
CONTRACTING AN ELEMENT FROM A COCIRCUIT.

RHIANNON HALL AND DILLON MAYHEW

Abstract. We consider the situation that M and N are 3-con-
nected matroids such that |E(N)| ≥ 4 and C∗ is a cocircuit of M
with the property that M/x0 has an N -minor for some x0 ∈ C∗.
We show that either there is an element x ∈ C∗ such that si(M/x)
or co(si(M/x)) is 3-connected with an N -minor, or there is a four-
element fan of M that contains two elements of C∗ and an element
x such that si(M/x) is 3-connected with an N -minor.

1. Introduction

There are a number of tools in matroid theory that tell us when we
can remove an element or elements from a matroid, while maintaining
both the presence of a minor and a certain type of connectivity. Some
recent results are of this type, but have the additional restriction that
the element(s) must have a certain relation to a given substructure in
the matroid. For example, Oxley, Semple, and Whittle [9], consider a
given basis of a matroid and consider either contracting elements that
are in the basis, or deleting elements that are not in the basis. Hall [3]
has investigated when it is possible to contract an element from a given
hyperplane in a 3-connected matroid and remain 3-connected (up to
parallel pairs).

We make a contribution to this collection of tools by investigating the
circumstances under which we can contract an element from a cocircuit
while maintaining both the presence of a minor and 3-connectivity (up
to parallel pairs), and the structures which prevent us from doing so.
Our result has been employed by Geelen, Gerards, and Whittle [2]
in their characterization of when three elements in a matroid lie in a
common circuit.
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Theorem 1.1. Suppose that M and N are 3-connected matroids such
that |E(N)| ≥ 4 and C∗ is a cocircuit of M with the property that M/x0

has an N-minor for some x0 ∈ C∗. Then either:

(i) there is an element x ∈ C∗ such that si(M/x) is 3-connected and
has an N-minor;

(ii) there is an element x ∈ C∗ such that co(si(M/x)) is 3-connected
and has an N-minor; or,

(iii) there is a sequence of elements (x1, x2, x3, x4) from E(M) such
that {x1, x2, x3} is a circuit, {x2, x3, x4} is a cocircuit, x1, x3 ∈
C∗, and si(M/x2) is 3-connected with an N-minor.

The next example shows that statement (ii) of Theorem 1.1 is nec-
essary.

a

b

c d

Figure 1. The graphic matroid M(K5\e).

Consider the rank-4 matroid M whose geometric representation is
shown in Figure 1. Note that M ∼= M(K5\e). The set C = {a, b, c, d}
is a circuit of M , and hence a cocircuit of M∗. Moreover M∗/x has a
minor isomorphic to M(K4) for any element x ∈ C. However co(M\x)
is not 3-connected, as it contains a parallel pair, so si(M∗/x) is not
3-connected. On the other hand co(si(M∗/x)) is 3-connected, and has
a minor isomorphic to M(K4).

More generally we suppose that r is an integer greater than two.
Consider a basis A = {a1, . . . , ar} in the projective space PG(r−1, R).
Let l be a line of PG(r−1, R) that is freely placed relative to A, and for
all i ∈ {1, . . . , r} let bi be the point that is in both l and the hyperplane
of PG(r − 1, R) spanned by A− ai. Let B = {b1, . . . , br}. We will use
Θr to denote the restriction of PG(r − 1, R) to A ∪B.

Suppose that Θ′
r is an isomorphic copy of Θr with {a′

1, . . . , a
′
r} ∪ B

as its ground set. Assume also that the isomorphism from Θr to Θ′
r

acts as the identity on B and takes ai to a′
i for all i ∈ {1, . . . , r}. Let

M be the generalized parallel connection of Θr and Θ′
r. That is, M is

a matroid on the ground set A∪A′ ∪B and the flats of M are exactly
the sets F such that F ∩ (A ∪B) is a flat of Θr and F ∩ (A′ ∪B) is a
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flat of Θ′
r. Note that if r = 3 then M is isomorphic to M(K5\e), the

matroid illustrated in Figure 1.
It is easy to see that Θr is self-dual and that C = (A−a1)∪ (A′−a′

1)
is a circuit of M , and hence a cocircuit of M∗. Moreover M∗/x has
an isomorphic copy of Θr as a minor for every element x ∈ C. We
note that every three-element subset of A is a circuit of M∗. Thus
A − x is a parallel class of M∗/x for every x ∈ C ∩ A. However the
simplification of M∗/x contains a unique series pair, and is therefore
not 3-connected. On the other hand co(si(M∗/x)) is 3-connected, and
has a minor isomorphic to Θr.

The structure described in the last example has been discovered be-
fore. The matroid Θr is a fundamental object in the generalized ∆-Y
operation of Oxley, Semple, and Vertigan [7]. Furthermore this con-
struction is an example of a ‘crocodile’, as described by Hall, Oxley,
and Semple [4].

To see that statement (iii) of Theorem 1.1 is necessary consider the
graph G shown in Figure 2. Let C∗ be the cocircuit of M = M(G)
comprising the edges incident with the vertex a. It is easy to see that
if x is any edge between a and a vertex in {b, c, d, e, f} then M/x has
a minor isomorphic to M(K6), and that these are the only edges in C∗

with this property. But in this case neither si(M/x) nor co(si(M/x)) is
3-connected. On the other hand, if we let x1 be the edge ad, x2 be cd,
x3 be ac, and x4 be bc, then (x1, x2, x3, x4) is a sequence of the type
described in statement (iii) of Theorem 1.1.

a

bc

d

e f

Figure 2. The graph G.

Our main result shows that there are essentially only two structures
that prevent us from finding an element x ∈ C∗ such that si(M/x) is
3-connected with an N -minor. These structures are named ‘segment-
cosegment pairs’ and ‘four-element fans’. The dual of the matroid in
Figure 1 contains a segment-cosegment pair, and the graph in Figure 2
contains a four-element fan. Before describing our result in detail we
fix some terminology. Suppose that M is a matroid. Recall that a
triangle of M is a three-element circuit, and a triad is a three-element
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cocircuit. A four-element fan of M is a sequence (x1, x2, x3, x4) of
distinct elements from E(M) such that {x1, x2, x3} is a triangle and
{x2, x3, x4} is a triad. A segment of M is a set L such that |L| ≥ 3
and every three-element subset of M is a triangle, and a cosegment of
M is a segment of M∗. We say that (L, L∗) is a segment-cosegment
pair if L = {x1, . . . , xt} is a segment of M , and L∗ = {y1, . . . , yt} is a
set such that L ∩ L∗ = ∅ and for every xi ∈ L the set (cl(L)− xi) ∪ yi

is a cocircuit. Segment-cosegment pairs will be considered in detail
in Section 3. A spore is a pair (P, s) such that P is a rank-one flat,
and P ∪ s is a cocircuit. A matroid M is 3-connected up to a unique
spore if M contains a single spore (P, s), and whenever (X, Y ) is a
k-separation of M for some k < 3 then either X ⊆ P ∪ s or Y ⊆ P ∪ s.
Theorem 1.1 follows from the next result. It gives a more detailed
analysis of the structures we encounter.

Theorem 1.2. Suppose that M and N are 3-connected matroids such
that |E(N)| ≥ 4 and C∗ is a cocircuit of M with the property that M/x0

has an N-minor for some x0 ∈ C∗. Then either:

(i) there is an element x ∈ C∗ such that si(M/x) is 3-connected and
has an N-minor;

(ii) there is a four-element fan (x1, x2, x3, x4) of M such that x1, x3 ∈
C∗, and si(M/x2) is 3-connected with an N-minor;

(iii) there is a segment-cosegment pair (L, L∗) such that L ⊆ C∗, and
cl(L) − L contains a single element e. In this case e /∈ C∗ and
si(M/e) is 3-connected with an N-minor. Moreover M/ cl(L) is
3-connected with an N-minor, and if xi ∈ L then M/xi is 3-con-
nected up to a unique spore (cl(L)− xi, yi); or,

(iv) there is a segment-cosegment pair (L, L∗) such that L is a flat and
|L−C∗| ≤ 1. In this case M/L is 3-connected with an N-minor,
and if xi ∈ L then M/xi is 3-connected up to a unique spore
(L− xi, yi).

We note that if (L, L∗) is a segment-cosegment pair of the matroid
M , and M/ cl(L) has an N -minor, then |E(M) − cl(L)| ≥ 4. Under
these hypotheses Proposition 3.6 tells us that M/ cl(L) is isomorphic
to co(si(M/xi)) for any element xi ∈ L. Therefore Theorem 1.1 does
indeed follow from Theorem 1.2.

By dualizing we immediately obtain the following corollary of The-
orem 1.1.

Theorem 1.3. Suppose that M and N are 3-connected matroids such
that |E(N)| ≥ 4 and C is a circuit of M with the property that M\x0

has an N-minor for some x0 ∈ C. Then either:
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(i) there is an element x ∈ C such that co(M\x) is 3-connected and
has an N-minor;

(ii) there is an element x ∈ C such that si(co(M\x)) is 3-connected
and has an N-minor; or,

(iii) there is a four-element fan (x1, x2, x3, x4) in M such that
x2, x4 ∈ C, and co(M\x3) is 3-connected with an N-minor.

