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Abstract 

Background: Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC/D) is a 

mainly autosomal-dominant disease characterized by fibrofatty infiltration of the right 
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ventricle leading to ventricular arrhythmias. Mutations in desmosomal proteins can be 

identified in about half of the patients. The pathogenic mechanisms leading to disease 

expression remain unclear. 

Objective: To investigate myocardial expression profiles of candidate molecules involved in 

the pathogenesis of ARVC/D. 

Methods: Myocardial mRNA expression of 62 junctional molecules, five cardiac ion channel 

molecules, eight structural molecules, four apoptotic molecules and six adipogenic molecules 

was studied. The averaged expression of candidate mRNAs between ARVC/D samples 

(n=10), non-familial dilated cardiomyopathy (DCM) samples (n=10) and healthy control 

samples (n=8) were compared. Immunohistochemistry and quantitative protein expression 

analysis was performed. Genetic analysis using next-generation sequencing was performed 

in all ARVC/D patients. 

Results: Following mRNA levels were significantly increased in ARVC/D compared to DCM 

and controls: phospholamban (p=<0.001 vs DCM; p=<0.001 vs controls), tumor protein 53 

apoptosis effector (PERP) (p=0.001 vs DCM; p=<0.001 vs controls), and carnitine 

palmitoyltransferase 1 beta (CPT1B) (p=<0.001 vs DCM; p=0.008 vs controls). Plakophillin-2 

(PKP-2) mRNA was downregulated in ARVC/D patients with PKP-2 mutations compared to 

ARVC/D patients without PKP-2 mutations (p=0.04). Immunohistochemistry revealed 

significantly increased protein expression of phospholamban, PERP and CPT1B in ARVC/D 

patients, and decreased PKP-2 expression in ARVC/D patients carrying a PKP-2 mutation.   

Conclusions: Changes in the expression profiles of sarcolemmal calcium channel regulation, 

apoptosis and adipogenesis suggest that these molecular pathways may play a critical role in 

the pathogenesis of ARVC/D, independent of underlying genetic mutations.  

Key words: cardiomyopathy, arrhythmogenic right ventricular, dysplasia, apoptosis, 

adipogenesis, phospholamban  

Abbreviations: Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D), 

dilated cardiomyopathy (DCM), fractional area change (FAC), implantable cardioverter-
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defibrillator (ICD), left ventricular ejection fraction (LVEF), right ventricular outflow tract 

(RVOT), sudden cardiac arrest (SCA), Task Force score (TFS), ventricular tachycardia (VT) 

 

Introduction 

Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC/D) is an inherited 

cardiomyopathy characterized by fibrofatty infiltration of myocardial tissue, especially of the 

right ventricle.1 The pattern of inheritance in ARVC/D is generally autosomal dominant with 

incomplete penetrance. Genetic studies have identified at least 13 different chromosomal loci 

associated with ARVC/D, thus reflecting a high genetic heterogeneity.2 Among them are the 

five major desmosomal genes [plakophilin-2 (PKP-2), desmoplakin (DSP), desmoglein-2 

(DSG-2), desmocollin-2 (DSC-2), plakoglobin (JUP)], the non-desmosomal junctional gene 

αT-catenin3 (CTTN-A3), and seven non-junctional genes [ryanodine receptor-2 (RYR-2), 

transforming growth factor β-3 (TGFB3), transmembrane protein-43 (TMEM43), desmin 

(DES), titin (TTN), lamin A/C (LMNA), and phospholamban (PLN)].2  Nonetheless, 

desmosomal mutations are found in approximately half of ARVC/D patients and non-

desmosomal mutations are rarely observed.3,4 ARVC/D subtypes such as the classical right 

ventricular form, biventricular or left ventricular dominant disease may coexist within families, 

which also implicates the variability of clinical phenotypes.1 The most common mutations 

involve the PKP2 gene, followed by mutations of the DSG-2 and DSP genes.2 In 

cardiomyocytes, the desmosomal cadherins DSG-2 and DSC-2, the plakin DSP, which binds 

to the intermediate filament DES, the linking armadillo proteins PKP-2 and JUP build 

desmosomal structures, which are crucial for cardiomyocyte adhesion and mechanical 

stability.5 Desmosomal proteins strongly interact with other junctional molecules, such as 

other cadherins, catenins and gap junction molecules, connexins (Cx) 40, 43 and 45. These 

functional formations are called connexomes, and the cardiac intercalated disc is likely the 

host of this complex protein-interacting network.6,7 Recent studies have shown that these 

intercellular formations may also play a role in signal transduction, apoptosis, and 

adipogenesis.8 Early histology and electron microscopy studies revealed that the fibrofatty 
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replacement of the right ventricular myocardium is accompanied by inflammation and 

apoptosis.9 Desmosomal mutations may lead to altered cellular distribution of desmosomes, 

