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HOMOGENIZATION IN STRENGTH AND DURABILITY
ANALYSIS OF REINFORCED TOOTH FILLING

Sergey E. Mikhailov1, Julia Orlik2

1. ABSTRACT

An asymptotic homogenization procedure is employed to obtain effective elastic
properties of the composite tooth filling, a homogenized macro– stress field and a
first approximation to the micro-stress field, from properties of the components and
applied macro–loads. Using the approximate micro–stress field, a non–local initial
strength and fatigue durability macro–conditions for the composite filling material is
expressed in terms of the homogenized macro–stresses. An illustrative example with
the stress singularity on the tooth–filling interface is presented showing the need in
the non-local analysis. Effective elastic properties of the tooth filling is numerically
simulated for some size distributions of the reinforcing particles.

2. INTRODUCTION AND MOTIVATION

Tooth filling materials are considered consisting of a polymer matrix filled with glass
particles. The volume fraction, size, shape and distribution of the particles influ-
ence mechanical properties of the filling material. Since 70-es, the homogenization
techniques were widely used for obtaining effective elastic properties of the com-
posite and the homogenized macro-stress field. The simplest averaging theories are
mixture theory and Representative Volume Element (RVE) method (Hashin, 1983).

In [1], the approximation to the micro-stress-field is derived from properties of the
components, micro–geometry of the composite and applied macro–loads, using a
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formal asymptotic expansion. Convergence of the micro–solution, as the structure
period tends to zero, is proved in [2] by the two–scale homogenization technique. The
present work is based on the fact that this limit for the micro–stress field is exactly
the first term of its asymptotic expansion, which is a product of the homogenized
macro–stress tensor and the so–called stress concentration tensor, related only to
the micro–geometry and stiffness tensors of the composite components.

Fatigue caused by normal chewing and temperature changes seems to be the main
reason of tooth filling fracture. We use here the Wöhler durability functions and
the linear damage accumulation rule to analyze durability under fatigue. It is also
merged with the non-local approach of [3]. This generalizes to fatigue some applica-
tion of the homogenization to micro-strength analysis presented in [4]. As a result,
the initial micro-strength and durability conditions (for each component of the com-
posite) are presented in terms of the elastic, strength and durability micro-properties
of the composite components and of the macro-stresses.

3. ELEMENTS OF STRENGTH AND FATIGUE DURABILITY ANALYSIS

For a bounded stress field σij(y), any local strength condition at a point y ∈ Ω can
be written in the form Λ (σ(y), y) < 1, where Λ is a normalised equivalent stress
function, a material characteristic. For some materials Λ is associated with the von
Mises equivalent stress

ΛM(σ(y), y) =
√

[(σ1(y)− σ2(y))2 + (σ2(y)− σ3(y))2 + (σ3(y)− σ1(y))2]/(2σ2
c (y)),

or with the Tresca equivalent stress ΛT (σ(y), y) = maxk,m |σk(y) − σm(y)|/σc(y),
where σ1, σ2, σ3 are the principal stresses and σc is a known uniaxial strength
of material. The local strength conditions, however, are generally not applicable
to unbounded (singular) stresses since the conditions will predict fracture under
virtually any singular stress field.

To illustrate that such singular stress fileds are relevant to the tooth filling simu-
lation, a finite element calculation was done for a simple modell of a half-spherical
tooth (radius a = 5mm) with a half-spherical filling (radius a/2) presented on figures
1 and 2. It is supposed that the tooth with filling is loaded by a uniform pressure

Figure 1: Equivalent von Mises
stresses

Figure 2: Equivalent von Mises
stresses

1MP from above and interaction of the tooth with the jaw was described by the
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Winkler contact condition. The Young modulus and the Poisson ratio are taken
E = 90GPa, ν = 0.3 for the tooth tissue and E = 8GPa, ν = 0.3 for the filling
material. One can observe that the equivalent von Mises stresses in the filling and
tooth grow sharply near the singular line, which is the intersection of the tooth-
filling interface with the external boundary. Applying the techniques described in
[5], it was shown that the stresses in the both materials have indeed a singular
asymptoics σij(ρ, θ) = KFij(θ)ρ

−γ + σ̄ij(ρ, θ), where ρ, θ are local polar coordinates
with the origin in a singular point, constant K is a stress intensity factor, Fij(θ) is
a bounded function of the local polar angle θ, σ̄ij(ρ, θ) is a smaller term. Solving
the corresponding transcendental equation given in [5], we obtain the singularity
exponent γ ≈ 0.207 for the particular materials and geometry.

