
 1

An Empirical Investigation of Inheritance Trends

in Java OSS Evolution

A Thesis submitted for a degree of Doctor of

Philosophy

by

Emal Nasseri

Department of Information Systems, Computing and

Mathematics

Brunel University

United Kingdom

June 2009

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/336231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

Abstract

Inheritance is a salient feature of Object-Oriented (OO) paradigm which facilitates reuse

and improves system comprehensibility in OO systems. The overall aim of inheritance is to

model classes in a structured hierarchy where classes residing lower in the hierarchy

(subclasses) can inherit the pre-existing functionality in the classes located higher up

(superclasses) in the same line of hierarchy. Software maintenance and evolution are the

process of making any modifications to a software system and upgrading its dynamic

behaviour.

In this Thesis, we empirically investigate the trends of evolution of eight Java Open-Source

Systems (OSS) from an inheritance perspective and model the propensity for changes of

inheritance in those systems. The systems used as testbed in this Thesis represent a variety

of application domains with varying sizes and amount of inheritance employed. There are

several levels of granularity for inheritance evolution that may manifest a particular trend.

This starts from the highest level (package) to lower class, method an attribute levels; and

each level may show a different and yet an important pattern of evolution. We empirically

investigate the changes of inheritance in the form of increases (additions) and decreases

(deletions) in number of classes, methods and attributes. Our analysis also includes the

movement of classes within and across an inheritance hierarchy which is another

compelling facet of evolution of inheritance and may not be extrapolated through

incremental changes only. It requires a finer-grained scrutiny of evolutionary traits of

inheritance. In addition, the Thesis also explores the trends of class interaction within and

across an inheritance hierarchy and problems embedded in a system that may lead to faults,

from an inheritance perspective. The results demonstrate how inheritance is used in

practice, problems associated with inheritance and how inheritance hierarchies evolve as

opposed to that of a „system‟. Overall results informed our understanding of the trends in

changes of inheritance in the evolution of Java systems.

 3

Declaration of Authorship

I would like to certify that the work in this Thesis, to the best of my knowledge, is original

and the results of my own investigation, except as acknowledged. I would also like to

certify that the work presented here has not been submitted, either in part or whole, for a

degree at this or any other University.

 Emal Nasseri

 Date: 29 June 2009

 4

Dedication

To my father, my mother, my brothers Ajmal and Romal, my sisters Nargis, Laila,

Muzhgan, Khatera and my little sister Arzo, my fiancée Lubica and all my friends and

family, for their love and support throughout these stressful years.

 5

Acknowledgement

During the course of this research, there have been numerous people who have provided

me with guidance, inspiration and support for completing this Thesis. I am indebted to my

supervisor Dr. Steve Counsell for his continuous encouragement and support at all decisive

stages of this research. His involvement proved vital to the completion of this Thesis. I

would like to thank him for his useful advice on both academic and personal levels. I also

owe thanks to Professor Martin Shepperd, my second supervisor, for his insightful and

encouraging comments and suggestions throughout this research. I must also express my

thanks to all my colleagues in the Department of Information Systems, Computing and

Mathematics at Brunel University and those outside.

On the personal front, I would like to express my gratitude to my family and friends, in

particular to my parents, for their continuous support and sincere prayers during the course

of this research.

 6

Table of Contents

Title Page…………………………………………………………………………………...1

Abstract…………………………………………………………………………………….2

Declaration of Authorship………………………………………………………………...3

Dedication…………………………………………………………………………………..4

Acknowledgment…………………………………………………………………………..5

Table of Contents…………………………………………………………………………..6

List of Tables………………………………………………………………………….......10

List of Figures…………………………………………………………………………….13

List of Abbreviations……………………………………………………………………..16

List of Publications……………………………………………………………………….17

CHAPTER 1 Introduction………………………………………………………………18

 1.1 Introduction………………………………………………………………..18

 1.2 Motivation…………………………………………………………………20

 1.3 Objectives and Contribution……………………………………………….21

 1.4 Application Domains………………………………………………………22

 1.5 Thesis Scope……………………………………………………………….23

 1.6 Structure of the Thesis……………………………………………………..23

CHAPTER 2 Literature Survey and Methodology……………………………………26

 2.1 Introduction………………………………………………………………..26

 2.2 Survey of Literature………………………………………………………..26

 2.2.1 Empirical Software Engineering…………………………………..26

 2.2.2 Software Metrics…………………………………………………..28

 7

 2.2.3 Inheritance…………………………………………………………33

 2.2.4 Software Maintenance and Evolution……………………………..36

 2.2.5 Software Refactoring………………………………………………40

 2.3 Methodology Adopted…………………………………………………….42

 2.3.1 Research Methods in Software Engineering……………………....43

 2.3.2 Research Design…………………………………………………...43

 2.3.2.1 Forming research objectives……………………………….44

 2.3.2.2 Formulating hypotheses…………………………………...44

 2.3.2.3 Sample selection…………………………………………...45

 2.3.2.4 Sampling procedure and criteria for choosing the subject

systems…………………………………………………………….46

 2.3.2.5 Description of the subject systems………………………...47

 2.3.2.6 Data collection and metrics definition……………………..48

 2.3.2.7 Metrics selection criteria…………………………………..50

 2.3.2.8 Statistical techniques………………………………………51

 2.4 Summary…………………………………………………………………..52

CHAPTER 3 Inheritance and Change in Java OSS…………………………………...53

 3.1 Introduction………………………………………………………………..53

 3.2 Study Motivation…………………………………………………………..54

 3.3 Study Details………………………………………………………………55

 3.3.1 The seven open-source systems…………………………………...55

 3.3.2 Data Collected……………………………………………………..55

 3.3.3 Summary Data……………………………………………………..55

 3.4 Data Analysis……………………………………………………………...57

 3.4.1 Coarse-grained DIT analysis………………………………………57

 3.4.2 Specialization and reuse ratio……………………………………...64

 3.4.3 Number of children………………………………………………..65

 3.4.4 Coarse-grain Method and Attribute analysis………………………68

 3.4.4.1 Method Analysis…………………………………………...68

 3.4.4.2 Attribute Analysis………………………………………….73

 3.5 Discussion…………………………………………………………………75

 3.6 Summary…………………………………………………………………..77

 8

CHAPTER 4 Method and Attribute Evolution and their Refactorings……………...79

 4.1 Introduction………………………………………………………………..79

 4.2 Study Motivation…………………………………………………………..80

 4.3 Study Design………………………………………………………………81

 4.3.1 The four open-source systems …………………………………….81

 4.3.2 Data Collected……………………………………………………..81

 4.3.3 Summary Data……………………………………………………..82

 4.4 Data analysis……………………………………………………………….83

 4.4.1 Deeper levels of inheritance……………………………………...105

 4.5 Discussion………………………………………………………………..109

 4.6 Summary…………………………………………………………………110

CHAPTER 5 Class Movement and Re-location………………………………………112

 5.1 Introduction………………………………………………………………112

 5.2 Study Motivation…………………………………………………………113

 5.3 Study design……………………………………………………………...113

 5.3.1 The four open-source systems …………………………………...113

 5.3.2 Data collected…………………………………………………….114

 5.4 Data analysis……………………………………………………………...114

 5.4.1 Class Movement and Re-location Analysis………………………114

 5.4.2 Analysis of class characteristics………………………………….129

 5.5 Discussion………………………………………………………………..136

 5.6 Summary…………………………………………………………………137

CHAPTER 6 Inheritance and Method Invocation…………………………………...139

 6.1 Introduction………………………………………………………………139

 6.2 Study Motivation…………………………………………………………140

 6.3 Empirical Study Design…………………………………………………..140

 6.3.1 The four open-source systems……………………………………141

 6.3.2 Data Collected ……………………………………………………141

 6.3.3 Methodology……………………………………………………..141

 6.4 Summary Data……………………………………………………………142

 6.5 Data Analysis…………………………………………………………….144

 6.5.1 Method Invocation……………………………………………….144

 9

 6.5.2 Final version analysis…………………………………………….161

 6.5.3 Mann-Whitney U-test and Correlation Analysis…………………165

 6.5.3.1 Class Cohesion Analysis…………………………………165

 6.5.3.2 Class Size Analysis………………………………………167

 6.6 Discussion………………………………………………………………..168

 6.7 Summary…………………………………………………………………169

CHAPTER 7 “Warnings” and potential refactorings………………………………..170

 7.1 Introduction………………………………………………………………170

 7.2 Study Motivation…………………………………………………………170

 7.3 Study Design……………………………………………………………..171

 7.3.1 The three open-source systems ………………………………….171

 7.3.2 Independent and dependent variables…………………………….171

 7.3.3 Research questions……………………………………………….173

 7.4 Data analysis……………………………………………………………...174

 7.4.1 DIT and warning analysis………………………………………...174

 7.4.2 Distribution of warnings………………………………………….177

 7.4.3 DIT and warning evolution analysis……………………………..178

 7.4.4 NOC and Warnings Analysis…………………………………….184

 7.4.5 Warnings and refactoring analysis……………………………….188

 7.5 Discussion………………………………………………………………..192

 7.6 Summary…………………………………………………………………192

CHAPTER 8 Conclusions and Future Work…………………………………………194

 8.1 Thesis Objectives Re-visited……………………………………………..194

 8.2 Contribution………………………………………………………………196

 8.3 Personal Achievement……………………………………………………198

 8.4 Future Work……………………………………………………………...199

Appendix A: Glossary of Software Engineering Terms……………………………...201

Appendix B: Raw Data on Number of Classes from the Eight Systems…………….207

Appendix C: Raw Data on number of methods from the Eight Systems……………213

Appendix D: Raw Data on Number of Attributes from the Eight Systems…………219

References ……………………………………………………………………………225

 10

List of Tables

Table 3.1. Summary class change data for the seven systems (all versions)…………56

Table 3.2. SR and RR summary data for the seven systems………………………….64

Table 3.3. Breakdown of DIT ranked on NOC for first and last versions……………66

Table 3.4. Summary method change data for the three systems (all versions)……….68

Table 3.5. Summary attribute change data for the three systems (all versions)………73

Table 4.1. Method change data for the four systems………………………………….82

Table 4.2. Attribute change data for the four systems………………………………...83

Table 4.3. Net class additions HSQLDB (All versions)………………………………88

Table 4.4. Net class additions JasperReports (All versions)………………………….96

Table 5.1. Class evolution between version 1 to 5 in HSQLDB…………………….116

Table 5.2. Class evolution between version 5 to 6 in HSQLDB…………………….116

Table 5.3. Class evolution between version 1 to 5 in JasperReports………………..119

Table 5.4. Class evolution between version 5 to 10 in JasperReports………………119

Table 5.5. Class evolution between version 10 to 12 in JasperReports……………..119

Table 5.6. Class evolution between version 1 to 5 in SwingWT……………………122

Table 5.7. Class evolution between version 5 to 10 in SwingWT…………………..123

Table 5.8. Class evolution between version 10 to 15 in SwingWT…………………124

Table 5.9. Class evolution between version 15 to 20 in SwingWT…………………125

Table 5.10. Class evolution between version 4 to 5 in Tyrant………………………..128

Table 5.11. Class characteristics in the four systems…………………………………130

Table 5.12. Mann-Whitney U-test for moved/un-moved classes and NOM

 (all systems)………………………………………………………………131

Table 5.13. Mann-Whitney U-test for moved/un-moved classes and MPC

 (all systems)………………………………………………………………132

Table 5.14. Correlations of NOM/MPC and LCOM………………………………….133

Table 5.15. Descriptive statistics for the moved classes after their movement……….134

Table 5.16. Wilcoxon signed-rank test for moved classes before/after their

movement………………………………………………………………...135

Table 6.1. Summary Change data for the HIER and EXT in the four systems……...143

Table 6.2. HIER and EXT at each DIT level in HSQLDB (final version)…………..162

Table 6.3. HIER and EXT at each DIT level in JasperReports (final version)……...163

 11

Table 6.4. HIER and EXT at each DIT level in SwingWT (final version)…………163

Table 6.5. HIER and EXT at each DIT level in Tyrant (final version)……………...164

Table 6.6. The HIER and EXT data in the four systems (final versions)……………165

Table 6.7. Results of the Mann-Whitney U-test of HIER and LCOM………………166

Table 6.8. Results of the Mann-Whitney U-test of EXT and LCOM……………….166

Table 6.9. Correlation of NOM versus HIER and EXT……………………………..167

Table 7.1. Summary DIT data for the three systems (final versions)………………..174

Table 7.2. Warnings/DIT (SwingWT)……………………………………………….175

Table 7.3. Warnings/DIT (JasperReports)…………………………………………...176

Table 7.4. Warnings/DIT (JColibri)…..…………………………………………......177

Table 7.5. Classes/warnings at DIT levels…………………………………………..178

Table 7.6. Summary NOC data for the three systems (final versions)………………184

Table 7.7. Warnings and NOC in SwingWT (version 22)…………………………..185

Table 7.8. Warnings and NOC in JasperReports (version 12)………………………187

Table 7.9. Warnings and NOC in JColibri (version 8)………………………………187

Table 7.10. The categories of warnings……………………………………………….188

Table B.1. Number of classes at each DIT level for HSQLDB……………………...207

Table B.2. Number of classes at each DIT level for JColibri………………………..207

Table B.3. Number of classes at each DIT level for JasperReports………………….207

Table B.4. Number of classes at each DIT level for EasyWay………………………208

Table B.5. Number of classes at each DIT level for SwingWT……………………...209

Table B.6. Number of classes at each DIT level for JAG……………………………210

Table B.7. Number of classes at each DIT level for JBoss…………………………..211

Table B.8. Number of classes at each DIT level for Tyrant…………………………212

Table C.1. Number of methods at each DIT level for HSQLDB…………………….213

Table C.2. Number of methods at each DIT level for JColibri………………………213

Table C.3. Number of methods at each DIT level for JasperReports………………..213

Table C.4. Number of methods at each DIT level for EasyWay…………………….214

Table C.5. Number of methods at each DIT level for SwingWT……………………215

Table C.6. Number of methods at each DIT level for JAG………………………….216

Table C.7. Number of methods at each DIT level for JBoss………………………...217

Table C.8. Number of methods at each DIT level for Tyrant………………………..218

Table D.1. Number of attributes at each DIT level for HSQLDB…………………...219

 12

Table D.2. Number of attributes at each DIT level for JColibri……………………..219

Table D.3. Number of attributes at each DIT level for JasperReports……………….219

Table D.4. Number of attributes at each DIT level for EasyWay……………………220

Table D.5. Number of attributes at each DIT level for SwingWT…………………...221

Table D.6. Number of attributes at each DIT level for JAG…………………………222

Table D.7. Number of attributes at each DIT level for JBoss………………………..223

Table D.8. Number of attributes at each DIT level for Tyrant……………………….224

 13

List of Figures

Figure 2.1. An example of HIER and EXT metrics……………………………………50

Figure 3.1. DIT frequencies HSQLDB (all versions)………………………………….57

Figure 3.2. DIT frequencies JasperReports (all versions)……………………………..58

Figure 3.3. DIT frequencies EasyWay (all versions)………………………………….59

Figure 3.4. DIT frequencies SwingWT (all versions)…………………………………60

Figure 3.5. Classes at levels 5, 6 and 7 in SwingWT (all versions)…………………...60

Figure 3.6. DIT frequencies JAG (all versions)……………………………………….61

Figure 3.7. DIT level 1 frequencies for JBoss (all versions)…………………………..62

Figure 3.8. DIT level 2-7 frequencies for JBoss (all versions)………………………...62

Figure 3.9. DIT frequencies for Tyrant (all versions)………………………………….63

Figure 3.10. DIT and ranked NOC for JBoss…………………………………………...67

Figure 3.11. DIT and ranked NOC for Tyrant…………………………………………..67

Figure 3.12. NOM frequencies for EasyWay (all versions)…………………………….70

Figure 3.13. NOM frequencies for JAG (all versions)………………………………….71

Figure 3.14. NOM frequencies for JBoss for DIT 1 (all versions)……………………...72

Figure 3.15. NOM frequencies for JBoss for DIT 2-7 (all versions)…………………....72

Figure 3.16. The total changes of NOA for Easy and JAG (all versions)………………74

Figure 3.17. The total changes of NOA in JBoss (all versions)………………………...74

Figure 4.1. NOM frequencies HSQLDB (all versions)………………………………..84

Figure 4.2. Net changes in NOM HSQLDB (all versions)…………………………….85

Figure 4.3. Refactorings in HSQLDB (4 versions)……………………………………86

Figure 4.4. NOA frequencies HSQLDB (all versions)………………………………...87

Figure 4.5. Net changes in NOA HSQLDB (all versions)……………………………..88

Figure 4.6. Attribute-based Refactorings for HSQLDB (4 versions)………………….90

Figure 4.7. NOM frequencies JasperReports (all versions)……………………………91

Figure 4.8. Net changes in NOM JasperReports (all versions)………………………..92

Figure 4.9. Refactorings in JasperReports (4 versions)………………………………..93

Figure 4.10. NOA frequencies JasperReports (all versions)……………………………94

Figure 4.11. Net changes in NOA JasperReports (all versions)………………………...94

Figure 4.12. Net changes in classes JasperReports (all versions)……………………….95

Figure 4.13. Attribute-based Refactorings for JasperReports (3 versions)……………...97

 14

Figure 4.14. NOM frequencies Tyrant (all versions)……………………………………98

Figure 4.15. Net changes in classes DIT 1 Tyrant (all versions)………………………..99

Figure 4.16. Refactorings in Tyrant (9 versions)………………………………………100

Figure 4.17. NOA frequencies Tyrant (all versions)…………………………………..101

Figure 4.18. Net changes in NOA Tyrant (all versions)……………………………….102

Figure 4.19. Net changes in classes Tyrant (all versions)……………………………..103

Figure 4.20. Attribute-based Refactorings for Tyrant (9 versions)……………………104

Figure 4.21. Total change in NOA (3 systems)………………………………………..105

Figure 4.22. NOM Frequencies SwingWT (all versions)……………………………...106

Figure 4.23. Net changes in NOM SwingWT (all versions)…………………………..107

Figure 4.24. Net changes in classes SwingWT (all versions)………………………….107

Figure 4.25. NOA Frequencies SwingWT (all versions)………………………………108

Figure 4.26. Net changes in NOA SwingWT (all versions)…………………………...109

Figure 5.1. DIT frequencies in HSQLDB (3 versions)……………………………….115

Figure 5.2. Changes in HSQLDB…………………………………………………….117

Figure 5.3. DIT frequencies in JasperReports (4 versions)…………………………..118

Figure 5.4. Changes in JasperReports………………………………………………...120

Figure 5.5. DIT 1, 2 and 3 frequencies in SwingWT (6 versions)……………………121

Figure 5.6. DIT 4, 5, 6 and 7 frequencies in SwingWT (6 versions)…………………122

Figure 5.7. Changes in SwingWT…………………………………………………….126

Figure 5.8. DIT frequencies in Tyrant (11 versions)…………………………………127

Figure 5.9. Changes in Tyrant………………………………………………………..129

Figure 6.1. HIER frequencies HSQLDB (all versions)………………………………145

Figure 6.2. Number of classes with at least 1 HIER HSQLDB (all versions)………..145

Figure 6.3. Net changes of HIER HSQLDB (all versions)…………………………...146

Figure 6.4. EXT frequencies HSQLDB (all versions)………………………………..147

Figure 6.5. Number of classes with at least 1 EXT HSQLDB (all versions)………...147

Figure 6.6. Net changes of EXT HSQLDB (all versions)……………………………148

Figure 6.7. HIER frequencies JasperReports (all versions)…………………………..150

Figure 6.8. Number of classes with at least 1 HIER JasperReports (all versions)…...150

Figure 6.9. Net changes of HIER JasperReports (all versions)………………………151

Figure 6.10. EXT frequencies JasperReports (all versions)…………………………...152

Figure 6.11. Number of classes with at least 1 EXT JasperReports (all versions)…….152

 15

Figure 6.12. Net changes of EXT JasperReports (all versions)………………………..153

Figure 6.13. HIER frequencies SwingWT (all versions)………………………………154

Figure 6.14. Number of classes with at least 1 HIER SwingWT (all versions)……….154

Figure 6.15. Net changes of HIER SwingWT (all versions)…………………………..155

Figure 6.16. EXT frequencies SwingWT (all versions)……………………………….156

Figure 6.17. Number of classes with at least 1 EXT SwingWT (all versions)………...156

Figure 6.18. Net changes of EXT SwingWT (all versions)……………………………157

Figure 6.19. HIER frequencies Tyrant (all versions)…………………………………..158

Figure 6.20. Number of classes with at least 1 HIER Tyrant (all versions)…………...158

Figure 6.21. Net changes of HIER Tyrant (all versions)………………………………159

Figure 6.22. EXT frequencies SwingWT (all versions)……………………………….160

Figure 6.23. Number of classes with at least 1 EXT Tyrant (all versions)…………….160

Figure 6.24. Net changes of EXT Tyrant (all versions)………………………………..161

Figure 7.1. Warnings/DIT (JasperReports)…………………………………………...176

Figure 7.2. DIT frequencies SwingWT (all versions)………………………………..179

Figure 7.3. Classes/Warnings (SwingWT)…………………………………………...180

Figure 7.4. DIT frequencies JasperReports (all versions)……………………………181

Figure 7.5. Classes/Warnings (JasperReports)……………………………………….181

Figure 7.6. DIT frequencies JColibri (all versions)…………………………………..182

Figure 7.7. Classes/Warnings (JColibri)……………………………………………...183

Figure 7.8. DIT levels and Warnings with NOC=0 for SwingWT (version 22)……..185

Figure 7.9. Warnings and NOC in JasperReports (version 12)………………………186

 16

List of Abbreviations

DIT Depth of Inheritance Tree (Chidamber and Kemerer metric)

EXT Number of External methods calls (JHawk metric)

HIER Number of calls to methods within Hierarchy (JHawk metric)

LCOM Lack of Cohesion Of the Methods (Chidamber and Kemerer metric)

MPC Message Passing Coupling (Li and Henry metric)

MOOD Metric for Object-Oriented design

NOA Number of Attributes (Lorenz and Kidd metric)

NOC Number of Children (Chidamber and Kemerer metric)

NOM Number of Methods (Lorenz and Kidd metric)

OO Object-Oriented

OSS Open-Source Systems

RR Reuse Ratio (Henderson-Sellers metric)

SE Software Engineering

SR Specialization Ratio (Henderson-Sellers metric)

 17

List of Publications

2009

1. Nasseri, E. and Counsell, S. (2009) An Empirical study of Java System Evolution

at the Method Level. Accepted to appear in the Proceedings of the 7
th

 International

Conference on Software Engineering Research Management and Applications.

Haikou, Hainan Island, China.

2. Stopford, B., Counsell, S., Nasseri, E. (2009) Simulating software evolution with

varying numbers of developers and validation using OSS. Proceedings of the 20
th

Australian Software Engineering Conference. Gold Coast, Australia. pp.13-22.

3. Nasseri, E., Counsell, S. and Shepperd, M. (2009) Class Movement and Re-

location: an Empirical Study of Java Inheritance Evolution. Accepted (subject to

minor changes) to appear in the Journal of Systems and Software.

4. Nasseri, E., and Counsell, S. (2009) An Evolutionary Study of Inheritance and

Method Invocation in Java OSS. Accepted (subject to minor changes) to appear in

the Software Quality Journal.

5. Nasseri, E., and Counsell, S. (2009) System evolution at the attribute level: an

empirical study of three Java OSS and their refactorings. Proceedings of the 31
st

International Conference on Information Technology Interface. Cavtat, Dubrovnik,

Croatia. pp.653-658.

2008

6. Nasseri, E., Counsell, S. and Shepperd, M. (2008) An Empirical Study of Evolution

of inheritance in Java OSS. Proceedings of the 19
th

 Australian Software

Engineering Conference. Perth, Australia. pp.269-278.

7. Nasseri, E. and Counsell, S. (2008) Inheritance, „Warnings‟ and potential

Refactorings. Proceedings of the 3
rd

 International Conference on Software

Engineering Advances. Sliema, Malta. pp.132-39.

 18

CHAPTER 1 Introduction

1.1 Introduction

The Object-Oriented (OO) software development technology was initially introduced in

the early 1990‟s. Since then the OO paradigm has dominated mainstream software

development (both in academia and industry) with languages such as C++ and Java. OO

technology employs „Classes‟ together with „Objects‟ and their interdependencies to

design and implement systems. OO introduced various underpinning approaches (i.e.,

inheritance, polymorphism, and encapsulation mechanisms) to software development

which distinguish OO from traditional software development paradigm.

Inheritance is a cornerstone of OO paradigm. It is used to encapsulate a set of closely

related functionality in a structured hierarchy where common functionality is added in one

class (the superclass) and more specialized functionality of that class is added in other

classes (its subclasses). The specialized classes inherit the common functionality from their

superclass and add their own extra functionality. The primary concern of inheritance is to

promote reusability in a system. The overriding merits of reusability in software

development are to: (i) remove the burden of re-writing an existing segment(s); and (ii) to

ease extensibility in a system. Furthermore, inheritance provides the facility for

polymorphism.

In Java, a class can only inherit functionality from one other class, in C++ however, a class

can inherit functionality from multiple classes in a system. To facilitate multiple

inheritance Java introduced the notion of interfaces (see Section 2.2.3 for the difference

between a class and interface).

In Software Engineering (SE), software evolution is a term used to refer to the

development of a system and its continuous change; software maintenance is the process of

making modifications to an existing system (Dvorak 1994). Software maintenance and

evolution are two inter-related topics, and there is a growing concern about these two

 19

topics in the SE community. Empirical evidence exists to suggest that software

maintenance accounts for a significant amount of software development cost (Lehman

1980b, Meyers 1988). The basic principle of software development is that systems should

be designed in a way to accommodate easy maintenance.

From a maintainability perspective, refactoring seems to play a significant role in this

sphere of software development activity (Fowler 1999). The key motivation behind

refactoring, according to Fowler (Fowler 1999) is to improve system design and

comprehensibility without making any modification to its external behaviour. In other

words, refactoring can be used as an impediment to „decay‟ in code. Fowler (Fowler 1999)

presents 72 types of refactorings with the motivation and the mechanics of each

refactoring. There are numerous refactorings pertaining specifically to inheritance in the

set of 72 refactorings of Fowler. For example, the „Extract Subclass‟ refactoring creates a

subclass for an existing class. Even one of Fowler‟s „big‟ refactorings „Collapse Hierarchy‟

entails inheritance in its mechanism.

While the primary purpose of inheritance is to improve program comprehension and ease

system maintenance, empirical evidence exists to suggest that use of inheritance can have

the opposite effect (Harrison et al. 2000, Cartwright 1998, Cartwright and Shepperd 2000).

The question; does inheritance improve system comprehension and maintainability?

therefore remains unanswered. As a SE community, we know very little about the effect of

inheritance and its limitations from a maintainability perspective. Previous studies suggest

that inheritance should be used with care and only when necessary (Wood et al. 1999). In

addition, we expect systems to evolve due to the changes of requirements and/or the

environment in which they are operating. Previous studies have analyzed software systems

from a maintenance and evolution perspective (Lehman 1974, Lehman et al, 1997,

Kemerer and Slaughter 1999, Girba et al. 2005). What is not so obvious from these

previous studies is how inheritance hierarchies in OO systems evolve in conjunction with,

and as opposed to, that of system evolution. Moroever, inheritance is a form of coupling

(Briand et al. 1999b). Anecdotal claims exist to suggest that coupling through inheritance

is more favourable to that of non-inheritance coupling. We would therefore expect

inheritance to be an alternative to non-inheritance coupling.

 20

The purpose of the research in this Thesis is to thus investigate the changes of inheritance

in the evolution of Java Open-Source Systems (OSS). In other words, we explore the

trends that may exist in the changes of inheritance as systems evolve. Some interesting and

insightful results relating to software evolution from an inheritance perspective emerged

from the studies carried out.

The most striking result emerging from our investigation was that the vast majority of

incremental changes (in terms of classes, methods and attributes) were made at „shallow‟

levels (levels one and two) of the class hierarchy, subverting the original aims of using

inheritance. The overall results combined throughout this Thesis unveiled the pattern of

incremental changes (in terms of classes, methods and attributes), class movement and

relocation within and across inheritance hierarchy, method invocation within and across

inheritance hierarchy and finally, the pattern of „warnings‟ (problems found in a class that

may lead to faults) within an inheritance hierarchy.

1.2 Motivation

The motivation for conducting the empirical investigation in this Thesis stems from the

following sources:

To build a body of knowledge on trends of inheritance feature which include: how changes

(additions, deletion of classes, methods and attributes, movement of classes within

inheritance hierarchies and method invocations and their evolution in a system) are made

to inheritance hierarchies over time, a comparison of low level changes (i.e., methods and

attributes) to that of applied low-level refactorings (i.e., method and attribute-related

refactorings) and the impact on maintainability of inheritance, using warnings extracted by

(FindBugs 2008), in Java OSS.

Empirical studies in SE to date have investigated inheritance and its implications on

maintainability (Daly et al. 1996, Cartwright 1998, Harrison et al. 2000). However, from

an evolutionary perspective, the pattern of change in inheritance is still unclear. Our

knowledge and understanding of evolutionary forces of inheritance is almost negligible.

 21

1.3 Objectives and Contribution

The primary objectives of this Thesis are:

1. To improve our understanding of inheritance in Java OSS. That is, to obtain a

greater understanding of inheritance trends and how it is used in practice.

2. To investigate quantitatively how inheritance hierarchies evolve as opposed to

that of system evolution as a whole. In particular, to conduct a thorough

investigation of where in the inheritance hierarchy the majority of incremental

changes are applied as a system evolves.

3. To investigate evolution of inheritance from a class movement and relocation

perspective. In other words, to investigate how classes within an inheritance

hierarchy are moved from one level to another as a system evolves.

4. To investigate inheritance from a class interaction perspective.

This Thesis makes a contribution in the realm of SE, in particular, from an evolutionary

perspective, the results of which have been published in various archived sources.

The contribution of the research in this Thesis can also be demonstrated on the basis that,

previous researchers (Kemerer and Slaughter 1999) claimed that software evolution is

scarcely researched and have expressed the need for further longitudinal empirical studies

of software evolution. In particular, it is stressed that studies should take into consideration

various levels of granularity when studying software evolution (Kemerer and Slaughter

1999). The research in this thesis is of importance for the following two reasons:

1. An appreciation of trends of inheritance can help predict future changes in

the inheritance hierarchy in a system. In other words, the trends in

inheritance can make change prediction, a challenging task, relatively easy.

2. The trends can help target future maintenance (i.e., refactoring) changes and

take pre-emptive action to code decay in a system.

 22

3. Since no empirical study to date has analyzed inheritance from an

evolutionary perspective at various levels of granularity, we believe the

methodological approaches adopted for data collection and analysis in this

Thesis can help inform future empirical studies on inheritance and its

evolution. That is, the approaches adopted in this Thesis can be used as a

roadmap for further empirical studies of inheritance evolution.

Software metrics (Fenton and Pfleeger. 2002, Chidamber and Kemerer 1994, Lorenz and

Kidd 1994) are a significant part of our investigation. In this Thesis, we make use of

software metrics as the basis of our analysis to explore quantitatively the changes of

inheritance in multiple versions of the studied systems.

1.4 Application Domains

The eight OSS used throughout this Thesis embody a variety of application domains. The

rationale behind the selection of the systems from various application domains is to enable

us to generalize the results of the studies conducted into a broader OO population. The

subject OSS that we use in this Thesis are from the following application domains:

 A database system.

 Two game systems.

 A case-base reasoning system.

 A reporting engine.

 A library system.

 A Java application generator and

 A Java application server.

In addition, the set of OSS that we use have different sizes in terms of start and end

number of classes, methods and attributes and contain various numbers of versions. The

diversity of the application domains and the differences in the sizes of the systems allow

conclusions to be drawn to a wider extent. Furthermore, the rationale behind using systems

only in Java was that firstly, Java is newer than other OO languages. Secondly, Java is

 23

dominating the commercial software development community and finally, we would like

to have an in-depth analysis of inheritance in one language rather than have a less detailed

analysis of various languages. Further justification and criteria for sample selection is

given in Chapter 2. The eight OSS are: HSQLDB, JColibri, JasperReports, EasyWay,

SwingWT, JAG, JBoss and Tyrant. More details on each of these systems are given in

Chapter 2.

1.5 Thesis Scope

The investigations described in this Thesis involve significant data collection from

multiple versions of each system and various data analysis techniques from which to draw

conclusions. The Thesis does not concern itself with other development aspects of the

systems, such as the time intervals between each transition of versions, the number of

developers working on each versions, the requirements (i.e., functional and/or non-

functional) of the systems. In addition, formal system testing is also excluded from the

scope of this Thesis.

1.6 Structure of the Thesis

This Thesis is organized into eight chapters:

Chapter 2 consists of two main sections. The first section presents a thorough survey of

contemporary work in the areas of empirical SE, software metrics, inheritance, software

maintenance and evolution, and finally software refactoring. The second section of Chapter

2 presents the methodology adopted for our research including, available research

methods, our research design, including, sample selection and justification of the selected

samples, data collection and statistical techniques employed.

Chapter 3 provides a description of an empirical study in which incremental changes of

trends of inheritance from seven Java OSS described in Chapter 2 were investigated. This

includes the trends of class changes in the same seven Java OSS and the changes at method

and attribute level in a subset (three) of the systems. Results showed that approximately

 24

96% of overall class changes were found at levels one and two of the class hierarchy. Only

4% of the same changes were found at levels three and beyond. In terms of methods and

attributes, approximately 93% of method and 97% of attribute changes were made to

classes at inheritance levels one and two. The remaining changes were made to classes at

levels three and beyond.

Chapter 4 describes an empirical study in which changes of inheritance at method and

attribute level are investigated in four OSS and the changes then compared with a set of

low-level refactorings (i.e., method and attribute-related refactorings) applied to initial

versions of the systems. Results revealed that analyzing a system at a lower-granularity

(i.e., methods and attributes) can often show a different trend to that of a similar analysis at

a higher-grain (i.e., classes and packages). Furthermore, our empirical results also

indicated that analysis of a system at lower-granularity can often show trends that may go

undetected when analyzing the system at a higher-granularity.

Chapter 5 presents an empirical investigation in which the trends in class movement and

relocation within an inheritance hierarchy is explored. A sample of a number of versions

from four Java OSS was selected and class movement and relocation examined. Results

indicated that larger classes and tightly coupled classes were more frequently moved

within the hierarchy then their respective smaller and loosely coupled classes.

Furthermore, results also revealed that larger classes and tightly coupled classes were less

cohesive which explained their movement within their respective class hierarchy.