as well as increased apoptosis.10 It has been demonstrated that the tumor protein 53 

apoptosis effector (PERP) does not only play a role in the initiation of apoptosis, but is also 

involved in desmosomal structures.11 Studies on induced pluripotent stem cells have 

highlighted that in the acute failing heart, carnitine-palmitoyltransferase-1beta (CPT1B), a 

molecule leading to mitochondrial long chain fatty acid uptake, may play an important role in 

fatty acid oxidation.12 TGFB3, a cytokine involved in the modulation of desmosomal proteins 

and stimulation of fibrosis has also been reported to have an influence on the pathogenesis 

of myocardial fibrosis.13 Experimental and clinical data suggest that other non-junctional 

cellular structures like the voltage-gated sodium channel (Nav 1.5), the sarcolemmal calcium 

channel regulating molecule PLN, and structural molecules are linked to desmosomes.14 

Especially PLN phosphorylation has been reported to play a key role in the pathophysiology 

of heart failure.15 Taken together, various cellular pathways, particularly electromechanical 

cell-to-cell coupling, inflammation, apoptosis, adipogenesis and fibrosis seem to be involved 

in the pathophysiology of ARVC/D, but the interactions are not fully understood. Therefore, 

the aim of this study was to identify dysregulated myocardial molecules associated with the 

mentioned pathways ARVC/D by investigating the myocardial expression profiles of various 

candidate proteins using an mRNA expression and immunolocalization approach. 

Methods 

Human myocardial tissue samples 

10 patients with a definite diagnosis of ARVC/D were included in this study (Table 1).16 In five 

of these, right ventricular myocardial samples were obtained by endomyocardial biopsy, in 

the others during transplantation. All samples were immediately placed in RNAlater® solution 

(Life Technologies, Zug, Switzerland), or snap frozen in liquid nitrogen and stored at -80° C, 

or formalin fixed and paraffin embedded for immunohistochemistry staining. 10 myocardial 

tissue samples of patients with non-familial dilated cardiomyopathy (DCM) were obtained 
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during transplantation, immediately placed in RNAlater® solution, stored at -80° C, or 

formalin fixed and paraffin embedded for immunohistochemistry staining. This tissue was 

obtained from patients with clinical and histological diagnosis of non-ischemic DCM with no 

family history of DCM. In addition, autopsy specimen from six individuals, and biopsies from 

two individuals without heart disease, served as controls. The post-mortem interval until 

tissue processing was between 10h and 24h, at 4°C, to guarantee optimal mRNA and protein 

preservation.17,18
 Cardiac disease was excluded in these patients by clinical reports, 

macroscopic and histologic studies. Staining for the apoptotic protein cleaved caspase-3 was 

performed to investigate autopsy tissue quality.19 Autopsy samples were all taken from the 

right ventricular septum immediately at the beginning of the autopsy, and directly stored in 

RNAlater® solution, or formalin fixed and paraffin embedded. 

This project was conducted in full agreement with the principles of the “Declaration of 

Helsinki” and current Swiss law. It has been approved by the Ethics Committee of the Canton 

of Zurich (approval number KEK-ZH-Nr. 2014-0443). All ARVC/D patients signed an 

informed consent form for prospective inclusion. The ethical approval also granted 

retrospective investigation of transplant/autopsy tissue.  

Genetic Analysis 

DNA of ARVC/D patients was extracted from peripheral macrophages. Clinical exome was 

performed by next generation sequencing using the TrueSight One Sequencing Panel 

(Illumina, San Diego, USA) including 4,813 genes. First, genes associated with ARVC/D 

were analysed. If no mutation was identified, genes associated with similar phenotypes were 

included. Our cardiac panel consisted of 104 cardiac genes (Supplementary Table 1). All 

variants were confirmed by Sanger sequencing.20 Read alignment and local realignment of 

indels was performed using CLC Workbench v7.5.1(CLCBio, Aarhus, Denmark). Variant 

prediction was done using the tools Polyphen2, SIFT and Mutation Taster. The following 

databases were used to analyze the sequences in detail: Human Gene Mutation Database 
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(Biobase, Wolfenbuettel, Germany), 1000 Genoms Project (Massachusetts, USA) and 

Exome Aggregation Consortium browser (ExAC). 

mRNA expression analysis using Taqman® low density array microfluidic cards 

mRNA extraction was performed using the RNeasy mini kit with Trizol (Quiagen, Hilden, 

Germany). 400ng of total RNA was reverse transcribed using random primers (Fermentas, 

Hilden Germany). mRNA was measured with TaqMan® low density array micro fluidic cards 

using the Gene Expression Assay protocol (Applied Biosystems, Zug, Switzerland). A total of 

62 junctional, 5 ion channel, 8 structural 4 apoptotic and 6 adipogenic, molecule mRNAs 

were investigated; each reaction was conducted as triplicates. These predesigned primers 

were spanning an exon-exon junction and amplified a maximal amplicon length of 200 nt. 