We note that Lemos [5] has considered the situation that a 3-con-
nected matroid M contains a circuit C with the property that M\x is
not 3-connected for any element x ∈ C. He shows that in this case C
meets at least two triads of M .

In Section 2 we introduce essential notions of matroid connectiv-
ity. Section 3 contains a detailed discussion of one of the structures
we uncover: segment-cosegment pairs. In Section 4 we collect some
preliminary lemmas, and in Section 5 we complete the proof of Theo-
rem 1.2. Notation and terminology generally follows that of Oxley [6],
except that the simple (respectively cosimple) matroid associated with
the matroid M is denoted si(M) (respectively co(M)). We consistently
write z instead of {z} for the set containing the single element z.

2. Essentials

This section collects some elementary results on matroid connectiv-
ity. Let M be a matroid on the ground set E. The connectivity function
of M , denoted by λM (or λ when there is no ambiguity), takes subsets
of E to Z+ ∪ {0}. It is defined so that

λM(X) = rM(X) + rM(E −X)− r(M)

for any subset X ⊆ E. Note that λ(X) = λ(E − X) and λM∗(X) =
λM(X) for any subset X ⊆ E. It is well known, and easy to verify,
that the connectivity function of M is submodular. That is, for all
X, Y ⊆ E, the inequality

λ(X ∩ Y ) + λ(X ∪ Y ) ≤ λ(X) + λ(Y )

is satisfied.
We say that a subset X ⊆ E is k-separating or a k-separator of M

if λ(X) < k, and we say that a partition (X, E −X) is a k-separation
of M if X is k-separating and |X|, |E − X| ≥ k. A k-separator X
or a k-separation (X, E − X) is exact if λ(X) = k − 1. A matroid
M is n-connected if M has no k-separation for any k < n. We define
a k-partition of M to be a partition (X1, X2, . . . , Xn) of E such that
Xi is k-separating for all 1 ≤ i ≤ n. We say that the k-partition
(X1, X2, . . . , Xn) is exact if each k-separator Xi is exact.

The next result is easy.
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Proposition 2.1. Let N be a minor of the matroid M and let X be a
subset of E(M). Then λN(E(N) ∩X) ≤ λM(X).

Proposition 2.2. Suppose that M is a matroid and that (X, Y, z) is
a partition of E(M). If λ(X) = λ(Y ) then z is in cl(X) ∩ cl(Y ) or in
cl∗(X) ∩ cl∗(Y ), but not both.

Proof. Since

λ(X) = r(X) + r(Y ∪ z)− r(M) = r(X ∪ z) + r(Y )− r(M) = λ(Y )

it follows that r(Y ∪ z)− r(Y ) = r(X ∪ z)− r(X). Therefore, z ∈ cl(X)
if and only if z ∈ cl(Y ). In the case that z /∈ cl(X) and z /∈ cl(Y ) then

r∗(Y ∪ z)− r∗(Y ) = (|Y ∪ z|+ r(X)− r(M))

− (|Y |+ r(X ∪ z)− r(M)) = 1 + r(X)− r(X ∪ z) = 0.

Thus z ∈ cl∗(Y ). The same argument shows that z ∈ cl∗(X).
Finally we note that z ∈ cl∗(X) if and only if z /∈ cl(Y ). Thus

cl(X) ∩ cl(Y ) and cl∗(X) ∩ cl∗(Y ) are disjoint. �

The next result is well known, and follows without difficulty from
the dual of [8, Lemma 2.5].

Proposition 2.3. Suppose that X is an exactly 3-separating set of the
3-connected matroid M . Suppose also that A ⊆ E(M)−X. If |A| ≥ 3
and A ⊆ cl∗(X) then A is a cosegment of M .

Definition 2.4. Suppose that M is a matroid and that x ∈ E(M).
Let (X1, X2) be a partition of E(M)− x such that there is a positive
integer k with the property that:

(i) λ(X1) = λ(X2) = k − 1;
(ii) r(X1), r(X2) ≥ k; and,
(iii) x ∈ cl(X1) ∩ cl(X2).

In this case (X1, X2, x) is a vertical k-partition of M .

The next result is well known and easy to prove.

Proposition 2.5. Let M be a 3-connected matroid and suppose that
si(M/x) is not 3-connected for some x ∈ E(M). Then there exists a
vertical 3-partition (X1, X2, x) of M .

Proposition 2.6. Suppose that (X1, X2, x) is vertical k-partition of
the k-connected matroid M . Let A be a subset of cl(X2 ∪ x). Then
(X1 − A, (X2 ∪ A)− x, x) is also a vertical k-partition of M .
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Proof. Suppose that z is some element in X1 ∩ A. Then λ(X1 − z) is
either k − 2 or k − 1. If λ(X1 − z) = k − 2 then (X1 − z, X2 ∪ {x, z})
is a (k− 1)-separation of M , a contradiction. Hence λ(X1− z) = k− 1
which implies that r(X1 − z) = r(X1). Thus cl(X1 − z) = cl(X1), and
hence x ∈ cl(X1 − z). It follows that (X1 − z, X2 ∪ z, x) is a vertical
k-partition of M . By continuing to transfer elements in X1 ∩ A from
X1 into X2 we eventually conclude that (X2 −A, (X2 ∪A)− x, x) is a
vertical k-partition of M , as desired. �

Suppose that M1 and M2 are matroids such that E(M1)∩E(M2) =
{p}. Then we can define the parallel connection of M1 and M2, denoted
by P (M1, M2). The ground set of P (M1, M2) is E(M1) ∪ E(M2). If
p is a loop in neither M1 nor M2 then the circuits of P (M1, M2) are
exactly the circuits of M1, the circuits of M2, and sets of the form
(C1 − p) ∪ (C2 − p), where Ci is a circuit of Mi such that p ∈ Ci for
i = 1, 2. If p is a loop in M1 then P (M1, M2) is defined to be the direct
sum of M1 and M2/p. Similarly, if p is a loop in M2 then P (M1, M2)
is defined to be the direct sum of M1/p and M2. We say that p is
the basepoint of the parallel connection. It is clear that P (M1, M2) =
P (M2, M1).

The next result follows from [6, Proposition 7.1.15 (v)].

Proposition 2.7. Suppose that M1 and M2 are matroids such that
E(M1) ∩ E(M2) = {p}. If e ∈ E(M1) − p then P (M1, M2)\e =
P (M1\e, M2) and P (M1, M2)/e = P (M1/e, M2).

Assume that M1 and M2 are matroids such that E(M1) ∩ E(M2) =
{p}. If p is not a loop or a coloop in either M1 or M2 then P (M1, M2)\p
is the 2-sum of M1 and M2, denoted by M1 ⊕2 M2. We say that p is
the basepoint of the 2-sum.

The next result follows from [10, (2.6)].

Proposition 2.8. If (X1, X2) is an exact 2-separation of a matroid
M then there exist matroids M1 and M2 on the ground sets X1∪ p and
X2 ∪ p respectively, where p is in neither X1 nor X2, such that M is
equal to M1 ⊕2 M2.

Proposition 2.9. Suppose that N is a 3-connected matroid. Let M
be a matroid with a vertical 3-partition (X1, X2, x) such that N is a
minor of M/x. Then either |E(N) ∩X1| ≤ 1, or |E(N) ∩X2| ≤ 1.

Proof. Since (X1, X2) is a 2-separation of M/x the result follows im-
mediately from Proposition 2.1. �

Lemma 2.10. Suppose that N is a 3-connected matroid such that
|E(N)| ≥ 2. Let M be a matroid with a vertical 3-partition (X1, X2, x)
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such that N is a minor of M/x. If |E(N) ∩X1| ≤ 1 then M/x/e has
an N-minor for every element e ∈ X1 − clM(X2).

Proof. Since (X1, X2) is an exact 2-separation of M/x, it follows from
Proposition 2.8 that M/x is the 2-sum of matroids M1 and M2 along
the basepoint p, where E(M1) = X1 ∪ p and E(M2) = X2 ∪ p. Thus
M/x = P (M1, M2)\p.

Suppose that E(N) ∩ X1 = ∅. Then there is a partition (A, B) of
X1 such that N is a minor of M/x/A\B. Suppose that p is a loop in
M1/A\B. Proposition 2.7 implies that

M/x/A\B = P (M1/A\B, M2)\p.

Now the definition of parallel connection implies that M/x/A\B is
isomorphic to M2/p. It is easily seen that if e ∈ X1 then there is
a minor M ′ of M1/e such that E(M ′) = {p} and p is a loop of M ′.
Proposition 2.7 implies that P (M ′, M2)\p is a minor of M/x/e. But
P (M ′, M2)\p is isomorphic to M2/p, so M/x/e has an N -minor.

Next we suppose that p is a coloop of M1/A\B. Then, by definition
of the parallel connection, M/x/A\B is isomorphic to M2\p. Suppose
that e ∈ X1 − cl(X2). Since p is not a coloop of M2 it follows easily
that p ∈ clM(X2). Thus e is not parallel to p in M1. Therefore there
is a minor M ′ of M1/e such that E(M ′) = {p} and p is a coloop of
M ′. Again using Proposition 2.7 we see that P (M ′, M2)\p is a minor
of M/x/e. But since P (M ′, M2)\p is isomorphic to M2\p we deduce
that M/x/e has an N -minor.