Chapter 6 presents an empirical study of method invocation in four Java OSS. Result

revealed that, due to the presence of a large number of classes at levels one and two of

inheritance hierarchy, the majority of method calls were found at those two levels. It was

also found that method invocation in a class tended to detract from class cohesion and class

size was positively correlated to class coupling (through method calls).

Chapter 7 gives a description of an empirical study investigating the influence of

inheritance on warnings (i.e., problems that may lead to potential faults) extracted by the

FindBugs tool (FindBugs 2008), in three Java OSS. The investigation showed how

inheritance hierarchies evolved and the propensity for generated warnings. The results also

 25

indicated how those warnings could be used to target refactorings in future releases of the

systems.

Finally, Chapter 8 presents conclusions and contributions of the research presented in this

Thesis with reflection on our original objectives and how they were achieved. In addition,

the direction to possible future work is also given.

 26

CHAPTER 2 Literature Survey and Methodology

2.1 Introduction

In the previous chapter we provided an introduction to the Thesis. The objective of this

chapter is to provide a thorough survey of related work and the methodology used for our

research. The chapter has three main sections, 2.2 Survey of Literature, 2.3 Methodology

Adopted and 2.4 Summary. Each sub-section of the survey of literature presents the work

of other researchers in one specific sphere. This includes empirical SE, software metrics,

inheritance, software maintenance/evolution and software refactoring. We also

demonstrate how previous work is related to our research and, equally, how our research is

different and thus contributes to a body of knowledge in the field. The methodology

section includes a description of the available research methods in SE and the design of the

research presented in this Thesis. Finally, in Section 3.4 we present a summary of the

chapter.

2.2 Survey of Literature

In this section, we present a thorough survey of studies related to our research. In Section

2.2.1 we discuss the related work in the realm of empirical SE. We then review the

software metrics introduced in the literature and how they have been used in practice

(Section 2.2.2). Section 2.2.3 provides a detailed analysis of published work on OO

inheritance; In Section 2.2.4, we describe related research in software maintenance and

evolution. Finally, we provide an analysis of published work on software refactoring

(Section 2.2.5).

2.2.1 Empirical Software Engineering

The term Software Engineering (SE) refers to the discipline dealing with designing,

developing, maintaining, testing and other aspects of complex software systems. The term

 27

empirical refers to observations and experiments. Empirical SE can be defined as „the

process of assessing the quality of software products, processes and projects in order to

improve the current situation in SE‟. Empirical SE is a diverse research area which has

attracted the focus of numerous researchers investigating tools, methods, theories and other

facets of SE. Kitchenham (Kitchenham. 2004) introduced the notion of systematic reviews

into empirical SE, defined as: “…a means of identifying, evaluating and interpreting all

available research relevant to a particular research question, topic area, or phenomenon

of interest.”

SE is considered as a young and immature discipline when compared to other engineering

disciplines. The quality of empirical studies in SE has been subject to numerous criticisms.

Researchers are continuously working on identifying the weaknesses of empirical research

and consistently stress the need for improving empirical studies in SE (Fenton et al. 1994,

Briand et al. 1999a, Seaman 1999). For example, Perry et al. (Perry et al. 2000) claimed

that empirical studies in SE require improvement. They presented the strengths and

weaknesses of empirical studies and proposed a number of steps to be taken in order to

improve the current state of empirical SE research, including designing better studies,

collecting and analysing constructive data and collaborating with other researchers in the

field.

Briand et al. (Briand et al. 1999a) presented an overview of empirical studies of OO

systems, methods and processes. They highlighted several key points to be considered in

order to carry out successful empirical studies in SE. They firstly, encouraged close

collaboration with the software industry. Secondly, they suggested improvements in the

quality of empirical studies. Finally, they emphasised the need for replication of studies in

SE. Kitchenham et al. (Kitchenham et al. 2002) introduced a set of guidelines for

performing empirical studies in SE. They argued that the guidelines could be used to

improve future empirical studies and could also help assess the quality of existing studies

in the realm of empirical SE. They also claimed that the guidelines would be a good

starting point for improvement of empirical studies in SE.

Seaman (Seaman 1999) presented a set of qualitative research methods for data collection

and analysis in empirical SE research. In that study, it was illustrated how those qualitative

 28

methods could be used in practice. The author claimed that qualitative methods could also

be used in conjunction with that of quantitative methods, and qualitative research methods

could improve the quality and the amount of information contained in the dataset. O‟Brien

et al. (O‟Brien et al. 2005) stressed the need for qualitative methods to be used in

conjunction with quantitative methods in empirical SE research, to address the

methodological shortfalls of experimental studies. Wood et al. (Wood et al. 1999) also

showed the use of multi-method empirical research in SE. The multi-method approach was

based on the combination of complementary empirical research methods, which were

argued to solve the problems faced when conducting a single-shot empirical study. In

addition, different research methods and desirable criteria for each method were explained.

The aforementioned studies have provided us with an understanding of empirical research

in SE and revealed the strengths and weaknesses of studies in the field. As a result, we

infer that SE provides ample opportunities for conducting empirical investigations. For

example, the lack of empirical studies on inheritance, particularly from an evolutionary

perspective, provided us with a motivation base to carry out empirical research

concentrating on OO inheritance and its effective use in practice; more specifically the

evolution of inheritance, changes of inheritance at various levels of granularity in the

evolution of OO systems, problems associated with inheritance and opportunities that

presented for refactoring. Our empirical investigation therefore builds a body of knowledge

on inheritance and its evolution at various levels of granularity, bringing to light the

strengths and weaknesses of inheritance from a maintenance perspective.

2.2.2 Software Metrics

In this Thesis, we present an empirical investigation of trends of inheritance in the

evolution of Java OSS. Software metrics provide a quantitative basis for dimensions of a

software project, process, or products and played a significant part in our research. That is,

they enabled us to quantify inheritance in each version of the systems studied and to model

the evolutionary behaviour of the systems from an inheritance perspective.

In the mid-1970‟s the phrase software metrics was first introduced by Tom Gilb (Gilb.

1976). Since then, the topic of software metrics has been a well researched in the SE

 29

research community. Using metrics, software practitioners, developers and researchers can

understand, manage, plan and control characteristics of complex software systems.

DeMarco (DeMarco. 1982) stated “…you can‟t control what you can‟t measure”. This

clearly implies that measurement is as important for the SE discipline as it is for any other

engineering discipline. Software metrics is used to measure attributes of software projects,

processes or products. In addition, software metrics can also be used to identify and

mitigate software project threats as well as reduce the total cost of development by taking

remedial action early in the development process (Hall et al. 2005). Fenton and Pfleeger

(Fenton and Pfleeger. 2002) defined measurement as: “ …the process by which numbers or

symbols are assigned to attributes of entities in the real world in such a way as to describe

them according to a clearly defined rule…”

In this Thesis, we measure the internal attributes of the systems to investigate inheritance.

A distinction should be made between internal and external attributes of a product, process

and project. Fenton and Pfleeger (Fenton and Pfleeger 2002) distinguish between internal

and external attributes; internal attributes of a software system include size, coupling, and

the amount of reuse used in a system and its external attributes include reliability,

usability, and security of a system. Numerous studies were originally conducted to

introduce metrics into SE. For example, the cyclomatic complexity metric of McCabe

(McCabe 1976) measures programs based on their structural model. The Fan-in and Fan-

out metrics of Henry and Kafura (Henry and Kafura 1981) measure the number of inputs

and outputs of a given module, respectively. With the introduction of OO technology, more

advanced suites of metrics were introduced (Chidamber and Kemerer 1994, Lorenz and

Kidd 1994, Abreu and Carapuca 1994, Briand et al. 1999b, Rosenberg 1999, Arisholm et

al. 2004, Harrison et al. 1998b, Briand et al. 1998).

Abreu and Carapuca (Abreu and Carapuca 1994) defined the MOOD (Metrics for Object-

Oriented Design) set of metrics. The MOOD metrics provide an indication of quality of an

OO system. Each metric in the MOOD set of metrics measures one distinct aspect of an

OO system. The MOOD set of metrics comprised: Method Hiding Factor (MHF), Attribute

Hiding Factor (AHF), Method Inheritance Factor (MIF), Attribute Inheritance Factor

(AIF), Polymorphism Factor (PF), Coupling Factor (CF), Clustering Factor (CF), and

Reuse Factor (RF).

 30

Chidamber and Kemerer (Chidamber and Kemerer 1994) also proposed a suite of metrics

to measure features of OO systems. Their suite of metrics consisted of the Weighted

Methods per Class (WMC), Response For a Class (RFC), Lack of Cohesion in the Methods

of a class (LCOM), Depth of Inheritance Tree of a class (DIT), Number Of Children of a

class (NOC) and Coupling Between Objects (CBO).

Lorenz and Kidd (Lorenz and Kidd 1994) introduced a set of eleven metrics for measuring

OO systems and divided the metrics into following four main categories: size, inheritance,

internals and externals. Their set of metrics included the following four inheritance related

metrics: number of operations overridden by a class; measuring the number of overridden

operations/method of a subclass, number of operations added by a subclass; measuring the

total number of new operations/methods added in a subclass, specialization index;

measuring the level of specialization for each subclass, and class size; measuring the size

of a class by counting the total number of operations/methods, (both inherited and non-

inherited) and total number of inherited and non-inherited attributes in a class. Since the

main focus of our research was on inheritance, we required a set of well-defined and

validated metrics to measure inheritance in the systems that formed our study.

Coupling and cohesion are also two important facets of the OO paradigm. Briand et al.

(Briand et al. 1998) presented a framework for measuring cohesion in OO systems. The

framework consisted of numerous metrics designed to measure cohesion in OO systems. In

a later study, Briand et al. (Briand et al. 1999b) presented an additional framework for

measuring coupling in OO systems. A general and accepted tenet is that coupling is a

detrimental factor for software comprehensibility - excessive coupling may consequently

introduce faults into a system (Briand et al. 1999b). Inheritance is also a form of coupling

and claims exist to suggest that coupling through inheritance is more favourable, from a

system comprehension perspective, than non-inheritance coupling. English et al. (English

et al. 2007) proposed a set of coupling metrics to measure friendship mechanism (in C++),

inheritance and other forms of coupling and claimed that there was a need for metrics to

measure various forms of coupling in OO systems. Harrison et al. (Harrison et al. 1998a)

empirically assessed two coupling related metrics - the CBO of Chidamber and Kemerer

and the number of associations between classes NAS (here, number of associations is the

 31

number of connection lines between classes in a UML diagram (Rumbaugh et al. 1998)).

The metrics were applied to five C++ systems and the data for the two metrics compared to

determine their efficiency and effectiveness. In that study, coupling was found to be

independent of software understandability. The authors of the study also discovered a

strong relationship between CBO and NAS and stated that only one of these coupling

metrics was needed to measure coupling in OO systems.

In Chapter 5 we investigated the movement and re-location of classes from both size and

coupling perspectives and found that larger classes, given by number of methods metric of

Lorenz and Kidd (Lorenz and Kidd 1994), and highly coupled classes, given by message

passing coupling metric of Li and Henry (Li and Henry 1993), were more frequently

relocated within their corresponding inheritance hierarchy than smaller classes and loosely

coupled classes, respectively. Measuring coupling dynamically provides a finer-grained

insight into coupling between classes. Arisholm et al. (Arisholm et al. 2004) describe how

coupling can be measured dynamically and introduced a suite of dynamic coupling

measures. In that study, static, size and dynamic coupling measures were compared - the

authors claimed that dynamic coupling measures could be used to analyze the change-

proneness of OO systems.

It is also important to take into consideration the theoretical and empirical validations of

metrics when using them in practice. Theoretical and empirical validations play a

fundamental part in the „success‟ of any software metric (Shepperd 1995). Metrics

validation is the process of examining whether a software metric is a true numerical

representation of the measured attribute (Fenton and Pfleeger 2002). In the past decade,

researchers seem to have shifted the focus of their research to investigating and validating

existing software metrics rather than introducing new metrics. The framework introduced

by Kitchenham et al. (Kitchenham et al. 1995) showed how software metrics should be

investigated for validity. They suggested that the following characteristics of a metric

should be considered when investigating its validity: the real world object (entity), the

property of the entity (attribute), how the attribute can be measured (units) and what scale

type to be used to measure the attribute (scale type). Harrison et al. (Harrison et al. 1998b)

reported the results of an investigation into the MOOD set of metrics, taking into

consideration the OO features (i.e., encapsulation, inheritance, coupling and

 32

polymorphism). They argued that the MOOD set of metrics could provide an overall

assessment of a software system.

Software metrics have also been investigated from a fault-prediction perspective. For

example, Ping et al. (Ping et al. 2002) reported a case study validating a set of ten OO

metrics from a fault prediction perspective. The metrics used were related to size, coupling,

cohesion, inheritance, and reuse in OO systems. Ping et al. also claimed that the two types

of coupling (inheritance and non-inheritance coupling) had different implications on fault-

proneness and hence should be treated differently. (In Chapter 6 we investigate the impact

of method calls on cohesion of a class. We distinguished between method calls within

inheritance hierarchy (JHawk 2008) and external method calls (JHawk 2008) and found

that method calls of both sorts reduced cohesion in a class.) In El Emam et al. (El Emam et

al. 2001) a fault-prediction model was presented. The main finding of the study was that

inheritance and export coupling metrics were strongly associated to fault-proneness.

Briand et al. (Briand et al. 2000) also empirically investigated the relationship between OO

coupling, cohesion and inheritance measures and the likelihood of fault detection in a

system. They found that most coupling and inheritance measures introduced in the

literature were closely related to the likelihood of faults in a system. However, cohesion

did not have a major impact on fault-proneness. In that study, it was also reported that the

majority of measures introduced in the literature were redundant, capturing the same

dimensions in the data set. The redundancy of metrics was also reported in (Briand and

Wust 2002).

Software metrics can also be useful tools for managers‟ decision making and resource

allocation. The research described in (Chidamber et al. 1998) investigated the suite of

metrics proposed by Chidamber and Kemerer (Chidamber and Kemerer 1994) from a

managerial prospective. The authors of the study claimed that the suite of metrics

investigated was useful for making decisions pertaining to resource allocation and

maintenance cost estimation. Basili et al. (Basili et al. 1996a) argued that the Chidamber

and Kemerer metrics were, firstly, better predictors of faults and secondly, could be

collected early in the development process. Since our main focus in this Thesis will be on

changes of inheritance and particularly changes at various inheritance levels, we selected

the DIT metric of Chidamber and Kemerer as a basis of our analysis of inheritance.

 33

The impact of size on fault-proneness was also investigated in a study of a large NASA

C++ ground system by Counsell (Counsell 2008). It was reported that the size of a class,

given by the number of methods, was the main contributing factor to faults. Furthermore,

coupling, given by CBO of Chidamber and Kemerer, was also found to increase faults in a

class and class coupling at lower levels of inheritance hierarchy was found to be the most

“harmful” type of coupling.

2.2.3 Inheritance

Empirical evidence suggests that reuse improves productivity (Lewis et al. 1991). In Java,

a class can inherit from only one other class by using the keyword „extends‟. Java uses

interfaces to facilitate multiple inheritance. Interfaces are similar to abstract classes (from

which instance objects cannot be created); however, the attributes in an interface are

always declared as static final (i.e., indicating that there is only one copy of the attribute

for all objects of the class in which the attribute is defined) and the methods are always

abstract (i.e., have no implementation - the subclass of the class/interface in which the

abstract method is defined should provide the implementation for the abstract method).

Inheritance and its use in practice has been a controversial research topic. It has been

subject to numerous studies in the literature (Bieman and Zhao 1995, Daly et al. 1996,

Harrison et al. 2000, Cartwright 1998, Cartwright and Shepperd 2000, Prechelt et al. 2003,

Tempero et al. 2008). Bieman and Zhao (Bieman and Zhao 1995) claimed that the amount

of inheritance used in the systems was far less than recommended. Only 37% of the

systems studied contained a median value for class inheritance depth greater than 1 (in

Java only class „Object‟ has the inheritance depth value of 0, which is inherited by all

application classes) - the inheritance trees in the systems studied were found to be

„shallow‟. Daly et al. (Daly et al. 1996) describe an experiment in which subjects were

timed performing maintenance tasks on OO systems of varying levels of inheritance.

Systems with 3 levels of inheritance were shown to be easier to modify than systems with

no inheritance. Systems with 5 levels of inheritance were, however, shown to take longer

to modify than the systems without inheritance. Their results implied that the use of

inheritance at shallow levels made system maintenance easier. However, inheritance

 34

beyond level three could be a confounding factor for software maintenance. The

experiment was replicated by Cartwright (Cartwright 1998) and Harrison et al. (Harrison et

al. 2000). Cartwright found that subjects took considerably longer to make changes to the

system containing inheritance. However, the changes made to the system tended to be

short and concise. Harrison et al. also found that flat systems (i.e., containing no

inheritance) were easier to modify than systems containing three or five levels of

inheritance, although their results also indicated that larger systems were equally difficult

to understand whether or not they contained inheritance. In a multi-method study, Wood et

al. (Wood et al. 1999) investigated facets of OO paradigm and suggested that inheritance

should be used with care and only when required.

In a controlled experiment, Prechelt et al. (Prechelt et al. 2003) compared the performance

of maintenance tasks on three programs with similar functionality and various levels of

inheritance (zero, three and five levels of inheritance). They argued that the less

inheritance used in a program, the less time it takes to maintain that program. The

implications for coupling, cohesion and inheritance on fault-proneness were investigated

by Briand et al. (Briand et al. 2001). They collected OO metrics from a commercial system

developed by software professionals. In that study, cohesion and inheritance were not

found to be good quality indicators in the system. From a coupling perspective, their

findings suggested that each type of coupling should be assessed individually (some types

of coupling e.g., method invocation and import coupling were found to be better quality

indicators than others). The view that classes located at deeper levels of inheritance,

containing fewer faults than classes located higher up in the same hierarchy was also

reported in (Briand et al. 1999c). In addition, contradictory results suggested that classes at

deeper levels of inheritance were more fault-prone than classes at higher levels, casting

doubt on the effective use of inheritance at deeper levels. Briand et al. (Briand et al. 2002)

presented a study to build a prediction model using a set of OO metrics. The authors of the

study claimed that classes at deep levels of the inheritance hierarchy tended to be more

fault-prone than classes residing higher up. This view was also reported in another study

by Briand et al. (Briand et al. 2000), where the relationship between design measures and

system quality was investigated.

 35

In a study of the validation of a set of twenty four OO metrics using a telecommunication

system, Glasberg et al. (Glasberg et al. 2000) found that classes in the middle part of

inheritance hierarchy contained more faults than classes located near the root or leaf. The

results of our investigation (Nasseri and Counsell 2008) indicated that the majority of

warnings, which may potentially generate faults in a system, were found where the

majority of functionality resided, irrespective of class position in the class hierarchy.

Cartwright and Shepperd (Cartwright and Shepperd 2000) described an empirical

investigation of a large telecommunication C++ system. They found that there was a

positive correlation between the DIT metric of Chidamber and Kemerer and the number of

user reported problems, casting doubt on deeper levels of inheritance. They suggested that

software developers should pay extra attention when using deeper levels of inheritance. In

that study it was also found that the use of inheritance in the system studied was negligible.

Tempero et al. (Tempero et al. 2008) presented an empirical investigation of use of

inheritance and introduced a set of structured metrics for measuring different forms of

inheritance (i.e., interfaces and/or classes) in Java systems. The set of metrics introduced

and other traditional metrics were then applied in practice using a collection of ninety OSS.

They emphasized that a distinction should be made between different forms of inheritance

relationship (i.e., classes and interfaces through extends and implements relationships)

when measuring inheritance in a system. Each type is used in different ways and for a

different purpose. Contrary to what the other studies found (Bieman and Zhao 1995,

Cartwright and Shepperd 2000), Tempero et al. also discovered that the use of inheritance

in the systems studied was higher than expected. They therefore claimed that using

inheritance was a common development practice in OO systems. Furthermore, it was also

found that user defined classes were used in a different way than that of library and other

third party classes. User defined classes were primarily found to be used for defining other

user defined classes.

There is also evidence to suggest that inheritance is a closely related topic to encapsulation

and hence they should be investigated concurrently (Snyder 1986, Skogland 2003). The

preceding survey of the literature on inheritance has shown that a considerable amount of

research has been dedicated to inheritance and its implications on system fault-proneness

and maintainability. Unfortunately, in our preliminary literature review we found very little

evidence, if any, of studies investigating inheritance from an evolutionary perspective. In

 36

other words, we have limited knowledge of how inheritance structures evolve. The lack of

such studies therefore inspired us to conduct a thorough investigation of evolution of

inheritance at different levels of granularity, and build up a body of knowledge into

evolution of OO systems from an inheritance perspective.

2.2.4 Software Maintenance and Evolution

Software maintenance is the process of making changes to an existing system and software

evolution refers to the process of development of a system and its continuous changes for

improvement. Swanson (Swanson 1976) introduced the following three main categories of

software maintenance. 1) Corrective maintenance: the set of changes made to a software

module to correct faults. 2) Adaptive Maintenance: the set of changes made to a system

imposed by the environment (i.e., business requirement, legal issues, etc) in which the

system is operating and 3) perfective maintenance: the set of changes made to a system in

order to add new functionality to the system. Dvorak (Dvorak 1994) defined software

maintenance and evolution as: “…the correction of errors, and the implementation of

modification needed to allow an existing system to perform new tasks, and to perform old

ones under new conditions… …software evolution is the dynamic behaviour of

programming systems as they are maintained and enhanced over their life time.”

Software maintenance is the most costly phase of software development life cycle. Lehman

(Lehman 1980b) reported that in the US in 1977, approximately 70% of total cost of

software was on software maintenance. According to Meyers (Meyers 1988) software

maintenance accounts for 60% to 85% of overall cost of software. Software researchers

have therefore dedicated numerous studies to identify and mitigate the problems associated

with the process of software maintenance and evolution (Daly et al. 1996, Arisholm and

Briand 2006, Lehman et al, 1997, Arisholm et al. 2007, Deligiannis et al. 2003, Sangwan et

al. 2008).

Buckley et al (Buckley et al. 2004) claimed that an appreciation of the information needs

of programmers maintaining a system can help reduce the overall maintenance cost of the

system. They proposed an approach, called content analysis, to help ascertain information

needs of programmers and effectively communicate that information with those

 37

programmers when maintaining a system. Basili (Basili 1990) described the following

three models of software maintenance.

“1) Quick-fix model: Quick-fix model presents an abstraction of typical approach to

software maintenance. In this model, you take an existing system, usually source code

and make necessary changes to the code and relevant documentation, and compile the

system as a new version.

2) Iterative-enhanced model: this is an evolutionary model proposed for development

where the full requirement of the system has not been understood. It starts with the

existing system‟s requirement, design, code, test and analysis documentation. It uses

the reusable components of the existing system to build the new system.

3) Full-reuse model: Full-reuse model starts with the requirement analysis and design

of the new system and reuses the appropriate requirements, design, and code from an

earlier version and similar systems in the system repository.”

In a later study, Basili et al. (Basili et al. 1996b) presented the results of an experiment

conducted at University of Maryland assessing the impact of reuse into defect density,

software productivity, rework and effort in OO systems. They claimed that reuse in OO

systems reduced defect density and resulted in lower rework. Furthermore, they also

argued that reuse also increased productivity and reduced development effort. In a study of

software evolution, Lehman (Lehman 1974) introduced the laws of software evolution

which were then revisited for amendments in subsequent studies (Lehman 1978, Lehman

1980a, Lehman 1996). In a later study, Lehman (Lehman 1980b) described computers and

programs, and how they were used in practice. The programs were placed into following

three categories: 1) S-Programs: programs the specification of which can provide its

function. 2) P-Programs: programs that are the representation of real world situation and

are unpredictable. 3) E-Programs: constantly changing programs. The author then

investigated the laws of program evolution using eighteen versions of an operating system.

It was suggested that software planning should not entirely depend on business

requirements. Other factors such as dynamic characteristics of the process and system

should also be taken into account. Moreover, Lehman et al. (Lehman et al. 1997)

empirically investigated the laws of software evolution, and compared the results to studies

conducted in 1970‟s (Belady and Lehman 1972, Lehman 1974). Their results supported the

 38

laws of software evolution and suggested that, despite the 20 years time gap, the 1970‟s

approach to metrics analysis was still pertinent to software evolution. Lehman‟s laws of

software evolution provide an insight into overall system evolution.

Software process planning and management is an important part of the successful

evolution of any software. In Lehman and Ramil (Lehman and Ramil 2001) fifty

recommendations for supporting software process planning and management were

introduced. They claimed that the recommendations introduced could easily be embedded

into tools to support software process planning and management. Bergel et al. (Bergel et al.

2005) described a study presenting the notion of Classbox model (…a module that restricts

the visibility of changes to selected clients only…) in statically-typed languages including

Java. They presented a case study illustrating how classboxes/j (a prototype

implementation of classbox for Java) was employed to provide a better implementation of

Swing (a GUI system). They claimed that classboxes provided a better approach to

unanticipated modification over a system and could also be used to determine the impact of

those changes. Kemerer and Slaughter (Kemerer and Slaughter 1999) presented a

longitudinal study introducing new methods and techniques for studying software

evolution. 25000 change events from 23 commercial systems over 20 years time span were

collected and analyzed. The authors used and adapted the existing methods and techniques

to study evolution of two representative systems. They designed a new approach for

conducting longitudinal studies so that software evolution could be analysed at different

levels of granularity (system and module). In (Nasseri and Counsell 2009a, Nasseri and

Counsell 2009b) we observed that analyzing a system at a finer-grain (i.e., method and

attribute level) can often identify the changes that may go undetected when analyzing the

same system at higher granularity (i.e., class and package level).

Girba et al. (Girba et al. 2005) presented a study characterizing the structural evolution of a

system. They proposed the history of code as first-class entity for characterizing class

hierarchies and suggested measurements to precisely measure class hierarchies through

multiple versions of a system. The authors deduced that historical data played a key part

when studying the evolution of class hierarchies. Buckley et al. (Buckley et al. 2005)

proposed a taxonomy of software evolution which characterised change dimensions into

the following four themes: when, where, what and how changes are made to a system. In

 39

Girba and Ducasse (Girba and Ducasse 2006) a need for an explicit meta-model for

software evolution analysis was stressed. They presented a sequence of requirements

essential for evolutionary meta-model and presented a meta-model called „Hismo‟. The

Hismo meta-model emphasized on the history of a system, the time, and structural entities

when analyzing software evolution. With the growing popularity of OSS in the SE research

community, OSS development itself has undergone protracted research. One possible

explanation for this can be that OSS are easily and freely accessed (Capiluppi et al. 2004,

Capiluppi and Ramil 2004, Counsell and Swift 2008). In a study of four OSS, Counsell et

al. (Counsell et al. 2006b) investigated the role of inner classes in errors made by manual

data collections and assessing the role of class size on those errors. They measured the size

of a class in terms of number of attributes and methods defined in that class and claimed

that class size and number of inner classes had no significant impact on the number of

errors made in manual data collection.

Counsell and Swift (Counsell and Swift 2008) empirically investigated the trends that may

exist in potential-faults (p-Faults) in OO software systems. p-Fault data was collected from

ten Java OSS, using the FindBugs tool (FindBugs 2008). FindBugs extracts six categories

of p-Faults including the code vulnerability p-Fault. They showed that firstly, the majority

of classes with vulnerability p-Faults contained no other forms of p-Fault. Secondly, an

association was identified between the code vulnerability p-Fault and „Bad Practice‟ (a

category of p-Faults extracted by the FindBugs) p-Faults. We used the FindBugs tool to

extract the six categories of p-Faults/warnings (in this Thesis we use the term „warnings‟ as

opposed to p-Faults used in (Counsell and Swift 2008)) and extrapolated the trends in

warnings extracted from multiple versions of four OSS (Nasseri and Counsell 2008).

In an investigation of evolution of an OSS, Capiluppi et al. (Capiluppi et al. 2004) found

that the system studied grew in terms of number of files, folders, lines of code, source lines

of code and kilobytes. Secondly, the tree-like structure of folders tended to grow „breadth-

wise‟ rather than „depth-wise‟ (This finding was also confirmed in our study (Nasseri et al

2008) that inheritance hierarchies tended to grow breadth-wise rather than depth-wise). In

a further study of two OSS, Capiluppi and Ramil (Capliluppi and Ramil 2004) claimed that

the evolutionary attributes of the two systems manifested some similarities at a high level

of abstraction. In addition, the two systems, due to the different characteristics also showed

 40

discrepancies in their evolutionary behaviour. The evolution of one of the systems was

found to be adaptable (exhibiting a high growth rate), while the evolution of the other was

found to stagnate in certain releases and did not exhibit a significant growth rate.

Stamelos et al. (Stamelos et al. 2002) reported the results of a pilot study assessing the

structural quality of code in OSS. They argued that the quality of the code delivered by

OSS was lower than expected by the industrial standard which however, had potential for

further improvements. Stamelos et al. also argued that OSS may require the definition of

their own quality standard suggesting that the nature of OSS development should be taken

into account when defining its quality.

The general tenet also holds that software complexity increases as a system evolves unless

work is done to impede its rise. In a relatively recent study, Sangwan et al. (Sangwan et al.

2008) investigated the structural complexity of three OSS as they evolved. They argued

that as the studied systems evolved, their structural complexity moved either from lower

design structural levels to higher levels or from higher levels downwards. In the Thesis

presented, we investigated the changes of inheritance in the form of new classes, deleted

classes and moved classes in four OSS through multiple versions and found that classes

were often moved or relocated from one level to another within the hierarchy (Chapter 5

and Nasseri et al 2009).

2.2.5 Software Refactoring

Since we are interested in changes of inheritance we believe one way to explore the

structural changes of a system is to extract the refactorings applied to that system.

Software refactoring is yet another technique which may challenge the inheritance

structure of a system. Extracting refactoring data from a system can help observe the

continuous changes made to that system. The term refactoring was initially used by

Opdyke and Johnson (Opdyke and Johnson 1990), referring to the structural improvement

of a system. In Fowler‟s text (Fowler 1999) software refactoring was defined as: “…a

change made to the internal structure of software to make it easier to understand and

cheaper to modify without changing its observable behaviour”. Refactoring/restructuring

is used to improve program comprehensibility and ease system modification, which

 41

therefore promotes software maintenance and reuse (Johnson and Foote 1988, Chikofsky et

al. 1990). Software refactoring, due to its major role in software maintenance, has received

a great deal of attention from SE research community (Fowler 1999, Opdyke and Johnson

1993, Kerievsky 2004). In the PhD work of Opdyke (Opdyke 1992), various types of

refactorings were introduced. Opdyke‟s work focused on introduction of refactoring

related to inheritance and aggregation. In a later study, Opdyke and Johnson (Opdyke and

Johnson 1993) showed how to form an abstract class from an existing concrete class using

refactoring. In that study, the process of refactoring was broken down into a sequence of

refactoring steps and an approach was presented for automation of those refactoring steps.

Johnson and Opdyke (Johnson and Opdyke 1993) introduced several refactorings including

conversion of inheritance into aggregation and how to re-organise aggregation and

inheritance hierarchies in a system by shifting variables and methods between classes.

Tokuda and Batory (Tokuda and Batory 2001) presented a study showing how refactoring

can be carried out in an automated form. They carried out an automatic refactoring of

fourteen thousand lines of code. Mens and Tourwe (Mens and Tourwe 2004) carried out an

investigation of refactoring and the motivation for refactoring code smells (a code smell is

an indication of a problem in a segment of code (Fowler 1999)). They reported that the

application domains played a significant part when identifying the type of refactorings to

be carried out. Counsell et al (Counsell et al. 2003) empirically investigated the trends of

changes in fifty-two Java library classes over a period of three years. They showed that a

significant number of changes were made at the method signature level, nearly the same

amount of addition was found at the method call level. They also claimed that conscious

refactoring is generally not undertaken by developers.

In (Counsell et al. 2006a), an analysis of seven OSS from a refactoring perspective was

reported. They showed that there were six commonly used or „core‟ refactorings among

fifteen extracted from the seven systems. They also argued that in the seven systems

studied, very few inheritance and encapsulation based refactorings were used. In our

research we also use the refactoring data extracted in (Counsell et al. 2006a) and compare

them to the method an attribute changes in those systems (Chapter 4 and Nasseri and

Counsell 2009a, Nasseri and Counsell 2009b). Demeyer et al. (Demeyer et al. 2000)

conducted a study introducing a set of four heuristics to detect addition/deletions or

 42

refactorings in different versions of a system. They argued that their approach was highly

effective when conducting reverse engineering in OO systems.

The relationship between refactoring and unit testing was investigated by van Deursen and

Moonen (van Deursen and Moonen 2002). They introduced a testing taxonomy and

stressed the use of test-first refactoring (this type of refactoring takes into consideration

existing test cases) as a starting point when undertaking refactoring. In an empirical study

of seven Java systems, Advani et al. (Advani et al. 2005) investigated whether software

systems undergo refactoring activity? If so, what types of refactorings were commonly

undertaken? They claimed that firstly, simple refactorings were most commonly

undertaken by developers. Secondly, refactorings predominantly occurred in the middle

versions of a system not in earliest and/or latest versions. Finally, the number of

refactorings related to inheritance was found to be relatively low. In a later study, Advani

et al. (Advani et al. 2006) described an automated tool for collection of refactoring data

from multiple versions of a system. The tool was designed to extract refactoring

information from Java systems.

In our research, we empirically compared the changes of methods and attributes within

inheritance hierarchies and refactorings carried out through multiple versions of four Java

OSS (see Chapter 4). The refactoring data used was extracted using an automated tool,

details of which can be found in (Advani et al. 2006).

2.3 Methodology Adopted

In this section, we present the methodology adopted for our research including a discussion

of the available research methods in SE (Section 2.3.1); Section 2.3.2 presents our research

design including forming research objectives, formulating hypotheses, sample selection,

sampling procedure and criteria for choosing the subject systems, a description of the

subject systems, data collection, definition of the software metrics used and statistical

techniques employed.

 43

2.3.1 Research Methods in Software Engineering

There are two research approaches available that can be adopted when conducting

research. 1) qualitative research and 2) quantitative research. Qualitative research is

concerned with people‟s views and attitudes in the form of non-numerical data towards a

particular research question (Seaman 1999). It is often conducted using interviews,

observations and questionnaires. Quantitative research is concerned with the examination

of numerical forms of data in order to answer a particular research question (Perry et al.

2000). The selection of research approach depends on the context of research question and

preference of researcher called the research methodology. In SE, research is conducted to

improve the current situation of software, inform the SE community of any problems that

may be associated with contemporary software development and introduce solutions to

those problems. Fortunately, research in SE is versatile. It can be conducted using either

qualitative or quantitative or in amalgamation (Wood et al. 1999).

For the research presented in this Thesis, we adopted a quantitative approach. We

conducted a product based analysis using a set of eight Java OSS. Our research is centred

around inheritance features of OO systems from an evolutionary perspective.