Two housekeeping genes glyceraldehyde-3-phosphate-dehydrogenase and 18srRNA were 

taken as individual references to adjust and normalize each primer RNA, the more stable 

housekeeping gene was used for data calculation. mRNA measurement was performed with 

7900HT fast real-time PCR system (Applied Biosystems, Zug, Switzerland). Arbitrary units 

(AU) were calculated according to the delta cycle of threshold (ct) method: AU=2(–Δct)×1000. 

Higher AU represented higher mRNA expression, and AU between 0-5 was considered as 

very low or no expression.21 All mRNA data is presented in Supplementary Table 2. 

Immunohistochemistry and confocal microscopy 

Formalin fixed and paraffin embedded tissue samples were cut into 5 µm sections. 

Deparaffinization was conducted using xylol and isopropanol. Slides were then cooked in 

citrate buffer for antigen retrieval and blocked with 10% goat serum. Overnight incubation 

was performed with primary antibodies anti PLN Met1-Leu52 (Cloud-Clone Corporation, 

Houston, Texas, USA), anti-phosphorylated PLN phosphorylation site of serin16 and threonin 

17 (Bioss, Massachusetts, USA), anti-PERP (Antibodies Online, Aachen, Germany), anti-

CPT1B (Assay Biotech, Sunnyvale, USA), anti-PKP-2 (Bioss, Massachusetts, USA), anti-

cleaved Caspase3 (CASP-3) (Antibodies Online, Aachen, Germany) and respective isotype 
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controls (Life Technologies, Zug, Switzerland). After labelling with secondary antibodies 

(Alexa Fluor 488®) samples were fixated with 1% paraformaldehyde and covered with 

ProLong® Gold Antifade Reagent with 4',6-diamidino-2-phenylindole (DAPI) (Life 

Technologies, Zug, Switzerland). Tissue sections were imaged with the Leica TCS SPE 

(Leica Microsystems, Heerbrugg, Switzerland). Protein signal intensities were quantified 

relatively to control healthy tissue samples using Image J software. This software has been 

validated for image analysis that allows quantification of total tissue fluorescence.22 Relative 

signal intensities were measured by two independent investigators blinded to the clinical 

data. The results were validated by another blinded observer. 

Data analysis 

Statistical analysis was performed using GraphPad Prism 5.0. Values are given as mean ± 

standard error (SEM) or standard deviation (SD). Statistical comparison between the three 

groups (ARVC/D, DCM, control) was performed using the Mann-Whitney U test. Statistical 

significance was assumed for p values < 0.05. 

 

Results 

Patient characteristics 

Clinical characteristics of ARVC/D patients are presented in Table 1. All patients had definite 

diagnosis of ARVC/D according to the 2010 Task Force criteria. They all displayed a typical 

clinical ARVC/D phenotype of right or beginning biventricular heart disease, and presented 

with arrhythmias from the right ventricle or arrhythmogenic syncope. None of these ARVC/D 

patients had relevant co-morbidities. These ARVC/D patients were compared with patients 

with non-familial DCM (Table 1 and supplementary Table 3). All DCM patients had a 

clinical and histological diagnosis of DCM but no right ventricular involvement. None of the 

DCM patients had ischemic, toxic or hypertensive origin of DCM, and none of them had a 

family history of DCM. All DCM tissue was tested for enterovirus, adenovirus, parvovirus b19, 
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human herpesvirus 6, herpes simplex virus 1/ 2, Epstein-Barr virus, human cytomegalovirus, 

varicella zoster virus, influenza virus, and  borrelia burgdorferi and toxoplasma gondii. In 

three patients a viral origin was assumed, in the remaining idiopathic DCM was suspected. 

Genetic mutations 

All genetic variants and mutations found in our cases are listed in Table 2. Patient 1 hosted a 

heterozygous DSP nonsense mutation. Patient 2 carried a heterozygous DSP missense 

mutation. Patient 3 hosted a heterozygous DSP mutation and a homozygous DSG-2 variant. 

Patient 5 hosted a TTN mutation and patient 6 a RYR-2 mutation both of unknown clinical 

significance. Patient 7 exhibited digenic heterozygosity. His mother, who had a definite 

diagnosis of ARVC/D and died of SCA, harboured the same PKP2 mutation, which has been 

reported to alter protein function according to genetic databases (SIFT, Polyphen2, Mutation 

Tester). Patients 8, 9 and 10 carried nonsense mutations resulting in a premature stop codon 

or frameshift mutations in the PKP-2 gene. No causative mutation was identified in one 

patient, although he fulfilled a definite clinical phenotype. 

mRNA expression of molecules associated with cellular junctions 

Various junctional molecules were screened previously, to assess their mRNA expression in 

the healthy human heart (Supplementary Figure 1). Based on that data, and on our results 

from the genetic analysis, desmosomal and junctional molecules were primarily investigated 

in this study. With regard to desmosomal and gap junction molecules (Figure 1A), we 

investigated DSP, JUP, PKP-2, PKP-4, DSC-2, DSG-2, Cx40, Cx43, and Cx45 mRNAs. 