Now we assume that |E(N) ∩ X1| = 1 and that z is the unique
element in E(N) ∩ X1. There is a partition (A, B) of X1 − z such
that N is a minor of M/x/A\B. It follows from Proposition 2.7 that
P (M1/A\B, M2)\p has an N -minor. Consider the matroid M1/A\B.
If {z, p} is not a parallel pair in this matroid then z must be a loop or
coloop in P (M1/A\B, M2)\p. This implies that z is a loop or coloop
in N , a contradiction as N is 3-connected and |E(N)| ≥ 2. Therefore
z and p are parallel in M1/A\B, and therefore P (M1/A\B, M2)\p is
isomorphic to M2. Thus M2 has an N -minor.

Since p is not a loop or coloop of M1 there is a circuit of size at
least two in M1 that contains p. Suppose that e ∈ X1 − clM(X2).
Then e cannot be parallel to p in M1, so M1/e has a circuit of size
at least two that contains p. Hence there is a minor M ′ of M1/e such
that p ∈ E(M ′) and M ′ consists of a parallel pair. Proposition 2.7
implies that P (M ′, M2)\p is a minor of M/x/e. But P (M ′, M2)\p is
isomorphic to M2, so M/x/e has an N -minor. �
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Definition 2.11. Suppose that M is a matroid and that A and B are
subsets of E(M). The local connectivity between A and B, denoted by
u(A, B), is defined to be r(A)+r(B)−r(A∪B). Equivalently, u(A, B)
is equal to λM |(A∪B)(A).

Proposition 2.12. [8, Lemma 2.4 (iv)] Let M be a matroid and let
(A, B, C) be a partition of E(M). Then u(A, B)+λ(C) = u(A, C)+
λ(B). Hence u(A, B) = u(A, C) if and only if λ(B) = λ(C).

Corollary 2.13. Let (X, Y, Z) be an exact 3-partition of the 3-con-
nected matroid M . Then u(X, Y ) = u(X, Z) = u(Y, Z).

Proposition 2.14. Suppose that M is a matroid and that X and Y are
disjoint subsets of E(M) such that u(X, Y ) = 1. If x, y ∈ X ∩ cl(Y )
then r({x, y}) ≤ 1.

Proof. Assume that r({x, y}) = 2. Let X ′ = cl(X) and Y ′ = cl(Y ). It
is easy to see that r(X ′ ∪ Y ′) = r(X ∪ Y ). However

r(X ′∪Y ′) ≤ r(X ′)+r(Y ′)−r(X ′∩Y ′) ≤ r(X)+r(Y )−2 = r(X∪Y )−1.

This contradiction completes the proof. �

We conclude this section by stating a fundamental tool in the study
of 3-connected matroids, due to Bixby [1].

Theorem 2.15 (Bixby’s Lemma). Let M be a 3-connected matroid
and suppose that x is an element of E(M). Then either si(M/x) or
co(M\x) is 3-connected.

3. Segment-cosegment pairs

Suppose that M is a matroid. Recall that L is a segment of M if
|L| ≥ 3 and every three-element subset of L is a circuit of M , and that
L∗ is a cosegment of M if |L∗| ≥ 3 and every three-element subset of
L∗ is a cocircuit. We restate the definition of segment-cosegment pairs
given in Section 1.

Definition 3.1. Suppose that L = {x1, . . . , xt} is a segment of the
matroid M and there is a set L∗ = {y1, . . . , yt} with the property that
L∩L∗ = ∅ and (cl(L)−xi)∪yi is a cocircuit of M for all i ∈ {1, . . . , t}.
In this case we say that (L, L∗) is a segment-cosegment pair of M .

In a 3-connected matroid a segment-cosegment pair is an example of
a ‘crocodile’, a structure that provides a collection of equivalent 3-sep-
arations. ‘Crocodiles’ were considered by Hall, Oxley, and Semple [4].
The next result explains the name segment-cosegment pair.
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Proposition 3.2. Suppose that (L, L∗) is a segment-cosegment pair of
the 3-connected matroid M . Then L∗ is a cosegment of M .

Proof. Suppose that yi ∈ L∗. The definition of a segment-cosegment
pair means that yi ∈ cl∗(cl(L)). Thus L∗ ⊆ cl∗(cl(L)). Moreover cl(L)
is exactly 3-separating in M . The result follows by Proposition 2.3. �

Proposition 3.3. Suppose that (L, L∗) is a segment-cosegment pair of
the 3-connected matroid M . Then M/ cl(L) is 3-connected.

Proof. Suppose that L = {x1, . . . , xt} and L∗ = {y1, . . . , yt}. Assume
that M/ cl(L) is not 3-connected, so that (X1, X2) is a k-separation of
M/ cl(L) for some k ≤ 2. Let L0 = cl(L). Note that for i ∈ {1, 2} we
have

rM/L0(Xi) = rM(Xi ∪ L0)− rM(L0) = rM(Xi)− uM(Xi, L0),

so rM(Xi) = rM/L0(Xi) + uM(Xi, L0).
Suppose that uM(X1, L0) = 0. Then rM(X1) = rM/L0(X1) and

rM(X2 ∪ L0) = rM/L0(X2) + 2, so

λM(X1) = rM/L0(X1) + (rM/L0(X2) + 2)− (r(M/L0) + 2)

= λM/L0(X1) < k.

This is a contradiction as M is 3-connected. By using a symmetric
argument we can conclude that uM(Xi, L0) > 0 for all i ∈ {1, 2}.

Suppose that xi ∈ clM(X1) for some i ∈ {1, . . . , t}. Then there is a
circuit C1 ⊆ X1 ∪ xi such that xi ∈ C1. For all k ∈ {1, . . . , t} − i the
set (L0 − xk) ∪ yk is a cocircuit. It cannot be the case that C1 meets
this cocircuit in a single element, so yk ∈ X1 for all k ∈ {1, . . . , t} − i.

Now suppose that xj ∈ clM(X2) for some j ∈ {1, . . . , t}. By using
the same arguments as above we can conclude that L∗ − yj ⊆ X2. As
L∗−yi and L∗−yj have a non-empty intersection this is a contradiction.
Therefore clM(X2) ∩ L = ∅. Note that u(X2, L0) ≤ 2 because r(L0) =
2. If u(X2, L0) were two, it would follow that L0 ⊆ cl(X2). Hence
u(X2, L0) = 1.

Let j be an element of {1, . . . , t} − i. Then L0 ⊆ clM(X2 ∪ xj), and
there must be a circuit C2 ⊆ X2 ∪ {xi, xj} such that {xi, xj} ⊆ C2.
But then C2 meets the cocircuit (L0 − xj) ∪ yj in a single element, xi.
From this contradiction we conclude that clM(X1) ∩ L = ∅, and by
symmetry clM(X2) ∩ L = ∅. This means that

uM(X1, L0) = uM(X2, L0) = 1.

It must be the case that x2 ∈ clM(X1 ∪ x1), and there is a circuit
C3 ⊆ X1 ∪ {x1, x2} such that {x1, x2} ⊆ C3. Since (L0 − x1) ∪ y1

is a cocircuit we conclude that y1 ∈ X1. But we can use an identical
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argument to show that y1 ∈ X2. This contradiction completes the
proof. �

We now restate the definition of a spore.

Definition 3.4. Suppose that P is a rank-one flat of a matroid M and
that s is an element of E(M) such that P ∪ s is a cocircuit. Then we
say that (P, s) is a spore.

Recall from Section 1 that a matroid M is 3-connected up to a unique
spore if it contains a single spore (P, s), and whenever (X, Y ) is a
k-separation of M for some k < 3 then either X ⊆ P ∪ s or Y ⊆ P ∪ s.

Lemma 3.5. Suppose that (L, L∗) is a segment-cosegment pair of the
3-connected matroid M where |E(M)−cl(L)| ≥ 4. Let L = {x1, . . . , xt}
and L∗ = {y1, . . . , yt}. Then M/xi is 3-connected up to a unique spore
(cl(L)− xi, yi), for all i ∈ {1, . . . , t}.

Proof. Let E be the ground set of M and let L0 = cl(L). We will
show that M/xi is 3-connected up to the unique spore (L0 − xi, yi).
Certainly (L0 − xi, yi) is a spore of M/xi. Suppose that (P, s) is a
spore of M/xi that is distinct from (L0 − xi, yi).

We initially assume that L0 − xi = P . Thus s 6= yi. As (L0 − xi)∪ s
and (L0−xi)∪ yi are both cocircuits of M/xi it follows that E− (L0 ∪
{s, yi}) is the intersection of two hyperplanes of M/xi. Thus

rM/xi
(E − (L0 ∪ {s, yi})) ≤ r(M/xi)− 2.

and therefore

rM/L0(E − (L0 ∪ {s, yi})) ≤ r(M/xi)− 2 = r(M/L0)− 1.

Hence {s, yi} contains a cocircuit in M/L0. Therefore M/L0 contains
a cocircuit of size at most two, a contradiction as M/L0 is 3-connected
by Proposition 3.3, and |E(M/L0)| ≥ 4.