2.3.2 Research Design

Empirical studies in SE often use techniques to conduct research in the form of case

studies, experiments, and surveys to empirically scrutinize a new phenomenon or replicate

an already investigated phenomenon. However, the validity of the results is a key concern

in empirical studies. The results of a study, using any method (whether case study,

experiment and/or survey methods), should be valid from several perspectives. Researchers

must take into consideration the construct validity (i.e., the degree to which the measured

concept can be measured accurately in a different way), internal validity (i.e.,

demonstrating the dependency between independent and dependent variables), and finally,

external validity (i.e., the degree to which the results of the study can be generalized). In

addition, replication plays a key part in the validity of research outcomes. It determines the

 44

level of confidence that a reader should have in the outcomes of an investigation on a

particular research question (Fenton and Pfleeger 2002).

In this research, we used product archived analysis using multiple versions of eight Java

OSS. Our technique can be claimed to be similar to multiple case studies. However, it is

different from experiments and survey methods. We used a static analysis of source code

of eight Java OSS to extract OO metrics from versions of the systems using an automated

tool described in Section 2.3.2.6.

The selection of our approach is justified by the fact that software artefacts can provide a

meaningful insight into how professional software developers use and maintain inheritance

which in turn provides an insight into the evolution of inheritance. Using this approach, we

were able to reveal patterns of change in multiple versions of the studied systems, which

was not possible by using a single case study, experiment or survey method. In addition,

we observed that in the past researchers have used relatively small systems to experiment

the maintainability of inheritance (Daly et al. 1996, Cartwright 1999, Harrison et al. 2000).

We believe that analysing real-world large systems can bring to light the characteristics of

inheritance that may go undetected when analysing a small system.

2.3.2.1 Forming research objectives

Identifying research objectives is a significant part of any research project. It helps clarify

research direction on a step-by-step basis. After the research problem has been identified

the next phase of research project management is to identify a set of goals to be

accomplished.

2.3.2.2 Formulating hypotheses

In this Thesis we tested a set of hypotheses relating to inheritance, cohesion, coupling and

class size, presented in Chapters 5 and 6. Speculation is an important aspect of an

investigation. Hypotheses can help researchers speculate on the expected results and the

direction of their investigation. During the process of generating hypotheses, a researcher

must provide a set of ground basis indicating why they believe that the hypothesis will be

 45

supported, given by the available data. In other words, the theoretical aspects of a

hypothesis should be taken into consideration when formulating a hypothesis.

Furthermore, hypothesis testing also requires identification of appropriate data closely

related to cause and effect of the hypothesis. The data should be categorized into two

groups, independent and dependent variables. An independent variable refers to a set of

data which may have an impact on another set of data (dependent variable) and dependent

variable is a set of data which changes as a result of a change in independent variable.

After the independent and dependent variables have been determined, an appropriate

statistical test should be identified to scientifically test the impact of independent variable

on the dependent variable(s). Hypotheses consist of a null hypothesis and an alternative

hypothesis. A null hypothesis speculates that an independent variable has no significant

relationship with dependent variable(s), and an alternative hypothesis speculates that a

correlation exists between independent and dependent variables (Field 2006). Researchers

speculate that the alternative hypothesis is true, unless the null hypothesis indicates the

opposite.

2.3.2.3 Sample selection

Generalization of results is an increasingly important issue in empirical studies. Sampling

is the process of selection of subjects/objects for a study. Researchers should adhere to

scientific sampling when conducting empirical studies. It improves the generalizability of

the outcomes of their investigation to a wider context (Kitchenham et al. 2002). There are

two main designs of sample selection, 1) probabilistic and 2) non-probabilistic. Probability

sampling uses an arbitrary or random selection of samples while non-probability sampling

uses a non-random selection. This means that non-probability design sets a selection

criterion by identifying the population which the samples represent. The population of a

sample is a group(s) of people to which the results may be generalized. However, the main

challenges that researchers face, when defining samples, is identification of the population

elements, and selection of a representative sample to represent that population. When

conducting artefact based empirical studies, it is impossible to access and analyze all

available software artefacts and include them all in a single study. For generalization

purposes, researchers often use the non-probability design by which they define a set of

 46

selection criteria, identify the population of interest and select a sample representing the

population.

2.3.2.4 Sampling procedure and criteria for choosing the subject systems

For this Thesis, we opted to use a non-probability sampling design to carefully select a set

of eight Java OSS. We justify the selection of non-probability approach by the fact that it

was unfeasible for us or any other researcher to include all available systems in only one

study. Researchers, due to the restrictions of time, cost and accessibility of software

systems, should limit their selection and explicitly describe their inclusion and exclusion

criteria for the systems they are using. The non-probability purposive approach was

therefore used to define the following explicit criteria for the selection of our subject

systems. They all have to be entirely Java systems. The systems should be real, not

experimental. Sufficient versions are available (for a longitudinal study). The systems must

consist of different sizes (in number of classes), and belong to a mix of various application

domains (i.e., GUI applications, game engine, application Server etc). Systems were

selected in „number of downloads‟ order from sourceforge.net. The process of selection

thus resulted in many systems being rejected from candidate systems identified from those

listed in sourceforge.net because they were either a mix of different languages and/or did

not contain multiple versions for download.

Our selection of system samples can also be justified on the basis that five of the eight

systems used in our research were also subject to a previous empirical study (Advani et al.

2006) and three of those five systems were also used in two previous studies (Advani et al.

2005, Counsell et al. 2006a). The three studies analysed those systems from a refactoring

perspective and our research is concerned with the changes in inheritance. We therefore

believe that our findings can inform those of previous studies. We justify our decision to

select the systems from multiple application domains by the fact that it would enable us to

generalize our findings into a broader OO population.

 47

2.3.2.5 Description of the subject systems

The following is a description of the subject systems. The eight systems in ascending order

of number of versions are as follows:

1. HSQLDB: a relational database engine implemented in Java. This system

comprised 6 versions. HSQLDB started with 56 classes in first version and

comprised 358 classes by the final version.

2. JColibri: an OO framework in Java for Case-Base Reasoning (CBR) system.

JColibri comprised 8 versions. It started with 179 classes in version 1 which

increased to 417 classes by version 7 and dropped to 228 Java classes in version

8.

3. JasperReports: a business intelligence and reporting engine. This system

comprised 12 versions. JasperReports started with 818 classes in version 1 and

comprised 1098 classes by the final version.

4. EasyWay: a 2D Java game engine. This system comprised 21 versions.

EasyWay started with 183 classes in version 1 and comprised 197 classes by

final version.

5. SwingWT: an implementation of the Java Swing and AWT APIs. This system

comprised 22 versions. SwingWT started with 50 classes in its first version and

increased in size to 620 by the final version.

6. JAG: Java Application Generator. Generates working projects containing

complete J2EE applications. This system comprised 23 versions. JAG started

with 137 classes in its first version and contained 136 classes by the final

version.

 48

7. JBoss: a standards-compliant, J2EE based application server implemented in

Java. 27 versions of this system were available starting from version 8. JBoss

was the largest system in size. It contained 3934 classes in version 8 and

variably evolved to 9082 classes by the version 34 (its final version when

accessed). The size of JBoss exceeded 10000 classes in versions 27, 30 and 33.

8. Tyrant: a graphical fantasy adventure game. 45 versions of this system were

studied. Tyrant started with 122 classes and finally ended with 273 classes by

the final version.

2.3.2.6 Data collection and metrics definition

It is important for a researcher to analyze whether the software metric used is well

defined and valid (Fenton and Pfleeger 2002). This analysis ensures whether the

software metric(s) actually measures the attribute(s) of a product, process or project

which it claims to measure. For this Thesis, we adopted an automatic approach for data

collection using the JHawk tool (JHawk 2008). JHawk was used to extract OO metrics

from versions of the systems described in Section 2.3.2.5. It uses static analysis of

source code to extract numerous OO metrics in the literature. We justify our selection

of the tool on the basis that it was used and recommended to us by other researchers in

the field of SE (Arisholm and Briand 2006, Arisholm et al. 2007). The following is a

description of the metric definitions used throughout this Thesis:

 1. Depth of Inheritance Tree (DIT): this metric measures the number of

ancestors of a class including „Object‟ from which all classes inherit.

The DIT metric was proposed by Chidamber and Kemerer

(Chidamber and Kemerer 1994). We assume the value of DIT for

class „Object‟ at the root of the entire hierarchy is zero; hence, all

classes declared at level 1 implicitly extend only class „Object‟.

 2. Specialization Ratio (SR): this metric is calculated as: the number of

subclasses of a class divided by the number of its superclasses. High

values of the SR metric imply high level of reuse through

 49

subclassing. The SR metric was proposed by Henderson-Sellers

(Henderson-Sellers 1995).

 3. Reuse Ratio (RR): this metric measures inheritance using the

formula: number of superclasses of a class divided by the total

number of classes. The total number of classes refers to total number

of classes residing in inheritance hierarchy excluding class „Object‟.

The RR metric was proposed by Henderson-Sellers (Henderson-

Sellers 1995). An RR Value close to 1 implies that the inheritance

hierarchy is narrow. An RR value close to 0 implies that the

inheritance hierarchy is shallow.

 4. Number of Children (NOC): this metric measures the number of

immediate subclasses of a class and was proposed by Chidamber

and Kemerer (Chidamber and Kemerer 1994).

5. Number of Methods (NOM): this metric measures the total number

of methods in a class. The NOM metric is that proposed by Lorenz

and Kidd (Lorenz and Kidd 1994) and is similar to that of WMC

(Weighted Methods per Class) of Chidamber and Kemerer

(Chidamber and Kemerer 1994).

6. Number of Attributes (NOA): this metric measures the total number

of local variables plus the total number of class variables (public,

private and protected). The number of attributes metric is that

proposed by Lorenz and Kidd (Lorenz and Kidd 1994).

7. Number of calls to methods within Hierarchy (HIER): this metric

measures the number of method calls that are in class hierarchy for a

class JHawk (JHawk 2008). For example, in Figure 2.1, MethodY in

ClassB calls MethodX defined in its superclass (ClassA) is a call to

a method in the hierarchy.

8. Number of External method calls (EXT): EXT metric measures the

number of method calls in a class to methods of other classes JHawk

(JHawk 2008), excluding HIER calls. For example, in Figure 2.1

MethodY in ClassB calls MethodZ in ClassC which is not in the

same class hierarchy (the external method calls excludes class

Object inherited by every class in Java).

 50

 HIER

 EXT

Figure 2.1. An example of HIER and EXT metrics

9. Lack of Cohesion Of the Methods in a class (LCOM): LCOM

measures the relations of methods and local variables of a class by

counting the number of method pairs accessing different

fields/variables minus the number of method pairs accessing the

same fields/variables. The LCOM metric is that proposed by

Chidamber and Kemerer (Chidamber and Kemerer 1994). A high

LCOM for a class is undesirable and indicates high complexity in

that class.

10. Message Passing Coupling (MPC): The MPC measures the total

number of method calls in the methods of a class to methods of

other classes. In other words, it measures the dependency of

methods of a class on the methods of other classes. This includes

both HIER and EXT. The MPC metric is that proposed by Li and

Henry (Li and Henry 1993).

2.3.2.7 Metrics selection criteria

In this Thesis, we are interested in inheritance based metrics. We aim to measure

inheritance at various levels of granularity (from class to method and attribute levels). The

explicit criteria for measuring inheritance were that the metrics should be related to

ClassC

MethodZ()

ClassA

MethodX()

ClassB

MethodY()

 51

inheritance and should measure the position of a class within the hierarchy from a depth

perspective. We therefore opted to use the DIT as a core metric to measure class location

within the inheritance hierarchies. Since no metric has been introduced to measure the

width of inheritance hierarchies, we inevitably used the DIT and the number of classes at

each level of an inheritance hierarchy instead. Furthermore, we measured the amount of

reuse in a system; we opted to collect the SR, RR and NOC metrics. To measure class size

we collected the number of methods and attributes metrics. Cohesion was measured using

the LCOM and coupling was measured using the MPC, HIER and EXT metrics

2.3.2.8 Statistical techniques

In this Thesis, we used three correlation coefficient analyses (Pearson‟s, Kendall‟s and

Spearman‟s) to investigate the relationship between the size of a class, given by NOM, and

its interaction with other classes, give by the HIER and EXT (Chapter 6). Only two

correlation coefficient analyses (Kendall‟s and Spearman‟s) were employed to investigate

the impact of size and coupling of a class, given respectively by NOM and MPC, on

cohesiveness of that classes, given by LCOM (Chapter 5). In terms of other tests, we used

Mann-Whitney U-tests to investigate the difference between the cohesion of moved

(moved within the hierarchy) and static classes in four systems (Chapter 5). The Mann-

Whitney U-test was also used to investigate the difference between the cohesion of the

classes containing method calls and classes without any method calls (Chapter 6).

Furthermore, we employed the Wilcoxon signed-rank test to investigate the impact of class

movement and re-location on class cohesion (Chapter 5).

Correlation analysis is a statistical test which examines the linear inter-dependency of the

changes in one variable on the changes of another variable (Cohen et al. 2003). The

difference between the types of correlation techniques is that Spearman‟s and Kendall‟s

correlation coefficient analyses are applicable when the data is non-parametric (where the

data assumes a normal distribution); whereas Pearson‟s correlation is pertinent to a

parametric set of data.

A Mann-Whitney U-test is an analysis of the differences between the distributions of two

samples (Hinkle et al. 1995). The Mann-Whitney U-test is an alternative to the two-sample

 52

student‟s t-test when the criteria set for the t-test is not met. The Mann-Whitney U-test

requires the data to have an ordinal scale and be non-parametric. The Wilcoxon test is also

a non-parametric test equivalent to student‟s t-test and is used when the criteria set for the

t-test is not met (Wilcoxon 1945). The Wilcoxon test is used for the case of two related

samples or repeated measurements on a single sample.

2.4 Summary

In first part of this chapter, we provided an overview of the related work in the area of

empirical SE, software metrics, inheritance, software maintenance and evolution and

refactoring. We also briefly explained how those works are related to our research. In the

second part of the chapter, we presented a discussion of the methodology used to conduct

our empirical research including, the design of the study, a description of the sample

systems selected, a justification of our sample selection, the definition of software metrics

used, criteria for selection of software metrics, data collection and statistical techniques

used.

The following chapters will present a thorough empirical investigation of trends of changes

made to inheritance hierarchies in Java OSS. The investigation helped us model the

changes of inheritance and build a body of knowledge of evolutionary behaviour of the

systems from an inheritance perspective. We examined the changes of inheritance at

various levels of granularity from a class to method and attribute level.

 53

CHAPTER 3 Inheritance and Change in Java OSS

3.1 Introduction

In the previous chapter we provided a survey of related work in literature and the

methodology used to conduct the empirical research in this Thesis. Previous studies of OO

software have reported avoidance of the inheritance mechanism and have cast doubt on the

wisdom of „deep‟ inheritance levels. From an evolutionary perspective, the picture is

unclear - we still know relatively little about how, over time, changes tend to be applied by

developers. Our conjecture is that an inheritance hierarchy will tend to grow „breadth-

wise‟ rather than „depth-wise‟. This claim is made on the basis that developers will avoid

extending depth in favour of breadth because of the inherent complexity of having to

understand the functionality of superclasses. Thus the goal of our study is to investigate

this empirically.

In this chapter, we present an empirical study of seven Java OSS over a series of versions

to observe the nature and location of class changes (additions and deletions) within the

inheritance hierarchies. In addition, we investigate the changes of inheritance at a finer-

grain (at the method and attribute level) in a subset of the seven systems (the same changes

of methods and attributes for the remaining four systems in our system archive is presented

in Chapter 4, and a more detailed analysis of changes of inheritance, in terms of new

classes, deleted classes, and moved classes, in four of the seven systems is given in

Chapter 5). This study is of significance for two reasons. Firstly, if we can predict the

most change-prone parts of a system then we can pre-emptively target refactoring activity

to such parts of a system. Secondly, it may yield information as to how software engineers

view and understand complex legacy systems. The research problem is: how do inheritance

hierarchies in OO software systems evolve over time? More specifically, we conjecture

that „change‟ will not be evenly distributed but will tend to cluster around the top levels

(closer to the root) of such structures.

 54

In Section 3.2, we present the motivation for our empirical investigation, and related

issues. Section 3.3 describes the details of the empirical study, including a description of

the seven systems used, data collected and summary data. In Section 3.4, we present the

data analysis at class, method and attribute level. We then present a discussion of the

results (Section 3.5) and, finally, in Section 3.6, we present a summary of the empirical

study and conclusions. Part of this chapter was originally published in (Nasseri et al.

2008).

3.2 Study Motivation

The original claim for using inheritance was that it modelled data in a structured and

logical fashion, thus aiding the maintenance process (Booch 1993). The motivation for the

study in this chapter stems from a number of sources. Firstly, we know very little about

how inheritance structures evolve over time; the investigation in this chapter seeks to shed

light upon this issue. There is evidence to suggest that developers may find inheritance

difficult to comprehend beyond a specific level (Daly et al. 1996, Cartwright and Shepperd

2000, Harrison et al. 2000). If that is true, then we would expect developers to add classes

at shallow levels of the inheritance hierarchy rather than at deep levels. We posit that

growth will be breadth-wise not depth-wise, thus supporting a growing belief about the use

of inheritance. We believe that a better understanding of the change behaviour, and in

particular the locality, would enable refactoring resources to be targeted more efficiently.

Secondly, we believe that a first-step towards a change prediction model is an appreciation

of current trends in changes made to an inheritance hierarchy. Given that this is a resource

intensive activity, this would clearly be of benefit to software engineers (and potentially

users) since the outcome could be more flexible and responsive software systems.

We present an empirical investigation of trends of inheritance in the evolution of seven of

the eight Java OSS (when this study was conducted only seven systems were available in

our system archive) presented in Section 2.3.2.5. Inheritance-based data was collected and

examined from the systems on a version-by-version basis, to extrapolate the trends of

changes of inheritance structure in the systems studied. Furthermore, we investigate the

changes of methods and attributes in a subset of the seven systems.

 55

3.3 Study Details

3.3.1 The seven open-source systems

The seven OSS on which our study is based were HSQLDB, JasperReports, EasyWay,

SwingWT, JAG, JBoss and Tyrant (see systems 1, 3, 4, 5, 6, 7 and 8 in Section 2.3.2.5).

For this study, we included all available versions of the seven systems. We note that the

„final‟ version represents the latest version available to download and not the end version

of the systems.

3.3.2 Data Collected

For this study, we used the JHawk tool (described in Section 2.3.2.6) to collect inheritance-

based measures from each version of the seven systems. The inheritance metrics collected

were as follows: Depth of Inheritance Tree (DIT), Specialization Ratio (SR), Reuse Ratio

(RR), and Number Of Children (NOC) (see metrics 1, 2, 3 and 4 in Section 2.3.2.6). In

addition, we collected the following size metrics: Number Of Methods (NOM) and

Number Of Attributes (NOA) (see metrics 5 and 6 in Section 2.3.2.6) from a subset of the

seven systems (EasyWay, JAG and JBoss) to discover the finer-grain changes of classes at

each DIT level. The measures were collected from classes of each version of the seven

systems. Note that we refer to a single „inheritance hierarchy‟ of Java throughout the

chapter, since in Java every class inherits from „Object‟. This is distinct from C++ where a

class need not necessarily inherit from any other class. We also make no distinction

between concrete class, abstract class and interface for the purposes of our analysis.

3.3.3 Summary Data

Table 3.1 shows, for each of the seven systems, in order of versions studied, the maximum

(Max), minimum (Min), median (Med) and Mean change values in the number of classes

across the versions studied. By „change‟ we mean positive or negative „growth‟ by either

addition or deletion of classes. For maximum change, Table 3.1 also indicates the

 56

normalized (Norm.) percentage of Max. to indicate what percentage of initial system size

that Max. change represents. For example, the Max. change of 176 for the HSQLDB

represented an increase of 271% in that system over its original size (of 56 classes). We

also include the approximate variance (Var.) values for the set of changes for versions of

each system. For example, the variance of the set of changes from version to version of

the HSQLDB system was 15336.

System Max. Ch Norm. Min. Ch Var. Med. Ch Mean Ch

HSQLDB 176 271% 0 15336 23.5 58.6

JasperReports 183 22% -77 11696 13.5 23.3

EasyWay 16 9% -18 190 0 0.76

SwingWT 160 320% 0 39327 20.5 27.19

JAG 3 2% -12 17 1.0 1.0

JBoss 4537 115% - 4506 5073056 245 476.9

Tyrant 103 84% -85 1657 0 3.58

Table 3.1. Summary class change data for the seven systems (all versions)

From Table 3.1 we see considerable variation in the behaviour of the systems. However,

the mean change is always positive indicating a tendency to grow in size over time. This is

most pronounced for JBoss. The size of a release or change is also most erratic for JBoss

according to its variance. The EasyWay, JAG and Tyrant systems all have relatively low

median and mean change values. If we consider a stable system as one with a „close to

zero mean change value and low variance‟ then although no single system satisfies these

criteria, JAG and EasyWay seem the most stable of our seven systems. Remarkable is the

fact that Tyrant contained twenty-three „transitions‟ from one version to the next, where no

change in the number of classes was noted (and hence could be considered the most stable

of the seven systems even though it does not have the smallest variance of the systems

studied). It is also worth noting that the number of versions studied is not a particularly

good indicator of size of change. One of the lowest mean changes belongs to Tyrant and

the second largest mean change belongs to HSQLDB. If we view stability through the

Norm. values from Table 3.1, then the JAG and EasyWay systems figure prominently

again (as does the JasperReports system).

 57

3.4 Data Analysis

Our analysis now considers the evidence to support our conjecture that the inheritance

hierarchy grows in „breadth‟ rather than „depth‟. We begin with a coarse-grained analysis

of the trends in numbers (i.e. frequency) of classes at each DIT level on a version-by-

version basis for each of the seven systems.

3.4.1 Coarse-grained DIT analysis

Figure 3.1 gives the frequency of DIT values for classes in the versions of HSQLDB and

shows (apart from DIT level four) a strong tendency for classes to be consistently added

(i.e., representing a net increase) at DIT levels one, two and three throughout. There is

particularly strong evidence of classes being added at DIT levels one and two of the

hierarchy. There is only one single class at DIT level four and this class disappears by

version 6. The strength of addition at DIT level one is illustrated by the fact that of the 302

classes added to this system over the course of the 6 versions, 225 were added to DIT level

one and 66 added to DIT level two. Combined, this represents 96.36% of the total. Only 11

classes were added to DIT level three. Thus we have a system that is characterized by

change at shallow levels of the hierarchy.

0

50

100

150

200

250

300

Version

N
o
.

C
la

s
s
e
s

p

DIT =1 54 104 114 247 246 279

DIT=2 2 23 29 63 64 68

DIT=3 0 3 4 12 12 11

DIT=4 0 0 0 1 1 0

1 2 3 4 5 6

Figure 3.1. DIT frequencies HSQLDB (all versions)

 58

Figure 3.2 shows the same breakdown of the frequency of DIT values for versions of

JasperReports and shows a similar upward trend to that of Figure 3.1. It appears that,

again, the majority of classes were added at DIT levels one and two. Interestingly, the

number of classes at levels four and five (10 and 4, respectively) did not change throughout

the entire set of 12 versions studied. Of the 280 net classes added to JasperReports, only

13 were added to DIT level three. In contrast, 267 classes, representing 95.36% of the total

were added to DIT levels one and two.

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12

Version

N
o
.

C
la

s
s
e
s

p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

Figure 3.2. DIT frequencies JasperReports (all versions)

Figure 3.3 shows the frequency of DIT values on an identical basis for the EasyWay

system. The EasyWay system shows a different trend to that of HSQLDB and

JasperReports. After version 2, there is a drop in the number of classes at DIT level one of

the inheritance hierarchy and then the DIT fluctuates until version 8. It then rises slowly

until version 16, when the trend is then downwards again. Overall however, the net number

of classes added at DIT levels one and two from a total of 14 classes added over all

versions is 13 (i.e., 92.86%) of which 9 are at DIT level one. It is noteworthy that, in

keeping with the result for the JasperReports system, there is also very little activity at DIT

levels three and four for system 3; only one class is added in total to level three throughout

– zero classes were added for DIT level four, which remained consistently at 1 throughout.

 59

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Version

N
o
.

C
la

s
s
e
s

p

DIT=1

DIT=2

DIT=3

DIT=4

Figure 3.3. DIT frequencies EasyWay (all versions)

Figure 3.4 shows the DIT frequencies for the SwingWT system. Since the changes at DIT

five, six and seven is not clear from figure 3.4, we show the fluctuation in classes at those

levels in Figure 3.5. A clear trend for classes to be added at DIT level one is evident again.

In fact, for DIT levels one and two, 400 and 83 classes were added, respectively. This

compares with 19 added classes at DIT level three; a combined total of only 68 classes

were added at levels four, five, six and seven. An interesting feature of levels five, six and

seven is the fluctuation in the number of classes. Figure 3.5 illustrates this feature; while

fluctuating, the trend for classes at DIT level five (and to a certain extent level six) is

upwards.

 60

0

50

100

150

200

250

300

350

400

450

500

1 3 5 7 9 11 13 15 17 19 21

Version

N
o
.

C
la

s
s
e
s

p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

DIT=6

DIT=7

Figure 3.4. DIT frequencies SwingWT (all versions)

0

5

10

15

20

25

30

1 3 5 7 9 11 13 15 17 19 21

Version

N
o
.

C
la

s
s
e
s

p

DIT=5

DIT=6

DIT=7

Figure 3.5. Classes at levels 5, 6 and 7 in SwingWT (all versions)

Figure 3.6 shows the trend in DIT frequencies for the JAG system. In contrast to data from

the other four systems (with the possible exception of the EasyWay system), the DIT level

one values remain relatively static over the course of the versions studied. Only 2 classes

are added to level one in total between versions 1 and 23. The number of classes at level

two actually falls from 15 to 12 over the same number of versions. For DIT levels three

 61

and four, in common with the JasperReports system, there is no change from their initial

values.

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Version

N
o
.

C
la

s
s
e
s

p

DIT=1

DIT=2

DIT=3

DIT=4

Figure 3.6. DIT frequencies JAG (all versions)

For scaling purposes, Figure 3.7 shows the DIT level one trend for the JBoss (the system

has the highest number of start and end set of classes). A fluctuating pattern can be seen

and the sharp peak seems to occur between versions 27 and 30. Figure 3.8 shows the DIT

frequencies for the remaining DIT levels two to seven. A striking feature of Figure 3.8

when compared with Figure 3.7 is the strong similarity between the graphs for classes at

DIT level one and those at DIT level two. Both graphs peak and trough at the same times

and there seems a common symmetry between the two lines. There is also a noticeable

correspondence (although not nearly as pronounced) between the line graphs for DIT level

two and DIT level three. Both of these observations were unexpected results from the

analysis; they suggest that there is a strong correlation between the numbers of classes

found at DIT level one, DIT level two and, from the evidence presented, that at level three.

 62

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Version

N
o
.

C
la

s
s
e
s

 p

Figure 3.7. DIT level 1 frequencies for JBoss (all versions)

0

200

400

600

800

1000

1200

1400

1600

8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

Version

N
o
.

C
la

s
s
e
s

p

DIT=2

DIT=3

DIT=4

DIT=5

DIT=6

DIT=7

Figure 3.8. DIT level 2-7 frequencies for JBoss (all versions)

Figure 3.9 shows the trend in DIT frequencies for classes in the Tyrant system. Version 5

seems to be the point where significant changes are made to the classes at each level and

the rise in DIT levels one and three values seems to be accompanied by a corresponding

drop in DIT level two values. One noticeable feature of Figure 3.9 is the transition at

 63

version 26, when the number of classes at levels one, two and three move from a „plateau-

like‟ pattern and start increasing.

0

20

40

60

80

100

120

140

160

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Version

N
o
.

C
la

s
s
e
s

p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

Figure 3.9. DIT frequencies for Tyrant (all versions)

The emerging theme from Figures 3.1-3.9 is clear in terms of where the majority of classes

are added. For each of the seven systems analyzed, DIT level one is where the main

activity lies. To emphasize the difference between DIT levels one, two and three we

calculated that, from a total number of 6397 net added classes over all versions of all

systems:

 5181 classes (i.e., 80.99%) were added to DIT level one,

 972 classes (i.e., 15.19%) were added to DIT level two and,

 244 classes (i.e., 3.81%) added to DIT level three.

Moreover, only 25 classes were added to level four and 27 classes to level five (we note

that only 4 of the 7 systems actually had classes at level five). At deeper levels, there is

strong evidence of classes being removed. At DIT level five, 30 classes were added in

total; at level six, 11 classes were added and at DIT level seven, only 4 classes were added.

 64

3.4.2 Specialization and reuse ratio

The main objective of the research in this chapter was to show that the Java inheritance

hierarchy tends to grow in width rather than depth. Based on previous studies (Bieman and

Zhao 1995, Daly et al 1996, Harrison et al. 2000), we believe that developers will add

classes to low (shallow) levels of the inheritance hierarchy rather than extend existing

classes. One measure that might further inform our analysis is the Specialization Ratio

(SR) (Henderson-Sellers 1995), which measures the extent of subclassing. A low SR

implies that classes will tend to „cluster‟ around lower (shallow) levels of the inheritance

hierarchy (i.e., DIT levels one and two). A high specialization ratio suggests a high degree

of subclassing. A further indication of the lack of subclassing is given by the Reuse Ratio

(RR) (Henderson-Sellers 1995). An RR value close to 1 implies that the inheritance

hierarchy is narrow and an RR value close to zero implies that the inheritance hierarchy is

shallow (Henderson-Sellers 1995). Table 3.2 shows the summary data for the SR and RR

metrics for the seven systems.

System Med. SR Max. SR Med. RR Max. RR

HSQLDB 0 0 0 0.8

JasperReports 0 0 0 0.86

EasyWay 0 0 0 0

SwingWT 0 14 0 0.75

JAG 0 0.33 0 0.86

JBoss 0 68 0 0.86

Tyrant 0 0 0 0.67

Table 3.2. SR and RR summary data for the seven systems

Table 3.2 gives a good representation of the lack of subclassing across the seven systems.

The median SR and RR values are zero for all systems across all versions. Moreover, the

maximum and standard deviation values represent values from a very small sample of

classes for which the SR and RR were computed. For example, for version 1 of the JBoss

system, the SR values for only 8 of the 3934 classes were non-zero (i.e., 0.2%); equally,

the RR for only 99 of the same 3934 classes was non-zero (i.e., 2.52%). For version 16,

only 9 SR or RR values from the 5085 classes in that version were non-zero. For the 9082

classes in version 34, only 8 SR values and 118 RR values were non-zero. The same

 65

pattern applied to each of the other six systems. The very low values for the SR and RR

values imply, by definition, that reuse through subclassing was very low in each of the

seven systems and that the shape of the inheritance hierarchy was very shallow.

Considering the large number of classes added at DIT levels one and two and documented

in the preceding sections, this did not come as a surprise. However, this evidence does

support the claim of the research that developers do not tend to add classes at deep levels

of the inheritance hierarchy, but rather at shallow levels, itself causing a broadening of the

entire hierarchy.

3.4.3 Number of children

A final indication of the structure of the inheritance hierarchy and how it may evolve is

given by the Number of Children (NOC) metric. The metric measures the number of

immediate subclasses for a class. To find support for our original claim, we would expect:

1. A relatively high proportion of the classes at DIT levels one and two to have a

large number of children.

2. Classes at DIT levels three, four, five, six and seven to have a very low proportion

of children.

To investigate this feature, we ranked all NOC values in descending order and determined

the DIT values for the first 50 classes in the generated sequence; we did this for both the

first and last versions of each system (N.b., the SwingWT system only contains 50 classes

in its first version explaining why we chose the number 50 as a sample size). The extracted

profile is given in Table 3.3. For example, for the HSQLDB system, when we ranked the

top fifty NOC classes, 48 of the classes inspected (i.e., 96%) had a DIT of one and only 2

classes had a DIT of two. It can be seen that the vast majority of the classes are taken from

DIT level one. In every case except for the first version of Tyrant, over 50% of the top 50

classes when ranked on NOC were drawn from DIT level one. In over half of the cases,

this percentage exceeds 70% and, in five cases, equals or exceeds 80%.

 66

HSQLDB DIT=1 2 3 4 5 6

First version 48 (96%) 2 0 0 0 0

Last version 39 (78%) 11 0 0 0 0

JasperReports

First version 30 (60% 16 3 1 0 0

Last version 28 (56%) 18 3 1 0 0

EasyWay

First version 43 (86%) 6 1 0 0 0

Last version 41 (82%) 8 1 0 0 0

SwingWT

First version 29 (58% 16 5 0 0 0

Last version 28 (56%) 10 3 5 2 2

JAG

First version 40 (80%) 5 5 0 0 0

Last version 40 (80%) 5 5 0 0 0

JBoss

First version 37 (74%) 10 3 0 0 0

Last version 39 (78%) 9 2 0 0 0

Tyrant

First version 16 (32%) 16 8 10 0 0

Last version 31 (62%) 11 8 0 0 0

Table 3.3. Breakdown of DIT ranked on NOC for first and last versions

Moreover, the top ten classes (ranked on NOC) were invariably drawn from DIT levels one

and two. For example, of the top ten classes for the first version of HSQLDB, 9 were at

DIT level one and 1 at DIT level two. Equally, for the first version of SwingWT, the top

ten classes comprised 8 classes at DIT level one and 2 classes at level two. For the final

version of the JBoss system, 9 of the top ten classes were at DIT level one and only 1 at

DIT level two. Figure 3.10 shows this trend and the large number of children associated

with those classes (NOC values actually ranged from 14 to 69); this breakdown is typical

of the seven systems studied. Figure 3.11 shows the same data for the final version of

Tyrant.

 67

Figure 3.10. DIT and ranked NOC for JBoss

Figure 3.11. DIT and ranked NOC for Tyrant

The data in Table 3.3, and the evidence presented confirms our claim that the majority of

activity is at DIT levels one and two, with very little activity at, and beyond, level three.

Only 21 of the 700 classes (i.e., 3%) from Table 3.3 were found to be at levels five to

seven.

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5

DIT

N
O

C

C

0

10

20

30

40

50

60

70

80

0 0.5 1 1.5 2 2.5

DIT

N
O

C

C

 68

3.4.4 Coarse-grain Method and Attribute analysis

The preceding analysis shed some light on the trends of changes of inheritance at class

level. In this section we empirically investigate the evolutionary behaviour of inheritance

at a finer-grain (at method and attribute level) in a subset of the systems (EasyWay, JAG

and JBoss, see systems 4, 6 and 7 in Section 2.3.2.5). The purpose of this analysis is to

determine if patterns in methods and attributes follow the same trend as that of classes.