There was no significant difference in mRNA expression of desmosomal and gap junction 

molecules between ARVC/D, DCM and control tissue. Within the whole mRNA panel, from 

the claudin family, the claudins (CLDN) -5, -11, -12, -14, 15, and claudin domain containing 

protein-1 (CLDND-1) were expressed in myocardial tissue but overall, claudin expression 

was very low. Compared to DCM tissue and healthy controls, there was no significant 

difference in patients with ARVC/D (Figure 1B). The myocardial expression of junction 
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associated molecules was also assessed (Figure 1C). CTNN-A3, catenin beta 1 (CTNN-B1), 

membrane associated guanylate kinase (MAGI)-1 and-3, CXADR-like membrane protein 

(CLMP), InaD-like (INADL), cingulin (CGN), paracingulin (CGNL-1), junctional adhesion 

molecules (JAM) -1, -2 and -3, and ZO-1 and -2 did not show any significant differences in 

mRNA expression between the three groups. 

mRNA expression of molecules associated with ion channels and cellular structures 

In a further step, we investigated dysregulations in other cellular pathways, since ARVC/D 

causing mutations have also been reported in ion channels and structural molecules.2 From 

the ion channel molecules, the calcium channel regulating protein PLN showed a significantly 

higher mRNA expression in ARVC/D compared to DCM and control hearts, but no difference 

between controls and DCM (Table 3A). There was no significant difference in RYR2, nav 

1.5, striatin (STRN) and ankyrin-g (ANK-G) expression (Figure 2A). From the structural 

molecules, we screened DES, TTN, plectin (PLEC), laminin alpha (LAMA) -2 and -4, 

transmembrane protein (TMEM) 43 and 234, and TGFB3 (Figure 2B), but we did not find 

any significant differences between the three groups. 

mRNA expression of molecules regulating apoptosis and adipogenesis 

Molecules involved in apoptosis and adipogenesis were also investigated, since these 

cellular pathways have been reported to be linked to pathophysiologic mechanisms in 

ARVC/D.12,23 Expression levels of the proapoptotic molecules PERP, tumor protein 63 

(TP63), CASP-3 and the antiapoptotic molecule B-cell-lymphoma-2 (BCL-2) were assessed 

(Figure 2C). PERP mRNA expression was significantly higher in ARVC/D compared to DCM 

and controls (Table 3A), while BCL-2, CASP-3, and TP63 did not differ between the 3 

groups. Further, we investigated adipogenic molecules, such as fatty acid binding protein 4 

(FABP4), peroxisome proliferator-activated receptor (PPAR) a, d and g, CPT1B, and LMNA 

(Figure 2B). While CPT1B mRNA expression was significantly increased in ARVC/D 

compared to DCM and controls (Table 3A), the other adipogenic molecules did not differ 
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between groups. We also measured mRNA expression of common inflammatory cytokines 

interferon-α, β and g, tumor necrosis factor, interleukin-6 and the antiinflammatory interleukin-

10. These molecules had no detectable expression in ARVC/D, DCM and controls. 

mRNA and protein expression in ARVC/D patients with pathogenic PKP2 mutations 

Since, in most cohorts, PKP-2 mutations are the most common genetic cause of ARVC/D, 

we performed sub analyses of mRNA expression in patients with PKP2 mutations in our 

cohort. We were able to demonstrate that mRNA expression of PLN and PERP was 

significantly increased in this cohort. The mRNA level of CPT1B was significantly increased 

compared to DCM tissue, and showed a trend towards increased levels compared to controls 

(Figure 3A, Table 3B). 

Furthermore, the mRNA expression of PKP-2 was decreased in ARVC/D patients with PKP-2 

mutations compared to those without (Figure 3B). This was also true for protein expression, 

where the relative signal intensity of PKP2 was decreased in ARVC/D patients with PKP-2 

mutations compared to ARVC/D patients without PKP-2 mutations but the localization inside 

intercalated discs was the same (Figure 3 C and D).  

Protein expression and localization of PLN, PERP, CPT1B and apoptotic marker 

cleaved CASP3 

Immunostaining was used to visualize and semi-quantify protein levels of significantly 

dysregulated mRNAs. PLN, PERP and CPT1B were all located intracellularly, and protein 

expression was significantly higher in ARVC/D compared to DCM and controls (Figure 4A).  