Now we must assume that L0 − xi 6= P . Hence P ∪ xi is a rank-
two flat of M that meets L0 in exactly one element, xi. Suppose that
P contains a single element p. Then {p, s} is a cocircuit of M , a
contradiction. Therefore P ∪xi contains at least one triangle. Suppose
that P does not contain yj, where j 6= i. Then there is a triangle in
P ∪ xi that meets the cocircuit (L0 − xj) ∪ yj in exactly one element,
xi. This contradiction shows that L∗ − yi ⊆ P .

Assume that t > 3. As L∗ is a cosegment there is a triad of M
contained in L∗−yi. However this triad is also contained in the segment
P ∪ xi, and is therefore a triangle. But |E(M)| > 4 and a 3-connected
matroid with at least five elements cannot contain a triangle that is
also a triad. This contradiction shows that t = 3.



12 RHIANNON HALL AND DILLON MAYHEW

Suppose j ∈ {1, 2, 3} and that j 6= i. If |P | > 2 then there is a
triangle contained in P that contains yj. However this triangle would
meet the cocircuit (L0−xj)∪ yj in exactly one element. Thus |P | = 2,
and P = L∗ − yi.

Suppose that j, k ∈ {1, 2, 3} and neither j nor k is equal to i. Then
L0 ∪ P contains the two cocircuits (L0 − xj) ∪ yj and (L0 − xk) ∪ yk.
Hence rM(E − (L0 ∪ P )) ≤ r(M) − 2. However it is easy to see that
rM(L0 ∪ P ) = 3. As |P | = 2 it follows that E − (L0 ∪ P ) contains at
least two elements. Thus (L0 ∪ P, E − (L0 ∪ P )) is a 2-separation of
M , a contradiction.

We have shown that (L0 − xi, yi) is the unique spore of M/xi. Next
we show that M/xi is 3-connected up to this spore. Suppose that
(X, Y ) is a k-separation of M/xi for some k < 3. By relabeling if
necessary we will assume that yi ∈ X. Assume that the result is false,
so that neither X nor Y is contained in (L0 − xi) ∪ yi. Therefore X
contains at least one element from E−(L0∪yi). As M/L0 is 3-connected
by Proposition 3.3 we deduce from Proposition 2.1 that either X − L0

or Y − L0 contains at most one element. We have already concluded
that X − L0 contains at least two elements (as yi ∈ X), so Y − L0

contains precisely one element. As M is 3-connected it contains no
parallel pairs, so M/xi contains no loops. Therefore rM/xi

(Y ) = 2, and
hence rM/xi

(X) ≤ r(M/xi) − 1. Thus Y contains a cocircuit of M/xi.
As M/xi has no coloops, and any cocircuit that meets a parallel class
contains that parallel class it follows that L0 − xi ⊆ Y . Let s be the
single element in Y −L0. It cannot be the case that Y is a cocircuit in
M/xi, for that would imply that (L0 − xi, s) is a spore of M/xi that
differs from (L0 − xi, yi), contradicting our earlier conclusion. Now
we see that Y − s = L0 − xi must be a cocircuit of M/xi, but this
is a contradiction as L0 − xi is properly contained in the cocircuit
(L0 − xi) ∪ yi. The completes the proof. �

The next result shows that Theorem 1.1 is a consequence of Theo-
rem 1.2.

Proposition 3.6. Suppose that (L, L∗) is a segment-cosegment pair of
a matroid M , and that M/ cl(L) is 3-connected and |E(M)−cl(L)| ≥ 4.
Let L = {x1, . . . , xt} and L∗ = {y1, . . . , yt}. Then co(si(M/xi)) ∼=
M/ cl(L) for any element xi ∈ L.

Proof. Let L0 = cl(L) and let xj 6= xi be an element of L. Suppose that
P and S are disjoint subsets of E(M)−xi chosen so that co(si(M/xi)) ∼=
M/xi\P/S. As L0− xi is a parallel class in M/xi we may assume that
L0 − {xi, xj} ⊆ P and that xj /∈ P . We may assume that yi /∈ P ,
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and hence {xj, yi} is a union of cocircuits in M/xi\P . Therefore we
may assume xj ∈ S. Since the elements in L0 − {xi, xj} are loops in
M/xi/xj it follows that

M/xi\P/S = M/xi/xj/(L0−{xi, xj})\(P − (L0−{xi, xj}))/(S−xj).

This last matroid is equal to M/L0\(P−(L0−{xi, xj}))/(S−xj). Since
M/L0 is 3-connected and the elements in P − (L0−{xi, xj}) are either
loops or parallel elements in M/L0 it follows that P = L0 − {xi, xj}.
Thus M/xi\P/S = M/L0/(S−xj). But M/L0 is 3-connected, so S−xj

must be empty. Thus M/L0
∼= co(si(M/xi)), as desired. �

4. Preliminary lemmas

Proposition 4.1. Suppose that C∗ is a cocircuit of the 3-connected
matroid M . Assume that (X1, X2, x) is a vertical 3-partition of M such
that x ∈ C∗. Then C∗∩ (X1− cl(X2)) 6= ∅ and C∗∩ (X2− cl(X1)) 6= ∅.

Proof. Note that r(X1), r(X2) ≥ 3 implies that |E(M)| ≥ 4, so every
circuit and cocircuit of M contains at least three elements. Let X
be X1 − cl(X2). The fact that r(X1) ≥ 3 implies that X contains a
cocircuit, so |X| ≥ 3. Suppose that x is not in cl(X). Then r(X) <
r(X1). Since |X| ≥ 3 this implies that (X, cl(X2)) is a 2-separation of
M , a contradiction.

Now suppose that C∗ ⊆ cl(X2). Then as x ∈ cl(X) and x ∈ C∗ there
is a circuit in M that meets C∗ in exactly one element, x. This is a
contradiction. The same argument shows that C∗ ∩ (X2− cl(X1)) 6= ∅,
so the proposition holds. �

Definition 4.2. Suppose that M is a 3-connected matroid and that A
is a subset of E(M). A minimal partition with respect to A is a vertical
3-partition (X1, X2, x) of M that satisfies the following properties:

(i) x ∈ A;
(ii) if (Y1, Y2, y) is a vertical 3-partition of M such that y ∈ A∩(X1∪

x) and X2 ∩ Y1 = ∅, then (Y1, Y2, y) = (X1, X2, x); and,
(iii) if (Y1, Y2, y) is a vertical 3-partition of M such that y ∈ A∩(X1∪

x) and X2 ∩ Y2 = ∅ then (Y2, Y1, y) = (X1, X2, x).

If there is no ambiguity we will refer to a minimal partition with
respect to A as a minimal partition.

Lemma 4.3. Suppose that M is a 3-connected matroid and that A is
a subset of E(M). Suppose that for some element z ∈ A there is a
vertical 3-partition (Z1, Z2, z) of M . Let Z = Z1 − cl(Z2). Then there
is a minimal partition (X1, X2, x) with respect to A such that X1 ⊆ Z
and x ∈ A ∩ (Z ∪ z).
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Proof. Let Z be the family of vertical 3-partitions (S1, S2, z) with the
property that S1 ⊆ Z1. Choose (Z ′

1, Z ′
2, z) from Z so that if (S1, S2, z)

is in Z, then S1 is not properly contained in Z ′
1. Observe that Propo-

sition 2.6 implies that Z ′
1 ⊆ Z.

Let S be the family of vertical 3-partitions (S1, S2, s) with s ∈ A ∩
(Z ′

1 ∪ z). Let S0 be the set of vertical 3-partitions (S1, S2, s) in S with
the property that either S1 ⊆ Z ′

1 or S2 ⊆ Z ′
1. Without loss of generality

we will assume that if (S1, S2, s) is in S0 then S1 ⊆ Z ′
1. Suppose that

(S1, S2, z) is a member of S0. Then our choice of (Z ′
1, Z ′

2, z) means
that S1 = Z ′

1 and S2 = Z ′
2. If (Z ′

1, Z ′
2, z) is the only member of S0

then we can set (X1, X2, x) to be (Z ′
1, Z ′

2, z), and we will be done.
Therefore we will assume that there is at least one vertical 3-partition
(S1, S2, s) in S0 such that s 6= z. Let S1 be the collection of such
partitions.

We now let (X1, X2, x) be a vertical 3-partition in S1 chosen so that
if (S1, S2, s) ∈ S1, then S1 ∪ s is not properly contained in X1 ∪ x. We
will prove that (X1, X2, x) is the desired vertical 3-partition.