For general, especially singular stress fields, e.g. belonging to L2(Ω), a (point) non-
local strength condition Λ(σ, y) < 1 can be applied. Here Λ(σ, y) is a normalised
equivalent stress functional, see [3]. Particularly, Λ can be connected with some
kind of weighted averaging of σij(x), x ∈ Ω in some surrounding of the point y,

Λ(σ, y) = Λ (σ̃(y), y) , σ̃ij(y) =
∫

Ω
ϕijkl(x, y)σkl(x)dx, (1)

where σ̃ij are components of an auxiliary non-local stress tensor, and ϕ(x, y) is a
material characteristic, such as

∫
Ω ϕijkl(x, y)dx = δikδjl, and Λ is a function, as

above. Then the strength condition for the whole body is

ΛΩ (σ) := sup
y∈Ω

Λ (σ̃, y) < 1, (2)

where ΛΩ(σ) is the body normalized equivalent stress functional.

Example (i) If ϕijkl(x, y) = δikδjlϕ(x, y), ϕ(x, y) =

{
3

4πd3 |x− y| < d
0 |x− y| ≥ d

for 3D,

where d is a material constant, then σ̃(y) = 3
4πd3

∫ ∫ ∫
|x−y|<dσ(x)dx.

Example (ii) If ϕ(x, y) is the Dirac-function, then σ̃(y) = σ(y), and the non-local
strength-condition coincides with the local one.

The Wöhler diagram (Wöhler function) for a material under a regular uniaxial
cycling with constant stress range ∆σ = σmax − σmin and mean stress σm =
(σmax +σmin)/2, describes the critical number of cycles N∗(∆σ, σm) needed to reach
rapture. For an in-fase multiaxial cycling, we consider ∆σ = ∆σij and σm = σmij

(i, j = 1, 2, 3) as tensors. For simplicity, suppose further that σmij = 0. If the ma-
terial fatigue properties and/or stress field vary with the coordinate, one can write
for a body Ω an (initial) durability condition in the form N < infy∈Ω N∗(∆σ(y), y)
where N∗ := N∗(∆σ, y) is the Wöhler curve for a homogeneous material with the
fatigue properties as at the point y, under the cycling ∆σij homogeneous in space
coordinates. However the local fatigue durability condition is generally not applica-
ble to singular stress fields. For the more general classes of stress fields, a non-local
in space fatigue durability condition can be applied, e.g.,

N < inf
y∈Ω

N∗(∆σ; y), N∗(∆σ; y) = N∗(∆σ̃(y), y), (3)

∆σ̃ij(y) =
∫

Ω
ϕijkl(x, y)∆σkl(x)dx (4)

where ϕ(x, y) is as above.
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4. ELEMENTS OF HOMOGENISATION TECHNIQUE

Consider the elasticity problem for the composite material with a large number of
periodically distributed inclusions,

∂σε
ij(x)

∂xj

= fi(x) x ∈ Ω, σε
ij(x) = aijkl(

x

ε
)
∂uε

k(x)

∂xl

(i, j = 1, ..., 3) (5)

+ boundary and transmission conditions

Here, (uε
i )3, (σε

ij)3×3 and (aijkl)3×3×3×3 are displacements, stresses and elastic coef-
ficients respectively, ε is a small parameter related to the periodicity cell εY of the
composite. Let Nq = (Npjq)3×3×3 ∈ Hper[0](Y ) be a solution to the auxiliary periodic
weak problem of elasticity:

∫

Y
aihjk(ξ)

∂

∂ξk

(Npjq(ξ) + ξpδjq)
∂vi(ξ)

∂ξh

dξ = 0 ∀vi ∈ Hper[0](Y ) (6)

which depends only on the micro-structure of the composite, stiffness of its com-
ponents and is independent of the boundary conditions. The homogenized dis-
placement and stress fields, u0

i , σ̂ij are given by a solution to the uniquely
solvable homogenized problem coinciding with (5) after replacement there the
variable elastic coefficients aihjk by their homogenized counterparts: âihjk =
1

|Y |
∫

Y
aihqp(ξ)