3.4.4.1 Method Analysis

Table 3.4 presents the summary data for the three systems in the form of maximum (Max.),

minimum (Min), median (Med) and Mean change values in the number of methods across

the versions of the three systems (EasyWay, JAG and JBoss). The „Ch‟ in Table 3.4.

indicates an increase or decrease in the number of methods (NOM). In keeping with the

format of Table 3.1, Table 3.4 also shows the normalized (Norm.) percentage of the Max.

to indicate what percentage of initial system size (in NOM) that Max change represents.

For example, the Max. change of 220 for the EasyWay represents an increase of 17% in

that system over its original size (1266 methods). Similarly, Table 3.4 also shows the

variance (Var.) values for the set of changes (in NOM) in versions of the systems. For

example, the variance of the set of changes from version to version of EasyWay was 3893.

System Max.Ch Norm. Min.Ch Var. Med.Ch Mean Ch

EasyWay 220 17% 0 3893 4 30

JAG 100 8% 0 655 8 19.14

JBoss 26934 96% 24 76849781 5366 8046.80

Table 3.4. Summary method change data for the three systems (all versions)

From Table 3.4, we see that the mean values are always positive, suggesting the growth of

the systems in terms of NOM. The low values of variance and median change for EasyWay

and JAG suggest that the systems are the most stable in the three systems studied. The

normalized percentage (Norm.) change value for JBoss indicates that the system changes

significantly in terms of NOM from its initial versions. Considering the Norm. change

 69

values we see that JAG, seems to be the most stable system in terms of NOM. This can

also be seen in Table 3.1 where the Norm. value for JAG was 2%.

Figure 3.12 shows the frequencies of NOM at each DIT level for the EasyWay system.

From Figure 3.12 the NOM at DIT one falls after version 2 and then fluctuates until

version 14 which then starts to rise in version 15. The total NOM added at DIT one and

two is 184 (i.e., 96.84%) of which 141 methods were added at DIT one and 43 methods

added at DIT two. The total NOM added at DIT three was 6 (with the addition of only 1

class, see Figure 3.3) which accounts for 3.16% overall; the NOM at DIT four stayed static

throughout the entire set of 21 versions. The change in NOM for EasyWay shows a similar

pattern to that of changes in number of classes (see Figure 3.3).

At a lower granularity we note that lower level (method and attribute level) analysis can

often show the changes that may go undetected when analyzing the system at a higher

granularity (i.e., class and package level). For example, in the transition between versions 2

to 3 of EasyWay, the number of classes at DIT two increases by only 1 class (from 20 to

21); however, in the same transition the NOM in the same level increases by 35 methods.

Similarly, between versions 4 to 5, the number of classes at DIT two stays constant;

however, the NOM in the same level increases from 190 to 191. This suggests that while a

system may not change in number of classes, there may be significant within-class

maintenance activity in the system.

 70

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Version

N
o
.

M
e
th

o
d
s

 p

DIT=1

DIT=2

DIT=3

DIT=4

Figure 3.12. NOM frequencies for EasyWay (all versions)

Figure 3.13 shows the frequencies of NOM at each DIT level for JAG system. From

Figure 3.13, a strong tendency can be seen for methods to be added at DIT one. A total of

290 methods were added at DIT level one accounting for 100% of all methods added. The

NOM at DIT level two started at 99 which then fell to 69 in version 6 and remained static

throughout the 23 versions of the system. Interestingly, the NOM at DIT three and four

also remained static at 67 and 3 respectively, throughout the remaining versions of the

system.

 71

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Version

N
o
.

M
e
th

o
d
s

p

DIT=1

DIT=2

DIT=3

DIT=4

Figure 3.13. NOM frequencies for JAG (all versions)

Figure 3.14 shows the frequencies of NOM at each DIT level for JBoss system. For

succinctness, Figure 3.14 only shows the breakdown of the NOM at DIT one. JBoss is the

largest system in number of classes, methods and attributes. A fluctuating trend can be

seen in NOM at DIT one similar to that observed in number of classes (Figure 3.7). Figure

3.15 shows the frequencies of NOM at DIT two to seven in JBoss. In Figures 3.14 and

3.15, the NOM at DIT one and two tends to change at the same time. This may be due to

the fact that the number of classes at these two DIT levels (see Figures 3.7 and 3.8) tends

to change in the same manner as the NOM in Figures 3.14 and 3.15. In JBoss, the total

number of methods added was 33705 of which 28420 (i.e., 84.32%) were added at DIT

one, 4107 (i.e., 12.18%) added at DIT two and only 1178 (i.e., 3.49%) added at DIT levels

three to seven.

 72

0

10000

20000

30000

40000

50000

60000

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Version

N
o
.

M
e
th

o
d
s

 p
p

Figure 3.14. NOM frequencies for JBoss for DIT 1 (all versions)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

Version

N
o
.

M
e
th

o
d
s

 p
p

DIT=2

DIT=3

DIT=4

DIT=5

DIT=6

DIT=7

Figure 3.15. NOM frequencies for JBoss for DIT 2-7 (all versions)

To summarise the analysis of NOM, we calculated the changes in terms of increase

(additions) and decrease (deletion) of methods in all versions of the three systems. We

found that, from a total of 210238 changes (additions and deletion of methods) in all

versions of the three systems:

 73

1. 173932 changes (i.e., 82.73%) were made to classes at DIT level one,

2. 22428 changes (i.e., 10.67%) were made to classes at DIT level two and,

3. 13878 changes (i.e., 6.6%) were made to classes at DIT level three and beyond.

3.4.4.2 Attribute Analysis

In addition to classes and methods, we also analyzed the changes in the systems from an

attribute perspective in the three systems. Table 3.5 shows the summary data for changes

of number of attributes (NOA) in the three systems, in order of number of versions studied

in the same format as Tables 3.1 and 3.4.

Table 3.5. Summary attribute change data for the three systems (all versions)

From Table 3.5 we observe that the values of variance and median change of NOA for

EasyWay and JAG were relatively low. The two systems were therefore considered as the

most stable systems (in terms of NOA). Interestingly, these two systems were also

considered as the most stable systems in terms of number of classes and methods studied.

The variance value for JBoss is considerably higher in comparison with the other two

systems. For scaling purposes, Figure 3.16 shows the total changes of NOA at each DIT

level for EasyWay and JAG systems and Figure 3.17 shows the same trend for JBoss.

System Max. Ch Norm. Min. Ch Var. Med. Ch Mean Ch

EasyWay 136 13% 0 1687 1 18.8

JAG 83 14% 0 494 11 17.72

JBoss 10327 98% 7 11271927 1535.5 2888.38

 74

Figure 3.16. The total changes of NOA for Easy and JAG (all versions)

Figure 3.17. The total changes of NOA in JBoss (all versions)

From Figures 3.16 and 3.17, we see that the vast majority of the changes of NOA occur at

DIT one in the three systems studied and the trend of changes is declining as the DIT

increases. This clearly indicates that changes are not spread proportionately.

0

50

100

150

200

250

300

350

400

DIT1 DIT2 DIT3 DIT4

DIT

N
O

A
.
C

h
a

n
g
e

s

 EasyWay

JAG

0

10000

20000

30000

40000

50000

60000

70000

DIT1 DIT2 DIT3 DIT4 DIT5 DIT6 DIT7

DIT

N
O

A
.
C

h
a

n
g
e

s

 75

To summarise the analysis of NOA, we calculated the total and percentage of changes of

NOA at DIT levels one, two and beyond in all versions of the three systems studied. We

observed that, from a total of 75864 net changes over all versions of all systems:

1. 67054 (i.e., 88.39%) changes of attributes were made to classes at DIT one,

2. 6352 (i.e., 8.37%) changes of attributes were made to classes at DIT two and,

3. 2458 (i.e., 3.24%) changes of attributes were made to classes at DIT three and

beyond.

3.5 Discussion

Many issues arise from the analysis in this chapter. The population was a non-trivial set of

OSS projects that had undergone protracted maintenance. One important aspect that needs

to be considered is the threats to the validity of the study. Firstly, we have to consider the

extent to which our non-random sample has impacted our ability to generalize. We have

chosen a set of application domains ranging from computer games to a database

application. Secondly, we have looked at different numbers of versions of each of the

seven systems. While ideally, we would have liked to have had the same number of

versions for each system, we wanted to extract as much information about available data as

possible. Thirdly, while we can make observations about numbers of classes, methods and

attributes at different levels of the inheritance hierarchies, we can not say with any

certainty, or quantify with any certainty, the movement of classes between different levels.

This finer-grained analysis of class movement and relocation in four systems is described

in chapter 5. Fourthly, since we restrict our analysis to structural aspects of the evolution

we do not know why the developers made the choices that they have. A question that arises

from the study is whether we should consider the evolution of systems at shallow levels as

bad practice, since it contradicts the original aim of inheritance? Our belief is maybe not.

Developers will nearly always modify systems in the easiest and quickest way possible and

from that perspective we could not really expect „ideal‟ trends to occur. Furthermore,

systems will inevitably deteriorate over time and re-engineering effort by developers is a

luxury that cannot usually be afforded. In other words, it is not bad practice that leads to

evolution at shallow levels, merely a „fact of life‟ in the maintenance world that systems

 76

will evolve in a manner that conforms to forces dictated by the original architecture and by

previous maintenance effort. Many systems may not be amenable to deep inheritance

hierarchies in the first place, so any additional classes will always be placed at shallow

levels. Previous studies have suggested that graphical-based systems are the most

amenable to extension through inheritance (Harrison et al. 2000). Interestingly, the

SwingWT system in our study did exhibit high levels of inheritance up to DIT seven.

One interesting aspect of OSS is that the developers are often geographically and often

time-zone separated from each other. Often the design documents are not available to each

of the „contributors‟. We offer the explanation that for OSS, developers may add classes at

shallow levels of the inheritance hierarchy because they are unaware of the „bigger design

picture‟. Of course, this does not explain why for previous studies where proprietary

software was used, the same observations have been made, although scale might have a

similar impact. In addition, an anecdotal claim of many developers is that the original

designs of many proprietary systems are not updated as and when changes to the software

are made and this renders those designs virtually unusable. The explanation for the lack of

available design documentation in OSS may therefore be mirrored by outdated designs in

proprietary software.

We also need to consider the implications of our study. One major implication of the

effective flattening of the inheritance hierarchy is the potential maintenance headache of

modifying a class with many children (i.e. its dependencies). Inheritance is a form of

coupling (Briand et al. 1999b) and, in this sense, a short-term „easy fix‟ may be at the

expense of long-term problems - refactoring may have a large role to play in this sphere of

developer activity (Fowler 1999). Finally, it is interesting and ironic that there is previous

empirical evidence to suggest that deep levels of inheritance have been blamed for the

existence of faults (Cartwright and Shepperd 2000); yet, we could suggest that by avoiding

those deep levels of inheritance, the problem may simply have been devolved to shallower

levels of inheritance (further empirical studies would be needed to support this claim).

 77

3.6 Summary

In this chapter, we have described an empirical analysis of the trends in inheritance over

multiple versions of Java OSS. Previous studies have suggested that developers tend to

avoid the use of inheritance at deep levels (Cartwright and Shepperd 2000, Bieman and

Zhao 1995) and that consequently, systems will evolve at very shallow levels (they will

grow „breadth-wise‟ rather than „depth-wise‟). The aim of the research described in this

chapter was to demonstrate whether or not this was the case. A tool (JHawk) was used to

extract inheritance-based metrics from seven OSS. In addition, we extracted size based

metrics (number of methods and attributes) from three systems to investigate the finer-

grain changes of inheritance. The results confirm for the set of OSS studied what many of

the earlier reported studies did for proprietary systems (i.e., low DIT levels). There is also

a strong tendency for classes, methods and attributes to be added at levels one and two of

the hierarchy rather than at deeper levels. Over 96% of classes added over the course of the

versions of all systems were either at level one or level two of class hierarchy. This result

was supported through analysis using the Specialization Ratio, Reuse Ratio and Number of

Children metrics, which showed the extent of reuse in, the shallowness of, and width

within, the inheritance hierarchy, respectively. These metrics supported and informed our

analysis of the DIT and NOC metrics forming the main thrust of the investigation.

Furthermore, we observed that approximately 93% of method and 97% of attribute

changes were made to classes at DIT levels one and two in three of the seven systems

studied. Only over 6% of method and 3% of attribute changes were made to classes at DIT

three and beyond.

The results have relevance for developers in terms of systems maintenance and refactoring.

Predicting change-prone areas of systems will help to target refactoring effort and this may

impact the localization of faults. If the majority of additions of classes, methods and

attributes are made at shallow levels of the hierarchy, then that is possibly where the faults

will be likely to be found as a system evolves.

Since the focus of this Thesis is on trends in inheritance, the following chapter will explore

the changes of methods and attributes at each DIT level and compare those changes to a set

 78

of low-level refactorings applied to initial versions of the systems. The refactoring data

was originally extracted for a previous study (Counsell et al. 2006a) when only initial

versions of the systems were available.

 79

CHAPTER 4 Method and Attribute Evolution and their

Refactorings

4.1 Introduction

In the previous chapter we described the evolution of inheritance by analysing net changes

of inheritance at class level. In Chapter 3 we also empirically investigated the trends of

inheritance at method and attribute level and compared the trends to that of class changes

in a subset of the systems.

While we usually expect an OO system to grow (in number of classes) as it ages, what are

not so obvious are patterns in the evolution of specific class features. In this chapter, we

explore empirical traits of four Java OSS using data extracted by two tools and informed

by a previous study of inheritance depth evolution (Nasseri et al. 2008) which suggested

that a vast majority of changes were made at inheritance levels one and two. The

implication of this result is that, other things remaining equal, the majority of faults will be

invested where the majority of functionality is found (i.e. at levels one and two). In this

chapter, in contrast to the previous, we analyse evolution at the lower level of granularity

given by the „methods‟ and „attributes‟ of a class on an incremental (change per version)

basis rather than absolute class size per version, as studied in the previous chapter.

Exploration of this system facet may inform better targeted re-engineering effort, since it

ignores the overall pattern in favour of low-level, „local‟ change. Equally, while it is

valuable and interesting to study patterns of change in classes, the addition of methods and

attributes to classes may not necessarily follow the same pattern. In addition, evolution at a

finer-grain can identify trends not possible on a class-wide basis; the approach thus

represents a „white-box‟ view of the investigation of evolutionary forces. Our analysis also

allows direct comparison with a set of low-level refactorings extracted by an automated

tool for a previous study (Counsell et al. 2006a).

Section 4.2 describes the motivation for the empirical study. In Section 4.3 we outline the

design of the empirical study including the four systems used, data collected, and summary

 80

data. We then present data analysis (Section 4.4). Section 4.5 provides a discussion of the

results before we present an overall summary of our empirical study in Section 4.6.

We note that a part of this chapter (method evolution and overall refactorings applied) has

been accepted (as one of the best papers) for publication in (Nasseri and Counsell 2009b)

and the remaining part (attribute evolution and attribute related refactorings applied) has

been accepted for publication in (Nasseri and Counsell 2009a).

4.2 Study Motivation

Systems will inevitably grow larger as they evolve even if significant re-engineering is

applied to them at frequent intervals. In Chapter 3 we found that the vast majority of

changes of inheritance occurred at levels one and two of inheritance hierarchy. Very little

activity was found at level three and beyond. The motivation for our empirical study in this

chapter stems from two sources. Firstly, there is a clear distinction between maintenance of

a system through regular changes and that associated with refactoring. The latter represent

„semantic preservation‟ re-engineering of the code while the former can represent almost

any other change made to code. In this chapter, as well as investigating the trends in

method and attribute addition through versions of OSS, we are also interested in exploring

whether low level refactorings (within-class refactorings) are undertaken independently by

developers on a widespread scale or it is simply the case that refactoring tends to focus on

manipulation of methods and attributes and classes at the same time. Secondly, in theory,

an added class should make use of available methods and attributes from the classes it

inherits from, thus conforming to class hierarchy specialisation. But we pose the question

as to whether this actually happens in reality. Scrutiny of trends in methods and attributes

was further motivated by the fact that the vast majority of refactorings apply not at the

class level but at the method and attribute level.

Moreover, many of the refactorings that developers are likely to undertake are at the

method and attribute level (moving methods/fields, extracting methods and renaming

methods/fields pulling up/down methods/fields being examples (Fowler 1999)); it

therefore makes sense to explore whether evolution at that level can give a developer any

 81

insights not afforded at the higher class level. The implication of the analysis and results is

that maintainers should not necessarily look at high-level, class-based system trends when

considering re-engineering effort, but on the incremental low-level features of a system. As

a prima facie guide to where, first, remedial effort may need to be applied and, second, to

provide an insight into where refactoring effort should be applied, analysis at the method

and attribute level seems to show significant promise.

The contribution of the empirical study in this chapter is that the authors know of no other

studies that have looked longitudinally and specifically at the evolution of class methods

and attributes and the relationship with their enclosing classes and that of refactoring. The

over-riding message that the chapter presents is that empirical studies targeted purely at the

class level may miss deviant behaviour at lower levels of granularity and the opportunity

for remedial action therein.

4.3 Study Design

4.3.1 The four open-source systems

We base our analysis on evolution of methods and attributes of four Java OSS (the same

investigation for three systems in our system archive is presented in Chapter 3). The

systems used are as follows: HSQLDB, JasperReports, SwingWT and Tyrant (see systems

1, 3, 5 and 8 in Section 2.3.2.5). For this study, we included all available versions of the

systems.

4.3.2 Data Collected

We again used the JHawk tool (described in Section 2.3.2.6) to collect inheritance and size

metrics from each version of the four systems. The metrics collected were as follows:

Depth of Inheritance Tree (DIT), Number Of Methods (NOM), and Number Of Attributes

(NOA) (see metrics 1, 5 and 6 in Section 2.3.2.6). In addition, we used the refactoring data

extracted from initial versions of the three systems (HSQLDB, JasperReports and Tyrant;

when the refactoring tool was run only initial versions of the systems were available) for a

 82

previous study (Counsell et al. 2006a). In (Counsell et al. 2006a) the SwingWT system was

not included and the refactoring data for SwingWT is therefore not presented in this

chapter either.

4.3.3 Summary Data

Table 4.1 presents the summary data for the four systems with maximum (Max.), minimum

(Min), median (Med) and mean change (Ch) values in NOM across the versions of the four

systems. Table 4.1 also shows the normalized (Norm.) percentage of „Max.‟ indicating

what percentage of initial system size (in NOM) „Max.‟ represents. For example, the

maximum change of 2073 for HSQLDB represented an increase of 213% in that system

over its initial size; finally, Table 4.1 also shows the variance (Var.) for the set of changes

in versions of the systems.

System Max.

Ch

Norm. Min

Ch

Var. Med

Ch

Mean

Ch

HSQLDB 2073 213% 15 667782 684 777.0

JasperReports 838 10% 29 58851 164 238.09

SwingWT 1929 510% 45 232104 370 519

Tyrant 617 63% 0 10232 10.5 47.70

 Table 4.1. Method change data for the four systems

The normalized percentage (Norm.) change values for SwingWT and HSQLDB indicate

that these two systems changed significantly in terms of NOM from their initial versions.

The most striking feature of Table 4.1 is the low median change value for Tyrant. This was

a surprising result considering the fact that the system evolved to its 45
th

 version and we

expected the system to be the most changeable system in the set of systems studied.

Furthermore, the high mean change value for HSQLDB indicates that significant change

(in NOM) has been applied to the system. Table 4.2 presents the summary data in the same

format as Table 4.1 for the changes of NOA in the four systems.

 83

Table 4.2. Attribute change data for the four systems

From Table 4.2, the high normalized percentage (Norm.) values for HSQLDB and

SwingWT compared with the other two systems indicate that these two systems again grew

significantly in terms of number of attributes from their initial versions. This trend was

also found in Table 4.1. The JasperReports and Tyrant systems, on the other hand, showed

relatively slower growth over the period investigated, suggesting that net addition of

attributes was far less frequent.

4.4 Data analysis

The maximum DIT of any class in HSQLDB system was 4. Figure 4.1 shows the

frequencies of the NOM in the HSQLDB system across its six versions. From Figure 4.1,

classes at DIT level one have the highest growth rate in terms of NOM. Classes at DIT

level two and level three also show increases, but at a slower rate. Overall, 3855 methods

were added over the course of the six versions, of which 2928 (i.e., 75.95%) methods were

added at DIT level one and 756 (i.e., 19.61%) at level two. Only 171 (i.e., 4.43%) methods

were added to DIT level three over the course of the six versions studied.

System Max

Ch

Norm. Min

Ch

Var Med

Ch

Mean

Ch

HSQLDB 2028 326% 1 682104 387 583.2

JasperReports 479 13% 7 18179 109 144.72

SwingWT 645 244% 20 25929 165 206.8

Tyrant 341 26% 0 5037 1.5 31.48

 84

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6

Version

N
o
.

M
e
th

o
d
s

 p

DIT=1

DIT=2

DIT=3

DIT=4

Figure 4.1. NOM frequencies HSQLDB (all versions)

Figure 4.2 shows the net NOM added or removed from the versions of HSQLDB on an

incremental basis. For example, between versions 1 and 2, 1517 methods were added at

DIT level one, 253 methods added at level two and 137 methods added at level three.

Equally, the net added NOM falls between version 2 and 3 at every level. A clear single

„peak‟ effect is evident from the figure, suggesting that significant effort was applied to

DIT levels one and two between versions 3 and 4. Between versions 4 and 5, more

methods were removed than added to level one (hence the negative value). As noteworthy

is the fact that HSQLDB saw only a relatively small rise in its overall number of classes

from version 2 to 3 (from 130 to 147). Had we used just classes as a basis of our analysis

as in the previous chapter, we may therefore have missed an important trend in the

evolution of this particular system.

 85

-200

0

200

400

600

800

1000

1200

1400

1600

1800

1--2 2--3 3--4 4--5 5--6

Version

N
o
.

M
e
th

o
d
s

p

DIT=1

DIT=2

DIT=3

DIT=4

Figure 4.2. Net changes in NOM HSQLDB (all versions)

One feature of the evolution of a system that may generally help to explain the trends in

Figure 4.2 is that of refactoring, since according to Fowler (Fowler 1999), evolutionary

„decay‟ is impeded by consistent application of refactoring techniques. Figure 4.3 shows

the trend in refactorings applied to this system in the first four versions. Refactoring data

was extracted using an automated tool, details of which were first reported in (Advani et al.

2006). The tool, capable of extracting fifteen different types of refactoring, was run against

each version of the source code of a particular system and the results tabulated.

From Figure 4.3, it is noticeable that the single „peak‟ of refactorings (between versions 3

and 4) occurred at the same time as the single „peak‟ of net additions of methods to the

HSQLDB system shown in Figure 4.2. This suggests that refactoring effort was applied to

this system at the same time as large-scale addition of methods. Inspection of the actual

refactorings undertaken from the data available revealed a high percentage of the „Move

Method‟, „Rename Method‟ and „Move Field‟ refactorings (Fowler 1999). As their names

suggest, all three refactorings are directly related to the movement of methods and

attributes around classes. (We could not have extrapolated that information through

analysis of class evolution alone).

 86

Figure 4.3. Refactorings in HSQLDB (4 versions)

Further analysis of HSQLDB revealed that most classes were added between versions 3

and 4 (176 classes overall). Figure 4.4 shows the frequencies of NOA in the HSQLDB

system across its six versions. From Figure 4.4, a strong tendency can again be seen for

attributes to be added into classes at DIT level one. The number of attributes at DIT levels

two and three also increases, but to a lesser extent. Overall, 2926 attributes were added

across six versions of the system, of which 2611 (i.e., 89.23%) were added at DIT level

one, 295 (i.e., 10.08%) added at level two and only 20 (i.e., 0.68%) added at level three.

The number of attributes at DIT level four showed no increase whatsoever over the six

versions of the system. One pertinent question that arises from this initial analysis is

whether any classes were added at DIT level four throughout any of the versions?

Inspection of the data revealed that only one class was added at that level throughout the

six versions investigated (i.e., between versions 3 and 4; that class was removed in a later

version (5-6)).

0

50

100

150

200

250

300

350

1 2 3 4

Version

N
o

.
R

e
fa

c
to

ri
n

g
s

R
e

fa
c
to

ri
n
g

s

 87

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6

Version

N
o
.

A
tt

ri
b
u
te

s

p

DIT=1

DIT=2

DIT=3

DIT=4

Figure 4.4. NOA frequencies HSQLDB (all versions)

Figure 4.5 shows the net NOA added or removed (net changes) from the versions of

HSQLDB on an incremental basis. For example, from Figure 4.5, the net NOA added at

DIT one between version 1 and 2 was 377; 46 attributes were added at DIT two and only 4

attributes added at DIT three. It is notable that while 12 classes were added at DIT level

three throughout the versions studied, only 4 attributes were added in that time. From the

same figure, the maximum change of NOA takes place between versions 3 to 4. This trend

can also be observed in changes of NOA (Figure 4.2) suggesting that the system underwent

major re-engineering between these two versions. From Figures 4.4 and 4.5, we see that

DIT one and two is where the vast majority of activity (addition and deletion of NOA)

takes place; developers tended to be relatively inactive at deeper levels of the inheritance

hierarchy.

 88

-500

0

500

1000

1500

2000

1--2 2--3 3--4 4--5 5--6

Version

F
re

q
u
e
n
c
y

 p

DIT=1

DIT=2

DIT=3

DIT=4

Figure 4.5. Net changes in NOA HSQLDB (all versions)

The actual values of the net changes of classes at different DIT levels in six versions of

HSQLDB are summarized in Table 4.3. There is a clear trend for classes to be added at

shallow levels of the hierarchy and not necessarily in version 1, but between versions 3 and

4. If classes are being added primarily at levels one and two, then we could probably

expect a corresponding rise in added attributes for those classes. This is based on the fact

that classes at levels one and two by sheer virtue of their level would have, on average,

fewer inherited class features than let‟s say a class at level four. By definition, the deeper

the class, the greater opportunity for inheritance from classes above. Figure 4.5 and Table

4.3 show that net change in NOA is not always accompanied by a corresponding change in

classes.

Version DIT1 DIT2 DIT3 DIT4 Total

1-2 50 21 3 0 74

2-3 10 6 1 0 17

3-4 133 34 8 1 176

4-5 -1 1 0 0 0

5-6 33 4 -1 -1 35

Table 4.3. Net class additions HSQLDB (All versions)

 89

According to Fowler (Fowler 1999) developers should refactor „mercilessly‟ and apply

various types of refactoring as good practice. However, all empirical evidence to date

suggests that only simple refactorings are undertaken frequently. For example, two studies

by Counsell et al. (Counsell et al. 2003, Counsell et al. 2006a) have found that the majority

of refactorings were simple renaming of methods and fields. More „complex‟ refactorings

such as those related to inheritance were found to be applied less frequently. One could

argue that renaming and moving features is part of any regular maintenance activity and

not necessarily exclusive to the realm of refactoring. We could be more equivocal in our

stance if we looked at the frequency with certain refactorings had been applied to a system.

Figure 4.6 shows the trend in attribute-based refactorings applied to the HSQLDB system

in the first four versions. We note that when the tool was run, version 4 was the latest

available version of HSQLDB. Fifteen refactorings were extracted by the tool including:

Move Field, Pull Up Field, Push Down Field and Rename Field, the description and

motivation for which is as follows:

1. Move Field. “A field is, or will be, used by another class more than the class in

which it is defined. Create a new field in the target class, and change all its users.”

Fowler (Fowler 1999).

2. Pull Up Field. “Two subclasses have the same field. Move the field to the

superclass.” Fowler (Fowler 1999).

3. Push Down Field: “A field is used only by some subclasses. Move the field to those

subclasses.” Fowler (Fowler 1999).

4. Rename Field: this refactoring is applied to make the meaning of a field clearer. It

is also often undertaken after a field has been moved or pulled up/pushed down to

reflect its new role Fowler (Fowler 1999).

It is noticeable from Figure 4.6 that the single „peak‟ of refactorings (at version 3) occurred

at the same time as the single „peak‟ of net additions of attributes to the HSQLDB system

shown in Figure 4.5. The highest number of refactorings was for the Rename Field and

Move Field refactorings, suggesting, when also considering Figure 4.5, that classes were

not necessarily „pulled up‟ or „pushed down‟ the inheritance hierarchy. This further implies

that, in keeping with the trends described in Chapter 3, systems evolved through addition

 90

of new classes at DIT levels one and two and not necessarily through the manipulation of

the existing inheritance hierarchy. We also note a coincidence of peaks of net changes in

attributes and Rename Field refactorings which supports the hypothesis with respect to

developer behaviour. Clearly, developers do refactor and, moreover, at a time when there

is significant other regular maintenance activity taking place. Identification of when

developers tend to do refactoring is currently an ongoing and open research area and this

result thus gives a small insight into that behaviour.

Figure 4.6. Attribute-based Refactorings for HSQLDB (4 versions)

The maximum DIT of any class in JasperReports system was 5. Figure 4.7 shows the

frequencies of NOM across its twelve versions. Again, a strong tendency can be seen for

the methods to be added at DIT one and to a lesser extent DIT two. Remarkably, the

number of methods at DIT four and five stays constant over the course of 12 versions of

JasperReports. This trend was also observed in (Nasseri et al. 2008) where the classes at

DIT levels four and five showed no change in terms of number of classes in JasperReports.

The overall NOM added to JasperReports was 2535, of which 2029 (i.e., 80.04%) methods

were added at DIT level one and 448 (i.e., 17.67%) methods added to DIT two. The total

NOM added at DIT one and two was 2477 (i.e., 97.71%). Only 58 (i.e., 2.29%) methods

were added at DIT three and 0 method was added at DIT four and five.

0

20

40

60

80

100

120

140

1 2 3 4

Version

N
o

.
 R

e
fa

c
to

ri
n

g
s

R
e

fa
c
to

ri
n
g

s

Pull Up Field

Push Down Field

Rename Field

Move Field

 91

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11 12

Version

N
o
.

M
e
th

o
d
s

p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

Figure 4.7. NOM frequencies JasperReports (all versions)

Figure 4.8 shows the corresponding net changes in NOM for the JasperReports system and

again, shows a peak effect between both versions 3 and 4 and versions 7 and 8 (a similar

trend to that of Figure 4.2 is exhibited). In the transition between version 3 and 4, 282

methods were added at DIT level one (accompanied by 36 new classes), 32 methods were

added at DIT two (accompanied by 5 new classes) and only 2 methods were added at DIT

three (accompanied by 2 new classes). Between versions 7 and 8, the number of classes at

DIT level one rises by only 43 (i.e., 4.95%) classes. However, the NOM in the system

increases by 838 (i.e., 9.08%) methods suggesting that system growth at method level was

relatively higher than that at class level.

 92

-100

0

100

200

300

400

500

600

700

800

900

1--2 2--3 3--4 4--5 5--6 6--7 7--8 8--9 9--10 10--11 11--12

Version

F
re

q
u
e
n
c
y

p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

Figure 4.8. Net changes in NOM JasperReports (all versions)

Figure 4.9 shows details of the overall refactorings applied to JasperReports (when the tool

was first run, version 3 was the latest available version). Once again, through inspection of

the individual refactorings, we found that the refactorings were specifically related to

movement of methods (and attributes). The sum of fifteen refactorings however is almost

negligible compared with the large movement of methods across the versions. Nonetheless,

it is a coincidence that for these first two systems, there is a direct match between a) effort

invested in addition of methods and b) effort invested in refactoring. Moreover, these

results are in direct contradiction with the tenet that refactoring effort should be

consistently applied to a system throughout its lifetime (Fowler 1999).

 93

Figure 4.9. Refactorings in JasperReports (4 versions)

Figure 4.10 shows the frequencies of NOA in JasperReports. The growth rate of NOA at

DIT level one is higher than that of other DIT levels. The number of attributes at DIT two

also increases at initial stages of the system evolution. However, the growth rate is smaller

to that of DIT one. A noticeable feature of the Figure 4.10 is that the NOA at DIT four and

five stays constant throughout the entire 12 versions of the system. This trend was also

observed in Figure 4.7 and 4.8 where no change was identified in NOM at DIT four and

five and was also observed in (Nasseri et al. 2008) where no change was noted in number

of classes at DIT four and five.

It is evident that the developers of JasperReports tended to focus their maintenance activity

only at DIT levels one, two and three and no deeper. The total NOA added to

JasperReports was 1311, of which 1274 (i.e., 97.17%) were at DIT one, and 37 (i.e.,

2.83%) at DIT three. Interestingly, 177 attributes were removed from DIT two between

versions 10 and 11. One suggestion for why this may have occurred is that attributes were

simply moved from DIT two to DIT one as part of a conscious re-engineering effort.

0

1

2

3

4

5

6

7

8

9

10

1 2 3

Version

N
o

.
R

e
fa

c
to

ri
n

g
s

R
e

fa
c
to

ri
n
g

s

 94

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12

Version

N
o
.

A
tt

ri
b
u
te

s

p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

Figure 4.10. NOA frequencies JasperReports (all versions)

Figure 4.11 shows the net change in attributes through the versions of JasperReports

studied. Between versions 10 and 11, there is a movement of attributes from DIT two to

DIT one. From Figure 4.11, we again see a strong tendency for NOA at DIT level one to

fluctuate.

-400

-300

-200

-100

0

100

200

300

400

500

1--2 2--3 3--4 4--5 5--6 6--7 7--8 8--9 9--10 10--11 11--12

Version

F
re

q
u
e
n
c
y

 p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

Figure 4.11. Net changes in NOA JasperReports (all versions)

 95

Figure 4.12 shows the net changes of classes at all DIT levels in all versions of

JasperReports and shows changes in every version. The maximum change (58 classes)

occurs between versions 6 and 7. In terms of net changes in NOA, the maximum change

of NOA (231 attributes) occurs between versions 7 and 8 suggesting that evolution at

different levels of granularity may again, as per HSQLDB, show a different trend (cf.

Figure 4.11 and 4.12).

-10

0

10

20

30

40

50

60

70

1--2 2--3 3--4 4--5 5--6 6--7 7--8 8--9 9--10 10--11 11--12

Version

F
re

qu
en

cy

 p

Figure 4.12. Net changes in classes JasperReports (all versions)

Table 4.4 shows the number of net changes of classes at different levels of DIT in

JasperReports. In keeping with the HSQLDB system, there appears to be a lack of addition

of classes in earlier versions of the system. One plausible theory for this feature is that

there was a time „lag‟ between when the system was first released and the signs of decay.

That decay is accompanied by a concerted re-engineering effort.