It is certainly true that X1 ⊆ Z. If there is some element e in
X1 ∩ cl(X2 ∪ x) then (X1 − e, X2 ∪ e, x) is a vertical 3-partition by
Proposition 2.6. However this contradicts our choice of (X1, X2, x).
Therefore X2 ∪ x is a flat. We assume that (Y1, Y2, y) is a vertical
3-partition and that y ∈ A ∩ (X1 ∪ x). As X1 ⊆ Z ′

1 it follows that
y ∈ A∩Z ′

1. Our assumption on (X1, X2, x) means that neither Y1 ∪ y
nor Y2 ∪ y can be properly contained in X1 ∪ x.

Suppose that X2 ∩ Y1 = ∅. Then Y1 ∪ y must be equal to X1 ∪ x. If
y 6= x then the fact that y ∈ cl(Y2) and Y2 = X2 means that y ∈ cl(X2),
which is a contradiction as X2 ∪ x is a flat. Therefore y = x, so
(Y1, Y2, y) is equal to (X1, X2, x). The same argument shows that if
X2 ∩ Y2 = ∅ then (Y1, Y2, y) = (X2, X1, x). Thus (X1, X2, x) is the
desired minimal partition. �

Proposition 4.4. Suppose that M is a matroid and that A ⊆ E(M).
Suppose that (X1, X2, x) is a minimal partition with respect to A. Then
X2 ∪ x is a flat of M .

Proof. Suppose that there is some element z ∈ X1 ∩ cl(X2 ∪ x). Then
(X1 − z, X2 ∪ z, x) is a vertical 3-partition of M by Proposition 2.6.
This contradicts the fact that (X1, X2, x) is a minimal partition. �

Lemma 4.5. Suppose that M is a 3-connected matroid and that A ⊆
E(M). Suppose that (X1, X2, x) is a minimal partition with respect to
A. Suppose also that (Y1, Y2, y) is a vertical 3-partition of M such that
y ∈ A ∩X1 and x ∈ Y1. Then the following statements hold:
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(i) Xi ∩ Yj 6= ∅ for all i, j ∈ {1, 2};
(ii) Each of X1∩Y2, (X1∩Y2)∪y, X2∩Y1, (X2∩Y1)∪x, and X2∩Y2

is 3-separating in M ;
(iii) (X1 ∩ Y1) ∪ {x, y} is 4-separating in M ;
(iv) Neither X1 ∩ Y1 nor X1 ∩ Y2 is contained in cl(X2), X1 ∩ Y1 *

cl(Y2), and X1 ∩ Y2 * cl(Y1);
(v) r((X1 ∩ Y2) ∪ y) = 2; and,
(vi) If (X1 ∩ Y1) ∪ {x, y} is 3-separating in M , then r((X1 ∩ Y1) ∪

{x, y}) = 2.

Proof. We start by proving (i). Since y 6= x the definition of a minimal
partition means that X2 ∩Y1 6= ∅ and X2 ∩Y2 6= ∅. Moreover X2 ∪ x is
a flat of M by Proposition 4.4, and y ∈ X1, so y /∈ cl(X2∪x). However
y ∈ cl(Y1) ∩ cl(Y2). It follows that neither Y1 nor Y2 can be contained
in X2 ∪ x. Thus both Y1 and Y2 meet X1.

Next we prove (ii). Consider X1∩Y2. Since λ(X1) = 2 and λ(Y2) = 2
the submodularity of the connectivity function implies that λ(X1∩Y2)+
λ(X1 ∪ Y2) ≤ 4. If X1 ∩ Y2 is not 3-separating then λ(X1 ∪ Y2) ≤ 1.
However |X1∪Y2| ≥ 2 and the complement of X1∪Y2 certainly contains
at least two elements, since it contains x, and X2 ∩ Y1 is non-empty.
Thus M has a 2-separation, a contradiction. This shows that X1 ∩ Y2

is 3-separating.
Since X1 and Y2 ∪ y are both 3-separating the same argument shows

that (X1 ∩ Y2) ∪ y is 3-separating. Since the complement of X2 ∪ Y1

contains both y and at least one element in X1 ∩ Y2, we can also show
that X2∩Y1 and (X2∩Y1)∪x are both 3-separating. The same argument
shows that X2 ∩ Y2 is 3-separating.

Consider (iii). The submodularity of the connectivity function shows
that

λ((X1 ∩ Y1) ∪ {x, y}) + λ(X1 ∪ Y1) ≤ 4.

Thus if (X1∩Y1)∪{x, y} is not 4-separating then λ(X1∪Y1) = 0. But
this cannot occur as X1∪Y1 is non-empty, and its complement contains
X2 ∩ Y2, which is non-empty.

Next we move to (iv). Since X2 ∪ x is a flat of M it follows that
cl(X2) does not meet X1. Therefore cl(X2) cannot contain X1 ∩ Y1 or
X1 ∩ Y2.

Suppose that X1 ∩ Y1 is contained in cl(Y2). Then Y1 − cl(Y2) is
contained in X2 ∪ x. However Proposition 2.6 says that

(Y1 − cl(Y2), cl(Y2)− y, y)

is a vertical 3-partition of M . Thus y is in the closure of Y1 − cl(Y2),
which means that y ∈ cl(X2∪x). But this is a contradiction as y ∈ X1,
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and X2 ∪ x is a flat of M . The same argument shows that X1 ∩ Y2 is
not contained in cl(Y1).

To prove (v) we suppose that r((X1 ∩ Y2) ∪ y) ≥ 3. Consider the
partition (X1 ∩ Y2, X2 ∪ Y1, y) of E(M). It follows from (ii) that

λ((X1 ∩ Y2) ∪ y) = λ(X1 ∩ Y2) = 2,

so λ(X2 ∪ Y1) = 2. Furthermore y ∈ cl(Y1), so y is in the closure of
X2∪Y1. Proposition 2.2 shows that y ∈ cl(X1∩Y2), so r(X1∩Y2) ≥ 3.
Now it is easy to see that

(X1 ∩ Y2, X2 ∪ Y1, y)

is a vertical 3-partition of M . However y ∈ A ∩X1 and X1 ∩ Y2 does
not meet X2, so we have a contradiction to the fact that (X1, X2, x)
is a minimal partition.

We conclude by proving (vi). Suppose that λ((X1∩Y1)∪{x, y}) = 2.
This implies that λ(X2∪Y2) = 2. Since y ∈ cl(Y2) it follows easily that
λ((X1 ∩ Y1) ∪ x) = 2. Consider the partition

((X1 ∩ Y1) ∪ x, X2 ∪ Y2, y)

of E(M). Since y ∈ cl(Y2) it follows from Proposition 2.2 that y is in
the closure of (X1∩Y1)∪x. Thus if r((X1∩Y1)∪{x, y}) ≥ 3 it follows
that r((X1 ∩ Y1) ∪ x) ≥ 3. In this case

((X1 ∩ Y1) ∪ x, X2 ∪ Y2, y)

is vertical 3-partition of M that violates the fact that (X1, X2, x) is a
minimal partition. This completes the proof of the lemma. �

Proposition 4.6. Suppose that (X1, X2, x) is a minimal partition of
the 3-connected matroid M with respect to the set A ⊆ E(M). Assume
that (Y1, Y2, y) is a vertical 3-partition of M such that y ∈ A∩X1 and
x ∈ Y1. If |X1 ∩ Y2| ≥ 2 then

u((X1 ∩ Y1) ∪ {x, y}, X1 ∩ Y2) = u((X1 ∩ Y1) ∪ y, X1 ∩ Y2) = 1.

Proof. The hypotheses imply that |E(M)| ≥ 4, so every circuit or
cocircuit of M contains at least three elements. Let π = u((X1 ∩ Y1)∪
{x, y}, X1 ∩ Y2). We know from Lemma 4.5 (v) that r(X1 ∩ Y2) ≤ 2.
Therefore π ≤ 2. On the other hand, since |X1 ∩ Y2| ≥ 2, the fact that
r((X1 ∩ Y2) ∪ y) ≤ 2 implies that y ∈ cl(X1 ∩ Y2). This in turn implies
that π ≥ 1.

Assume that π = 2. Then X1 ∩ Y2 ⊆ cl((X1 ∩ Y1) ∪ {x, y}). Since
x, y ∈ cl(Y1) this means that X1∩Y2 ⊆ cl(Y1). But this contradicts (iv)
of Lemma 4.5. Exactly the same argument shows that u((X1 ∩ Y1) ∪
y, X1 ∩ Y2) = 1. �
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Lemma 4.7. Suppose that (X1, X2, x) is a minimal partition of the
3-connected matroid M with respect to the set A ⊆ E(M). Assume
that (Y1, Y2, y) is a vertical 3-partition of M such that y ∈ A∩X1 and
x ∈ Y1. If |X1 ∩ Y2| ≥ 2 then y ∈ cl((X1 ∩ Y1) ∪ x).

Proof. The hypotheses imply that every circuit of M contains at least
three elements. Since |X1 ∩ Y2| ≥ 2 it follows from Lemma 4.5 (v)
implies that y ∈ cl(X1∩Y2). We assume that y /∈ cl((X1∩Y1)∪x). Since
X1∩Y1 is non-empty by Lemma 4.5 (i) it follows that |(X1∩Y1)∪x| ≥ 2,
so λ((X1∩Y1)∪x) ≥ 2. Furthermore λ((X1∩Y1)∪{x, y}) ≤ 3 by (iii)
of Lemma 4.5. As y ∈ cl(Y2) we deduce that

2 ≤ λ((X1 ∩ Y1) ∪ x) < λ((X1 ∩ Y1) ∪ {x, y}) ≤ 3.

