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Homogenization in Integral Viscoelasticity

A multi-phase periodic composite subjected to inhomogeneous shrinkage and mechanical loads including prescribed
interface jumps of displacements and tractions is considered. The composite components are anisotropic linear
viscoelastic and aging (described by the non-convolution Volterra integral operators). The paper presents some results
about asymptotic homogenization and 2-scale convergence in appropriate function spaces.

1. Introduction

Assume that a solid 2 has Y-periodic structure with a scaling parameter ¢.

Assumption 1 (on the periodic geometry). Consider mutually disjoint generally non-connected Y —periodic
domains QV", 1 = 1,...,s in R™ with Y —periodic boundaries OO € C%1, such that U;_ Q" = R". Y, :=
Ny, i=1,..,s. We denote by 77" = 907" MO the interfaces between the domains Q" and Q7. If QP
and Q" have no common boundary, then X" = 0. The net interface is P" = U;_; Ui ST Let Q C IR
be an open domain. Suppose Q = Q" N Q are Lipschitz domains. Denote, ¥ = eXP" N Q. Suppose, 9 \ 9N
has a positive Lebesque measure on O if 0 \ 02 £ 0. Let OpQ C 9N be a subset of the external boundary and
OpSl = 0 NIpQ. Let INQY = 0N\ IpQ). Suppose the set of points, that belong to boundaries Oy of more than
two different subdomains, or two subdomains and the part of boundary Opf), has zero measure on each 0.

Let 4,5,h,k =1,2,...,n, and summation from 1 to n over the repeating subscripts is assumed hereafter. For the
solid €2, we consider the equilibrium equations with boundary and transmission conditions:

9 5 € 5 € 6u§(m, ) le

Toih(xat) =/ 0($at)7 oip(T,t) = Qihjk(x)T (t) +oip(z,t), z€Q\X (1)
Zh L

ui (z,t) = x5 (x,t), x € Ip oz, t)np () = wi(z,t), =€ InQ, (2)
ui (,t) s+ —ug(2,t) [s-= x5 (2,1),  op(, )nn(@)|gr + ofp (@, )nn(2)|g- = wj(z,t), ze€X, (3)
holding for any ¢ € [0,7]. Here a5, ;.(v) == afj;,(2,1) + af ;. (v)*, see e.g. [1, Chapter 3]; the out-of-integral
term afy ;. presents the instant elastic coefficients; the Volterra operator [af, ;. () * ejk|(t) = fg aipi(T,t,7)
ez, T)dT presents the viscosity with ageing (for isotropic materials a5k = A%0niOkj + p°0ij0nk + 1°0ikdnz); —f5 o
are components of a vector of external volume forces; ol = —a5, jke;-‘gk is a shrinkage stress tensor occurring at

completely constrained shrinkage, where e'5 (,¢) is a free shrinkage strain tensor; xj(z,?) := {0 (2, 0) e o
where x%(z,t) := {x%(z,)};_, is a system of boundary values of the displacement vector on the part dp(2 of the
external boundary with x9%¢(x, ) given on each dpQ, and x7°(z,t) := {{x!** (2, t)}5_, 1 };_ is a system of jumps
in the displacement vector on the net interface ¥ with x!**(xz,t) given on each Xy; wf (2, 1) := {{w!*(z, )} oo
where w(z,t) := {w*(x,t)};_, are components of a vector of boundary traction given on the part dx2 of the
external boundary; wi (z,t) := {{w!**(z,1)}5_, ., };_; are jumps in the tractions given on the interface . All those
functions are supposed to be known. System (1)-(3) is to be solved with respect to the displacement vector u;(z,t).

2. Two-scale Homogenization.

We will study the asymptotic behavior of solution u(x) to the problem (1)-(3) as e — 0. We present the dependence
of all the known functions on x and ¢ as dependence on x and ¢ := x/e. Here dependence on the slow variable x
describes outer (macro-) effects, while dependence on the fast variable £ describes effects related to the composite

structure. Let FI};T denote the class of Y-periodic functions on IR™; index per denote intersection of Fg’er with a
corresponding space on the periodicity cell Y or on its part, e.g. H;(,T(Yl) = HY\(Y))n Fz}ir, let H;er[o]( y:={f¢€
H;er Y): ﬁ fY f(&)d¢ = 0}. Suppose the following conditions are satisfied:

Assumption 2. aj,;(z) = Q{hjk(f), Zhjk(f t) € C([0,T], Lpe, (Y)) and conjrnjr < agyp. (@, Oninnjr <
Coniknjk, Vnjk =k € R, t € [0,T], where constants cy, Co > 0 are independent of £ and t, a{h]k* e V(C;[0,T);

L;‘grm); Sl@t) = fi(n,t) € C0,T), L3(Q)); ol (2.t) = ol (v, 2,1), ol (x,6,t) € C([0, T, L2(Q, L2,,.(Y)));
W, t) = wi (@, 2,8), WP (x,6t) € C0,T], L2 (0N L2, (Y)), wi(z,t) = wil(Z,0), wl(Et) €
C([o, 1], Lfm(Ey)), furthermore, fzperﬂy i({, t)de = 0; x5(z,t) = xi(z,t) + €Xf(§ t) where x*(x,t) = 0,
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i@ 1) € C0.TLH@p9), x[(€1) = (Do €05 — (€Dl 1 where {(61) €
C((0,T), H} (Ui Y0)-

per

Representation 3. We define a Volterra operator N, (§) := Ng;,(§,t) + Npjq(€)*.