We measured protein intensity of total PLN and found significantly higher levels in ARVC/D 

compared to the other groups (ARVC/D versus DCM: p= 0.03; ARVC/D versus controls: p= 

0.03), but no difference between DCM and controls. To gain further insights, we also 

assessed protein intensity of phosphorylated PLN (pPLN), and found a highly significant 

upregulation in ARVC/D patients, compared to DCM and controls (ARVC/D versus DCM: 

p=0.003; ARVC/D versus controls: p=0.02. PERP and CPT1B protein intensity were also 
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increased in ARVC/D compared to DCM (p=0.01 and p=0.006, respectively) and controls 

(p=0.002 and p=0.03, respectively). PERP expression was higher in DCM than controls 

(p=0.02) (Figure 4B). To visualize and compare apoptosis, we located cleaved CASP3 on 

healthy cardiac biopsy and autopsy tissue, and also on ARVC/D and DCM tissue. These 

experiments did not show any significant differences in protein signal intensity in all four 

groups (Supplementary figure 2). 

Discussion 

This study has several major findings: we show for the first time that in patients with ARVC/D 

an increased mRNA expression translates into a higher protein expression of PLN, an 

intracellular ion channel receptor molecule linked to the intercalated disc, and of PERP and 

CPT1B, two molecules involved in apoptosis and adipogenesis. Our findings indicate that the 

upregulation of certain proteins involved in ion channels, apoptosis and adipogenesis may 

play a common role in the pathogenesis of ARVC/D, independent of underlying mutations. 

These findings suggest that, although there is a great variability in involved genes and 

clinical disease expression, there may be some common pathways involved in the 

pathogenesis of ARVC/D. In addition, PKP-2 mRNA and protein expression may differ 

among ARVC/D patients depending on the underlying mutation.  

Desmosomal molecules 

A complex network of molecular interactions that involve junctional molecules inside 

intercalated discs is currently considered to underlie the pathophysiology of ARVC/D. Cell 

junctions, intracellular structures linked to the area composita, ion channels, apoptosis, and 

adipogenesis are likely to play an important part.2 Recent studies highlight that desmosomal 

mutations may lead to a remodelling inside the area composita and a defective distribution of 

ion channel molecules, but not necessarily to decreased levels of other desmosomes in 

general.24 In line with those studies, our analysis revealed that in patients with ARVC/D, there 

is no general decrease in all desmosomal mRNAs, but that pathogenic desmosomal 
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nonsense or frameshift mutations may lead to decreased levels of those particular 

desmosomal molecules.25,26   

Phospholamban 

PLN is a protein linked to the sarcoplasmatic reticulum, inhibiting the calcium intake when 

dephosphorylated, and increasing myocardial contractility through calcium intake when 

phosphorylated. Although PLN is a major determinant of cardiac contractility and relaxation, it 

remains controversial whether heart failure leads to decreased PLN levels or vice versa, and 

whether the amount of phosphorylation may differ. It has been shown that decreased 

phosphorylation of PLN, and an increase of the PLN to Ca2+ ATPase pump ratio leads to 

contractile dysfunction.15 In vitro studies have revealed that higher phosphorylation levels of 

PLN lead to improved contractility, and that its dephosphorylation may promote heart 

failure.27 A specific PLN founder deletion mutation has been reported in patients with 

ARVC/D, indicating overlapping pathways between ARVC/D and DCM, and suggesting a 

role of PLN in the pathophysiology of ARVC/D.28 In our study, total PLN mRNA levels were 

significantly increased in our ARVC/D patients. Myocardial tissue in these patients displayed 

an increased protein signal intensity of total and phosphorylated PLN, whereas in controls 

and in DCM, total and especially phosphorylated PLN levels were much less. Increased total 

PLN at the mRNA level and increased phosphorylated PLN at the protein level are novel 

findings in patients with ARVC/D, who did not harbour a genetic PLN mutation. PLN and its 

phosphorylation status may likely contribute to the pathophysiology of ARVC/D, although the 

exact role of PLN remains to be identified. It could be hypothesized that increased PLN 

phosphorylation increasing myocardial contraction, could act as a compensatory mechanism 

for dysfunctional intercalated discs. This hypothesis has to be investigated in future studies. 
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Apoptosis and adipogenesis 

PERP, a proapoptotic molecule essential for p53-induced cell death, and with a recently 

described role in cell adhesion11, was also increased in ARVC/D in our study. PERP was 

upregulated on both mRNA and protein levels, independent of the underlying mutation in all 

patients. This upregulation underscores an important role of apoptosis in the failing right 

ventricular myocardium of patients with ARVC/D.23,29 As PERP is involved in cell adhesion, it 

could also be increased due to desmosomal malfunction, which is supported by the notion 

that other proapoptotic molecules were not significantly upregulated. 