Thus λ((X1 ∩ Y1)∪ x) = 2. Moreover it follows from (ii) in Lemma 4.5
that λ((X1 ∩ Y2) ∪ y) = 2. Therefore

((X1 ∩ Y1) ∪ x, (X1 ∩ Y2) ∪ y, X2)

is an exact 3-partition.
As x ∈ cl(X2) it follows that u((X1 ∩ Y1) ∪ x, X2) ≥ 1. Now Corol-

lary 2.13 implies that u((X1 ∩ Y2) ∪ y, X2) ≥ 1. But (iv) and (v) of
Lemma 4.5 imply that X1 ∩ Y2 * cl(X2) and that r((X1 ∩ Y2)∪ y) = 2.
We deduce that u((X1 ∩ Y2) ∪ y, X2) = 1. Again using Corollary 2.13
we see that

u((X1 ∩ Y1) ∪ x, (X1 ∩ Y2) ∪ y) = 1.

Proposition 4.6 tells us that

u((X1 ∩ Y1) ∪ {x, y}, X1 ∩ Y2) = 1.

Since y ∈ cl(X1 ∩ Y2) we can easily deduce that y ∈ cl((X1 ∩ Y1) ∪ x),
contrary to our initial assumption. �

Lemma 4.8. Suppose that C∗ is a cocircuit of the 3-connected matroid
M . Suppose that (X1, X2, x) is a minimal partition of M with respect
to C∗. Assume that si(M/x0) is not 3-connected for any element x0 ∈
C∗ ∩ X1. Let (Y1, Y2, y) be a vertical 3-partition of M such that y ∈
C∗ ∩X1, and assume that x ∈ Y1. Then |X1 ∩ Y2| = 1.

Proof. The hypotheses of the lemma imply that every circuit and co-
circuit of M contains at least three elements. Let us assume that the
lemma fails, so that |X1 ∩ Y2| ≥ 2. Now (v) of Lemma 4.5 implies that
(X1 ∩ Y2)∪ y contains a triangle of M that contains y. Since C∗ meets
this triangle in y, there must be an element z ∈ X1 ∩ Y2 such that
z ∈ C∗.

By assumption si(M/z) is not 3-connected so Proposition 2.5 implies
that there is vertical 3-partition (Z ′

1, Z ′
2, z). Let us assume that x ∈ Z ′

1.
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Suppose that y ∈ Z ′
i, where {i, j} = {1, 2}. Since r((X1∩Y2)∪y) = 2

and z ∈ cl(Z ′
i) it follows that (X1 ∩ Y2) ∪ y ⊆ cl(Z ′

i), as y 6= z and
z ∈ X1 ∩ Y2. Let Zi = Z ′

i ∪ (X1 ∩ Y2) ∪ y and let Zj = Z ′
j − Zi. Then

Proposition 2.6 implies that (Z1, Z2, z) is a vertical 3-partition. Note
that x ∈ Z1, whether i is equal to 1 or 2.

Suppose that i = 2. Then (X1 ∩ Y2) ∪ y ⊆ Z2 ∪ z. This means
that (X1 ∩ Z1) ∪ x ⊆ (X1 ∩ Y1) ∪ {x, y}. Lemma 4.7 says that z ∈
cl((X1∩Z1)∪x). Therefore z ∈ cl((X1∩Y1)∪{x, y}). But since {y, z}
spans (X1 ∩ Y2)∪ y this implies that (X1 ∩ Y1)∪ {x, y} spans X1 ∩ Y2.
As x, y ∈ cl(Y1) it now follows that Y1 spans X1 ∩ Y2, in contradiction
to Lemma 4.5 (iv). Therefore i = 1, so (X1 ∩ Y2) ∪ y ⊆ Z1 ∪ z.

We conclude that X1 ∩ Z2 ⊆ (X1 ∩ Y1) ∪ {x, y}. Suppose that
|X1∩Z2| ≥ 2. It follows from (v) of Lemma 4.5 that r((X1∩Z2)∪z) = 2.
Therefore z is in cl(X1∩Z2), and hence in cl((X1∩Y1)∪{x, y}). Exactly
as before, we conclude that Y1 spans X1∩Y2, a contradiction. Therefore
|X1 ∩ Z2| ≤ 1.

As r(Z2) ≥ 3 we deduce that |X2 ∩ Z2| ≥ 2. But λ(X2 ∩ Z2) ≤ 2
by (ii) of Lemma 4.5, so it follows that λ(X2 ∩ Z2) = 2, and hence
λ(X1 ∪Z1) = 2. Now λ(X1 ∪ x) + λ(Z1 ∪ z) = 4, so the submodularity
of the connectivity function implies that

λ((X1 ∩ Z1) ∪ {x, z}) + λ(X1 ∪ Z1) ≤ 4.

We now conclude that λ((X1 ∩ Z1) ∪ {x, z}) ≤ 2. It follows from (vi)
of Lemma 4.5 that r((X1 ∩ Z1) ∪ {x, z}) = 2.

We have already deduced that (X1 ∩ Y2) ∪ y ⊆ Z1 ∪ z, so X1 ∩ Y2 ⊆
(X1∩Z1)∪z. But |X1∩Y2| ≥ 2, and r((X1∩Z1)∪{x, z}) = 2. Therefore
x ∈ cl(X1 ∩ Y2). We also know that y ∈ cl(X1 ∩ Y2). Proposition 4.6
asserts that

u((X1 ∩ Y1) ∪ {x, y}, X1 ∩ Y2) = 1.

Since x, y ∈ cl(X1 ∩ Y2) it follows from Proposition 2.14 that
r({x, y}) ≤ 1, a contradiction as M is 3-connected. This completes
the proof of the lemma. �

5. Proof of the main result

We restate Theorem 1.2 here.

Theorem 5.1. Suppose that M and N are 3-connected matroids such
that |E(N)| ≥ 4 and C∗ is a cocircuit of M with the property that M/x0

has an N-minor for some x0 ∈ C∗. Then either:

(i) there is an element x ∈ C∗ such that si(M/x) is 3-connected and
has an N-minor;
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(ii) there is a four-element fan (x1, x2, x3, x4) of M such that x1, x3 ∈
C∗, and si(M/x2) is 3-connected with an N-minor;

(iii) there is a segment-cosegment pair (L, L∗) such that L ⊆ C∗, and
cl(L) − L contains a single element e. In this case e /∈ C∗ and
si(M/e) is 3-connected with an N-minor. Moreover M/ cl(L) is
3-connected with an N-minor, and if xi ∈ L then M/xi is 3-con-
nected up to a unique spore (cl(L)− xi, yi); or,

(iv) there is a segment-cosegment pair (L, L∗) such that L is a flat and
|L−C∗| ≤ 1. In this case M/L is 3-connected with an N-minor,
and if xi ∈ L then M/xi is 3-connected up to a unique spore
(L− xi, yi).

Proof. Assume that M is a counterexample to the theorem. Let x0

be an element of C∗ such that N is a minor of M/x0. By hypoth-
esis si(M/x0) is not 3-connected, so Proposition 2.5 implies there is
a vertical 3-partition (Z1, Z2, x0). It follows easily that |E(M)| ≥
7. By Proposition 2.9 we will assume, relabeling as necessary, that
|E(N) ∩ Z1| ≤ 1. Let Z = Z1 − cl(Z2). Lemma 2.10 implies that M/e
has an N -minor for every element e ∈ Z, and Lemma 4.3 implies that
there is a minimal partition (X1, X2, x) with respect to C∗ such that
x ∈ C∗ ∩ (Z ∪ x0), and X1 ⊆ Z.

Proposition 4.1 implies that C∗ has a non-empty intersection with
X1− cl(X2). If s ∈ C∗∩ (X1− cl(X2)) then si(M/s) is not 3-connected
by hypothesis. Therefore there is a vertical 3-partition (S1, S2, s).

5.1.1. Suppose that s ∈ C∗ is contained in X1 − cl(X2) and that
(S1, S2, s) is a vertical 3-partition such that x ∈ S1. Then |X1∩S1| ≥ 2
and (X1 ∩ S1) ∪ {s, x} is a segment of M .

Proof. Lemma 4.8 tells us that |X1 ∩ S2| = 1. By Lemma 4.5 (i) we
know that |X1∩S1| ≥ 1. Assume that |X1∩S1| = 1. Then X1 contains
exactly three elements: the unique element in X1 ∩ S2, the unique
element in X1 ∩ S1, and s. By the definition of a vertical 3-partition it
follows that r(X1) = 3 and that X1 is a triad of M . As x ∈ cl(X1) it
follows that there is a circuit C ⊆ X1∪x that contains x. It cannot be
the case that the single element in X1∩S2 is in C, for that would imply
that X1 ∩ S2 ⊆ cl(S1), contradicting Lemma 4.5 (iv). As C does not
meet the triad X1 in a single element it follows that (X1 ∩S1)∪{x, s}
is a triangle.

If we let x2 be the unique element in X1 ∩ S1, let x4 be the unique
element in X1∩S2, and let x1 = x and x3 = s, then (x1, x2, x3, x4) is a
four-element fan of M . If si(M/x2) is 3-connected then statement (ii)
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of Theorem 5.1 holds, which is a contradiction as M is a counterex-
ample to the theorem. Therefore we will assume that si(M/x2) is not
3-connected.