[
δjqδkp +

∂

∂ξp

Nkqj(ξ)

]
dξ. Using results of [2], one can show that as

the structure period ε tends to zero , the sequence of stress fields σε(x) contains a
subsequence, which two-scale converges to a function σ0(x, x/ε),

where σ0
ih(x, ξ) = aihjk(ξ)

∂

∂ξk

(Njpq(ξ) + ξqδjp)
∂u0

p(x)

∂xq

=: Bihjk(ξ)σ̂jk(x). (7)

Similar to [1], Chap.9, Sec.4, we call Bihγδ(ξ) = aihjk(ξ)
∂

∂ξk
(Njpq(ξ) + ξqδjp)â

−1
pqγδ the

stress concentration tensors. Here (â−1
pqγδ)3×3 is the homogenized compliance tensor,

which is the inverse to the homogenized stiffness tensor (âγδαβ)3×3.

5. HOMOGENIZATION OF NORMALISED EQUIVALENT STRESS
AND WÖHLER FUNCTION

In a periodic medium, all becomes dependent on the period ε. Functions
Λ (σ(y), y) and N∗(∆σ(y), y) in the local strength and durability conditions be-
come Λε (σε(y); y) and N∗ε (∆σε(y); y) respectively; particular non-local represen-
tations (1), (4) become Λε (σε; y) = Λε (σ̃ε(y); y) , N∗ε (∆σε; y) = N∗ε (∆σ̃ε(y); y) ,

σ̃ε
ij(y) =

∫

Ω
ϕε

ijkl(x, y)σε
kl(x)dx, for all y ∈ Ω. Suppose Λε(σ̃ε(y); y) = Λ(σ̃ε(y);

y

ε
),

N∗ε(∆σ̃ε(y); y) = N∗(∆σ̃ε(y);
y

ε
),

σ̃ε
ij(y) :=

∫

Ω
ϕijkl(x, y,

x

ε
,
y

ε
)σε

kl(x)dx, ∆σ̃ε
ij(y) :=

∫

Ω
ϕijkl(x, y,

x

ε
,
y

ε
)∆σε

kl(x)dx, (8)

Our aim is to derive initial macro-strength and macro-durability conditions similar
to (2) and (3), i.e., the homogenized normalized equivalent stress function Λ̂ and the
Wöhler function N̂∗ for the composite from the micro-strength and micro-durability
conditions. This will allow to estimate the macro-strength/durability in terms of
averaged stresses and material micro-characteristics. One can prove the following
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Proposition 1 (Homogenization of non-local strength and fatigue durability). Let
σε ∈ L2(Ω) be a sequence of solutions to (5). Suppose the body is macro-homogeneous
in strength and fatigue durability and its point micro-strength and micro-durability
conditions are Λε (σε; y) = Λ

(
σ̃ε; y

ε

)
< 1, N < N∗ε (∆σε; y) := N∗

(
∆σ̃ε; y

ε

)
, where

Λ (σ̃ε; ζ) and N∗−1(∆σ̃ε; ζ) are continuous in the first arguments and are periodic
and bounded in the second argument; σ̃ε and ∆σ̃ε have form (8). Then the limit (as
ε → 0) initial sufficient non-local macro-strength and macro-durability conditions

are sup
y∈Ω

Λ̂ (σ̂; y) < 1, N < inf
y∈Ω

N̂∗(∆σ̂; y), (9)

where Λ̂(σ̂; y) := sup
ζ∈Y

Λ
(∫

Ω
ϕ̂ijkl(y, ζ, x)σ̂kl(x)dx; ζ

)
, (10)

N̂∗(∆σ̂; y) := inf
ζ∈Y

N∗
(∫

Ω
ϕ̂ijkl(y, ζ, x)∆σ̂kl(x)dx; ζ

)
, (11)

ϕ̂ijkl(y, ζ, x) =
1

|Y |
∫

Y
ϕ(x, y, ξ, ζ)Bijkl(ξ)dξ.

