree of selectivity for damage for gram-positive and gram-negative bacteria, as well as viruses and
yeasts [16–18].

All papers included showed that the respective dye used in combination with a light source
resulted in a substantial reduction of the number of surviving bacteria or of the growing bacteria
compared to the control groups. In the result section of this review, the individual outcomes of
the PDT are presented, and a conversion from percentage reduction to log reduction and vice versa
was performed for a better overview and comparison of the results. In general, PDT resulted in a
substantial reduction of surviving bacteria. However, not all studies showed the desired reduction
or elimination. The reduction of P. gingivalis, A. actinomycetemcomitans and F. nucleatum ranged from
57.8% [9], 15% [11] and 49.6% [9] to 100% [10], respectively. The wide range between the publications
can be explained by various factors. One important factor is that PDT is more efficient in killing
bacteria in their planktonic phase than in biofilms derived from the same plaque samples [19]. This
trend was confirmed by studies included in this review, where PDT was more efficient if bacteria were
in a planktonic phase than when they were organized in a biofilm [9–11]. Another publication, which
was not included in this review, could not prove any effect of PDT in a multispecies biofilm because
the matrix-embedded microbial populations in a biofilm were well protected against antimicrobial
agents [7]. Similar effects are observed using antibiotics in periodontal treatment. These difficulties
depend on more than one factor [20]. Two approaches are considered to explain the reduced antibiotic
susceptibility. First, the medicament is not able to penetrate the biofilm. Furthermore, antibiotics are
more effective in killing rapidly growing cells. This is the second approach. Because of nutrient
limitation, microorganisms are growing slowly and their antimicrobial susceptibility is reduced [20].
There are antibiotics not able to kill non-growing cells. Probable reasons that PDT is less effective in
biofilms compared to planktonic condition are the distinct and protected phenotypes expressed by
dental plaque microorganisms once they attached to the tooth [19]. Furthermore, MB has reduced
penetration which may result from presence of proteins derived from gingival crevicular fluid and
saliva [19]. Other possibilities are that MB and toluidine blue are substrates of multidrug resistance
pumps existing in bacteria [21] or that microorganisms organized in a biofilm are able to exist
in a slow-growing or starved state [22]. It was shown in some publications, that the degree of
photo-inactivation was dependent upon the time of the irradiation [9,12]. One test arrangement
showed a statistically significant decrease of bacteria (P.g.) incubated by methylene blue only with no
light application [9]. Furthermore, the kind of light activation, concentration of photosensitizer and
pathogen treated will also influence the results.

In vitro test arrangements have led to significant advances in the study of dental biofilm, but
their results cannot be imported into clinical situations [23]. In vitro models often involve a small
number of species of microorganisms, and are performed under laboratory conditions that cannot
reproduce the physiologic situation [24]. Several factors such as salivary flow, the capacity of
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antimicrobial substances to adhere to the teeth or soft tissues, and the interactions of non-cultivable
bacteria cannot be reflected in an in vitro set-up [25]. Anyhow it is important to test the validity
of any medical procedure before applying it in clinic. This review focused on in vitro studies
investigating the antimicrobial efficacy of photodynamic therapy. Nevertheless, a rising number of
clinical studies are available which focus on PDT as an adjunctive therapy modality to periodontal
treatment in vivo. A systematic review by Sgolastra and co-workers [26] investigated the potential of
antimicrobial photodynamic therapy adjunctive to scaling and root planning in patients with chronic
periodontitis. A meta-analysis was conducted to evaluate any clinical adjunctive effect of PDT to
SRP when compared to SRP alone or in combination with placebo. Fourteen randomized clinical
trials, which were published between 2007 and 2012, were included. The results of the latter review
indicated, that the adjunctive use of PDT to SRP could provide additional benefits when compared
to SRP alone, in terms of probing depth reduction and clinical attachment level gain. However, these
clinical improvements, although statistically significant, proved not to be relevant in terms of clinical
applicability. Further, they were only observed at the 3-month-follow up, whereas no significant
differences were found after 6 months [26]. Another systematic review corroborated these findings
and also showed an additional benefit regarding the treatment of chronic periodontitis with regard
to probing depth and clinical attachment level gain [27]. However, only four studies were included
in this meta-analysis.