Since si(M/x3) is not 3-connected Theorem 2.15 asserts that
co(M\x3) is 3-connected. Assume that every triad of M that con-
tains x3 also contains x2. Then co(M\x3) ∼= M\x3/x2. However x3

is contained in a parallel pair in M/x2, so si(M/x2) is obtained from
M\x3/x2 by possibly deleting parallel elements. As M\x3/x2 is 3-con-
nected it follows that si(M/x2) is 3-connected, contrary to hypothesis.

Therefore there is a triad T ∗ of M that contains x3 but not x2. Now
T ∗ cannot meet the triangle {x1, x2, x3} in exactly one element, and
therefore x1 ∈ T ∗. Let y2 be the unique element in T ∗ − {x1, x3}.
Since every triad that contains x3 must contain either x1 or x2, and
since both {x1, x3} and {x2, x3} are contained in triads of M it follows
that co(M\x3) ∼= M\x3/x1/x2. Note that x3 is a loop of M/x1/x2, so
M\x3/x1/x2 = M/x3/x1/x2.

As si(M/x3) is not 3-connected there is a vertical 3-partition
(Z1, Z2, x3) of M . By relabeling as necessary we may assume that
x1 ∈ Z2. Hence x2 ∈ cl(Z2 ∪ x3), so by Proposition 2.6 we may
assume that x2 ∈ Z2. Now (Z1, Z2) is an exact 2-separation of
M/x3, but M/x3/x1/x2 is 3-connected. By Proposition 2.1 we see
that Z2−{x1, x2} must contain at most one element. If Z2 = {x1, x2}
then r(Z2) ≤ 2, a contradiction. Therefore Z2 − {x1, x2} contains ex-
actly one element. Let this element be y3. It is easy to see that Z2

must be a triad of M .
We relabel x4 with y1. Let L = {x1, x2, x3} and let L∗ = {y1, y2, y3}.

Now L is a segment of M . Proposition 4.4 implies X2 ∪ x1 is a
hyperplane, and as {x1, x2, x3} is a triangle it is easy to see that
u(X2 ∪ x1, {x2, x3}) = 1. If there were some element e in cl(L) − L
then Proposition 2.14 would imply that r({e, x1}) ≤ 1, a contradiction.
Therefore L is a flat of M . Moreover (L− xi) ∪ yi is a cocircuit of M
for all i ∈ {1, 2, 3}, so (L, L∗) is a segment-cosegment pair of M .

By applying Proposition 3.3 and Lemma 3.5 we see that M/L
is 3-connected, and that M/xi is 3-connected up to a unique spore
(L− xi, yi) for all i ∈ {1, 2, 3}. We know that M/x3 has an N -minor.
However {x1, x2} is a parallel pair in M/x3, so M/x3\x1 has an N -mi-
nor. Furthermore {x2, y3} is a series pair of M/x3\x1, so M/x3\x1/x2,
and hence M/L, has an N -minor. Thus statement (iv) of Theorem 5.1
holds, a contradiction. We conclude that |X1 ∩ S1| ≥ 2.

Since λ(X1 ∪ x) = λ(S1 ∪ s) = 2 it follows that

λ((X1 ∩ S1) ∪ {s, x}) + λ(X1 ∪ S1) ≤ 4.
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Suppose that λ((X1 ∩ S1) ∪ {s, x}) ≥ 3. Then λ(X1 ∪ S1) ≤ 1, so
λ(X2∩S2) ≤ 1. However, as |X1∩S2| = 1 it follows that |X2∩S2| ≥ 2,
so M contains a 2-separation, a contradiction. Thus λ((X1 ∩ S1) ∪
{s, x}) ≤ 2 and it follows from Lemma 4.5 (vi) that (X1 ∩S1)∪{s, x}
is a segment. �

5.1.2. The rank of X1 ∪ x is three. Moreover, X1 is a cocircuit of M .

Proof. Let s ∈ C∗ be an element in X1 − cl(X2) and suppose that
(S1, S2, s) is a vertical 3-partition such that x ∈ S1. Then r((X1 ∩
S1) ∪ {s, x}) = 2 by 5.1.1, and as |X1 ∩ S2| = 1, Lemma 4.5 (iv)
implies that r(X1 ∪ x) = 3.

Proposition 4.4 asserts that X2∪x is a flat of M , so X1 is a cocircuit.
�

5.1.3. Suppose that y and z are elements in C∗ ∩X1, and (Y1, Y2, y)
and (Z1, Z2, z) are vertical 3-partitions such that x ∈ Y1 ∩ Z1. Then

|X1 ∩ Y2| = |X1 ∩ Z2| = 1 and X1 ∩ Y2 = X1 ∩ Z2.

Moreover
(X1 ∩ Y1) ∪ {x, y} = (X1 ∩ Z1) ∪ {x, z}.

Proof. Let x′ be the unique element in X1∩Y2. From 5.1.1 we see that
(X1 ∩ Y1) ∪ {x, y} is a segment. The only element of X1 not in (X1 ∩
Y1)∪{x, y} is x′. It cannot be the case that x′ ∈ cl((X1∩Y1)∪{x, y})
by Lemma 4.5 (vi). The same arguments shows that (X1∩Z1)∪{x, z}
is a segment, and the only element of X1 not in this segment is x′. Now
the result follows easily. �

5.1.4. Let y ∈ C∗ be an element in X1 and suppose that (Y1, Y2, y) is
a vertical 3-partition such that x ∈ Y1. Then |X2 ∩ Y1| = 1.

Proof. We know by 5.1.1 that (X1 ∩ Y1) ∪ {x, y} is a segment. Let
L′ = (X1 ∩ Y1) ∪ {x, y} and let x′ be the unique element in X1 ∩ Y2.
Since the complement of C∗ is a flat of M which does not contain the
segment L′ it follows that at most one element of L′ is not contained
in C∗. As |X1 ∩ Y1| ≥ 2 we can find an element z ∈ (X1 ∩ Y1) ∩ C∗.
There must be a vertical 3-partition (Z1, Z2, z) such that x ∈ Z1.
From 5.1.3 we see that the unique element in X1 ∩ Z2 is x′, and that
(X1 ∩ Z1) ∪ {x, z} = L′.

Let Y ′
i and Z ′

i denote X2 ∩ Yi and X2 ∩ Zi respectively for i = 1, 2.
As (X1, X2, x) is a minimal partition it follows that Y ′

i and Z ′
i are

non-empty for all i ∈ {1, 2}. Henceforth we will assume that |Y ′
1 | > 1

in order to obtain a contradiction.

5.1.5. x ∈ cl(Y ′
1).
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Proof. We know that λ(Y ′
1 ∪ x) ≤ 2 by Lemma 4.5 (ii). Since |Y ′

1 | ≥
2 it follows that λ(Y ′

1 ∪ x) = 2 and hence λ(X1 ∪ Y2) = 2. Since
x ∈ cl(X1 ∪ Y2) it follows that λ(Y ′

1) = 2, so Lemma 2.2 implies that
x ∈ cl(Y ′

1). �

5.1.6. Neither Y ′
1 ∩ Z ′

1 nor Y ′
2 ∩ Z ′

2 is empty.

Proof. We know from 5.1.5 that x ∈ cl(Y ′
1). Since z ∈ cl(Z2) but

(X1 ∩ Z1) * cl(Z2), we deduce that x /∈ cl(Z2) as L′ is a segment
containing both x and z. Thus x /∈ cl(Z ′

2 ∪ x′). Hence Y ′
1 − Z ′

2 6= ∅ so
Y ′

1 ∩ Z ′
1 6= ∅.

Note that z is in the closure of Z2 = Z ′
2∪x′, but z /∈ cl(Z ′

2) as X1 is a
cocircuit by 5.1.2. This observation means that x′ ∈ cl(Z ′

2∪z). However
z ∈ Y1, and x′ /∈ cl(Y1) by Lemma 4.5 (iv). Thus x′ /∈ cl(Y ′

1 ∪ z). It
follows that Z ′

2 − Y ′
1 6= ∅, so Z ′

2 ∩ Y ′
2 6= ∅. �

5.1.7. (L′ ∪ (Y ′
1 ∩ Z ′

1), Y2 ∪ Z2) is a 3-separation of M .

Proof. Note that λ(Y2) = λ(Z2) = 2, so λ(Y2 ∩ Z2) + λ(Y2 ∪ Z2) ≤ 4.
From 5.1.6 we see that Y ′

2∩Z ′
2 6= ∅. Moreover x′ ∈ (Y2∩Z2)−(Y ′

2∩Z ′
2),

which implies that |Y2∩Z2| ≥ 2. Thus λ(Y2∩Z2) ≥ 2, so λ(Y2∪Z2) ≤ 2.
As both L′ ∪ (Y ′

1 ∩ Z ′
1) and Y2 ∪ Z2 have cardinality at least three the

claim follows. �

Note that y, z ∈ cl(Y2∪Z2). As y and z are contained in the segment
L′ it follows that L′ ⊆ cl(Y2 ∪Z2). If |Y ′

1 ∩Z ′
1| ≥ 2 then it must be the

case that L′ ⊆ cl(Y ′
1 ∩ Z ′

1), for otherwise (Y ′
1 ∩ Z ′

1, (Y2 ∪ Z2) ∪ L′) is a
2-separation of M . But L′ ⊆ cl(Y ′

1 ∩Z ′
1) implies that X1∩Y1 ⊆ cl(X2),

a contradiction.
Therefore |Y ′

1∩Z ′
1| ≤ 1. We know from 5.1.6 that Y ′

1∩Z ′
1 is not empty.