Moreover, we observed an increase of CPT1B mRNA and protein levels in our ARVC/D 

patients compared to DCM and controls, suggesting that this adipogenic factor may play a 

role in the pathophysiology of ARVC/D. It has been reported that alterations in 

transmembrane proteins and desmosomes may lead to changes in cell signalling, and to 

adipogenic/fibrogenic proliferation or an imbalance of fatty acid oxidation due to changes in 

PPAR molecules.30,31 In our study, we did not find a change in the mRNA expression of any 

PPAR molecule, but increased levels of the CPT1B molecule. Patient specific induced 

pluripotent stem cell studies revealed that co-activation of PPAR-a and g lead to CPT1B 

downregulation in an advanced-stage ARVC/D model.12 This in vitro study was based on 

severe PKP-2 mutations, and thus differs from our in vivo study in humans with variable 

desmosomal and non-desmosomal mutations. It may be speculated that CPT1B upregulation 

precedes downregulation in ARVC/D, as our ARVC/D patients generally did not display 

failing hearts. Furthermore, increased long chain fatty acid uptake into mitochondria may 

promote myocardial adipogenesis. Accordingly, studies have shown beneficial effects of 

inhibiting various steps of fatty acid oxidation in the progression of heart failure.32 

Genetic mutations 

In ARVC/D it is known that a radical mutation in desmosomal genes may be sufficient to yield 

the phenotype. Nonetheless, it has been reported that multiple variants can play a role as 
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disease modifiers.33 Mutations in non-desmosomal genes represent a challenge in 

interpretation. Radical mutations in TTN have a higher likelihood to be disease causing, 

nevertheless several missense mutations in TTN have also been recognized as 

pathogenic.34 

Study limitations: The difficulty and safety aspects to obtain endomyocardial biopsies, 

myocardial explant and autopsy material from patients with this rare disease allowed access 

to a relatively low number of patients, particularly limiting subgroup analysis. Yet, subgroup 

analyses in patients with the same type of mutation in a wider range would be desirable in 

ARVC/D due to its high genetic heterogeneity. Furthermore, contamination with fibrous and 

endothelial tissue was present to some extent, although this was minimized through 

microscopic investigation. However, in spite of these limitations, we were able to show 

coherent and specific findings in myocardial tissue of patients with ARVC/D independent of 

underlying mutations.  

Conclusions 

This study demonstrates for the first time that PLN, PERP and CPT1B mRNA and protein 

expression is increased in right ventricular myocardial tissue of patients with ARVC/D 

compared to DCM and healthy controls, independent of the underlying genetic mutation. 

These results indicate that common pathophysiologic pathways involving sarcolemmal 

calcium channel regulation, apoptosis and adipogenesis may exist in this genetically 

heterogeneous disease.  
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Figure legends 

 

Figure 1. Myocardial mRNA expression of molecules associated with cellular junctions 

in right ventricular myocardial tissue from patients with ARVC/D, DCM and healthy 

controls  

A The expression of mRNAs coding for desmosomal proteins and gap junctions; B 

Expression of mRNAs coding for claudins; C Expression of mRNAs coding for molecules 

associated with cellular junctions. 

ARVC/D n=10, DCM n=10, healthy controls n=8. Data are presented as AU±SEM, calculated 

as log (2(–Δct) × 1000). *=p<0.05; **=p<0.01 

 

 

Figure 2. Myocardial mRNA expression of molecules involved in ion channels, cellular 

structures, apoptosis and adipogenesis in ARVC/D, DCM and healthy controls  

A The expression of mRNAs coding for molecules involved in ion channels; B Expression of 

mRNAs coding for molecules involved in cellular structures; C Expression of mRNAs 

involved in apoptosis; D Expresison of mRNAs associated with adipogenesis 

ARVC/D  n=10, DCM  n=10, healthy controls n=10. Data are presented as AU±SEM, 

calculated as log (2(–Δct) × 1000). *=p<0.05; **=p<0.01 
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Figure 3. Analysis of ARVC/D patients with PKP-2 mutations 

A PLN, PERP and CPT1B mRNA expression. ARVC/D with PKP-2 mutation n=4, DCM 

n=10, healthy controls n=8 B PKP-2 mRNA expression in ARVC/D patients with PKP-2 

mutations (n=4) compared to ARVC/D patients without PKP2 mutations (n=6). *=p<0.05; 

**=p<0.01 

C Representative immunohistochemistry of PKP-2. DAPI was used as nucleus staining. 

Number next to ARVC/D indicates patient number from Table 1B. Patients 8, 9, 10 are 

representatives for patients with PKP-2 mutation. D Quantitative analysis of relative protein 

signal intensity using Image J software. Patients with PKP-2 mutation are set as 1, signal 

intensities of ARVC/D patients not harbouring a PKP-2 mutation are measured relatively. 