 96

Version DIT 1 DIT 2 DIT3 DIT4 DIT5 Total

1-2 -2 -1 0 0 0 -3

2-3 3 6 2 0 0 11

3-4 36 5 2 0 0 43

4-5 9 9 0 0 0 18

5-6 11 -6 0 0 0 5

6-7 35 18 5 0 0 58

7-8 43 4 0 0 0 47

8-9 33 3 1 0 0 37

9-10 5 6 1 0 -1 11

10-11 -1 9 0 0 0 8

11-12 33 9 2 0 0 44

Table 4.4. Net class additions JasperReports (All versions)

The same four refactorings (attribute related) for the first three versions of JasperReports

are shown in Figure 4.13. We note that when the refactoring tool was run, version 3 was

the latest available version for JasperReports. Only two of the four refactorings are non-

zero. No evidence of either of the „Pull Up Field‟ or „Push Down Field‟ refactorings were

found in any of the versions of this system. The fact that there was also peak of added

attributes coinciding with that in Figure 4.11 supports the hypothesis that significant effort

was applied to the system at this point and that refactoring effort did coincide with that

effort. Again, this gives us an insight into the question as to whether developers do refactor

and more importantly „when‟ they refactor.

 97

Figure 4.13. Attribute-based Refactorings for JasperReports (3 versions)

The maximum DIT of any class in Tyrant system was 5. Figure 4.14 shows the frequencies

of NOM at DIT levels one, two, three and four in the Tyrant. In total, 92.31% of all

methods were added at DIT levels one and two, and only 7.69% were added at DIT levels

three, four and five (level five is not shown in the Figure). Remarkable is the dramatic rise

from version 4 to version 5 at DIT level one. As noteworthy is the fall in the NOM

between these versions at levels two and three. Even more pronounced is the fall in the

number of classes at DIT level four where from 281 methods in version 4, zero methods

were found in version 5 (at DIT level five, the 16 methods in version 4 fell to zero methods

in version 5). For this system, there appears to have been an extensive re-engineering effort

after version 4. The pattern seems to have been to remove classes from lower levels (levels

four and five) of the hierarchy and place them at higher levels. This pattern would fall into

line with the „Extract Method‟ and „Extract Superclass‟ refactorings (Fowler 1999) or even

one of Fowler‟s „Big Four‟ refactorings – the „Collapse Hierarchy‟ refactoring (Fowler

1999).

As noticeable from Figure 4.14 is the increasing trend from versions 26 to 37 at DIT level

one, which suggests that after a period of relative stability, more re-engineering was

applied to this system. The question that naturally arises is whether this movement of

0

1

2

3

4

5

6

7

1 2 3

Version

Pull Up Field

Push Down Field

Rename Field

Move Field

N
o

.
R

e
fa

c
to

ri
n

g
s

 98

methods was accompanied by a corresponding movement of classes? In other words, was

the addition of methods from existing functionality or from added functionality?

0

200

400

600

800

1000

1200

1400

1600

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Version

N
o
.

M
e
th

o
d
s

p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

Figure 4.14. NOM frequencies Tyrant (all versions)

Figure 4.15 shows the net changes in classes at DIT level one for the Tyrant system. We

can see that the trend in number of methods contrasts with the net change in the number of

classes. The number of classes in the Tyrant system remains relatively static, and there is

only a relatively small rise in number of classes from 143 to 172 (29 classes) between

versions 4 and 5. Most noticeable from Figure 4.15 are the peaks between version 4 to 5

and version 35 to 37 corresponding to the rise in methods shown in Figure 4.14. This was a

surprising result from the analysis and suggests that classes were not only being moved up

the hierarchy, but that classes may have had all their methods moved from one class and

merged with other classes. This operation is the opposite of the „Extract Class‟ refactoring

and would be detrimental to the overall cohesion of the system (Briand et al. 1998);

merging classes tends to dilute their original purpose.

 99

-10

0

10

20

30

40

50

60

1
--

2

4
--

5

7
--

8

1
0
--

1
1

1
3
--

1
4

1
6
--

1
7

1
9
--

2
0

2
2
--

2
3

2
5
--

2
6

2
8
--

2
9

3
1
--

3
2

3
4
--

3
5

3
7
--

3
8

4
0
--

4
1

4
3
--

4
4

Version

F
re

q
u
e
n
c
y

 p

Figure 4.15. Net changes in classes DIT 1 Tyrant (all versions)

Figure 4.16 shows the refactorings applied to versions 1 to 9 for Tyrant extracted by the

same tool used for the HSQLDB and JasperReports system (N.b., when the tool was run

version 9 was the latest available version of the Tyrant). It is noticeable in the case of

Tyrant that there is a single peak of refactorings which occurred close to the peak in

additions of methods to the system shown in Figure 4.14. Once again, when we inspected

the actual refactorings identified by the tool, we found evidence of refactorings related to

movement of methods and attributes. The most revealing feature of Figure 4.16 when

compared with Figure 4.14 is that the refactorings seemed to have been undertaken after

the sudden rise in NOM. This suggests that, unlike for the HSQLDB and JasperReports

systems, where there was a coincidence between refactorings and the addition of methods,

the motivation for refactoring in this system was different. It appears that the effort shown

in Figure 4.16 may have been an „effect‟ corresponding to the „cause‟ shown at version 4

in Figure 4.14. Put another way, the refactoring process may have acted as a „tidying up‟

mechanism after the sudden burst of maintenance activity.

 100

Figure 4.16. Refactorings in Tyrant (9 versions)

Figure 4.17 shows the frequencies of NOA at DIT levels one, two, three and four in the

Tyrant system. In (Nasseri et al. 2008) we observed that the maximum DIT in Tyrant

dropped from 5 to 3 in version 5. The number of classes at DIT level one increased from

45 to 96 in version 5 and the system exhibited no change in terms of number of classes

until version 26. Similarly, in Nasseri and Counsell (Nasseri and Counsell 2009b), it was

observed that the NOM at DIT level one increased from 437 in version 4 to 978 in version

5 where, again, the system exhibited no change in terms of number of methods until

version 23. From Figure 4.17, the NOA at DIT level one increases from 535 in version 4 to

590 in version 5 which is not significant compared to the increase in number of classes and

methods. Had we used only classes and methods for our analysis, we would have

overlooked an important trend in the evolution of this system. In Tyrant, 742 attributes

were added overall, of which 512 (i.e., 69%) attributes were added at DIT level one (the

number of attributes at DIT two and three decreased by 57 and 67, respectively).

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9

Version

N
o

.
R

e
fa

c
to

ri
n

g
s

 101

0

100

200

300

400

500

600

700

800

900

1000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Version

N
o
.

A
tt

ri
b
u
te

s

p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

Figure 4.17. NOA frequencies Tyrant (all versions)

From version 1 to version 4, 219 (i.e., 29.51%) attributes were added at DIT four and 11

(i.e., 1.48%) added at DIT level five. However, after version 5 the classes from DIT four

and 5 were removed.

Figure 4.18 shows the net changes of attributes in Tyrant. Since the number of classes at

DIT four and five falls to zero in version 5, we excluded attributes at DIT four and five

from the figure. We see that the net changes in number of attributes at DIT level one are

predominantly positive. In version 4 of Tyrant, the NOA at DIT two and three falls with a

corresponding increase in number of attributes at DIT one. The most notable feature for

this system is the fact that after version 4, where maximum DIT drops from 5 to 3, the

system stabilizes and thereafter no change in number of classes, methods or attributes is

made to the system for the duration of a number of versions. In Tyrant, the total number of

removed attributes at DIT levels one, two and three are -14, -169 and -197, respectively

throughout the entire 45 versions of the system. This implies that the number of added

attributes at DIT level one were significantly higher than the number of removed attributes

at this level. In contrast, the number of added attributes at DIT levels two and three tended

to be significantly lower than the number of removed attributes in these levels. This latter

result again implies that while new attributes are added at DIT level one, some attributes

 102

may have been moved from DIT levels two and three to level one as a result of refactoring

(possibly using Pull Up Field and Pull Up Method).

-200

-150

-100

-50

0

50

100

150

1
--

2

4
--

5

7
--

8

1
0

--
1

1

1
3

--
1

4

1
6

--
1

7

1
9

--
2

0

2
2

--
2

3

2
5

--
2

6

2
8

--
2

9

3
1

--
3

2

3
4

--
3

5

3
7

--
3

8

4
0

--
4

1

4
3

--
4

4

Version

F
re

q
u
e
n
c
y

p

DIT=1

DIT=2

DIT=3

Figure 4.18. Net changes in NOA Tyrant (all versions)

Figure 4.19 shows the net changes of classes in Tyrant. The system stabilizes after version

4 where significant change is made to the system. We believe the system underwent re-

engineering activity and, as a result, system „stability‟ was improved. Furthermore, the

maximum change in number of classes in Tyrant (+29) occurred between versions 4 and 5.

In terms of changes of NOA, the maximum change (-848) occurred between the same

versions (4 and 5). Once again, evolution at lower granularity (i.e., attributes) can show a

different and opposite trend in systems‟ evolution.

 103

-5

0

5

10

15

20

25

30

35

1
--

2

4
--

5

7
--

8

1
0
--

1
1

1
3
--

1
4

1
6
--

1
7

1
9
--

2
0

2
2
--

2
3

2
5
--

2
6

2
8
--

2
9

3
1
--

3
2

3
4
--

3
5

3
7
--

3
8

4
0
--

4
1

4
3
--

4
4

Version

F
re

q
u
e
n
c
y

p

Figure 4.19. Net changes in classes Tyrant (all versions)

Figure 4.20 shows the same four refactorings for Tyrant (as was presented for HSQLDB

and JasperReports). In keeping with the other two systems, very few refactorings were

undertaken for this system across the versions studied. (When the refactoring tool was run,

version 9 was the latest available version of Tyrant.) We do see some evidence of

renaming of attributes at later versions of the system, but this would seem to be more

related to moving of existing class features than addition of new.

 104

Figure 4.20. Attribute-based Refactorings for Tyrant (9 versions)

Figure 4.21 shows the total changes of attributes (both positive and negative) at each DIT

level in HSQLDB, JasperReports and Tyrant. It is evident that similar to changes of classes

(Nasseri et al. 2008) and methods (Nasseri and Counsell 2009b), the vast majority of

changes of attributes also occurred at DIT level one. While we concede that the majority of

new attributes were made where the majority of functionality could be found, there are

many sub-plots to that trend which a project manager and developer would find useful.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9

Version

Pull Up Field

Push Down Field

Rename Field

Move Field

N
o
.
 R

e
fa

c
to

ri
n
g
s

 105

Figure 4.21. Total change in NOA (3 systems)

4.4.1 Deeper levels of inheritance

One question that arises from the preceding analysis is whether in systems with deeper

levels of inheritance, the same mismatch between trends in methods, attributes and classes

arises. To answer this question, we collected the same method and attribute data from

SwingWT. The maximum DIT of any class in SwingWT system was 7. Figure 4.22 shows

the frequencies of the NOM at each DIT level for SwingWT. From Figure 4.22, the NOM

at DIT level one has the highest growth rate. The total NOM added in SwingWT was 6578,

of which 3506 (i.e., 53.30%) methods were added at DIT level one and 853 (i.e., 12.97%)

added at DIT level two.

0

500

1000

1500

2000

2500

3000

DIT1 DIT2 DIT3 DIT4 DIT5

DIT

N
O

A
.
C

h
a

n
g
e

s

C
h

a
n

g
e
s

HSQLDB

JasperR

eports

Tyrant

 106

0

500

1000

1500

2000

2500

3000

3500

4000

1 3 5 7 9 11 13 15 17 19 21

Version

N
o
.

M
e
th

o
d
s

p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

DIT=6

DIT=7

Figure 4.22. NOM Frequencies SwingWT (all versions)

Figure 4.23 shows the net change in methods for the SwingWT at each DIT level. From

Figure 4.23, a peak in changes of methods around version 9 is visible. Similarly, between

version 15 and 16, a negative peak can be seen in number of methods at DIT three. Figure

4.24 shows the net changes of classes in SwingWT. From Figure 4.24, every change in

number of classes is positive.

Figure 4.23 shows a different trend to that of Figure 4.24. There are some negative changes

as well as positive changes in NOM in SwingWT. This was an interesting feature to

emerge from our analysis of SwingWT, supporting our view that analysis at the method

and attribute level can often indicate different perspectives to a similar analysis at the class

level. The over-riding implication is that since the remaining methods were likely to be

distributed around classes at levels one, two and three, then we might expect such large-

scale changes to be a potential source of faults in later versions.

 107

-800

-600

-400

-200

0

200

400

600

800

1000

1200

1400

1--

2

2--

3

3--

4

4--

5

5--

6

6--

7

7--

8

8--

9

9--

10

10-

-11

11-

-12

12-

-13

13-

-14

14-

-15

15-

-16

16-

-17

17-

-18

18-

-19

19-

-20

20-

-21

21-

-22

Version

F
re

q
u
e
n
c
y

p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

DIT=6

DIT=7

Figure 4.23. Net changes in NOM SwingWT (all versions)

In other words, a widely distributed and scattered set of changes is likely to be more

problematic than making changes in a targeted and localised area, simply through the

potential for side-effects at each of those disparate locations where changes were made.

0

20

40

60

80

100

120

140

160

180

1
--

2

3
--

4

5
--

6

7
--

8

9
--

1
0

1
1
--

1
2

1
3
--

1
4

1
5
--

1
6

1
7
--

1
8

1
9
--

2
0

2
1
--

2
2

Version

F
re

q
u
e
n
c
y

 p

Figure 4.24. Net changes in classes SwingWT (all versions)

 108

The likelihood of SwingWT exhibiting faults as a result of these identified patterns is made

more likely by the fact that Swing system has been the subject of many empirical studies

(Advani et al. 2006, Counsell et al. 2006a); in each case, practices used in the system have

been completely at odds with sound and sensible OO practice. Overall, the mismatch

between net added classes and net added methods would seem to reflect a poor and patchy

evolution strategy for this system at best. At worst, evolution of this system seems to imply

a consistent storing up of problems for subsequent versions.

A key motivation for analysing the evolution of systems at the method level was to try to

identify evolutionary forces at low granularity that could not be extrapolated at the class

level and the analysis of trends in the SwingWT system is a case in point. Figure 4.25

shows the frequencies of NOA at each DIT level for SwingWT. From Figure 4.25,

attributes at DIT level one tend to have the highest growth rate in this system. The number

of methods (Figure 4.22) and classes in SwingWT also showed a similar trend in (Nasseri

et al. 2008, Nasseri and Counsell 2009b). The total number of attributes added to

SwingWT was 2282, of which 1306 (i.e., 57.23%) attributes were added at DIT level one

and 260 (i.e., 11.40%) attributes added at DIT level two.

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Version

N
o
.

A
tt

ri
b
u
te

s

p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

DIT=6

DIT=7

Figure 4.25. NOA Frequencies SwingWT (all versions)

 109

Figure 4.26 shows the net changes of attributes in SwingWT. We see a peak in version 9 of

the system. This trend was also observed in changes of methods in (Figure 4.23) and in

changes of classes in (Figure 4.24). In version 9 of SwingWT, the number of attributes

increases by 645, accompanied by 1929 methods and 160 classes.

-300

-200

-100

0

100

200

300

400

500

1
--

2

3
--

4

5
--

6

7
--

8

9
--

1
0

1
1
--

1
2

1
3
--

1
4

1
5
--

1
6

1
7
--

1
8

1
9
--

2
0

2
1
--

2
2

Version

F
re

q
u
e
n
c
y

p
[

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

DIT=6

DIT=7

Figure 4.26. Net changes in NOA SwingWT (all versions)

From Figure 4.24, it is interesting that the changes in number of classes in SwingWT is

always positive, suggesting the growth of the system in every consecutive version. The

transition between version 9 and 10 seems to be the point where the maximum classes

(160) were added to the system. This trend can also be seen in Figure 4.26 where the

maximum change in NOA (645) occurs in the same transition of versions.

4.5 Discussion

A number of issues are raised by the analysis in this chapter. Firstly, we have looked at

different numbers of versions of each of the four systems. While ideally, we would have

liked to have had the same number of versions for each system, we wanted to extract as

much information about available data as possible. The number of versions of the systems

studied is different in each system (i.e., minimum number of versions studied was 6 and

 110

the maximum 45). We feel that the sample is small but does provide an insight into

features that might be found in many other OSS. Secondly, we have assumed an equal time

„gap‟ between the versions of each system. In practice there are likely to be widely varying

time gaps between versions and different motivation for the activities between versions

(e.g., fixing faults, enhancements). While this could influence the results presented, the

overall theme running through our analysis would remain. From that point of view, we feel

we can defend such a criticism. In a previous study (Nasseri et al. 2008) and in this chapter

we observed that developers of OSS tend to invest the majority of their maintenance

activity at DIT level one and, to a lesser extent, level two. There are a number of possible

explanations for this. Most of the changes may be pertinent to the classes located at higher

levels of DIT simply because that is where most of the functionality is located (i.e., it is a

self-perpetuating phenomenon). Developers may want to avoid the burden of

understanding classes located at deeper levels of the inheritance hierarchy when making

changes. This may not be their fault. Since developers of OSS are geographically

separated, the design documentation for OSS is not always accessible or available by every

developer at every stage of maintenance.

4.6 Summary

A common feature of many OO evolution studies is to use classes as a basis. While classes

provide a tried-and-trusted basis, there may be many features of an evolving system that

occur at the lower-level of methods and attributes. In this chapter, we investigated trends in

four Java OSS at this level to determine whether this was the case. A number of insightful

features of the four systems were revealed, which in many cases, could not have been

extrapolated through a class analysis alone. For example, we observed that in some cases

evolution of a system at the method and attribute levels show a different trend to a similar

analysis at the class level. Moreover, analysis of a system at the method and attribute level

allows us capture the level of granularity which may be missed when analyzing the

systems at the class level. A comparison between refactoring data from a prior study and

the method and attribute level evolution allowed some relevant comparisons to be made.

The comparisons enabled us to observe the peaks in refactoring activity compared with

changes in number of methods and attributes in the four systems. The research highlights

 111

the benefit of firstly analysing the evolution of systems at a finer-grain and secondly, of

using previous studies to inform current results. The benefit to developers of the study is

that it will allow an understanding of how a Java OSS evolves at the method and attribute

level in comparison with class evolution, and where remedial effort at different levels of

granularity may need to be applied in future versions.

 112

CHAPTER 5 Class Movement and Re-location

5.1 Introduction

In the previous chapter, we investigated the trends in the evolution of four Java OSS at the

method and attribute level, and compared those low-level changes to a set of low-level

refactorings (refactorings pertaining to methods and attributes) applied to initial versions of

the systems. In this chapter, we manually inspect the position of a large sample of classes

in the inheritance hierarchy of multiple versions of four Java OSS. The DIT inheritance

metric was extracted from the systems using the JHawk tool. We examined the position of

each class in the inheritance hierarchy as each of the systems evolved. This allowed us to

construct a pattern of the classes that tended to be moved, where they moved to, and when

(in terms of version number). The work described in this chapter thus extends previous

work by the same authors, (Nasseri et al. 2008) and described in Chapter 1, to a finer-

grain; it does not simply look at overall patterns of increases or decreases in classes as a

system evolves, but actually where the activity takes place. Thus the research question for

the study in this chapter is: in the context of the tendency of systems to deteriorate in

quality as they evolve and to exhibit shallow levels of inheritance depth, what observable,

evolutionary patterns can be determined from class addition, deletion and movement

around the inheritance hierarchies of systems?

In the next section, we present the motivation for the research in this chapter. Section 5.3

provides study design including the four OSS used and data collected. We then present

data analysis including class movement and re-location analysis and an analysis of class

characteristics (Section 5.4). In Section 5.5, we provide a discussion of the study before we

present a summary of the empirical study (Section 5.6).

We also acknowledge that a part of this chapter has been accepted for publication (subject

to minor changes), in (Nasseri et al. 2009)

 113

5.2 Study Motivation

Our research in this chapter is to highlight trends and features of an inheritance hierarchy

as it evolves from the perspective of class re-location. Such a study can inform decision-

making by a developer or project manager if those trends show any clear patterns. For

example, observation of a certain subset of classes being consistently moved together (or

duplicated) around the hierarchy suggests that the subset might need to be amalgamated for

ease of reuse or simply refactored using the Collapse Hierarchy refactoring, for example

(where a subset of classes are merged) (Fowler, 1999). Equally, if a single class containing

relatively high amounts of coupling is being moved around frequently, then again, it might

need to be decomposed or a permanent home found for it. In addition, the analysis of class

evolution makes it possible to identify the most change-prone parts in the systems and for

remedial, re-engineering action to be taken as a result.

5.3 Study design

5.3.1 The four open-source systems

For the study in this chapter we used four Java OSS from our system archive to investigate

the class movement and re-location. The systems used were: HSQLDB, JasperReports,

SwingWT and Tyrant (see systems 1, 3, 5 and 8 described in Section 2.3.2.5). Since the

number of versions in some systems was large and the analysis onerous, we chose to

analyse the first, followed by every fifth and final version of each system. For this study

we thus used versions 1, 5 and 6 of HSQLDB, versions 1, 5, 10 and 12 of JasperReports,

versions 1, 5, 10, 15, 20 and 22 of SwingWT and versions 1, 4, 5, 10, 15, 20, 25, 30, 35, 40

and 45 of Tyrant. The extent of changes in the Tyrant system at version 4 was a feature not

shared by any of the other three systems and hence justifies our choice of its inclusion.

 114

5.3.2 Data collected

The JHawk tool was used to automatically collect the following measures from the

versions of the four systems: Depth of Inheritance Tree (DIT), Number of Methods

(NOM), Lack of Cohesion Of the Methods in a class (LCOM) and Message Passing

Coupling (MPC) (see metrics 1, 5, 9 and 10 in Section 2.3.2.6).

The DIT metric was used to determine patterns in new, deleted and moved classes. The

remaining three metrics were used to determine the characteristics of those classes. Having

collected the metrics, we manually analyzed the position of each class in the inheritance

hierarchies for each system according to the versions specified in Section 5.3.1. We were

then able to categorise changes in the form of a) new classes b) deleted classes and c)

moved classes in each of the inheritance hierarchies. For each class falling into one of

these three categories, we then investigated whether class characteristics i.e., class size and

coupling exhibited any particular or remarkable characteristics.

5.4 Data analysis

5.4.1 Class Movement and Re-location Analysis

We start our analysis of class movement and re-location with the HSQLDB system. This

system started with only 56 classes of which 54 classes were at DIT one and only 2 classes

at DIT level two. The maximum DIT in the entire 6 versions of HSQLDB reached 4.

Figure 5.1 shows the frequencies of number of classes at each DIT level in versions 1, 5

and 6. From Figure 5.1, we see that DIT one is where the majority of classes were added.

The number of classes at DIT one reached 279 in version 6. The number of classes at DIT

two and three also increased but to a far lesser extent.

 115

0

50

100

150

200

250

300

1 5 6

Version

N
o
.

C
la

s
s
e
s

p

DIT =1

DIT=2

DIT=3

DIT=4

Figure 5.1. DIT frequencies in HSQLDB (3 versions)

The values from Figure 5.1 show only the net increases or decreases in number of classes.

On that basis, the following questions arise. Are all of the added class new? Have any

classes been deleted? Most importantly for the thrust of the research in this chapter, is there

any movement of classes across inheritance hierarchy (or do classes tend to stay largely

where they are)?

Table 5.1 shows the data for the movement of classes within the inheritance hierarchy

between versions 1 and 5 in HSQLDB. Table 5.1 also shows the number of removed

(RemC.) and the number of new classes (NewC.) added at each DIT level in the same

transition. For Example, 3 classes were moved from DIT one to DIT two, 8 classes were

removed from DIT one and 203 new classes added to this level. Evidence confirms the

view that while most activity in terms of new classes seems to happen at DIT one, there are

certain occurrences of classes being pushed down the hierarchy (although usually in small

numbers). We can only suggest that the developers moved classes from DIT one to DIT

two so that those „moved‟ classes could take advantage of functionality offered through

inheritance by classes at DIT one.

 116

 DIT1 DIT2 DIT3 DIT4 RemC. NewC.

DIT1 • 3 0 0 8 203

DIT2 0 • 0 0 0 59

DIT3 0 0 • 0 0 12

DIT4 0 0 0 • 0 1

Table 5.1. Class evolution between version 1 to 5 in HSQLDB

From visual inspection, a new class was added above one of the moved classes at DIT one;

the other two classes were added as subclasses of two existing classes at DIT one. The total

number of new classes in the system was 267 and only 8 classes were removed from DIT

level one; those eight classes were not re-located and were deleted from the system. It is

possible, however, that the 203 added classes might have included those same 8 classes re-

located but with a new name, simply amalgamated to form new classes or integrated into

other classes. If any of these cases applied, then one suggestion is that these classes may

have been the target of refactoring effort (Fowler, 1999), through use of renaming,

decomposition of classes or collapsing of sub-hierarchies (evidence of which we found in

other systems). Table 5.2 shows the data for the movement of classes across the

inheritance hierarchy between versions 5 and 6 in HSQLDB, in the same format as Table

5.1.

 DIT1 DIT2 DIT3 DIT4 RemC. NewC.

DIT1 1 0 0 8 39

DIT2 3 0 0 0 5

DIT3 0 1 0 0 0

DIT4 0 0 0 1 0

Table 5.2. Class evolution between version 5 to 6 in HSQLDB

In version 6, the total number of classes in the system increased from 323 to 358. One class

was moved from DIT one to DIT two and 3 classes were moved from DIT two to DIT one.

One new class was added above the moved class from DIT one to DIT two, suggesting that

the addition of this new class could be part of an „Extract Superclass‟ refactoring (Fowler,

1999). The 3 displaced classes from DIT two were separated from their respective

superclasses and moved to DIT one. There seems to be evidence of movement of classes

from DIT two to DIT one from the data illustrated so far.

 117

The maximum DIT in version 5 was 4 and only one class could be found at this level. In

version 6, the same class was removed thereby reducing the maximum DIT in this version

to 3. From Table 5.2, we also note that there is very little movement of classes within the

inheritance hierarchy. The majority of changes are incremental (i.e., new classes)

suggesting that for this system, a well structured inheritance hierarchy was in place and

that lent itself well to the addition of classes. Figure 5.2 shows the frequencies of number

of new classes (NewC), removed classes (RemC) and moved classes (MovC) in the studied

versions of HSQLDB.

0

50

100

150

200

250

300

V1-5 V5-6
Version

F
re

q
u
e
n
c
y

 p

NewC

RemC

MovC

Figure 5.2. Changes in HSQLDB

Since the full set of documentation for an OSS system is not always available, we believe

that OSS may often be maintained based on a model such as the Iterative-Enhancement (I-

E) maintenance model of Basili (Basili 1990). That model is usually used for maintenance

of proprietary systems when the full set of requirements is not fully understood by

developers. The underlying principle of the I-E model is to re-design, reuse and/or replace

parts of an existing system that is exhibiting features rendering it difficult to maintain.

Evidence presented so far suggests this might be an appropriate model for systems which

evolve in a haphazard fashion.

 118

The JasperReports system started with 818 classes in version 1 and contained 1098 classes

by the twelfth and final version studied. The maximum DIT for JasperReports remained at

5 in the entire 12 versions. Figure 5.3 shows the frequencies of number of classes at each

DIT level in every fifth and final version. The number of classes at DIT one has the highest

growth rate. This trend was also observed in a previous study by the same authors (Nasseri

et al. 2008). The number of classes at DIT two and three also increased, but at a slower

rate. Interestingly, the number of classes at DIT four and five stayed static at 10 and 5,

respectively throughout.

0

100

200

300

400

500

600

700

800

1 5 10 12

Version

N
o
.

C
la

s
s
e
s

p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

Figure 5.3. DIT frequencies in JasperReports (4 versions)

Part of the JasperReports system thus showed no changes (level four and five of hierarchy)

despite the fact that other parts of the system were undergoing frequent change. This points

to the possibility that classes at deep levels are not usually the focus of developer attention

and often ignored. However, the lack of classes at those levels may mean that they remain

relatively untouched by the developers anyway. Table 5.3 shows the evolution of classes

across inheritance hierarchy between versions 1 and 5 in the style of Tables 5.1 and 5.2.

 119

 DIT1 DIT2 DIT3 DIT4 DIT5 RemC. NewC.

DIT1 • 4 1 0 0 8 59

DIT2 0 • 0 0 0 2 17

DIT3 0 0 • 0 0 0 3

DIT4 0 0 0 • 0 0 0

DIT5 0 0 0 0 • 0 0

Table 5.3. Class evolution between version 1 to 5 in JasperReports

In the transition from version 1 to 5 of JasperReports, we see that only 5 classes were

moved within the inheritance hierarchy. Visual inspection revealed that 2 new classes were

added at DIT one; 3 classes from DIT one were moved as subclasses of one of the 2 new

classes and one class from DIT one was moved as subclass of the second new class. Only

1 class was moved from DIT one to DIT three. The maximum DIT of that particular

hierarchy reached 3 as a result. Table 5.4 shows the profile for JasperReports between

versions 5 and 10.

 DIT1 DIT2 DIT3 DIT4 DIT5 RemC. NewC.

DIT1 • 2 0 0 0 5 134

DIT2 0 • 0 0 0 0 23

DIT3 0 0 • 0 0 0 7

DIT4 0 0 0 • 0 0 0

DIT5 0 0 0 0 • 0 0

Table 5.4. Class evolution between version 5 to 10 in JasperReports

In the transition from version 5 to 10, only 2 classes were moved from DIT one to DIT

two. The majority of changes in the system occurred at higher levels of hierarchy (levels

one and two). Table 5.5 shows the profile for JasperReports between version 10 and 12.

 DIT1 DIT2 DIT3 DIT4 DIT5 RemC. NewC.

DIT1 • 12 0 0 0 1 45

DIT2 0 • 1 0 0 0 6

DIT3 0 1 • 0 0 0 2

DIT4 0 0 0 • 0 0 0

DIT5 0 0 0 0 • 0 0

Table 5.5. Class evolution between version 10 to 12 in JasperReports

 120

From Table 5.5, 12 (i.e., 1.15%) of the total number of classes in the system were moved

from DIT one to DIT two. From our inspection, we found that 3 new classes had been

added at DIT one. 7 existing classes from DIT one were moved as subclasses of just a

single, newly added class, 3 classes from DIT one and 1 class from DIT three were

positioned as subclasses of the second newly added class. From the above analysis, we see

that many of the changes essentially revolve around the 3 newly added classes. This

localisation of change suggests that class movements might happen in clusters. Figure 5.4

shows the profile for changes in JasperReports.

0

20

40

60

80

100

120

140

160

180

V1-5 V5-10 V10-12

Version

F
re

q
u
e
n
c
y

p

NewC

RemC

MovC

Figure 5.4. Changes in JasperReports

From Figure 5.4, we see that the majority of changes are addition of new classes in

JasperReports (a total of 296). The total number of removed classes was 16 and the total

number of moved classes within the existing inheritance hierarchy was 21. Considering the

large number of classes in JasperReports (818 in the first version and 1098 in the twelfth

version) we believe the inheritance hierarchy in the system was relatively stable (in terms

of movement of classes within the hierarchy). We found no activity at DIT level four and

five in the studied versions of JasperReports. This trend was also found for the same

system in previous studies (Nasseri and Counsell 2009a, Nasseri and Counsell 2009b),

where no activity in terms of number of methods and attributes was found at either level

four or five.

 121

SwingWT system started with 50 classes and contained 620 classes by version 22. The

maximum DIT for SwingWT reached 7. Figure 5.5 shows the frequencies of classes at DIT

one to three and Figure 5.6 shows the same trend for DIT 4 to 7 in every

fifth and final

version of the system. For the early versions of SwingWT, the maximum DIT was 3 and

that gradually grew to 7. Figure 5.5 again shows that the majority of classes were added at

DIT one.

0

50

100

150

200

250

300

350

400

450

500

1 5 10 15 20 22

Version

N
o
.

C
la

s
s
e
s

p

DIT=1

DIT=2

DIT=3

Figure 5.5. DIT 1, 2 and 3 frequencies in SwingWT (6 versions)

 122

0

5

10

15

20

25

30

1 5 10 15 20 22

Version

N
o
.

C
la

s
s
e
s

p

DIT=4

DIT=5

DIT=6

DIT=7

Figure 5.6. DIT 4, 5, 6 and 7 frequencies in SwingWT (6 versions)

Table 5.6 shows the movement of classes within the inheritance hierarchy between

versions 1 and 5 of SwingWT.

 DIT1 DIT2 DIT3 DIT4 DIT5 DIT6 DIT7 RemC. NewC.

DIT1 • 0 0 0 0 0 0 1 42

DIT2 0 • 0 0 0 0 0 1 17

DIT3 0 1 • 0 0 0 0 0 20

DIT4 0 0 0 • 0 0 0 0 4

DIT5 0 0 0 0 • 0 0 0 0

DIT6 0 0 0 0 0 • 0 0 0

DIT7 0 0 0 0 0 0 • 0 0

Table 5.6. Class evolution between version 1 to 5 in SwingWT

Only 1 class was moved up from DIT three to DIT two. From our inspection, we observed

that the two ancestor classes of that particular class were removed and 1 new class added

above (this changed its DIT from 3 to 2). In the transition from version 1 to 5, we see that

the system grew considerably. Overall, 83 classes were added and only 2 classes were

removed. Table 5.7 shows the profile for SwingWT in the transition from version 5 to 10.

 123

 DIT1 DIT2 DIT3 DIT4 DIT5 DIT6 DIT7 DelC. NewC.

DIT1 0 0 1 0 0 0 2 196

DIT2 0 10 3 3 0 0 0 45

DIT3 0 1 11 4 6 0 0 11

DIT4 0 0 0 1 0 2 0 5

DIT5 0 0 0 0 0 0 0 2

DIT6 0 0 0 0 0 0 0 0

DIT7 0 0 0 0 0 0 0 1

Table 5.7. Class evolution between version 5 to 10 in SwingWT

We see that, 42 classes (i.e., 31.82% of all classes) were re-located across the hierarchy.

Only 1 class was moved from DIT one to DIT four. A new class was added above that

class at DIT one (the name of the class was JSWMenuComponent and its new superclass

was named AbstractButton); the same class and its new superclass were placed as

subclasses of an existing class at DIT two (JComponent). Moreover, 10 classes were

moved from DIT two to DIT three. It was revealing that in version 5, those 10 classes were

sibling classes of the JComponent class at DIT two which in version 10 were then placed

as subclasses of JComponent. Three classes were moved from DIT two to DIT four. Those

three classes were subclasses of the Component class which were in turn moved as

subclasses of the newly added class (AbstractButton) at DIT three. Three classes were

moved from DIT two to DIT five. The 3 classes were subclasses of the

JSWMenuComponent class at DIT one for which a superclass was added (AbstractButton)

and was moved to DIT four.

All movements of classes therefore revolved around only four classes (Component, at DIT

one, itself superclass of JComponent, AbstractButton and JSWMenuComponent). This

suggests that the system was designed in such a way that the classes in one part of the

system were highly amenable to easy movement which, in practice, could reflect a portable

design. In addition, we found that some classes were moved, for instance, directly from

DIT one to DIT four; as a result, its subclasses were correspondingly moved from DIT two

to DIT five. A dependency between groups of classes seems to exist. Table 5.8 shows the

profile for SwingWT between versions 10 and 15.