Let e be the unique element in Y ′
1 ∩ Z ′

1. Suppose that e ∈ cl(L′). As
X2 ∪ x is a hyperplane and L′ is a segment we see that u(X2 ∪ x, L′ −
x) = 1. As e, x ∈ cl(L′ − x) it follows from Proposition 2.14 that
r({e, x}) ≤ 1. We deduce from this contradiction that e /∈ cl(L′).

Hence r(L′ ∪ e) = 3, so r(Y2 ∪ Z2) = r(M) − 1 by 5.1.7. Thus the
complement of cl(Y2 ∪ Z2) is a cocircuit. However L′ ⊆ cl(Y2 ∪ Z2), so
e is a coloop of M , a contradiction.

Our assumption that |X2 ∩ Y1| ≥ 2 has lead to an impossibility.
Since X2 ∩Y1 is non-empty by Lemma 4.5 (i) we conclude that 5.1.4 is
true. �

Now we are in a position to complete the proof of Theorem 5.1. Let
x1 = x, and let x2 be some element in C∗ ∩ X1. There is a vertical
3-partition (Y 2

1 , Y 2
2 , x2) such that x1 ∈ Y 2

1 . Lemma 4.8 tells us that
|X1 ∩ Y 2

2 | = 1. Let y1 be the unique element in X1 ∩ Y 2
2 .
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We know that |X1 ∩ Y 2
1 | ≥ 2 and (X1 ∩ Y 2

1 ) ∪ {x1, x2} is a segment
by 5.1.1. It follows from Proposition 2.14, and the fact that (X1∩Y 2

1 )∪
x2 is a segment while X2∪x1 is a hyperplane, that (X1∩Y 2

1 )∪{x1, x2}
is a flat. The complement of C∗ can contain at most one element of
(X1 ∩ Y 2

1 ) ∪ {x1, x2}. Let L = C∗ ∩ ((X1 ∩ Y 2
1 ) ∪ {x1, x2}). Then

cl(L) = (X1 ∩ Y 2
1 ) ∪ {x1, x2}, and cl(L) − L contains at most one

element.
Suppose that L = {x1, . . . , xt}. We know that t ≥ 3. Let i be a

member of {2, . . . , t}. As xi ∈ C∗ the fact that M is a counterexample
to the theorem means that si(M/xi) is not 3-connected, so there is a
vertical 3-partition (Y i

1 , Y i
2 , xi) such that x1 ∈ Y i

1 . Then

(X1 ∩ Y i
1 ) ∪ {x1, xi} = (X1 ∩ Y 2

1 ) ∪ {x1, x2}

by 5.1.3, and 5.1.4 implies that there is a unique element in X2 ∩ Y i
1 .

Let yi be this element.
Define L∗ to be {y1, . . . , yt}. Note that L∩L∗ = ∅. We already know

that (cl(L)− x1) ∪ y1 = X1 is a cocircuit. Suppose that i ∈ {2, . . . , t}.
Then (cl(L) − xi) ∪ yi is Y i

1 . As Y i
1 contains only one element that is

not in the segment cl(L) it follows that r(Y i
1 ) = 3. Thus r(Y i

2 ∪ xi) =
r(M)− 1. Furthermore Y i

2 ∪ xi is a flat, for otherwise the complement
of cl(Y i

2 ∪ xi) is a cocircuit of rank at most two, which cannot occur
since M is 3-connected. Hence (cl(L)− xi) ∪ yi is a cocircuit.

We have shown that (L, L∗) is a segment-cosegment pair. Propo-
sition 3.3 says that M/ cl(L) is 3-connected. It is easy to see that
the hypotheses of Lemma 3.5 are satisfied, so M/xi is 3-connected up
to the unique spore (cl(L) − xi, yi), for all i ∈ {1, . . . , t}. We know
that M/x2 has an N -minor, but as cl(L) − x2 is a parallel class of
M/x2 it follows that M/x2\(cl(L) − {x1, x2}) has an N -minor. Since
{x1, y2} is a series pair of M/x2\(cl(L) − {x1, x2}) it follows that
M/x2\(cl(L)− {x1, x2})/x1, and hence M/ cl(L), has an N -minor.

Suppose that | cl(L)− C∗| = 0. Then L = cl(L), and statement (iv)
of Theorem 5.1 holds. Therefore we must assume that there is a single
element e in cl(L)−L. Lemma 2.10 tells us that M/e has an N -minor.
If si(M/e) is 3-connected, then statement (iii) holds. Therefore we
must assume si(M/e) is not 3-connected.

Let xt+1 = e. There must be a vertical 3-partition (Y t+1
1 , Y t+1

2 , xt+1).
We assume that x1 ∈ Y t+1

1 . Since cl(Y t+1
1 ) contains x1 and xt+1 it

follows that cl(L) ⊆ cl(Y t+1
1 ). By Proposition 2.6 we may assume that

Y t+1
1 contains cl(L)− xt+1 = L.
As X2 ∪ x1 is a flat it follows that xt+1 /∈ cl(X2). However xt+1 ∈

cl(Y t+1
2 ), so X1 ∩ Y t+1

2 6= ∅. We know that X1 = (L∪ {xt+1, y1})− x1,
and as L ⊆ Y t+1

1 it follows that X1 ∩ Y t+1
2 = {y1}.
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Since xt+1 ∈ cl(Y t+1
2 ), there is a circuit C1 ⊆ Y t+1

2 ∪ xt+1 such that
xt+1 ∈ C1. But Y 2

1 = (L ∪ {xt+1, y2})− x2 is a cocircuit of M and C1

must meet this cocircuit in more than one element. The only element
of Y 2

1 − xt+1 that can be in C1 is y2. Thus y2 ∈ Y t+1
2 .

Since (X1, X2, x) is a minimal partition it follows that X2 ∩ Y t+1
1 is

non-empty. Assume that |X2∩Y t+1
1 | ≥ 2. As λ(X1)+λ(Y t+1

2 ∪xt+1) =
4, it follows that

λ((X1 ∩ Y t+1
2 ) ∪ xt+1) + λ(X1 ∪ Y t+1

2 ) ≤ 4.

Furthermore λ(X1 ∪ x1) + λ(Y t+1
2 ∪ xt+1) = 4, so

λ((X1 ∩ Y t+1
2 ) ∪ xt+1) + λ(X1 ∪ Y t+1

2 ∪ x1) ≤ 4.

As (X1 ∩ Y t+1
2 ) ∪ xt+1 = {xt+1, y1} we deduce that λ((X1 ∩ Y t+1

2 ) ∪
xt+1) = 2. Thus

(1) λ(X1 ∪ Y t+1
2 ), λ(X1 ∪ Y t+1

2 ∪ x1) ≤ 2.

Both of the sets in Equation (1) contain at least two elements, and by
assumption |X2∩Y t+1

1 | ≥ 2. Therefore X2∩Y t+1
1 and (X2∩Y t+1

1 )∪x1

are exactly 3-separating. Since x1 ∈ cl(X1) we see from Lemma 2.2
that x1 ∈ cl(X2 ∩ Y t+1

1 ). Thus there is a circuit C2 ⊆ (X2 ∩ Y t+1
1 ) ∪ x1

such that x1 ⊆ C2. We have already noted that Y 2
1 is a cocircuit, and as

x1 ∈ Y 2
1 it follows that |C2∩Y 2

1 | ≥ 2. As C2−x1 ⊆ X2 the only element
other than x1 that can be in C2 ∩ Y 2

1 is y2. Hence y2 ∈ C2 ⊆ Y t+1
1 , a

contradiction as we have already deduced that y2 ∈ Y t+1
2 .

We are forced to conclude that X2∩Y t+1
1 contains a unique element.

Let this element be yt+1. Therefore Y t+1
1 = L∪yt+1. Thus r(Y t+1

1 ) = 3,
so r(Y t+1

2 ) = r(M) − 1. If Y t+1
2 ∪ xt+1 is not a hyperplane, then the

complement of cl(Y t+1
2 ∪ xt+1) is a cocircuit of rank at most two, a

contradiction. Therefore (cl(L)− xt+1) ∪ yt+1 = Y t+1
1 is a cocircuit.

Let L0 = {x1, . . . , xt+1} and let L∗
0 = {y1, . . . , yt+1}. Note that

L0 = cl(L), so L0 is a flat. We have shown that (L0, L∗
0) is a segment-

cosegment pair. Moreover, M/xt+1 is 3-connected up to a unique spore
(L0− xt+1, yt+1), by Lemma 3.5. By relabeling L0 and L∗

0 as L and L∗

respectively we see that statement (iv) of Theorem 5.1 holds. Hence
M is not a counterexample, and this contradiction completes the proof
of Theorem 5.1. �
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