For a finite dimension of the periodicity cell (ε > 0), the strength and durability
conditions (9) can be considered as approximate.

Example: In the particular case when the non-local weight function is independent
of the cell characteristics, i.e. ϕε(x, y) = ϕ(x, y), we have ϕ̂ihγδ(x, y, ζ) = ϕ(x, y) and

Λ̂(σ̂; y) = supζ∈Y Λ (
∫
Ω ϕ(x, y)σ̂(x)dx, ζ), N̂∗(∆σ̂; y) = infζ∈Y N∗ (

∫
Ω ϕ(x, y)∆σ̂(x)dx, ζ).

That is, the cell stress concentration does not influence the composite strength and
durability for sufficiently small cells obeying the non-local strength/durability con-
dition.

Let us consider now an in-face multi-axial loading, homogeneous in space coordi-
nates, with varying cycle parameters such that closed loops can be always identified.
Let n = 1, 2, ... be the number of a closed loop with the stress range ∆σij(n) in the
loading history. Let N∗(∆σ) be the Wöhler function for the considered material.
The discrete linear damage accumulation rule gives the durability condition in the

form
N∑

n=1

1

N∗[∆σ(n)]
< 1. Taking into account that the function ∆σij(n) can change

only at integer values of the cycle number n, the linear damage accumulation rule

can be rewritten also in the integral form
∫ N

0

dn

N∗[∆σ(n)]
< 1.

Note that a more general phenomenological concept based on normalized equivalent
stress functionals and allowing non-linear damage accumulation is introduced in [6]
to estimate strength and durability under creep or fatigue.

For a periodically inhomogeneous composite and varying macro-stress, one can prove
the following

Proposition 2 Let ∆σε
ij(y, n) be a sequence of solutions to (5), which belong to

L2(Ω) for any loop number n < N . Suppose the body micro-durability condi-

tion is sup
y∈Ω

∫ N

0

dn

N∗ε(∆σ(., n); y)
< 1, where N∗ε(∆σ; y) is as in Proposition 1.

Then the limit (as ε → 0) initial sufficient non-local macro-durability condition

is sup
y∈Ω

∫ N

0

dn

N̂
∗
(∆σ̂(., N); y)

< 1, where N̂
∗

is given by (11).

For ε > 0, the last durability condition can be considered as approximate.
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6. NUMERICAL EXAMPLE

To illustrate the influence of the micro–geometry on the macro–stiffness and macro–
strength, a numerical example with the following characteristics was considered:
bulk modulus, k, for cement is 7.2 · 109Pa, for glass is 78.7 · 109Pa; shear modulus,
µ, for cement is 3.3 ·109Pa, for glass is 32.2 ·109Pa; uniaxial strength, σc, for cement
is 50 · 106Pa, for glass is 200 · 106Pa.

The averaged hydrostatic strength is determined from the solution to an auxiliary
problem for a unit-cell hydrostatically extended from all sides by the normal dis-
placements ±1/2 with zero shear tractions. For the averaged uniaxial strength,
an auxiliary problem with uniaxial displacements ±1/2 on two opposite sides of
the unit cell and zero normal displacement on other sides with zero shear tractions
should be solved. The Finite Element code ANSYS was used to solve the auxiliary
periodic problems (6). We suppose that the periodicity cell is symmetric and will
consider 1/8–th of the cell, structured as in the picture below: two glass spheres at
the opposite corners and another glass sphere on the cube diagonal between them.
Inclusion radii are 0.124b, a = b/4, then the volume fraction of inclusions is 1.597%.
The calculated composite properties are presented in the table.

Bulk Mod.,[Pa] 7.23 · 109

Shear Mod.,[Pa] 3.53 · 109

Uniax. str.,[Pa] 43.91 · 106

Hydr. str.,[Pa] 95.89 · 106

Maximal von Mises stress arises for both hydrostatic and uniaxial tensions on the
surface of the middle glass ball at the point nearest to the corner ball. Nevertheless,
the most dangerous appears to be the neighboring point of the matrix, due to the
large difference in the strengths of the matrix and inclusion. Note that, unlike to
the components strength, the homogenized hydrostatic strength for the composite
is not infinite. The composite tensile initial strength is lower than strengths of the
both composite components.
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