 124

 DIT1 DIT2 DIT3 DIT4 DIT5 DIT6 DIT7 RemC. NewC.

DIT1 2 3 0 0 0 0 23 90

DIT2 0 0 2 0 0 0 6 15

DIT3 1 0 3 0 0 0 0 3

DIT4 0 1 0 2 0 0 3 6

DIT5 3 0 0 0 0 0 0 1

DIT6 0 0 0 0 0 0 0 1

DIT7 0 0 0 0 2 0 0 1

Table 5.8. Class evolution between version 10 to 15 in SwingWT

Between version 10 and 15, 19 classes were moved within the inheritance hierarchy. A

noticeable feature of Table 5.8 is the number of classes that moved from DIT five to DIT

one. Classes may move one or two levels as a result of addition/deletion of a class in the

hierarchy. However, movement of classes from root (below Object) closer to the leaf of the

hierarchy or vice versa implies a haphazardly structured hierarchy. Our analysis revealed

that only one new class was added at DIT three and two classes were moved as subclasses

of that class further reinforcing the view that „mutually dependent‟ classes do tend to move

in clusters. Nine (i.e., 47.37%) of the 19 moved classes were those classes moved within

the hierarchy in the previous transition (between version 5 and 10). In other words, a large

subset of the 19 moved classes between version 5 and 10 were moved again between

version 10 and 15. This was an interesting feature to emerge from our analysis, suggesting

that a subset of classes were prone to movement. SwingWT is a GUI application which

uses inheritance extensively. We believe the deep level of inheritance makes it harder for a

developer to move classes within the hierarchy. Movement of one class may require

several classes to be moved due to their superclass and subclass relationships which tend to

be strongly tied. For example, if a class is moved from DIT two to DIT four, any

subclasses moved with that class changes its DIT from three to five; we found ample

evidence of this in SwingWT.

In the transition from version 10 to 15, 32 classes were removed from the system, 19 (i.e.,

59.38%) of which were inner classes suggesting that inner classes can easily be deleted

from the system. This was also a revealing feature of our analysis. Inner classes might be

easier to remove from a system because they are encapsulated within their outer enclosing

 125

classes. As such, inner classes have no dependencies (i.e. coupling) with other classes

other than that imposed by the enclosing class. Table 5.9 shows the number of classes

moved around the inheritance hierarchy in the transition from version 15 and 20.

 DIT1 DIT2 DIT3 DIT4 DIT5 DIT6 DIT7 RemC. NewC.

DIT1 1 0 0 8 0 0 12 96

DIT2 0 1 0 0 2 0 2 15

DIT3 0 1 12 0 1 1 0 1

DIT4 2 1 4 14 1 0 1 3

DIT5 0 0 1 6 5 0 0 3

DIT6 0 1 1 0 3 2 0 1

DIT7 0 0 0 0 0 2 0 0

Table 5.9. Class evolution between version 15 to 20 in SwingWT

Seventy classes (i.e., 14.37% of the total) changed their position in the hierarchy. Only one

class was moved from DIT one to DIT two. One class was added at DIT one and the

moved class was placed as a subclass of that new class. Similarly, one class was added at

DIT four (in the most change-prone part of the system) and 8 classes moved to become

subclasses of that new class. We also see that 12 classes were moved from DIT three to

DIT four. Those 12 classes were subclasses of a single class moved from DIT two to DIT

three (its subclasses were moved from DIT three to DIT four). Likewise, one of the 12

classes which were moved from DIT three to DIT four had 14 subclasses - all of which

were also moved from DIT four to DIT five.

In the transition from version 15 and 20, we again found that the vast majority of

movement of classes took place due primarily to the movement of their superclasses.

Furthermore, we found that 14 (i.e., 20%) of the 70 moved classes were those repositioned

within the hierarchy in the previous transition (i.e., between version 10 and 15); 38 (i.e.,

54.29%) of the 70 moved classes were those classes which were repositioned in the

transition between version 5 to 10. We also found the same 9 classes to be moved in every

transition from version 5 to 20, supporting the view that there are certain subsets of classes

so tightly coupled that they cannot be decomposed; they need to be moved around together

(even though the functionality of all nine classes might not be required where they are

moved). These classes would be ideal candidate classes for re-engineering or refactoring.

 126

From Table 5.9, 119 new classes were added, 11 of which (i.e., 9.24%) were those classes

removed from the system in the previous transition between versions 10 and 15. In

addition, we found that between versions 15 and 20, 15 classes were removed from the

system all of which again were inner classes. Anecdotal evidence would suggest that the

existence of constructs such as Java inner classes influences the scrutinizing role of the

developer by complicating the task of maintenance. Inner classes allow a nested class

access to the attributes of the enclosing class and have been the subject of certain criticism

since they add a level of complexity to the system (McGraw and Felten 1998, Sintes 2001).

In the transition from version 20 and 22, only 1 class was moved from DIT six to DIT

seven (this class was also moved from DIT five to DIT six between version 15 to 20). 1

inner class was removed and, overall, 42 new classes were added of which 24 were added

at DIT one, 12 classes at DIT two and 6 classes at DIT three. In SwingWT, the total

number of moved classes was 133 of which only 6 (i.e., 4.51%) classes were inner classes.

The total number of new classes in the system was 621 of which 141 (i.e., 22.71%) were

inner classes, and the total number of removed classes was 52 of which 37 (i.e., 71.15%)

were inner classes suggesting again that inner classes in SwingWT are far more amenable

to deletion than „regular‟ „unenclosed‟ classes. Figure 5.7 shows the overall changes in

SwingWT in the same format as Figures 5.2 and 5.4.

0

50

100

150

200

250

300

V1-5 V5-10 V10-15 V15-20 V20-22

Version

F
re

q
u
e
n
c
y

p

NewC

RemC

MovC

Figure 5.7. Changes in SwingWT

 127

From Figure 5.7, we see that the majority of changes are increases in number of classes.

Two peaks are visible in terms of number of moved classes between version 5 to 10 and 15

to 20. The trends in number of added, removed and moved classes contrast. Each seems to

have a peak at different stages of evolution.

The Tyrant system consisted of 122 classes in version 1 and contained 273 classes in

version 45. The maximum DIT for Tyrant was 5. Figure 5.8 shows the frequencies of

number of classes at each DIT level in every fifth and final version of Tyrant. An

interesting feature is that in version 4, the system underwent a major change. The

maximum DIT dropped from 5 in version 4 to 3 in version 5. The number of classes at DIT

one increased from 45 in version 4 to 96 in version 5. The number of classes at DIT two

dropped from 42 to 13. Finally, the number of classes at DIT three increased from 22 in

version 4 to 63 in version 5. Since we found that the system went through significant

changes between version 4 and 5, we therefore included that transition in our analysis.

0

20

40

60

80

100

120

140

160

1 4 5 10 15 20 25 30 35 40 45

Version

N
o
.

C
la

s
s
e
s

p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

Figure 5.8. DIT frequencies in Tyrant (11 versions)

Between version 1 and 4, the total number of classes in the system increased from 122 to

143. In the transition from version 1 to 4, only five classes were relocated in the hierarchy.

A single class was added at DIT one and two existing classes from DIT one were placed as

 128

its subclasses. In addition, 2 new classes were added at DIT three and 2 classes from DIT

three were moved as subclasses of one of them. One class from DIT three was moved to

become a subclass of the other. We found that no classes were removed from the system.

Table 5.10 shows the number of moved classes at each DIT level in Tyrant, as well as the

number of added and removed classes between versions 4 and 5 in the same format as

Table 5.9.

 DIT1 DIT2 DIT3 RemC. NewC.

DIT1 3 1 11 32

DIT2 12 8 18 4

DIT3 11 1 9 53

DIT4 11 1 0 17 0

Table 5.10. Class evolution between version 4 to 5 in Tyrant

From Table 5.10, 48 classes were moved within the inheritance hierarchy. The maximum

DIT dropped correspondingly from 5 to 3. The total number of classes at DIT five in

version 4 was 5, all of which were then removed from the system. The total number of

classes at DIT four was 29, 11 of which were moved up to DIT one. The majority of

classes (34 classes in total) were moved to DIT one. We also found that 56 classes were

repositioned across the hierarchy in the entire 45 versions of Tyrant, 48 (i.e., 85.71%) of

which were moved in the transition from version 4 to 5. The total number of new classes

was 226, 110 (i.e., 48.67%) of which were added between version 1, 4 and 5. The total

number of removed classes was 75, 60 (i.e., 80%) of which were removed in that same

transition (version 4 to 5). A major re-engineering initiative seems to have occurred

between versions 4 and 5. Figure 5.9 shows the trend in change frequencies in Tyrant.

 129

0

10

20

30

40

50

60

70

80

90

100

V1-4 V4-5 V5-

10

V10-

15

V15-

20

V20-

25

V25-

30

V30-

35

V35-

40

V40-

45

Version

F
re

q
u
e
n
c
y

p

NewC

RemC

MovC

Figure 5.9. Changes in Tyrant

Following the re-engineering of the system and flattening of the hierarchy, the inheritance

hierarchy in Tyrant stabilized in terms of movement of classes. Only 2 classes were moved

from DIT one to DIT two between versions 25 and 30, and only 1 further class was moved

from DIT two to DIT one between versions 40 and 45. The remaining changes were all

either increases or decreases in the number of classes.

5.4.2 Analysis of class characteristics

So far we have investigated the trends in movement of classes within the existing

inheritance hierarchy. The decision to move a class within the hierarchy may be influenced

by the characteristics of specific classes. For example, larger classes may be more

frequently moved, as they contain more functionality and their relocation may have a

significant impact on system comprehension. Similarly, tightly coupled classes may be

more frequently moved within the hierarchy to reduce class coupling and improve system

comprehension. We therefore speculate that (i) larger classes are more likely to be moved

within the hierarchy than smaller classes, and (ii) tightly coupled classes are more likely to

be moved within the hierarchy than loosely coupled classes. We analysed characteristics of

the moved and static classes in all four systems to determine whether this was actually the

 130

case in the four studied systems. We analyzed two features of the classes in the four

systems (i) class size, given by number of methods (NOM) metric of Lorenz and Kidd

(Lorenz and Kidd 1994) and (ii) coupling, given by the Message Passing Coupling (MPC)

metric of Li and Henry (Li and Henry 1993). We formed and tested the following

hypotheses in order to investigate whether larger classes and tightly coupled classes were

more frequently moved within the hierarchy.

The null hypothesis H01 states: Class movement and relocation is not influenced by class

size.

An alternative hypothesis HA1 states: Larger classes, given by their NOM, are more likely

to be moved within the hierarchy than smaller classes, as a system evolves.

The null hypothesis H02 states: Class movement and relocation is not influenced by class

coupling.

An alternative hypothesis HA2 states: Tightly coupled classes, given by their MPC, are

more likely to be moved within the hierarchy than loosely coupled classes, as a system

evolves.

Table 5.11 shows the maximum (Max.), mean, median and standard deviation (STDEV) of

NOM and MPC for moved (prior to their movement) and un-moved classes in the four

studied systems.

 Moved Classes Un-moved Classes

 Max. Mean Median STDEV Max. Mean Median STDEV

HSQLDB NOM 14 7.25 7 4.95 171 12.57 7 17.90

MPC 73 23.37 9.5 30.08 593 42.32 16 73.04

Jasper

Reports

NOM 49 12.67 15 11.05 166 9.84 4 19.41

MPC 74 7.76 0 19.08 1238 23.15 5 69.29

SwingWT NOM 102 14.33 9 15.93 170 9.09 4 13.86

MPC 224 21.11 10 33.68 279 11.16 0 26.14

Tyrant NOM 88 12.96 9 14.65 63 6.27 2 9.84

MPC 151 38.62 25 42.63 268 29.86 13 45.08

Table 5.11. Class characteristics in the four systems

 131

From HSQLDB, all values (with the exception of the median NOM) of NOM and MPC for

moved classes are relatively smaller than their corresponding values for un-moved classes,

suggesting that classes with relatively low NOM and MPC values did tend to be favoured

when moving classes across the inheritance hierarchy. The mean and median values of

NOM for moved classes in JasperReports show a different trend to that of HSQLDB. If we

consider the mean values in JasperReports, we see that classes with higher NOM values

were moved within the inheritance hierarchy. We see that all MPC values for moved

classes in JasperReports are smaller than their corresponding values for un-moved classes.

This again implies that in JasperReports, classes with fewer coupling features were moved

within the hierarchy. In SwingWT, we see that all values of NOM and MPC, with the

exception of their Max. values for moved classes are larger than their corresponding values

for un-moved classes, suggesting that larger classes, given by NOM, and highly coupled

classes, given by MPC, were more frequently moved within the system inheritance

hierarchy. Furthermore, all values of NOM and MPC for moved classes in Tyrant, with the

exception of Max. and STDEV MPC, seem to be higher than their corresponding values

for un-moved classes. This again implies that in Tyrant, larger classes and relatively highly

coupled classes were moved across the hierarchy.

To formally test the null hypotheses (H01 and H02), we carried out two, one-tailed non-

parametric Mann-Whitney U-tests (Hinkle et al. 1995) on moved and un-moved classes

and their NOM and MPC. Table 5.12 shows the results of the Mann-Whitney U-test

carried out on moved and un-moved classes and NOM in the four systems.

 Table 5.12. Mann-Whitney U-test for moved/un-moved classes and NOM

(all systems)

From Table 5.12, there is a significant difference between the two samples (moved and un-

moved classes) in the four systems. The mean rank value for moved classes is higher than

that of un-moved classes, suggesting that larger classes, given by NOM, were more

Classes N Mean-

Rank
Sum of

Rank
M-

Whitney-U
p-

Value
Z-

Score

Moved 220 1472.28 323902.5 174727.5 0.000 -6.474

Un-Moved 2156 1159.54 2499973.5

 132

frequently moved within the hierarchy than smaller classes. The p-value for the test is <

0.01 i.e., the test is statistically significant at the 1% level. Table 5.13 shows the results of

the Mann-Whitney U-test carried out on moved and un-moved classes and MPC.

Variables N Mean-

Rank

Sum of

Rank

M-

Whitney-U

p-

Value

Z-

Score

Moved 220 1305.29 287163.5 211466.5 0.0035 -2.679

Un-Moved 2156 1176.58 2536712.5

Table 5.13. Mann-Whitney U-test for moved/un-moved classes and MPC

(all systems)

From Table 5.13, we again see a significant difference between the two samples. The mean

rank value for moved classes is relatively higher than that of un-moved classes in the four

systems, suggesting that classes with higher coupling, given by MPC, were more

frequently moved within the hierarchy than classes with lower coupling. The p-value for

the test is < 0.01 i.e., the test is statistically significant at the 1% level.

Based on the evidence in Table 5.12, we see that in the four systems, larger classes were

more frequently moved within the hierarchy than smaller classes - we are therefore in the

position to reject the H01in favour of HA1; larger classes are more likely to be moved

within the hierarchy than smaller classes, as a system evolves. In terms of coupling (Table

5.13), classes with high MPC were moved more frequently than classes with low MPC -

we are therefore in the position to reject the H02 in favour of HA2; tightly coupled classes

are more likely to be moved within the hierarchy than loosely coupled classes, as a system

evolves.

One possible explanation for movement of larger and highly coupled classes may be the

lack of cohesion in those classes. Smaller classes and loosely coupled classes may be more

cohesive than larger classes and tightly coupled classes respectively - they therefore often

remain un-moved because they have not deteriorated sufficiently to necessitate being

moved. To investigate this feature, we conducted two widely used non-parametric cross-

correlations (Kendall‟s and Spearman‟s) of size (given by NOM), coupling (given by

MPC) and cohesion (given by LCOM metric of Chidamber and Kemerer (Chidamber and

 133

Kemerer 1994)). Table 5.14 shows the correlation values of NOM versus LCOM and MPC

versus LCOM in the four systems.

 Kendall‟s Spearman‟s

NOM vs. LCOM 0.246** 0.310**

MPC vs. LCOM 0.255** 0.333**

Table 5.14. Correlations of NOM/MPC and LCOM

From Table 5.14, all the values are double asterisked indicating that the correlations are

significant at the 1% level. There is a strong and significant relationship between NOM

and LCOM, and MPC and LCOM in the four systems. This result implies that as the size

and/or coupling of a class increases, its cohesion decreases. We believe that the key

motivation for frequent movement of larger classes and tightly coupled classes within the

hierarchy is the lack of cohesion in those classes.

Class movement and re-location provides valuable information to software managers and

developers. For example, in this chapter we have found that larger classes and highly

coupled classes are more frequently moved within the hierarchy. Scrutiny of the data also

revealed that larger classes and highly coupled classes were less cohesive which is why

they might be re-located more frequently. Software managers and/or developers can reduce

class size by extracting new classes and reducing coupling in favour of cohesion to

improve structural stability of their systems. In addition to that, class movement and re-

location is an activity often undertaken during the process of re-engineering. Our empirical

evidence for one of the systems (Tyrant) showed that post re-engineering of the system

(between versions 4 and 5), the system showed a smooth evolution with minimal structural

changes. Class movement and re-location can also have positive implications on system

evolution. In that respect, we believe class movement and re-location can have a

significant role in the structural stability of a system.

Movement of classes with higher NOM and those with higher MPC can also be justified on

the basis that developers tend to reduce structural complexity by moving large and tightly

coupled classes. Table 5.15 shows the maximum (max.) mean, median, and standard

deviation (STDEV) values for classes after they were moved. From Table 5.15, all values

 134

of NOM and MPC for HSQLDB, SwingWT and Tyrant (in Tyrant with the exception of

Median NOM) are considerably higher than their respective values presented in Table 5.11

(in Table 5.11, the same data for moved classes prior to their movement is presented),

suggesting a significant growth in terms of NOM and MPC in the systems. For

JasperReports however, the opposite has occurred and all values of NOM and MPC for

moved classes are smaller than their corresponding values presented in Table 5.11. This

was surprising considering the significant growth of the system (818 classes in version 1

and 1098 classes by version 12).

 Moved classes after their re-location

 Max. Mean Median STDEV

HSQLDB NOM 134 26.63 9 44.64

MPC 498 93 13 171.30

JasperReports NOM 48 6.38 4 10.10

MPC 23 3.62 0 7.62

SwingWT NOM 123 20.54 17 19.39

MPC 278 32.67 19 44.77

Tyrant MPC 127 14.30 8 21.70

NOM 365 65.36 39.5 71.02

 Table 5.15. Descriptive statistics for the moved classes after their movement

Given the results that larger classes and highly coupled classes, due possibly to their lack

of cohesion, were more frequently moved within the inheritance hierarchy, we speculate

that class movement may actually improve class cohesion. That is, class movement may

have positive implications for class cohesion. To investigate this phenomenon we formed

and tested the following hypotheses.

Null hypothesis H03 states: Class cohesion is not influenced by class movement and

relocation.

Alternative hypothesis HA3 states: Class movement and relocation improves class

cohesion.

To formally test the null hypothesis (H03), we categorised moved classes into two groups,

1) before their movement and 2) after their movement. We took class movement as the

main unit of our analysis and conducted a Wilcoxon signed-rank test (Wilcoxon 1945) to

 135

identify the impact of class movement on class cohesion. Table 5.16 shows the results of

the Wilcoxon signed-rank test carried out on moved classes before/after their movement

and their cohesion.

 N Mean

Rank

Sum of

Ranks

Z-

Score

P-

Value

After - Before Negative

Ranks

46
a
 70.46 3241 -0.873

a
 0.383

 • Positive

Ranks

73
b
 53.41 3899 • •

 • Ties 101
c
 • • • •

 • Total 220 • • • •

 a After < Before

 b After > Before

 c After = Before

Table 5.16. Wilcoxon signed-rank test for moved classes before/after their movement

From Table 5.16, we see that the „After‟ variable appears first suggesting that it was first

entered into the equation. The negative ranks shows that 46 ranks of „Before‟ were greater

than „After‟. The positive ranks shows that 73 ranks of „Before‟ were smaller than „After‟.

Finally, the Ties ranks shows that 101 ranks of „Before‟ and „After‟ were equal. The z-

score and p-value are -0.873 and 0.383 respectively, implying that the test is not

statistically significant. We are therefore in a position to conclude that there is not a

significant difference between the cohesion of classes before and after their movement. We

accept H03: Class cohesion is not influenced by class movement and re-location.

One tenet of software evolution states that as a software system evolves, its size, coupling

and complexity increases and cohesion of the system deteriorates. The systems studied

herein grew significantly (i.e., HSQLDB started with 56 classes and ended with 358

classes; JasperReports started with 818 classes and comprised 1098 classes by the final

version; SwingWT started with 50 classes and comprised 620 classes by the final version

and, finally, Tyrant started with 122 classes and ended with 273 classes). In that respect,

the evidence presented in Table 5.16 may imply that class cohesion has not been improved

by class movement and re-location. On other hand, the evidence also indicates that class

cohesion has not deteriorated (there isn‟t significant difference between the cohesion of the

 136

classes before and after their movement), despite the fact that the systems grew

significantly.

5.5 Discussion

Class movement and relocation is the process of restructuring a system to improve its

comprehensibility and ease maintenance efforts in future releases of a system. Our findings

can be of importance to software managers to predict how OSS change over time, which

classes are more frequently moved within an inheritance hierarchy, how to minimise those

movement, and most importantly, target refactoring efforts on regularly changing parts of a

system. In this chapter, a number of points were observed that might be of interest to

software practitioners. Firstly, we found that in one of the systems (SwingWT), the

majority of the changes were made in one specific part of the system. A number of classes

changed their DIT values on a regular basis which could be considered poor practice.

Additionally, in the same system we found that 11 classes, removed from the system in one

version, were re-integrated into the system in subsequent versions. Furthermore, in one of

the systems (Tyrant) in the transition from version 4 to 5, we observed that the system

underwent major changes as a result of which the maximum DIT dropped from 5 to 3. We

believe developers of the system restructured the inheritance hierarchy and, consequently,

the hierarchy in the system stabilized in terms of class movement (between versions 5 and

45, only 3 classes moved within the hierarchy). We believe that system re-engineering

could help avoid constant movement of classes within the hierarchy; early re-engineering

can help impede on-going structural change in a system.

In addition, we observed that developers of OSS tend to opt for three levels of inheritance

rather than deeper levels. We found evidence of „collapsing‟ hierarchies (to bring the

classes up to shallow levels). One of the systems (JasperReports) where five levels of

inheritance was used, no activity was found beyond level three. Classes at DIT four and

five showed no changes in the entire set of 12 versions of the system. This trend was also

found in (Nasseri and Counsell 2009a, Nasseri and Counsell 2009b) where levels four and

five of hierarchy in JasperReports showed no changes in terms of increases or decreases in

number of methods and attributes. Finally, in one of the systems (SwingWT) where the

 137

maximum length of hierarchy reached 7, the hierarchy tended to remain relatively unstable,

i.e., the structure of the hierarchy tended to change constantly. A logical way of using

inheritance would be to take the advantage of inheritance yet avoid its inherent complexity.

This seems to be achieved only when using inheritance at shallow levels and we therefore

posit that care should be taken when using inheritance beyond level three.

5.6 Summary

In this chapter, we presented an empirical study of evolution of classes in four Java OSS.

Inheritance data was collected using the JHawk tool (described in Section 2.3.2.6) and

changes observed in terms of newly added classes, deleted classes and moved classes

within the inheritance hierarchies in multiple versions of the four systems. We suggest that

if developers are restricted to changes in just one part of the system, then that reflects a

poor design and/or poorly applied previous maintenance in that specific part of the system.

In theory, changes should be evenly spread across all parts of the system, but in practice

there seem to be „hot spots‟ in a system (i.e., areas of code that require constant developer

attention). Identifying where these areas tend to occur and, more importantly, why they

occur, could help future effort to be directed and estimated.

We also showed that a maximum of three levels of inheritance may be more desirable than

deeper levels. Developers of the systems studied tended to focus most of their activity

(from the change data) at, and above, level three rather than below level three. We also

found very little activity below level three of the inheritance hierarchies in the studied

systems (with the exception of SwingWT where seven levels of inheritance were used). In

addition, we found evidence of hierarchies being „collapsed‟ to bring classes up to

shallower levels rather than them remaining at deep levels. Interestingly, we also found

evidence to suggest that in the set of OSS studied larger classes and tightly coupled classes

were more frequently moved within the hierarchy than smaller classes and loosely coupled

classes. We investigated the reasons why this may have occurred and found smaller classes

and loosely coupled classes to be more cohesive than larger classes and tightly coupled

classes; we believe the lack of cohesion in those classes may have been a factor that may

have influenced the decision to move those classes. We believe these results are of some

 138

relevance, since software systems spend most of their `life‟ being maintained.

Understanding where this change tends to take place helps predict future maintenance

activity and target scarce refactoring resources to areas where most benefit will be

achieved.

 139

CHAPTER 6 Inheritance and Method Invocation

6.1 Introduction

In the previous chapter we investigated the trends in changes of inheritance in terms of

addition, deletion and movement of classes within and across inheritance hierarchy.

Exploring the evolution of inheritance hierarchy in a system can provide valuable insights

into the system dynamics from an inheritance perspective. A recent study of seven Java

OSS by the authors (Nasseri et al. 2008) showed that approximately 96% of incremental,

evolutionary changes were made to classes at levels one and two of the inheritance

hierarchy. Only 4% of the same changes were made to classes at, and beyond, level three.

The majority of system functionality was found at levels one and two. One conclusion that

we can draw from the trend is that if levels one and two are where the bulk of the

functionality exists, then that is where classes will tend to invoke functionality, even to

classes outside the line of superclasses to the root. While we thus know how inheritance

hierarchies change over time, what is not so obvious is how classes in an inheritance

hierarchy interact with one another and how their interactions evolve, as opposed to that of

the system as a whole.

In this chapter, we investigate the evolution of inheritance from a method invocation

perspective and its impact on class cohesion in four Java OSS. We distinguish between

method invocations within the line of classes to the root of the hierarchy and „external‟

method calls to classes for which there is no direct line of superclasses to the root; in other

words, to what extent do classes invoke methods in classes „across‟ the hierarchy rather

than „up‟ it or „down‟ it. To further investigate this phenomenon, inheritance, size,

cohesion and method invocation data was extracted using the JHawk tool (JHawk 2008).

The main research question that we sought to explore was: in light of the „top heavy‟

nature of Java hierarchies shown in a previous study by the authors (Nasseri et al. 2008),

to what extent do classes take advantage or otherwise of superclass functionality (i.e., the

subclass-superclass relationships inherent in every inheritance hierarchy) when invoking

functionality of other classes?

 140

In the next section we present the motivation for the study. Section 6.3 describes the design

of the empirical study including the four OSS studied, data collected and the methodology

adopted. We then present summary data (Section 6.4). In Section 6.5 we present the data

analysis in single and multiple versions of the systems. Section 6.6 presents a discussion of

the validity of the study and the generalisation of the results; finally, we provide the

summary and conclusions of the empirical study in Section 6.7.

We note that a part of this chapter has been submitted for publication in (Nasseri and

Counsell 2009c)

6.2 Study Motivation

The chief motivation for the study in this chapter arises from the lack of empirical studies

into how classes within an inheritance hierarchy interact with one another and how that

interaction evolves as the corresponding systems evolve. Such studies can bring to light

patterns that may exist in system evolution which, in turn, may help software project

managers and developers prevent the decay of code in future versions. While we can view

system evolution at a class level relatively easily and hence view systems as a collection of

connected black boxes, such studies hide the lower-level granularity of functionality and

extent of coupling a class has with other classes. Trends in such behaviour, particularly if it

crosses the width rather than depth of an inheritance hierarchy, can create problems for

developers, since it requires them to follow links that we normally associate with „spaghetti

code‟.

6.3 Empirical Study Design

The study in this chapter reports the results of a quantitative analysis of class interaction

through method invocation in four Java OSS. The analysis takes into account class

interaction through association, when a class access methods of another class in the system

outside the direct line of classes to the root, and class interaction within a hierarchy, when

a class accesses methods of its superclasses.

 141

6.3.1 The four open-source systems

The four OSS on which our study is based were HSQLDB, JasperReports, SwingWT and

Tyrant (see systems 1, 3, 5 and 8 described in Section 2.3.2.5). For this empirical study, we

included all available versions of the four systems.

6.3.2 Data Collected

For this study we used JHawk (JHawk 2008), described in Section 2.3.2.6, to extract the

following OO metrics:

1. Depth of Inheritance Tree (DIT).

2. Number of Methods (NOM).

3. Number of calls to methods within Hierarchy (HIER).

4. Number of External method calls (EXT).

5. Lack of Cohesion Of the Methods in a class (LCOM).

(see metrics 1, 5, 7, 8 and 9 described in Section 2.3.2.6).

6.3.3 Methodology

In the following, we describe how the measures were used in the study.

 The DIT was used to identify and then measure the HIER and EXT metrics at each

level of inheritance hierarchy.

 The NOM was used to measure class size in the systems studied.

 The HIER was used to measure the amount of interaction between classes within

the inheritance hierarchy.

 EXT was used to measure the amount of interaction between classes other than

those in the hierarchy.

 LCOM was used to measure the cohesion in classes of the four systems.

 142

Following the extraction of the measures from each of the systems, we computed the total

HIER and EXT per DIT level and observed how they changed at each DIT level as the

systems evolved. We then analyzed the HIER and EXT values, taking into account the

number of classes at each DIT level in the final versions of the four systems. We assessed

the impact of HIER and EXT on class cohesion using the Mann-Whitney U-test (Hinkle et

al. 1995); finally, we carried out a two-tailed, parametric correlation (Pearson‟s) and two

non-parametric correlations (Kendall‟s and Spearman‟s) of NOM versus HIER and EXT in

the final versions of the four systems to identify any relationship that may exist between

the size of a class, given by NOM, and class coupling, given by HIER and EXT.

6.4 Summary Data

Table 6.1 provides summary statistics of changes of HIER and EXT values in the four

systems. The data is in the form of maximum (Max.), minimum (Min.), median (Med.),

mean (Mean) change of HIER and EXT. Table 6.1 also presents the variance (Var.) for the

changes of HIER and EXT for the four systems. In addition, Table 6.1 shows the

normalized (Norm.) percentage of „Max.‟ for each measure indicating what percentage of

number of HIER and EXT in initial versions of each system „Max.‟ represents. For

example, the maximum change of EXT in HSQLDB was 4069 which represented an

increase of 238% over the total number of EXT in first version of that system. Most

noticeable from Table 6.1 are the exceptionally high values of EXT compared with those

of HIER for each system. While we accept that some level of coupling between classes

measured by EXT is reasonable, the extent of that method invocation is exceptionally high.

 143

Systems Measures Max.Ch Norm. Min.Ch Med.Ch Mean Ch Var.

HSQLDB HIER 84 N/A 0 11 23.2 1176.7

EXT 4069 238% 6 1169 1552.8 2626167

Jasper

Reports

HIER 17 4% 0 6 7.36 32.66

EXT 1116 8% 75 222 388.55 116039.5

SwingWT HIER 255 2833% 0 17 44.29 3653.61

EXT 1864 471% 36 468 580.90 229445

Tyrant HIER 200 97% 0 0 6.61 917.41

EXT 3779 205% 0 28.5 188.86 349841.7

Table 6.1. Summary Change data for the HIER and EXT in the four systems

Since the first version of HSQLDB contained zero HIER, the Norm. HIER is therefore not

applicable to this system. On a system-by-system basis, the highest mean change for EXT

belongs to the HSQLDB system, indicating that significant maintenance has been made to

the pattern of method interactions in this system. The low mean change values for HIER

and EXT in Tyrant indicate that the system is relatively stable in comparison to its

counterparts. In (Nasseri et al. 2008), it was noted that between version 4 and 5, Tyrant

was subject to a major re-engineering effort through addition and deletion of large numbers

of classes. As a result, the maximum DIT in the system dropped from five to three.

Following that re-engineering effort, the system showed no change in terms of number of

classes for a significant number of versions. This trend in Tyrant was also observed in two

previous studies (Nasseri and Counsell 2009b, Nasseri and Counsell 2009a) where, after

version 5, this system also showed no change in number of methods and attributes for a

significant number of versions. In the context of the study described, this implies that apart

from a significant effort at one stage in its lifetime, the Tyrant system was less susceptible

to coupling across the hierarchy than the other three systems.

The high variance in values from Table 6.1 give the impression that each of the systems

was subject to significant change at some point and those changes resulted in a

correspondingly significant amount of external method calls given by EXT. Equally, the

HIER measure reflects a lack of willingness of subclasses to use superclasses and vice

 144

versa. In the following sections, we present a more detailed description of the measures on

each system.

6.5 Data Analysis

6.5.1 Method Invocation

We start our analysis with the HSQLDB system. The maximum DIT found for the

HSQLDB system was 4. Figure 6.1 shows the frequencies of HIER at each DIT level in the

six versions of HSQLDB. In order to examine whether the addition of new classes was the

primary reason for the increase in number of HIER, we also show the number of classes

with at least 1 HIER (Figure 6.2) at each DIT level across the same six versions. Classes

are primarily calling the methods of their ancestors and since classes at DIT one have no

superclasses, we therefore found all the HIER to occur at DIT level two and below which

is why we excluded the DIT one from figures showing the evolution of HIER. From Figure

6.1, the majority of HIER exists at DIT level two and, to a lesser extent, level three. We

see a sudden rise in HIER in the transition between versions 3 and 4. Between those

versions, the number of classes at DIT one increased from 114 to 247, and the number of

classes at DIT two and three increased from 29 and 4 to 63 and 12, respectively. In

addition, in version 4 the maximum DIT increased to four and only 1 class was observed at

this level, which was removed from the system in version 6. The lack of classes at DIT

four explains the lack of HIER at that level. Figure 6.2 shows a similar trend to that of

Figure 6.1. We see that the majority of classes containing at least 1 HIER are those at DIT

level two. Between versions 4 and 5, the number of HIER remained constant. Between

those versions, the total number of classes in the system remained the same.

The striking feature of both Figures 6.1 and 6.2 is the lack of HIER overall, despite

significant additions of classes at certain points. Developers clearly avoided adding classes

at lower levels of the hierarchy and favoured cross-hierarchy calls.

 145

0

20

40

60

80

100

120

1 2 3 4 5 6

Version

N
o
.

H
IE

R

 p

DIT=2

DIT=3

DIT=4

Figure 6.1. HIER frequencies HSQLDB (all versions)

0

10

20

30

40

50

60

1 2 3 4 5 6

Version

N
o
.