ARVC/D with PKP-2 mutation n=4, without PKP-2 mutation n=6; *=p<0.05; **=p<0.01 

 

 

 

 

Figure 4. Protein expression and distribution of PLN, PERP and CPT1B in the right 

ventricular myocardium of ARVC/D patients compared to DCM patients and healthy 

controls  

A Representative immunohistochemistry of total and phosphorylated PLN, PERP and 

CPT1B. DAPI was used as nucleus staining. Number next to ARVC/D indicates patient 

number from Table 1B.  Phosphorylation site of pPLN Ser16 and Thr 17 was detected. 

B Quantitative analysis of relative protein signal intensity using Image J software. Control 

cardiac tissue is set as 1, signal intensities were measured relatively compared to healthy 

controls. ARVC/D n=8, DCM n=5, controls n=6. *=p<0.05; **=p<0.01 
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Clinical perspectives 

ARVC/D still remains a very challenging disease. The presence of many different causative 

genetic mutations and various involved cellular pathways makes patient characterization very 

difficult. Furthermore, a genetic cause cannot be identified in about 40% of patients despite 

modern genetic testing tools. In this study our aim was to investigate a broad range of 

candidate molecules in patients with a definite clinical diagnosis of ARVC/D, independent of 

the underlying genetic mutation. We measured mRNA levels of various junctional molecules, 

molecules involved in ion channels, cellular structures, apoptosis and adipogenesis.  We 

compared right ventricular mRNA levels of ARVC/D patients with right ventricular cardiac 

tissue of healthy controls and of patients with non-familial dilated cardiomyopathy in order to 

identify specific mRNA patterns in ARVC/D. We describe, for the first time that mRNA levels 

of phospholamban, a key protein involved in the regulation of the sarcolemmal calcium 

channel, of PERP, a pro apoptotic molecule, and of CPT1B, a molecule being associated 

with adipogenesis, were all higher in ARVC/D patients. In addition, we observed that protein 

expression of these candidate molecules was also increased in ARVC/D patients with a 

different genetic background. These experimental results underscore that common 

pathophysiologic pathways exist, in this clinically and genetically heterogeneous disease. In 
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clinical practice, ARVC/D diagnosis through characterization of myocardial biopsies still 

remains very difficult, and often leads to false negative results. Therefore, these novel 

markers could be used for improved tissue characterization and in the future, they may pave 

the way for targeted therapeutic applications. 

 

Table 1A. ARVC/D and DCM patient characteristics 

Characteristics ARVC/D DCM 

Male, n, (%) 10 (100) 10 (100) 

Family history / genetic 

mutation, n, (%) 
6 (60) 0 (0) 

Age at biopsy/HtTx, mean ± 

SD 
54 ± 13 49 ± 14 

LV Involvment, n, (%) 4 (40) 10 (100) 

LVEF%, mean ± SD 53 ± 10 22 ± 7 

 
ARVC/D patients: n=10, DCM patients n=10; HtTx=heart transplantation; LV= left ventricular; LVEF= left 
ventricular ejection fraction 
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Table 1B. Individual ARVC/D patient characteristics 

ARVC/D  

patient 
Gender 

Major Criteria/ 

Minor Criteria 
TFS* 

Age at biopsy/ 

HtTx 
Family history 

Initial clinical 

arrhythmias 
RVFAC% LVEF% 

1 m 2A,B,F / 1C 7 61 unknown VF and SCA 27 30 

2 m 2A,C,D / 1E 7 69 unknown 

 arrhythmogenic 

syncope, nsVT with 

LBBB morphology 

and inferior axis 

17 57 

3 m 2A,E / 1C,D 7 53 
Cousin with SCD at 

age 50 

sVT with LBBB 

morphology and 

superior axis 

28 56 

4 m 2A / 1C,D,E 5 46 unknown 

sVT with LBBB 

morphology and 

superior axis 

33 55 

5 m 2A,B / 1E,F 6 40 

Mother with 

probable ARVC/D 

(F) 

sVT with LBBB 

morphology and 

superior axis 

20 50 

6 m 2A,D/ 1C,E 6 54 
Cousin with ICD at 

age 40 

arrhythmogenic 

syncope, nsVT with 

LBBB morphology 

24 50 

7 m 2A,F / 1E 5 26 
Mother with SCD, 

severe ARVC/D (F) 

arrhythmogenic 

syncope >500VES 

per 24 hours (E) 

25 60 

8 m 2A,D, F/ 1C,E 8 62 

confirmed ARVC/D 

in first-degree 

relative (F) 

sVT with LBBB 

morphology 
NA 57 

9 m 2A,C,E,F 8 65 unknown 
sVT with LBBB 

morphology 
NA 65 

10 m 2 A, F 4 60 Uncle with SCD VF NA 45 

 
HtTx=heart transplantation; ICD= implantable cardioverter-defibrillator; LBBB= left bundle branch block; LVEF= 
left ventricular ejection fraction; RVOT= right ventricular outflow tract; SAECG= signal-averaged ECG; SCA= 
sudden cardiac arrest; VF= ventricular fibrillation; sVT= sustained ventricular tachycardia; nsVT= nonsustained 
ventricular tachycardia;  
TFS= task force score, *adapted from Task force criteria according to Marcus et al