In summary, well-controlled in vitro studies as well as randomized clinical trials are
necessary to determine whether this adjunctive treatment provides significant additional benefits to
periodontal therapy.

3. Experimental Section

3.1. Search Strategy

The electronic databases CINAHL, Cochrane, Medline, Scopus and WoK were searched
for studies published up to and including Mai 2015. The search was limited to laboratory
(in vitro) studies on photodynamic therapy (PDT) that tested the antimicrobial effect to strains of
periodontopathogenic bacteria. No language or time restrictions were applied.

The following strategy was applied: ((photodynam* or photocem*) NEAR/3 (therapy or
treatment or intervention or effect)) OR (photochemotherapy or phototherapy) OR (photodynam* or
photochem), (dent* or oral or periodont*), (periodont* NEAR 3 (disease or pocket)) OR ((attachment
or “alveolar bone”) NEAR/3 (loss or level)) OR (periodontitis or (pocket NEAR/3 depth)), (therapy
or treatment or intervention), (root NEAR/3 planing) OR ((dental or periodontal) NEAR/3 (scaling
or debridement)) OR (calculus NEAR/3 (remov* or debridement)), (disinfection or antimicrobial or
anti-microbial or “anti microbial” or bactericidal or bacteriostatic or anti-infective or antiinfective
or “anti infective”) OR ((kill* or inactivat* or inhibit* or block* or viability) NEAR/15 bacteria*),
and (“in vitro” or “ex vivo” or experimental or laboratory) OR ((cell* or strain or bacteria or colony)
NEAR/10 (grow* or culture* or count* or plate*)). After title and abstract screening, an additional
hand search was performed in the reference lists of all reviews and full texts of interest.

3.2. Eligibility Criteria for Studies

Studies were only included if they had an in vitro-design, if they used methylene blue or
toluidine blue as a dye. Furthermore, we decided to include only studies with an irradiation time of
60 seconds, because most of the studies, which were included in the fulltext analysis, used only this
irradiation time. Thereby, a better comparability of the results in this review should to be achieved.
With regard to the selected microorganisms, only studies were included that investigated the effect of
PDT on Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum.
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3.3. Outcome Measures

The main focus of this study was to critically assess the in vitro antimicrobial efficacy
of photodynamic therapy focusing on the periodontopathogenic bacteria Aggregatibacter
actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum. The focused question
was: “Is it possible to decrease (at least 3 log steps or 99.9%) or even eliminate bacterial growth by
photodynamic therapy in vitro when compared to untreated control groups or control groups treated
by placebo?”

3.4. Study Selection

First, three reviewers (Philippe A. Haag, Valerie Steiger-Ronay, Patrick R. Schmidlin)
independently screened all titles and abstracts of the electronic search and assessed them for possible
inclusion in the review. Thereafter, all full texts of potentially eligible studies were assessed. Any
disagreement concerning inclusion was resolved by discussion.

3.5. Analysis of the Results

Because it was not possible to extract all data out of the original papers, we tried to contact the
corresponding authors per E-Mail asking for raw data. Where this was not possible, we took the
values from the diagrams. So there may be a certain inaccuracy in the correspondent values. To
present the results we created different tables. To analyze the results we converted the outcomes into
different values. For each outcome we converted the percentage value to log reduction value or vice
versa, if possible. The formulas for these conversions are the following:

The formula to convert percent reduction to log reduction is L “ ´

´

log10
´

´P
100 ` 1

¯¯

where P
is the percent reduction and L is the log reduction. The formula to convert log reduction to percent
reduction is P “

`

1 ´ 10´L˘

ˆ 100 where P is the percent reduction and L is the log reduction. In
certain cases, we also needed to calculate the log reduction on the basis of existing values for viable
microorganisms. The formula for this calculation is Log Reduction “ log10

´

A
B

¯

where A is the
number of viable microorganisms before treatment and B is the number of viable microorganisms
after treatment.

4. Conclusions

This review of the literature does not allow drawing any concrete conclusions regarding the
efficacy of PDT due to the small number of included studies and the very different test arrangements.
Although PDT seems to be a promising option for reducing the quantity of periodontopathogenic
bacteria in combination with conventional therapy modalities. It would be desirable to develop
methods they are able to get along with thicker, well organized biofilm. Further, particularly more
comparable, studies are needed to evaluate if PDT can be clinically successful as an adjuvant in
periodontal therapy.
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