The function Ny, € C([0,T], Hper(o ](Y)) is a solution to the uniquely solvable weak problem:

fy [ zh]k (3§k qu(€ t) + 5kp5Jq)} DEn vi(§)d§ =0, Vo, € Hper[O] (Y), vtel0,T], p.g=1,...,n
The kemel N,;q € C([0,T],L*([0,T], H}

per|0]

fY [ zhjk 8£k NPjQ(f"’T)} (t )aﬁhvl )d§ = _fy [ Ainjk (&t,7) (agk mq(g7 T) + Okp JQ)} 8€hvl(£)d€’
Vu; € Hyerjo)(Y), t€[0,T], a.a. 7€ [0,T], p,g=1,...,n

The function y; = §;+ %] € C([0,T], L2(%, H;w[o](uf \Y1))) where §; € C((0, T, LX(Q, H.,,
to the uniquely solvable weak problem (for JH{ = alh + alh]kax /O ) Vt € [O T], a.a. x € Q2

i a0 € 2.6 (D52 0(€)d = = fy 63/ (0.6, 2 €)dE + o wf (€ ui(E)ds Vi € HL (V).
The term ul(.o) (z,t) € C([0,T], HY(Q)) is a solution to the uniquely solvable homogenized problem coincident with
(1)-(2) after replacement there x(z,t) by x°(z,t), we(x,t) by ﬁfy W (€, 0)dE, £ (x,t) by f5(x,t), and the

viscoelastic operator agy, .. (), shrinkage stresses Usl(x t) and strain €} (z,t) by their homogenized counterparts:
Q;/hjk = ﬁ fY a’ihqp(g) [5jq6kp + %Ekt]](@} df? ‘y| fy [ /Sf {E 5 t) + athp(&)aigqyp(lﬁfv )] d&,
e (w,t) = ~{afrol (2, )} (0) = it { i Jy @mq,,@) [ ol (@.6,) = = pp(.6, )] s} (t)

where ijih is the tensor Volterra operator inverse to ajy.;, i.e. iji}lbgl\-/hqp J,ﬂhamqp 2(85q0kp + 6jpOnq)-
The function u (z,&,1) = [N, (€)0uy” (x,) /0w, ) () + y; (2, €, 1) € C([0,T), LX(Q, HY,, (Ui 1))
The micro-stress tensor 0% (z.€,1) = Bya()loy; (x..) —of (. ))(1)+ 0 (2.&.1)+ [asy00 2w (2. £..)] (1), where

B (&) = a;5,5(9) [a‘zﬁﬂgp(f) + 55,167,,] qukl is the viscoelastic micro-stress concentration operator, cf. [2].

(Y))) is a solution to the uniquely solvable weak problem:

(Y))) is a solution

Using the technique similar to [3] one can prove the following theorem (proof is to be published elsewhere).
Theorem 4. Suppose Assumptions 1 and 2 hold. Let, additionally, O’;Zf( ,Z.t) € C([0,T], L*(Q)),
lim .o Sup;eo,77] ‘fﬂ a;‘;f(m,g, - \Yl Jo Jy i oIz, & t)2deds) = 0; and Ve > O, 3 n(e) such that

sup, fsz[ il (z,Z,t + At) — /Sf(a:,‘;t)} drx < e, Vit + At € [0,T), such that |At] < n. Let w**f(x, Zt) =
30 (§t)

W (@, 1) 6%, (£, ) () scoy, wherew (1) € C((0,T], L2(On ), 61;(&,1),

aaf (¢t _ _ _
BE L =0, cev, L& i (€)ls- +TL(E N ()]s = W™ (E,1), E€ 3, VE € [O,T], and |57 || ¢ o,y

Cy (Y, Sy )[lw™ || c(o,1,22(sy)).  Then the sequence uS of solutions to (1)-(3) has a subsequence u (x,t) strongly
convergent to u(o)( t) in C(]0, T] LQ(Q)), such that Vus (x, t) two-scale converges to Vul(.o) (z,t) + Vgugl)(aj,ﬁ,t)

€ C([0,T), L2, (Ui_,Y))) and

per

L2(v)) <

)

and J” two-scale converges to O’w (z, E, for all t €10, T] as e* — 0, i.e.,
) ous” () x B 8u(0) (z,t) 5‘u£1)(x,f, t) o
EI*ITO o ij(x7 g)dl‘ - |Y‘ / / ag] }v(x,ﬁ)dfdx vv(x7£) € D(Q Cper( ))
lim af»*(x,t)go(aﬁ)dx = —/ / Ui»(x,ﬁ,t)gp(x,f)dxd& Vo € L3(Q, Cper (Y)),
=0 Jo Y e* Y| JaJy ¥
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