15
 with each major criterion 

counting as two points and each minor criterion as one point, at least four points required for definite diagnosis; 
diagnostic categories; A= global or regional dysfunction with structural alterations; B= tissue characterization; C= 
repolarization abnormalities; D= depolarization abnormalities; E= arrhythmias; F= family history.  
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Table 2. Genetic mutations of ARVC/D patients 
 

Patient Gene 
DNA 

change 

Protein 

change 
Type Transcript SIFT Polyphen 2 

Mutation 

Tester 

1 DSP c.4531G>T p.Gln 1511* Nonsense NM_004415.2 NA NA 
Disease 

Causing 

2 DSP c.4609C>T p.Arg1537Cys Missense NM_004415.2 Tolerated 
Possibly 

Damaging 
VUS 

3 

DSP c.88G>A p.Val30Met Missense NM_004415.2 Tolerated Benign 
Disease 

Causing 

DSG-2 c.877A>G p.Ile293Val Missense NM_001943.3 

Affects 

protein 

function 

Possibly 

Damaging 
Polymorphism 

5 TTN c.99872T>C Met33291Thr Missense NM_133378.4 

Affects 

protein 

function 

VUS VUS 

6 RYR-2 c.12917T>C p.Phe4306Ser Missense NM_001035.2 Tolerated VUS VUS 

7 

PKP-2 c.2392A>G p.Thr798ArG Missense NM_004572.3 

Affects 

protein 

function 

Possibly 

Damaging 

Disease 

Causing 

DSG-2 c.877A>G p.Ile293Val Missense NM_001943.3 

Affects 

protein 

function 

Possibly 

Damaging 
Polymorphism 

8 PKP-2 c.2176C>T p.GLn726X Nonsense NM_004572.3 NA NA 
Disease 

Causing 

9 PKP-2 c.1803delC p.D601EfsX655 
Deletion; 

Frameshift 
NM_004572.3 NA NA 

Disease 

causing 

10 PKP-2 c.658C>T p.GLn220X Nonsense NM_004572.3 NA NA 
Disease 

Causing 

 
NA=not available; * NM=human genome variation society number; VUS=variant of unknown significance;  

SIFT, Polyphen 2 and Mutation Taster are databases that predict the pathogenic effect of a variant; Patient 4 did 

not have any ARVC/D associated genetic mutation. 

 

Table 3A. mRNA levels of candidate molecules of all ARVC/D patients, DCM patients 
and healthy controls in arbitrary units (AU) 

mRNA 

ARVC/D DCM  Control p-value p-value p-value 

AU  AU  AU  
ARVC/D 

versus DCM 

ARVC/D 

versus control 

control versus 

DCM 

mean ± SEM mean ± SEM mean ± SEM       

PLN 1626.2 ± 351.7 216.2 ± 62.8 175.3 ± 44.8 <0.001 <0.001 0.76 

PERP 26.9 ± 5.6 10.8 ± 2.7 6.8 ± 2.1 0.001 <0.001 0.18 

CPT1B 22.2 ± 12.5  1.8 ± 0.3  2.8 ± 1.3 <0.001 0.008 0.9 

 
Statistical significance was assumed for p values < 0.05. Data are presented as AU±SEM, calculated as 2

(–Δct)
 × 

1000.  
ARVC/D n=10, DCM n=10, Control n=8 
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Table 3B. mRNA levels of candidate molecules of ARVC/D patients with PKP-2 
mutation, DCM patients and healthy controls in arbitrary units (AU) 
 

mRNA 

ARVC/D with PKP-

2 mutation 
DCM  Control p-value p-value p-value 

AU  AU  AU  
ARVC/D 

versus DCM 

ARVC/D 

versus 

control 

control 

versus DCM 

mean ± SEM mean ± SEM mean ± SEM       

PLN 988.2 ±  250.7 216.2 ± 62.8 175.3 ± 44.8 0.008 0.004 0.76 

PERP 22.6 ± 2.0 10.8 ± 2.7 6.8 ± 2.1 0.008 0.01 0.18 

CPT1B 6.0 ± 2.2 1.8 ± 0.3  2.8 ± 1.3 0.02 0.15 0.9 

 
Statistical significance was assumed for p values < 0.05. Data are presented as AU±SEM, calculated as 2

(–Δct)
 × 

1000.  ARVC/D patients with pathogenic PKP-2 mutation n=4, DCM=10, Control n=8 
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