C
la

s
s
e
s
 w

it
h
 a

t
le

a
s
t

1
 H

IE
R

p

 p

DIT=2

DIT=3

DIT=4

Figure 6.2. Number of classes with at least 1 HIER HSQLDB (all versions)

Figure 6.3 shows the net changes of HIER at each DIT level in the six versions of

HSQLDB. A single peak can be seen in changes of HIER between versions 3 and 4. This is

due to the sudden rise in number of classes in the system between versions 3 and 4.

Interestingly, only 1 negative change was observed at DIT three between versions 5 and 6.

 146

All other changes of HIER observed were positive. Class interaction within the hierarchy

therefore tended to increase as the system evolved.

-10

0

10

20

30

40

50

60

70

80

1--2 2--3 3--4 4--5 5--6

Version

N
e
t

c
h
a
n
g
e
s
 o

f
H

IE
R

 p

 p DIT=2

DIT=3

DIT=4

Figure 6.3. Net changes of HIER HSQLDB (all versions)

Figure 6.4 shows the frequencies of EXT and Figure 6.5 the number of classes with at least

1 EXT at each DIT level across six versions of HSQLDB. From Figures 6.4 and 6.5, we

see that DIT one is where the majority of EXT exists. Again, the presence of large number

of EXT may be influenced by the presence of large number of classes at DIT one. The

contrast between the x-axis scales for Figure 6.1 and 6.2 and those of Figure 6.4 and 6.5

illustrate the differences between the values of HIER and EXT metrics, respectively and

the tendency for developers to favour EXT rather than HIER.

 147

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6

Version

N
o
.

E
X

T

 p

DIT=1

DIT=2

DIT=3

DIT=4

Figure 6.4. EXT frequencies HSQLDB (all versions)

0

50

100

150

200

250

1 2 3 4 5 6

Version

N
o
.

C
la

s
s
e
s
 w

it
h
 a

t
le

a
s
t

1
 E

X
T

p

p

DIT=1

DIT=2

DIT=3

DIT=4

Figure 6.5. Number of classes with at least 1 EXT HSQLDB (all versions)

Figure 6.6 shows the net changes of EXT at each DIT level across the six versions of

HSQLDB. Three peaks are visible: between versions 1 & 2, 3 & 4, and 5 & 6. The system

seems to be relatively stable in the transition between both versions 2 & 3 and 4 & 5,

suggesting that the system is changing in every second transition of versions. Only

 148

between versions 5 and 6 do we observe a negative growth in EXT (-5 from DIT three and

-1 from DIT one) – all other changes were positive. The transition between versions 3 and

4 appears to be the point where significant changes are made to the system in terms of

EXT values. (The total number of classes increased from 147 in version 3 to 323 in version

4.) The total HIER increased from just 21 to 105, while in the same period, the total

number of EXT increased from 4229 to 8298.

In the transition from version 4 to 5 where the number of classes at DIT one decreased by

1, the total EXT at DIT one actually increased from 6081 to 6087, while the number of

EXT at DIT two stayed constant. This demonstrates that even if the number of classes at a

specific level falls, then this does not seem to influence the trend in EXT. It might well be

that movement of classes around the hierarchy actually contributes to added EXT coupling,

where previously that coupling was restricted to the subclass-superclass relationship. If we

generally consider external calls to be potentially more dangerous, in terms of coupling and

fault-proneness, then as the HSQLDB system evolved, relatively harmful forms of

coupling became prominent.

-500

0

500

1000

1500

2000

2500

3000

1--2 2--3 3--4 4--5 5--6

Version

N
e
t

c
h
a
n
g
e
s
 o

f
E

X
T

 p

 p DIT=1

DIT=2

DIT=3

DIT=4

Figure 6.6. Net changes of EXT HSQLDB (all versions)

The maximum DIT found for the JasperReports system was 5 throughout the 12 versions

of the system studied. Figure 6.7 shows the frequencies of HIER and Figure 6.8 the

 149

frequencies of the number of classes with at least 1 HIER across the 12 versions of the

system. From Figure 6.7, all HIER values exist at DIT two and three. DIT four and five

contained zero HIER throughout the lifetime of the system, implying that there was a lack

of interaction between classes within the hierarchy at these low levels. This was a

surprising result from the study, since we might have expected classes at deeper levels to

be placed there to take advantage of superclass relationships. This does not seem to be the

case, however. In (Nasseri et al. 2008), we found that JasperReport classes at DIT four and

five showed zero changes in terms of number of classes throughout the set of 12 versions

studied. Likewise, in (Nasseri and Counsell 2009b, Nasseri and Counsell 2009a) we

observed that in the same system, classes at DIT four and five exhibited no change in terms

of number of methods and attributes, respectively throughout the system‟s lifetime.

Developers of this system undertook relatively little maintenance at deep levels of

hierarchy. Perhaps, as previous studies suggest, a maximum of three levels of inheritance is

more practical and manageable and more amenable to change, supporting Daly‟s view on

use of inheritance at three levels (Daly et al. 1996). From Figure 6.7, a fluctuation in

number of HIER at DIT two is visible, while the number of HIER at DIT three seems to

remain relatively static.

From Figure 6.8, the number of classes with at least 1 HIER at each DIT level is also

relatively static. The number of classes at DIT two with at least 1 HIER increased from 51

in version 1 to 58 in version 12 and the total number of HIER at DIT two increased from

156 in version 1 to 305 in version 12. This implies that, despite the number of classes with

at least one HIER not increasing significantly, the number of HIER increased significantly;

in other words, growth of HIER is not always influenced by the addition of classes;

maintenance to existing classes seems to have just as large an effect.

 150

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12

Version

N
o
.

H
IE

R

 p

DIT=2

DIT=3

DIT=4

DIT=5

Figure 6.7. HIER frequencies JasperReports (all versions)

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12

Version

N
o
.

C
la

s
s
e
s
 w

it
h
 a

t
le

a
s
t

1
 H

IE
R

 p

 p

DIT=2

DIT=3

DIT=4

DIT=5

Figure 6.8. Number of classes with at least 1 HIER JasperReports (all versions)

Figure 6.9 shows the net changes of HIER at each DIT level in JasperReports. From Figure

6.9, three positive peaks in changes at DIT two are visible between versions 3 & 4, 9 & 10

and 11 & 12. In addition, we see a negative peak in changes of HIER at DIT two between

versions 1 and 2. In JasperReports, the total HIER at DIT two and three across all versions

 151

was 3288 (i.e., 58.40%) and 2342 (i.e., 41.60%), respectively, implying that very little

activity took place at levels below that. Classes at DIT four and five contained zero HIER.

The evidence presented for JasperReports suggests that the majority of maintenance

activity occurred at shallow levels of DIT.

-10

-5

0

5

10

15

20

1--2 2--3 3--4 4--5 5--6 6--7 7--8 8--9 9--10 10--11 11--12

Version

N
e
t

c
h
a
n
g
e
s
 o

f
H

IE
R

p

DIT=2

DIT=3

DIT=4

DIT=5

Figure 6.9. Net changes of HIER JasperReports (all versions)

Figure 6.10 shows the breakdown of number of EXT and Figure 6.11 the number of

classes with at least 1 EXT at each DIT level in the 12 versions of JasperReports. From

Figure 6.10, the majority of EXT tends to occur at DIT one and two. Overall, 174541 (i.e.,

91.92%) EXT were at DIT one and two; 7829 (i.e., 91.98%) classes with at least 1 EXT

were found at DIT levels one and two throughout the versions of the system. It is

noticeable from Figures 6.10 and 6.11 that the number of EXT and the number of classes

with at least 1 EXT rose after version 3. In versions 1, 2 and 3, the total number of classes

with at least 1 EXT at DIT one remained at 380. However, the number of EXT in the same

level changed significantly (from 7811 EXT in version 1 to 7902 EXT in version 2 and

7825 EXT in version 3) suggesting that class interaction may again change and be

independent of net changes in number of classes (cf. Figure 6.9).

 152

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12

Version

N
o
.

E
X

T

 p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

Figure 6.10. EXT frequencies JasperReports (all versions)

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12

Version

N
o
.

C
la

s
s
e
s
 w

it
h
 a

t
le

a
s
t

1
 E

X
T

p

 p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

Figure 6.11. Number of classes with at least 1 EXT JasperReports (all versions)

Figure 6.12 shows the net changes (positive and/or negative growth) of EXT at each DIT

level across the 12 versions of JasperReports. From Figure 6.12, three peaks in changes of

EXT at DIT one are visible (between versions 3 & 4, 7 & 8 and 11 & 12). Overall 4071

(i.e., 95.25%) changes of EXT were made to classes at DIT one and two again suggesting

that maintenance activity at level three and beyond was minimal. Moreover, the maximum

 153

change in EXT occurs between versions 7 and 8, despite the fact that the maximum change

in number of classes occurs between versions 6 and 7.

-200

-100

0

100

200

300

400

500

600

700

800

900

1--2 2--3 3--4 4--5 5--6 6--7 7--8 8--9 9--10 10--11 11--12

Version

N
e
t

c
h
a
n
g
e
s
 o

f
E

X
T

p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

Figure 6.12. Net changes of EXT JasperReports (all versions)

The maximum DIT found for SwingWT was 7. Figure 6.13 shows the frequencies of HIER

and Figure 6.14 the frequencies of the number of classes with at least 1 HIER in the set of

22 versions of SwingWT. From Figure 6.13, a fluctuation can be seen in number of HIER

in every version. In version 1, we found only 9 HIER in the entire system, all of which

were located at DIT three. DIT two contained zero HIER. It is also interesting from Figure

6.13 that in versions 21 and 22, DIT five is where the maximum HIER (112) exists. That

sudden rise in number of HIER at DIT five is accompanied by a decrease in number of

HIER at DIT three and four. This trend can also be seen in Figure 6.14 where in version 21

the number of classes with at least 1 HIER increases with a corresponding drop in number

of classes with at least 1 HIER at DIT three and four. In terms of number of methods, we

found that between versions 20 and 22 the number of methods at DIT five dropped from

719 to 690.

Between versions 20 and 22, the developers of the system therefore paid more attention to

altering existing class interaction than simply adding new classes. In SwingWT, we found

the majority of HIER at DIT two with 988 HIER (i.e., 28.87%) over 22 versions of the

 154

system. The number of HIER at DIT three, four, five, six and seven, across all versions of

the system, was 450 (i.e., 13.15%), 670 (i.e., 19.58%), 644 (i.e., 18.83%), 306 (i.e., 8.94%)

and 364 (i.e., 10.64%), respectively.

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21

Version

N
o
.

H
IE

R

p

DIT=2

DIT=3

DIT=4

DIT=5

DIT=6

DIT=7

Figure 6.13. HIER frequencies SwingWT (all versions)

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19 21

Version

N
o
.

C
la

s
s
e
s
 w

it
h
 a

t
le

a
s
t

1
 H

IE
R

p

 p

DIT=2

DIT=3

DIT=4

DIT=5

DIT=6

DIT=7

Figure 6.14. Number of classes with at least 1 HIER SwingWT (all versions)

 155

Figure 6.15 shows the net changes of HIER at each DIT level in all versions of SwingWT.

Between versions 20 and 21, there is a sudden increase in changes of HIER at DIT five and

six with a corresponding decrease in changes of HIER at DIT seven. The SwingWT system

showed some evidence of large numbers of classes being „collapsed‟ to shallower levels

which explains the sudden rise at one level and a decrease at another.

-80

-60

-40

-20

0

20

40

60

80

100

1--
2

2--
3

3--
4

4--
5

5--
6

6--
7

7--
8

8--
9

9--
10

10-
-11

11--
12

12-
-13

13-
-14

14-
-15

15-
-16

16-
-17

17-
-18

18-
-19

19-
-20

20-
-21

21-
-22

Version

N
e
t

c
h
a
n
g
e
s
 o

f
H

IE
R

p

p

DIT=2

DIT=3

DIT=4

DIT=5

DIT=6

DIT=7

Figure 6.15. Net changes of HIER SwingWT (all versions)

Figure 6.16 shows the frequencies of number of EXT and Figure 6.17 shows the number of

classes with at least 1 EXT in the entire set of 22 versions of SwingWT. From Figure 6.16,

the majority of EXT exists at DIT one. In both figures, we see a sudden increase in EXT in

version 10. In that version, the system grew in size by 160 (i.e., 69.57%) classes. The

number of classes with at least 1 EXT in the same version increased by 107 (i.e., 99.07%)

and the number of classes with at least 1 HIER increased by 43 (i.e., 204.76%). This latter

analysis points to the possibility that the sudden rise in EXT and HIER in version 10 is due

to the large number of new classes being added to the system.

 156

0

500

1000

1500

2000

2500

3000

1 3 5 7 9 11 13 15 17 19 21

Version

N
o
.

E
X

T

 p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

DIT=6

DIT=7

Figure 6.16. EXT frequencies SwingWT (all versions)

0

20

40

60

80

100

120

140

160

180

1 3 5 7 9 11 13 15 17 19 21

Version

N
o
.

C
la

s
s
e
s
 w

it
h
 a

t
le

a
s
t

1
 E

X
T

 p

p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

DIT=6

DIT=7

Figure 6.17. Number of classes with at least 1 EXT SwingWT (all versions)

Figure 6.18 shows the net changes of EXT in the 22 versions of SwingWT. We see a

positive peak between versions 9 and 10. The transition between these versions was the

point where the maximum number of classes (160) was added to the system. We also see a

decrease in changes of EXT at DIT three between versions 15 and 16 with a corresponding

rise in changes of EXT at DIT one, two, four and five. From Figure 6.18, it is also visible

 157

that between versions 20 and 21 the changes of EXT at DIT one, two, three and seven falls

with a corresponding rise in changes of EXT at DIT four, five and six. From Figure 6.18,

we also see that the changes of EXT at each DIT level are generally erratic, particularly at

levels one, two, three and four.

-600

-400

-200

0

200

400

600

800

1000

1--
2

2--
3

3--
4

4--
5

5--
6

6--
7

7--
8

8--
9

9--
10

10-
-11

11--
12

12-
-13

13-
-14

14-
-15

15-
-16

16-
-17

17-
-18

18-
-19

19-
-20

20-
-21

21-
-22

Version

N
e
t

c
h
a
n
g
e
s
 o

f
E

X
T

p

 p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

DIT=6

DIT=7

Figure 6.18. Net changes of EXT SwingWT (all versions)

The maximum DIT for Tyrant was 5 but only until version 4. In version 5, it fell to 3 and

stayed constant throughout the 45 versions of the system. Figure 6.19 shows the

frequencies of number of HIER at each DIT and Figure 6.20 shows the number of classes

with at least 1 HIER at each DIT level in 45 versions of Tyrant. From these two figures, we

see that the system underwent significant re-engineering between versions 4 and 5 - after

which the system stabilized and showed no change for a significant number of versions.

This trend was also found in previous studies by the same authors (Nasseri et al. 2008,

Nasseri and Counsell 2009b, Nasseri and Counsell 2009a) where after version 5 Tyrant

showed no change in terms of number of classes, methods and attributes, respectively.

 158

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Version

N
o
.

H
IE

R

 p

DIT=2

DIT=3

DIT=4

DIT=5

Figure 6.19. HIER frequencies Tyrant (all versions)

0

5

10

15

20

25

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Version

N
o
.

C
la

s
s
e
s
 w

it
h
 a

t
le

a
s
t

1
 H

IE
R

 p

DIT=2

DIT=3

DIT=4

DIT=5

Figure 6.20. Number of classes with at least 1 HIER Tyrant (all versions)

Figure 6.21 shows the frequencies of net changes of HIER at each DIT level across 45

versions of Tyrant. We see a negative peak in number of HIER between versions 4 and 5

when the system underwent major re-engineering. After version 5, the changes of HIER

 159

seem to be negligible in comparison with the remaining three systems. Following version

5, the maximum change in number of HIER at both DIT two and three was only 8.

-100

-80

-60

-40

-20

0

20

40

1
--

2

4
--

5

7
--

8

1
0
--

1
1

1
3
--

1
4

1
6
--

1
7

1
9
--

2
0

2
2
--

2
3

2
5
--

2
6

2
8
--

2
9

3
1
--

3
2

3
4
--

3
5

3
7
--

3
8

4
0
--

4
1

4
3
--

4
4

Version

N
e
t

c
h
a
n
g
e
s
 o

f
H

IE
R

 p DIT=2

DIT=3

DIT=4

DIT=5

Figure 6.21. Net changes of HIER Tyrant (all versions)

Figure 6.22 shows the number of EXT at each DIT level and Figure 6.23 the number of

classes with at least 1 EXT at each DIT level for the versions of Tyrant. From the two

figures, the majority of EXT exists at DIT level one and, to a lesser extent, level three.

 160

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Version

N
o
.

E
X

T

 p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

Figure 6.22. EXT frequencies SwingWT (all versions)

0

20

40

60

80

100

120

140

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Version

N
o
.

C
la

s
s
e
s
 w

it
h
 a

t
le

a
s
t

1
 E

X
T

 p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

Figure 6.23. Number of classes with at least 1 EXT Tyrant (all versions)

Figure 6.24 shows the breakdown of net changes of EXT at each DIT level across 45

versions of Tyrant. From Figure 6.24, we see two positive peaks in changes of EXT at DIT

one and three between versions 4 and 5 with two corresponding negative peaks in EXT

 161

changes at DIT two, four and five. Again, following major changes (between versions 4

and 5) the system stabilizes, in terms of EXT, for a significant number of versions.

-1000

-500

0

500

1000

1500

2000

2500

1
--

2

4
--

5

7
--

8

1
0
--

1
1

1
3
--

1
4

1
6
--

1
7

1
9
--

2
0

2
2
--

2
3

2
5
--

2
6

2
8
--

2
9

3
1
--

3
2

3
4
--

3
5

3
7
--

3
8

4
0
--

4
1

4
3
--

4
4

Version

N
e
t

c
h
a
n
g
e
s
 o

f
E

X
T

p DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

Figure 6.24. Net changes of EXT Tyrant (all versions)

6.5.2 Final version analysis

We now explore the specific features of each system in the latest version to establish how

the values of EXT and HIER compare. We have chosen the latest version in each case,

since differences between these two metrics are likely to be more pronounced as a system

ages, and invariably decays. Table 6.2 shows the numerical values of HIER and EXT at

each DIT level for HSQLDB. The table format (after column 1 for DIT) is as follows:

(1) frequency and percentage of classes (Classes),

(2) frequency and percentage of HIER (HIER),

(3) frequency and percentage of EXT (EXT),

(4) average number of HIER (HIER/Classes) and

(5) average number of EXT (EXT/Classes) at each DIT level.

 162

From Table 6.2, the majority of HIER (i.e., 91.23%) exists at DIT level two. The average

HIER at DIT two is also higher than that of DIT three. The number of EXT at DIT one is

significantly higher than that of DIT two and three. The average EXT however, shows a

different trend. The average EXT at DIT three seems to be significantly higher than that of

average EXT at DIT one and two. This was a surprising result from our analysis. In theory,

we would expect classes at higher levels of hierarchy (DIT one) to be more amenable to

coupling, with other classes outside the hierarchy, than classes at lower levels. Classes at

lower levels of hierarchy are more dependent on the functionality offered by their

superclasses rather than classes outside the line of hierarchy.

DIT Classes HIER EXT HIER/Classes EXT/Classes

1 279 (77.93%) 0 7050 (74.52%) 0 25.27

2 68 (18.99%) 104 (91.23%) 2012 (21.27%) 1.53 29.59

3 11 (3.07%) 10 (8.77%) 399 (4.22%) 0.92 36.27

Table 6.2. HIER and EXT at each DIT level in HSQLDB (final version)

Table 6.3 shows the same numerical values for the final version of JasperReports in the

format of Table 2. From Table 6.3, the maximum number of HIER (i.e., 60.52%) exists at

DIT two and to a lesser extent DIT three. However, on average the highest number of

HIER (HIER/Classes) exists at DIT three. We also see that DIT four and five contain zero

HIER. A principle of inheritance is that related functionalities should be encapsulated

together and the classes providing those functionalities should interact with each other. The

lack of HIER in classes at lower levels of hierarchy (DIT four and five) is in direct

contradiction with this principle. In terms of EXT, the majority of EXT (i.e., 56.92%) tends

to exist at DIT one. DIT four is where the minimum number of EXT exists. The average

EXT however shows a different trend. On average, classes at DIT two and three,

respectively, contain the highest EXT.

 163

DIT Classes HIER EXT HIER/Classes EXT/Classes

1 761 (69.31%) 0 10383 (56.92%) 0 13.64

2 258 (23.50%) 305 (60.52%) 6468 (35.46%) 1.18 25.07

3 65 (5.92%) 199 (39.48%) 1334 (7.31%) 3.06 20.52

4 10 (0.91%) 0 5 (0.003%) 0 0.5

5 4 (0.36%) 0 51 (0.28%) 0 12.75

Table 6.3. HIER and EXT at each DIT level in JasperReports (final version)

Table 6.4 shows the values of HIER and EXT for the final version of SwingWT. Despite

the fact that the majority of classes reside at higher DIT levels, the maximum number of

HIER is from classes at DIT five. It is notable that 28 classes (i.e., 4.52% of all classes)

account for 112 (i.e., 32.28%) of HIER and 1289 (i.e., 21.27%) of EXT in the system. We

see that the majority of EXT exists at DIT one; however, when taking into account the

number of classes, DIT five, six and four, respectively, is where the majority of EXT

exists. On average, classes at lower DIT levels have higher coupling, given by HIER and

EXT, than classes at higher levels. While in theory we expected the majority of EXT to

occur at higher levels (DIT one and two) of a hierarchy from a practical perspective, the

evidence so far suggests that this is not always the case.

DIT Classes HIER EXT HIER/Classes EXT/Classes

1 429 (69.19%) 0 2096 (34.59%) 0 4.89

2 99 (15.97%) 85 (24.50%) 956 (15.78%) 0.87 9.66

3 24 (3.87%) 22 (6.34%) 304 (5.02%) 0.92 12.67

4 25 (4.03%) 34 (9.80%) 890 (14.69%) 1.36 35.6

5 28 (4.52%) 112 (32.28%) 1289 (21.27%) 4 46.04

6 11 (1.77%) 85 (24.50%) 455 (7.51%) 7.73 41.36

7 4 (0.65%) 9 (2.59%) 70 (1.16%) 2.25 17.5

Table 6.4. HIER and EXT at each DIT level in SwingWT (final version)

Table 6.5 shows the numerical values of HIER and EXT for the final version of Tyrant.

From Table 6.5, the majority of HIER (i.e., 55.13%) exists at DIT two. The average HIER

 164

(HIER/Classes) also exhibits a similar trend. From Table 6.5, we see a strong tendency for

average EXT (EXT/Classes) to exist at higher levels of DIT and the trend seems to be

downwards as DIT increases. System design has serious implications on class interaction.

The choice of method invocation in a class to the methods of another class is a design

decision which may have a deteriorating impact on overall system functionality.

DIT Classes HIER EXT HIER/Classes EXT/Classes

1 142 (50.01%) 0 4321 (64.79%) 0 30.43

2 49 (17.95%) 43 (55.13%) 1167 (17.50%) 0.88 23.82

3 82 (30.04%) 35 (44.87%) 1181 (17.71%) 0.43 14.40

Table 6.5. HIER and EXT at each DIT level in Tyrant (final version)

Table 6.6 shows how method calls are distributed in the final versions of the four systems.

The column format of Table 6.6 (after column 1) is as follows:

1) number and the percentage of classes containing both HIER and EXT

(HIER&EXT),

2) number and percentage of classes containing none (NONE),

3) number and percentage of classes containing only HIER (HIER) and

4) number and percentage of classes containing only EXT.

From Table 6.6, the majority of classes contain EXT. It was surprising that in the four

systems we found zero classes containing only HIER. Remarkable from Table 6.6 is the

large number of classes (286) in SwingWT containing zero HIER and EXT. SwingWT is a

GUI application which consisted of a maximum of seven levels of DIT. We expected this

system to be more amenable to method calls (both HIER and EXT). However, the evidence

showed that this is not the case. Scrutiny of the data revealed that 6407 method calls, both

HIER and EXT, were spread across 334 classes. On average, each class had 19.18 method

calls.

In comparison to the remaining three systems (HSQLDB: 30.92, JasperReports: 22.75 and

Tyrant 26.25) SwingWT contained the minimum number of method calls per class. From a

 165

coupling perspective this may sound encouraging, but from a design perspective method

calls are not evenly spread to all parts of the system, with the 46.13% of classes containing

zero method calls (both HIER and EXT). This latter result confirms previous findings

(Counsell et al. 2006a, Advani et al. 2006) that Swing has been poorly built and

consistently shows features indicating that the system is decaying and has been „patched

up‟.

Table 6.6. The HIER and EXT data in the four systems (final versions)

6.5.3 Mann-Whitney U-test and Correlation Analysis

6.5.3.1 Class Cohesion Analysis

We now investigate the impact of method calls (both HIER and EXT) on class cohesion,

given by the Lack of Cohesion metric of Chidamber and Kemerer (Chidamber and

Kemerer 1994) in the final versions of the four studied systems. A high value of LCOM in

a class suggests high complexity which potentially enhances class vulnerability to faults.

To investigate the impact of method calls (both HIER and EXT) on class cohesion, we

carried out two, one-tailed Mann-Whitney U-tests (Hinkle et al. 1995). We developed and

tested the following hypotheses in order to explore the impact of method calls on class

cohesion.

Null hypothesis HO1: The cohesion of a class is not influenced by HIER in that class

Alternative hypothesis HA1: HIER in a class tends to decrease the cohesion of that class.

Null hypothesis H02: The cohesion of a class is not influenced by EXT in that class.

Alternative hypothesis HA2: EXT in a class tends to decrease the cohesion of that class.

Systems HIER&EXT NONE HIER EXT

HSQLDB 55 (15.36%) 48 (13.41%) 0 (0%) 255 (71.23%)

JasperReports 85(7.74%) 274(24.95%) 0(0%) 739(67.30%)

SwingWT 115(18.55%) 286(46.13%) 0(0%) 219(35.32%)

Tyrant 31(11.36%) 16(5.86%) 0(0%) 226(82.78%)

 166

Table 6.7 shows the results of the Mann-Whitney U-test carried out on HIER and LCOM

for the final versions of the four systems. The format of the table is as follows: 1) the two

samples or groups of the classes (i.e., classes containing HIER (HIER) and classes without

HIER (Un-HIER)), 2) N - the number of classes in each group, 3) the mean-rank of scores

within each group (Mean-Rank), 4) the total sum of rank within each group (Sum of

Rank), 5) test statistics for the test (Mann-Whitney U-test), 6) the probability of test

significance (p-Value) and 7) Z-Score: used to assess the significance of the test when

either/both samples > 20 (i.e., if the Z-Score is > 1.96, irrespective of its sign, then the test

is significant at the one/five percent level based on the p-Value).

Samples N Mean-Rank Sum of Rank M-Whitney U p-Value Z-Score

HIER 286 1304.40 373057 257716 0.000 -3.566

Un-HIER 2062 1156.48 2384669

Table 6.7. Results of the Mann-Whitney U-test of HIER and LCOM

From Table 6.7, the mean rank value for classes with HIER (HIER row in Table 6.7) is

higher than its respective mean rank value for classes without HIER (Un-HIER row in

Table 6.7) and the Z-Score (-3.566) suggests that the test is significant at the 1% level (i.e.,

p-Value < 0.01). The results in Table 6.7 indicate that classes with HIER tend to have

higher LCOM than classes without HIER. Table 6.8 shows the results of the Mann-

Whitney U-test carried out on EXT and LCOM for the final versions of the four systems in

the same format as Table 6.7.

Samples N Mean-Rank Sum of Rank M-Whitney U p-Value Z-Score

EXT 1728 1263.18 2182776.50 382439.5 0.000 -10.912

Un-EXT 620 927.34 574949.50

Table 6.8. Results of the Mann-Whitney U-test of EXT and LCOM

From Table 6.8, the mean rank value for classes with EXT (EXT row in Table 6.8), is

higher than its corresponding mean rank value for the classes without EXT (Un-EXT row

 167

in Table 6.8). The Z-Score (-10.912) suggests that the test is significant at the 1% level

(i.e., p-Value < 0.01). The results in Table 6.8 indicate that classes with EXT tend to have

higher LCOM than classes without EXT.

Based first on the evidence from Table 6.7, the Z-Score and p-Value confirm that the

results are statistically significant. We are therefore in the position to refute H01 in favour

of HA1 that HIER in a class tends to decrease the cohesion of that class. The evidence

presented in Table 6.8 suggests that classes with EXT have higher LCOM than classes

without EXT; we hence reject the H02 in favour of HA2; that EXT in a class tends to

decrease the cohesion of that class.

6.5.3.2 Class Size Analysis

We now speculate that larger classes, given by the number of methods (NOM), tend to

have higher HIER and EXT. To investigate this, we conducted a 2-tailed parametric

(Pearson‟s) and two 2-tailed non-parametric (Kendall‟s and Spearman‟s) cross correlations

of NOM versus HIER and EXT in final versions of the four systems. Table 6.9 shows the

correlation values for the four systems.

Table 6.9. Correlation of NOM versus HIER and EXT

From Table 6.9, all values are double asterisked indicating that the correlations are

significant at the 1% level. The size of a class, given by NOM, is strongly correlated with

method calls (both HIER and EXT). Given the evidence in Table 6.9, we can assert that

the size of a class is strongly correlated with the fan-out (given by HIER and EXT) of a

class. Classes with more methods contain more functionality and hence are more amenable

to interaction with other classes in the system.

Systems Pearson‟s Kendall‟s Spearmen‟s

NOM vs. HIER 0.240** 0.195** 0.237**

NOM vs. EXT 0.615** 0.398** 0.525**

 168

6.6 Discussion

We begin with the threats to the validity of the study and how we defend those threats. We

start with the construct validity (i.e., the degree to which the measured concept can be

measured accurately in a different way): method invocation is an essential element of OO

systems which introduces coupling and should be measured accurately. In defence of this

threat, we argue that the metrics used in this chapter measure method invocation from two

distinct perspectives by distinguishing between method invocations within the hierarchy

(HIER) and External method calls (EXT). The rationale for using HIER was to investigate

method invocation from an inheritance perspective. That is, to explore whether, in practice,

classes take advantage of the functionality offered by their superclasses and how class

interaction within an inheritance hierarchy evolves as the system evolves. We found no

other metric to measure method calling within inheritance hierarchy. The rationale behind

using EXT was to measure method calling in classes outside the class hierarchy, and make

a comparison to that of HIER. We appreciate that there are other metrics that measure

coupling (which includes method calling) however, we required a metric to measure

method invocation and exclude HIER and other forms of coupling. We therefore believe

HIER and EXT metrics both capture class interaction in OO systems in a logical and

structured fashion. Using HIER and EXT to measure method calls sufficiently supports the

construct validity of the study. In terms of external validity (i.e., the degree to which the

results of the study can be generalized): the set of systems used are OSS rather than

proprietary systems. In our defence, we argue that the set of four systems analyzed are

from various application domains ranging from a database system to a game engine and a

GUI framework with various sizes and number of versions. Furthermore, we focused our

analysis on OSS which has been the subject of many empirical studies (Capiluppi et al.

2004, Capiluppi and Ramil 2004, Counsell et al. 2006a, Advani et al. 2006, Nasseri et al.

2008, Nasseri and Counsell 2009a, Nasseri and Counsell 2009b). We believe these points

sufficiently support the external validity of our study.

 169

6.7 Summary

In this chapter we have presented an empirical analysis of evolution of four Java OSS from

a method invocation perspective. We distinguished between method invocation within the

hierarchy (HIER) and external method calls (EXT) in classes of the studied systems. The

JHawk tool was used to extract the HIER and EXT from multiple versions and NOM and

LCOM from final versions of the four systems. The evidence suggests that the majority of

HIER and EXT respectively existed at DIT two and one. However, when considering the

number of classes at each DIT level, no clear pattern could be observed as to where the

majority of HIER and EXT existed. Similarly, we found that higher DIT levels (DIT one

and two) tended to have a higher growth rate in HIER and EXT.

The evidence indicates that the majority of method invocation (both HIER and EXT) are

made to the methods of the classes where the majority of functionality exists, irrespective

of the position of classes within the hierarchy. The results also suggest that method

invocation (both HIER and EXT) tends to detract from class cohesion and that class size,

given by number of methods, is positively correlated with class coupling, given by (HIER

and EXT). The results may be of interest to software developers/practitioners as to how

classes in a system interact and how that interaction changes as a system evolves.

 170

CHAPTER 7 “Warnings” and potential refactorings

7.1 Introduction

In the previous chapter we demonstrated how classes in an inheritance hierarchy interact

with each other and how that interaction evolves as opposed to that of system evolution. In

this chapter, we use data extracted by an automated tool called FindBugs (FindBugs 2008)

to explore the potential “warnings/problems” embedded in systems as they evolve. To

assist our analysis, we also collected an inheritance-based metric using the JHawk tool

(JHawk 2008). We analyzed the frequency and type of warnings across both single and

multiple versions of three Java OSS. The analysis allowed us to compare the types of

warnings common to classes added at level one with those at other levels. It also allowed

us to investigate the potential for refactoring elements which, in future versions may be

problematic from a fault perspective. Our research investigates facets of the Java

inheritance hierarchy that may store up problems as a system evolves.

In Section 7.2 we present the motivation for our empirical study. We then describe the

study design including the OSS used, independent and dependent variables and research

questions (Section 7.3). In Section 7.4 we present data analysis based on DIT, NOC,

warnings and refactoring, before providing a brief discussion of the empirical study

(Section 7.5); finally in Section 7.6 we provide a summary of our empirical results.

We note that part of the research in this chapter has been published in (Nasseri and

Counsell 2008).

7.2 Study Motivation

Clearly, there is conflicting evidence about the use of inheritance and the benefits it may or

may not bring in the past literature. However, the main thrust of evidence seems to be to

avoid deep levels of inheritance whenever possible. In this chapter, we empirically

investigated inheritance and warnings that may potentially create faults in a system and

 171

possible remedies through techniques such as refactoring. The main motivation for the

study arose from the need to confirm/refute the claims previously made by many studies of

inheritance and its effect on class fault-proneness.

7.3 Study Design

7.3.1 The three open-source systems

The three OSS used for the research in this chapter are JColibri, JasperReports and

SwingWT (see systems 2, 3 and 5 in Section 2.3.2.5). The remaining 5 OSS in our system

archive and a range of forty other Java OSS currently available from sourceforge.net were

selected and investigated on a stratified sample basis, but very few exhibited significant

numbers of warnings (problems embedded in a system that may lead to faults).

7.3.2 Independent and dependent variables

Warnings were collected using the FindBugs tool (FindBugs 2008). FindBugs uses static

analysis of source code to extract the following six main categories of warnings.

1. Bad Practice (BP): The code does not follow endorsed coding

practice (e.g., confusing method name, bad cast of object references

and database resource not closed on all paths).

2. Correctness (CO): An unexpected mistake is found in a piece of

code (e.g. null pointer de-references, suspicious calls to generic

container methods and dropped exception).

3. Malicious Code Vulnerability (MCV): A situation where internal

information is exposed or changed (e.g., method returning array may

expose internal representation, mutable static field and storing

reference to mutable object).

 172

4. Multithreaded Correctness (MTC): Inappropriate use of thread (e.g.,

unsynchronized get method, synchronized set method and field not

guarded against concurrent access).

5. Performance (PF): Warnings that aggravate system performance

(e.g., unread field, wrong map iterator and private method never

called).

6. Dodgy (DG): Code written in a confusing way that may cause faults

(e.g., dead store to local variable, runtime exception captured and

switch case falls through).

The warning data extracted by FindBugs was used as the dependent variable in this study.

The inheritance measures „Depth of Inheritance Tree‟ (DIT) and „Number Of Children‟

(NOC) (see metrics 1 and 4 in Section 2.3.2.6) were collected using the JHawk tool

(JHawk 2008) (described in Section 2.3.2.6) and were used as the independent variables in

our study against which the propensity for warnings could be measured.

We accept that warnings may have different characteristics to manifestation of „real‟ faults

obtained through running and testing the code and used in some other studies (Arisholm

and Briand 2006, Ostrand et al. 2004) and we also accept that false positives and false

negatives are key threats to the validity of the study. A false positive/negative refers to the

possible errors that may be made during an investigation. In the context of FindBugs a

false positive refers to a situation when a warning is discovered by FindBugs which in fact

is not a problem and may not lead to a fault. A false negative on the other hand refers to a

situation when there may be a problem that may lead to a fault but FindBugs may not

consider it as a problem. However, we believe that there is real value in understanding

areas of code that „could‟ cause maintenance problems at a later date. The areas of code

identified by the FindBugs tool can also highlight prime sources of „preventative‟

refactoring effort (Fowler 1999) associated specifically with inheritance. In addition, we

also appreciate that detailed information on faults (i.e., which class a particular fault

emerges from and which version a set of faults belong to) for OSS is also not available.

 173

A previous study by Counsell et al. (Counsell et al. 2006a) has shown that inheritance-

related refactorings (e.g., „Extract Subclass‟ and „Extract Superclass‟) are rarely

undertaken in Java systems and the complexity associated with those refactorings may be a

contributing factor. If sufficient warning signals of „code smells‟ (Fowler 1999) can be

provided early on in systems evolution, then FindBugs may help to solve an ongoing

question for developers: „what do we refactor and when?

7.3.3 Research questions

We investigated the following research questions to explore the relationship between

inheritance and warnings in the three systems.

1) Does the position of a class in inheritance hierarchy, according to its DIT, influence the

number of warnings generated as a system evolves? If we can demonstrate that classes at

deep levels of inheritance generate more warnings (on average) than those at relatively

shallow levels, then that would support the view that developers should avoid deep levels.

2) Does the number of subclasses of a class, according to its NOC, influence the number of

warnings generated in that class? In theory, we would expect a class with many children

(subclasses) to have been tested more rigorously than classes with a lower NOC and hence

to generate potentially fewer warnings. The extent of reuse of a class associated with many

children also supports the argument for fewer warnings. However, we suggest that large-

scale avoidance of deep inheritance levels in a system will cause potential faults to be

found in classes with relatively low NOC values.

3) Does the type of warnings, extracted by FindBugs, inform any refactoring effort that

could be applied to the classes as they evolve? We suggest that the warnings at DIT level

one may give rise to a different set of potential refactorings than those at deeper levels.

 174

7.4 Data analysis

7.4.1 DIT and warning analysis

Table 7.1 shows maximum (Max.), median (Med.), mean (Mn.) and standard deviation

(STDEV) DIT values for the latest versions of the three systems; it also shows the total

number of classes (Class) and total number of generated warnings (Warn.) for those

systems.

Systems Max. Med. Mn. STDEV Class Warn.

SwingWT 7 1 1.67 1.28 620 368

JasperReports 5 1 1.40 0.68 1098 301

JColibri 2 1 1.04 0.18 228 74

Table 7.1. Summary DIT data for the three systems (final versions)

From Table 7.1, the maximum DIT belongs to SwingWT (7) suggesting extensive use of

inheritance in this system. SwingWT is a GUI application and there is evidence from

previous studies to suggest that, in contrast to many other types of system, GUI

applications use inheritance extensively (Bieman and Zhao 1995). Similarly, SwingWT has

the highest number of warnings despite the fact that it is not the largest system in terms of

classes (it has over half the number of those in JasperReports). There is also empirical

evidence to suggest that the Swing system has been poorly maintained, contravenes many

OO practices and, consequently, has deteriorated badly over the course of the versions

investigated (Counsell et al. 2006a, Advani et al. 2006) - this seems to be reflected in the

number of warnings for this system.

Table 7.2 shows the numerical values for warnings found at each DIT level for the

SwingWT system. The column format of Table 7.2 (after column 1 for DIT) is as follows:

1) the number of classes at each level of inheritance (Classes), 2) the number of warnings

at each level (Warnings), 3) the average number of warnings per class at each level of

inheritance (Warnings/classes), 4) the percentage of classes at each level (Class%), 5) the

percentage of warnings at each level (Warning%).

 175

From Table 7.2, approximately 59% of all warnings for SwingWT were found at DIT level

one. Only 9.78% of warnings arose from classes at DIT two, and 2.72%, 7.88%, 15.76%,

2.72% and 1.36% warnings from DIT three, four, five, six and seven, respectively.

However, in terms of the average number of warnings per class, Table 7.2 shows a

significant rise in the numbers per class between levels three and five, after which there is

a significant fall. We could suggest that for the SwingWT system, there may well be a

„good and bad‟ DIT range with threshold values at each end - warnings rise rapidly after

DIT three, before falling after reaching DIT five. This theory is supported by the research

of Daly et al. (Daly et al. 1996) where three levels of inheritance were found easier to

modify than systems with no inheritance. Systems with five levels of inheritance, however,

were shown to take longer to modify than the systems without inheritance.

DIT Cl. Warn. Warn./Cl. Cl.% Warn.%

1 429 220 0.51 69.19 59.78

2 99 36 0.36 15.97 9.78

3 24 10 0.42 3.87 2.72

4 25 29 1.16 4.03 7.88

5 28 58 2.07 4.52 15.76

6 11 10 0.91 1.77 2.72

7 4 5 1.25 0.65 1.36

Table 7.2. Warnings/DIT (SwingWT)

Figure 7.1 shows the frequency of warnings for the JasperReports system; 257 (i.e.,

85.38%) of warnings were found in classes located at DIT one. Only 38 (i.e., 12.62%) and

6 (i.e., 1.99%) of warnings were found in classes located at DIT two and three,

respectively. Classes located at levels four and five exhibited no warnings whatsoever, but

this might have been expected with the relatively small number of classes at these levels

(i.e., 1.27% in total).

 176

0

50

100

150

200

250

300

DIT = 1 DIT = 2 DIT = 3 DIT = 4 DIT = 5

DIT

Figure 7.1. Warnings/DIT (JasperReports)

Table 7.3 presents the numerical data for JasperReports system (in the same format as for

SwingWT). The data suggests that classes residing deeper in an inheritance hierarchy tend

to be less potentially prone to warnings than classes located higher up in that hierarchy.

DIT Cl. Warn. Warn./Cl. Cl.% Warn.%

1 761 257 0.34 69.31 85.38

2 258 38 0.15 23.50 12.62

3 65 6 0.09 5.92 1.99

4 10 0 0 0.91 0

5 4 0 0 0.36 0

Table 7.3. Warnings/DIT (JasperReports)

From Table 7.3, there are high numbers of classes at DIT two (i.e., 23.50% of all classes),

yet these classes account for only approximately 12% of warnings. Over 85% of warnings

occurred at DIT one. For this system, the larger the DIT is, the fewer the number of

warnings there are. Only approximately 6% of classes reside at DIT three, and these

account for only 1.99% of all warnings for this system. Clearly, for the JasperReports

system and, to a lesser extent, the SwingWT system, the data suggests that the majority of

warnings tend to reside where the majority of functionality is invested and this tends to be

 177

at DIT one. Table 7.4 shows the profile for the JColibri system in the same format as that

of Tables 7.2 and 7.3. It shows that 74 (i.e., 100%) of warnings were found in classes

located at DIT one (classes with DIT two exhibited zero warnings).

DIT Cl. Warn. Warn./Classes Class% Warn.%

1 220 74 0.34 96.49 100

2 8 0 0 3.50 0

Table 7.4. Warnings/DIT (JColibri)

7.4.2 Distribution of warnings

One issue that arises as a result of our analysis is the distribution of warnings across

classes. In other words, is the total set of warnings identified by the tool spread across a

relatively few or the majority of the classes at the different levels for each of the three

systems?

Table 7.5 shows the number of classes at each level with at least one warning and the

percentage of the total number of classes in the system that this represents. For example,

102 classes at DIT one in the SwingWT contained at least one warning (i.e., 16.45% of all

SwingWT classes). This also means that, since there are 429 classes in total at DIT one,

approximately 25% of all classes at DIT one for this system contained a warning. The

same table shows a clear bias towards warnings being generated at DIT one, for each of the

three systems. Over 11% of all classes in JasperReports (125) contained at least one

warning, significantly more than the total for all DIT levels two to five (the same applies to

the JColibri system, where all the warnings were found to reside at DIT one).

 178

Levels SwingWT JasperReports JColibri

DIT1 102(16.45%) 125 (11.38%) 46(20.18%)

DIT2 22 (3.55%) 10 (0.91%) 0 (0%)

DIT3 7 (1.13%) 4 (0.36%) -

DIT4 12 (1.93%) 0 (0%) -

DIT5 11 (1.77%) 0 (0%) -

DIT6 6 (0.97%) - -

DIT7 2 (0.32%) - -

Table 7.5. Classes/warnings at DIT levels

7.4.3 DIT and warning evolution analysis

Our analysis until now has looked at features of the three systems using the latest version

as a basis. One feature of the three systems that emphasizes the role that DIT and

associated warnings is how and where classes have been added over the course of the

versions studied.

Figure 7.2 shows the changes in DIT (and the number of classes added over the course of

the 22 versions) for SwingWT. The figure was also presented in Chapter 3 (Figure 3.4). It

shows a steady rise in classes at DIT one and two from a relatively low level in version 1

to a high level in version 22. The same activity is not present at other levels, which remain

relatively static.

 179

0

50

100

150

200

250

300

350

400

450

500

1 3 5 7 9 11 13 15 17 19 21

Version

N
o
.

C
la

s
s
e
s

p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

DIT=6

DIT=7

Figure 7.2. DIT frequencies SwingWT (all versions)

Figure 7.3 shows the number of classes and generated warnings for the SwingWT system

throughout the versions studied. No relationship is clear from the graph, suggesting that

new classes do not tend to attract any of the warnings; it may simply be that changing

existing classes may be the cause of a rise in warnings. In version 22 of SwingWT there is

a dramatic rise in warnings. One explanation is that performance of the system at this point

started to deteriorate (Section 7.4.5 describes how many of the warnings for this system

were generated from potential performance issues).

 180

0

100

200

300

400

500

600

700

1 3 5 7 9 11 13 15 17 19 21

Version

N
o
.

C
la

s
s
e
s
/W

a
rn

in
g
s

p

No. Classes

Warnings

Figure 7.3. Classes/Warnings (SwingWT)

The DIT pattern for the JasperReports system is shown in Figure 7.4 (the figure is also

presented in Chapter 3 (Figure 3.2)) and Figure 7.5 shows the trend in number of system

classes and warnings generated across versions for JasperReports. No obvious trend

between the DIT values and warnings is evident, although both rise gradually over the

course of the versions studied. One feature not evident from the figure is that at version 8,

the rise in the number of classes and warnings was the largest for both variables. From

version 1 to 2, a small decrease in the number of classes resulted in a correspondingly

small decrease in warnings. This suggests a strong correlation between the two variables.

 181

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12

Version

N
o
.

C
la

s
s
e
s

p

DIT=1

DIT=2

DIT=3

DIT=4

DIT=5

Figure 7.4. DIT frequencies JasperReports (all versions)

Figure 7.5. Classes/Warnings (JasperReports)

Figure 7.6 shows the DIT frequencies for JColibri and Figure 7.7 shows the evolution of

overall classes and warnings in the same system. The trend for JColibri (Figures 7.6 and

7.7) is unlike the trend for the other two systems. We note a strong correspondence

between the shape of the graph for DIT level one of Figure 7.6 and the two graphs in

Figure 7.7. One particularly noteworthy feature is the decrease in classes and number of

0

200

400

600

800

1000

1200

1 3 5 7 9 11

Version

N
o
.

C
la

s
s
e

s
/W

a
rn

in
g
s

No. Classes

Warnings

 182

warnings in version 8 of the system investigated. One plausible explanation for this trend

might be that significant re-engineering and/or refactoring took place at this point in the

life of the system and, as a result, some classes were merged and/or deleted. Visual

inspection of the classes by the authors revealed removal of significant numbers of inner

classes from version 7 to version 8. Since inner classes were a source of many warnings in

all versions of JColibri (see Section 7.4.5) removal of those classes also accounts for the

sudden drop in both classes and warnings in Figure 7.7. This was a surprising finding from

the analysis. Inner classes could be criticized for adding an extra level of complexity to a

class and this may explain their removal.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8

Version

N
o
.

C
la

s
s
e
s

 p

DIT=1

DIT=2

DIT=3

Figure 7.6. DIT frequencies JColibri (all versions)

 183

Figure 7.7. Classes/Warnings (JColibri)

Of course, we would expect a certain amount of new classes to be added to a system and

for many of those added classes to be at DIT level one; however, the scale of the additions

at this level suggests that many of those classes were added without thought as to whether

they could fit into a deeper level of the existing hierarchy.

We return to our first research question: Does the position of a class in inheritance

hierarchy, according to its DIT, influence the number of warnings generated as a system

evolves?

In the three systems studied, we observed that the majority of warnings emerged from

classes at DIT one where the majority of functionality resided. On the basis of the evidence

presented for the three systems, we suggest that while the majority of functionality and

warnings do emerge from DIT level one classes, there may be other factors that strongly

influence the number of warnings generated by a system (other than simply its position in

an inheritance hierarchy). The presence of inner classes alongside significant re-

engineering effort are just two facets of a systems‟ evolution that may influence the

propensity for warnings to arise. One argument for why so many warnings were generated

for classes at DIT level one may be that such classes are coupled to classes in other more

complex ways simply to compensate for the lack of coupling via inheritance.

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8

Version

N
o

.
C

la
s
s
e

s
/W

a
rn

in
g
s

No. Classes

Warnings

 184

7.4.4 NOC and Warnings Analysis

As well as analysis of the DIT metric, an equally relevant feature of an inheritance

hierarchy is the Number of Children (NOC) metric (Chidamber and Kemerer 1994). This

metric provides an indication of the „breadth‟ of an inheritance hierarchy rather than its

depth as given by the DIT metric. Table 7.6 shows maximum (Max), median (Med), mean

(Mn.) and standard deviation (STDEV) NOC values for the final versions of each of the

three systems.

Systems Max Med Mn. STDEV

SwingWT 17 0 0.31 1.31

JasperReports 75 0 0.31 2.80

JColibri 3 0 0.04 0.25

Table 7.6. Summary NOC data for the three systems (final versions)

From Table 7.6, JasperReports contains the highest maximum value for NOC at 75. The

NOC values for JColibri indicate that subclassing was used infrequently in this system.

(JColibri was found to be the smallest system studied in terms of number of classes.) The

median value for all three systems is zero and the low mean NOC values coupled with

shallow levels of DIT from our prior analysis suggests that many classes found at DIT one

had no children (i.e., subclasses) either. Table 7.7 presents a count of number of classes for

each value of the NOC (Classes), the number of warnings in each category (Warning),

average number of warnings per class in each category (Warnings/Classes), percentage of

classes in each category (Class%) and percentage of warnings in each category

(Warnings%) for the final version of SwingWT.

 185

NOC Classes Warnings Warnings/Classes Class% Warnings%

0 535 316 0.03 86.29 85.87

1 49 25 0.51 7.90 6.79

2 19 11 0.58 3.06 2.99

3 8 5 0.62 1.29 1.36

4 3 0 0 0.48 0

5 1 1 1 0.16 0.27

6 0 0 0 0 0

7 1 0 0 0.16 0

>7<=17 4 10 2.5 0.65 2.72

Table 7.7. Warnings and NOC in SwingWT (version 22)

From Table 7.7, the number of warnings tends to decrease as NOC increases. The vast

majority of classes (i.e., 82.29%) in the SwingWT system have zero NOC and the 535

classes (column 2) account for the 316 of the 368 warnings in total (this represents 85.87%

of all warnings). Figure 7.8 shows the pattern of classes (upper graph) and classes with at

least 1 warning (lower graph) at the different levels of DIT for classes with NOC=0 in the

final version of SwingWT. For example, 385 classes had a DIT one and an NOC=0 and 98

of those 385 classes contained at least one warning. At DIT two, there were 85 classes with

NOC=0, of which 20 contained at least one warning.

Figure 7.8. DIT levels and Warnings with NOC=0 for SwingWT (version 22)

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7

DIT

N
o

.
C

la
s
s
e

s
/N

o
.

W
a
rn

in
g

-p
ro

n
e

 c
la

s
s
e

s

 186

For the SwingWT system, we thus have a pattern of a relatively large number of classes at

DIT one with NOC of 0 and those classes account for a high percentage of warnings. This

set of values ties in with the evolutionary pattern for classes to be added to DIT one in

Figure 7.2. Figure 7.9 shows the number of warnings and NOC values for version 12 of

JasperReports; the rightmost column (NOC > 2) indicates that zero warnings were found in

classes with NOC > 2. From Figure 7.9, the highest number of warnings arises from

classes with zero NOC.

0

50

100

150

200

250

300

350

NOC = 0 NOC = 1 NOC = 2 NOC > 2

NOC

N
o
.

W
a
rn

in
g
s

 p

Figure 7.9. Warnings and NOC in JasperReports (version 12)

Table 7.8 presents the data for JasperReports. Just as for SwingWT (Table 7.7), we note

high numbers of classes with zero NOC. Inspection of the raw data revealed that 701 of the

1007 classes at DIT level one and a further 233 classes at DIT level two also had an NOC

of 0.

 187

NOC Classes Warnings Warnings/classes Class% Warnings%

0 1007 290 0.30 91.71 96.34

1 36 5 0.14 3.27 1.66

2 22 6 0.27 2.00 1.99

3 12 0 0 1.09 0

4 10 0 0 0.91 0

5 2 0 0 0.18 0

6 4 0 0 0.36 0

7 2 0 0 0.18 0

>7<=75 3 0 0 0.27 0

Table 7.8. Warnings and NOC in JasperReports (version 12)

Table 7.9 presents the data for the final version of JColibri. In common with both

SwingWT (Table 7.7) and JasperReports (Table 7.8) a high percentage of classes (214

from 222) at DIT one had an NOC of 0. Our earlier suggestion that „large-scale avoidance

of deep inheritance levels in a system will cause potential warnings to be found in classes

with relatively low NOC values‟ does not seem to have entirely been borne out for at least

one of the systems studied (i.e., SwingWT), although classes at DIT one and with zero

children seem to figure prominently in warnings even for this system.

NOC Classes Warnings Warnings/classes Class% Warnings%

0 222 72 0.08 97.37 97.30

1 5 1 0.20 2.19 1.35

2 0 0 0 0 0

3 1 1 1 0.44 1.35

Table 7.9. Warnings and NOC in JColibri (version 8)

The original research question with respect to NOC was: Does the number of subclasses of

a class, according to its NOC, influence the number of warnings generated in that class?

In answer to this question, we could suggest that classes with an NOC of 0 house the

overwhelming majority of warnings in each of the systems studied. One plausible

explanation for this can be that a large number of classes in the three systems contained 0

 188

NOC. The emergence of warnings were therefore due to the large number of classes falling

in that category (NOC = 0).

7.4.5 Warnings and refactoring analysis

The third research question stated in Section 7.3.3 related to the possibility of refactoring

code on the basis of warning data as a system evolves. A previous study by Counsell et al.

(Counsell et al. 2006a) has shown that inheritance-related refactorings (e.g., „Extract

Subclass‟ and „Extract Superclass‟) are rarely undertaken in Java systems and the

complexity associated with those refactorings may be a contributing factor. On the other

hand, frequent occurrences of simple renaming of fields, renaming of methods and

movement of fields and methods between classes were observed in the same study. The

potential benefit of exploring the research questions is that if sufficient warning signals of

„code smells‟ for example (Fowler 1999) can be provided at any stage in a system‟s

evolution, in our case through code warnings; then this may help to solve an ongoing

question for developers and researchers which is „what do we refactor and when do we

refactor?

Table 7.10 shows the number and type of warnings for the final versions of each system.

From Table 7.10, 159 (i.e., 43.2%) warnings in SwingWT belong to the performance (PF)

category. However, only 9 (i.e., 2.99%) and 19 (i.e., 24.67%) of the same category of

warnings were found in JasperReports and JColibri, respectively, where the Bad Practice

(BP) category figured most prominently.

Systems BP CO MCV MTC PF DG

SwingWT 64 48 42 5 159 50

JasperReports 154 18 109 4 9 7

JColibri 27 4 4 1 19 19

Table 7.10. The categories of warnings

We first inspect the data for the SwingWT for the PF category since this is where the

highest number of warnings were found and illustrate how those warnings suggest

opportunities for potential refactorings. For this system, four of the six PF warnings at

 189

version one were the „Unread Field (UF)‟ warning. The description of the warning taken

from (FindBugs 2008) is „This field is never read. Consider removing it from the class‟. If

the field in question was assigned from a parameter passed in to the body of the methods,

then we could easily apply the „Remove Parameter‟ (Fowler 1999) refactoring to each

method to remove the parameter and the field in question; all four of these warnings

related to classes at DIT level two. One of the other warnings was also directly related to

inheritance, namely: „Class defines field that masks a superclass field (CMS)‟. The

description of the warning is: „This class defines a field with the same name as a visible

instance field in a superclass. This is confusing, and may indicate an error if methods

update or access one of the fields when they wanted the other‟. This problem can be solved

easily by a simple „Rename Field‟ refactoring. The SwingWT system only exhibited

warnings at versions one, two and twenty-two. At version 22, the same two warnings re-

appeared multiple times. We found 19 occurrences of UF warnings and 30 occurrences of

the CMS warning, many of which were at DIT levels three, four, five and six. We also

found evidence of „unused‟ fields in the same set of warnings which, although not strictly

relating to any recognized refactoring, could be removed as part of an optimization

process.

By far the most common performance warning related to the warning: „Should be a static

inner class‟. The description of this warning taken from (FindBugs 2008) is: „This class is

an inner class, but does not use its embedded reference to the object which created it. This

reference makes the instances of the class larger, and may keep the reference to the

creator object alive longer than necessary. If possible, the class should be made static‟. 42

occurrences of this warning were found occurring at all levels of the inheritance hierarchy.

A recognized refactoring is to take an outer class and make it a static inner class of another

class (if a class is inner, it should be made static anyway). Evidence of confusing method

names and unconventional naming of classes was also found by the tool - again these fell

into the category of simple renaming refactorings. From a refactoring perspective, the

SwingWT system therefore provides ample opportunity at all levels of the inheritance

hierarchy for application of relatively easily applied refactorings. The fact that inner

classes repeatedly figure in our analysis of the systems studied implies that they are not as

convenient and useful as they might suggest.

 190

For JasperReports the most commonly recurring warning in this system was for the Bad

Practice Category. Two types of warning dominated the versions of JasperReports:

1. „May expose internal representation by returning reference to mutable object‟. The

description of this warning taken from (FindBugs 2008) is: „returning a reference

to a mutable object value stored in one of the object's fields exposes the internal

representation of the object. If instances are accessed by entrusted code, and

unchecked changes to the mutable object would compromise security or other

important properties, you will need to do something different. Returning a new

copy of the object is better in many situations‟.

2. „Non-transient, non-serializable instance field in serializable class‟. The

description of this warning taken from (FindBugs 2008) is: „This Serializable class

defines a non-primitive instance field which is neither transient, Serializable, or

java.lang.Object, and does not appear to implement the Externalizable interface or

the readObject() and writeObject() methods. Objects of this class will not be de-

serialized correctly if a non-Serializable object is stored in this field‟.

For warning 1, 49 occurrences were found in version 1 and 60 occurrences of the same

warning were found in version 12. A principle upon which the refactoring process rests is

that wherever possible, data should be made immutable to prevent its accidental

modification and to limit the amount of re-test after refactoring. In other words, there is an

opportunity for adhering to sound refactoring practice in JasperReports by inspecting each

occurrence of these warnings and resolving that potential problem. For warning 2, 122

occurrences were found in the version 1 of this system and 119 occurrences found in

version 12. Appropriate definition of fields particularly those involved in Java remote calls

is an important part of „binary refactoring‟ a technique to improve program performance in

which refactoring is achieved without modifying the source code (Tilevich and

Smaragdakis 2005). In other words, while there is no specific refactoring that can be

applied in response to warning 2, the effectiveness and possibility of applying other

refactorings may be harmed if these warnings are allowed to remain. Indeed, there seems

only limited evidence that this warning was heeded across the versions of JasperReports.

 191

For JColibri, the most commonly recurring warning was in the Bad Practice category (27

occurrences were found by the tool). The single most common warning in that category

was: „Comparison of String parameter using == or !=‟. The description of this warning

taken from (FindBugs 2008) is: „This code compares a java.lang.String parameter for

reference equality using the == or != operators. Requiring callers to pass only String

constants or interned strings to a method is unnecessarily fragile, and rarely leads to

measurable performance gains. Consider using the equals(Object) method instead‟.

In version 1 of this system, 48 warnings of this type were generated (from a total of 111) –

all of those 48 warnings were for classes located at DIT level one and this suggests that

this is code typically inherited by subclasses. In version 8, zero of the 48 warnings were

generated. Related to refactoring, improper use of the string comparison techniques is

widely considered to be a bad smell in code (Fowler 1999); such a smell can be eliminated

through application of relatively simple refactoring principles and it appears that smell

eradication is what happened in this case to the 48 occurrences of this warning. Further

evidence that these refactorings had taken place was the existence of warnings related to

„equals(Object)‟ code in a later version. As well as this warning, there were frequent

occurrences of the „Method names should start with a lower-case letter‟ warning (these

can easily be remedied by simple renaming refactorings) and, in common with the

SwingWT system, regular occurrence of the: „Should be a static inner class‟ warning. It

was noteworthy that the same types of warning recurred across all three systems but with

different emphases.

Investigation of the warnings in the three systems thus demonstrates ample opportunity for

refactoring of different types. More generally, if we now return to the third research

question of Section 7.3.3: Does the type of warnings, extracted by FindBugs, inform any

refactoring effort that could be applied to the classes as they evolve?

We suggest that there is definite evidence that not only is refactoring plausible and a

practical reality across versions, but has actually been carried out by developers in certain

cases.

 192

7.5 Discussion

There are a number of issues related to the study that impact on its validity and/or

generalizability. Firstly, the study could be criticised for using the systems with different

number of versions (SwingWT containing twenty-two versions, JasperReports containing

twelve versions and JColibri containing eight versions). In defence of this criticism, we

opted to use the single (final versions) and all available versions of each system. Secondly,

we have suggested that warnings tend to occur at DIT one and this is a situation that should

have been avoided. However, we have no data to suggest that any other configuration of

classes would be any better in terms of the number of warnings generated. In other words,

developers add classes at DIT one because that is the sensible thing to do.

Finally, our study may be criticised for using warnings rather than using actual fault data.

In our defence, while ideally we would have liked to base our analysis on actual fault data

obtained through running and testing the code, we argue that the process of testing OSS is

different to that of proprietary system. Obtaining detailed information on each fault from

OSS (i.e., which class a particular fault emerges from and how each fault has been

remedied) is infeasible. We therefore, opted to use the FindBugs tool to highlight the areas

that potentially store problems which may lead to faults in future releases of a system.

7.6 Summary

In this chapter, we empirically investigated the influence of inheritance on warnings issued

by an automated tool. Warning and inheritance data was extracted from three Java OSS

using the JHawk and FindBugs tools. A number of results emerged from the analysis.

Firstly, using just the warnings generated by the FindBugs tool allowed us to model trends

in inheritance and to establish whether any relationship existed between how an inheritance

hierarchy evolves and the propensity for warnings. Secondly, it demonstrated how

generated warnings can be used to inform refactoring effort by pointing to potential

hotspots in code (before actual faults appear). In the three systems studied, we found that

the majority of warnings were found where the majority of functionality resided (classes at

DIT level one and with NOC = 0). In addition, we found that the types of warnings could

 193

help identify refactoring effort that could be applied to the classes of an evolving system.

Our study also shows that many of the simple, common refactorings proliferate in code and

can be highlighted using a simple automated tool. Finally, the analysis is of relevance to

developers interested in identifying where remedial action may be required from an

inheritance/refactoring perspective.

 194

CHAPTER 8 Conclusions and Future Work

In this chapter we describe the findings and achievements of the research presented in this

Thesis. In Section 8.1, we discuss our findings with a reflection on our original objectives

presented in Chapter 1. We also describe how those objectives were achieved reflecting on

studies presented in each chapter. Section 8.2 provides a description of our contribution. In

Section 8.3, we give a description of our personal achievement for undertaking the

research in this Thesis and finally, in Section 8.4 we point to possible future work that the

research in this Thesis may lead to.

8.1 Thesis Objectives Re-visited

For the research in this Thesis the following objectives, originally stated in Chapter 1, were

formed:

1. To improve our understanding of inheritance in Java OSS. That is, to obtain a

greater understanding of what inheritance is and how this OO mechanism is

used in practice.

2. To investigate quantitatively how inheritance hierarchies evolve as opposed to

that of system evolution as a whole. In particular, to conduct a thorough

investigation of where (in the inheritance hierarchy) the majority of incremental

changes are applied as a system evolves.

3. To investigate evolution of inheritance from a classes movement and relocation

perspective. In other words, to investigate how classes within an inheritance

hierarchy are moved from one level to another as a system evolves.

4. To investigate inheritance from a class interaction perspective.

In the following, we demonstrate how we addressed these objectives referring to the

empirical evidence presented throughout the Thesis, and how those findings can build a

body of knowledge in the domain of OO.

 195

To address the aforementioned objectives, we started our investigation of inheritance by

conducting a thorough literature review (see Chapter 2) of previous work reported on

inheritance, how it was used in practice and what implications it may have on system

maintainability. This followed with the study presented in Chapter 3, which was concerned

about how incremental changes were made to inheritance hierarchies as seven Java OSS

evolved (the class changes were investigated in seven systems and the method and

attributes changes were explored in three systems). That is, we investigated where, within

the inheritance hierarchy, the majority of changes (class, method and attribute

additions/deletions) were made as the systems evolved from one version to the next. In

Chapter 4 we investigated how inheritance hierarchies, in the remaining four systems,

changed and those changes were analogized to a set of low-level refactorings (method and

attribute-related refactoring, Fowler (1999)) applied to initial versions of the systems; the

refactoring data was available for only initial versions of the systems.

Chapters 2, 3 and 4 therefore played a significant part in establishing an understanding of

what inheritance is, people‟s (other researchers) views of inheritance from a

maintainability perspective, how inheritance evolves in terms of incremental changes at

various levels of granularity (i.e., class, method and attribute). Chapter 5 described an

investigation of inheritance evolution from a perspective of class movement and relocation,

as well as class addition and deletion in a selected set of versions of four OSS. The analysis

of class movement and relocation added an additional level of rigour to our investigation of

inheritance. By analyzing merely incremental class changes we would have missed the

class movement within inheritance hierarchy. Class movement and relocation is a system

restructuring activity which is often undertaken during the system reengineering. Our claim

that class movement and relocation improves software comprehensibility which is an aid to

software maintenance; reflects previous findings on software restructuring/refcactoring

(Johnson and Foote 1988, Chikofsky et al. 1990).

In Chapter 6 we explored class interaction and its evolution taking inheritance as the main

unit of our analysis in four Java OSS. In other words, we presented a study investigating

where, in an inheritance hierarchy, classes are predisposed to calling methods of other

classes (calls to methods of the classes within the line of hierarchy to the root and to

classes outside the line of hierarchy), and how this class interaction evolved. The findings

 196

also suggested that classes with method invocations, either/both to classes within the line

of hierarchy or those outside the line of hierarchy, have low cohesion. The study provided

an insight into how class interaction patterns within and across an inheritance hierarchy

and how that class interaction evolved.

In Chapter 7 we investigated the impact of inheritance on warnings (problems embedded in

the system which may lead to faults) extracted by the FindBugs tool (FindBugs 2008). In

the same chapter, we also investigated the refactoring opportunities that those extracted

warnings yielded. The study in Chapter 7 gave some interesting insights into warnings and

potential refactorings.

Based on the results of empirical studies presented throughout the Thesis, we therefore feel

that all 4 objectives stated in Chapter 1 have been satisfied. The trends of inheritance at

various levels of granularity in the evolution of Java OSS presented interesting

characteristics. We therefore assert that the Thesis informs our empirical understanding of

inheritance feature of OO from an evolutionary perspective.

8.2 Contribution

As stated in Chapter 1, the contribution of this Thesis in the realm of SE can be justified on

the following basis. We found no other prior empirical studies to investigate inheritance

from the perspective of evolution, despite the fact that it is considered as a prominent OO

feature. Equally, empirical evidence exists to suggest that research on software evolution is

conducted inadequately. A need for further empirical studies, in particular, at various

levels of granularity, has been stressed (Kemerer and Slaughter 1999).

The main contribution of this Thesis can be seen in the light of three research stands.

Firstly, an appreciation of trends of inheritance can help predict future changes in an

inheritance hierarchy. Secondly, based on the trends of changes, developers can take pre-

emptive actions for further system maintenance and/or refactorings. Finally, since no

empirical study to date has analyzed inheritance from an evolutionary perspective at

various levels of granularity, we believe the methodological approaches adopted for data

 197

collection and analysis in this Thesis can help inform future empirical studies on

inheritance and its evolution. The Thesis therefore makes a contribution to our

understanding of how inheritance hierarchies evolve and where the majority of

maintenance changes are applied. The findings of Chapter 3 suggested that approximately

96% of overall maintenance changes (addition and deletion of classes) were made at level

one and two of class hierarchy. Only 4% of the same changes were made at and beyond

level three. In terms of methods and attributes, the evidence suggested that approximately,

93% of method changes and 97% of attribute changes were made at level one and two of

inheritance hierarchy, the remaining changes were made at level three and beyond. This

was a surprising result to emerge from our investigation, suggesting that developers of the

systems paid far too much attention at levels one and two of inheritance hierarchies while

there might have been opportunities for making such maintenance changes at lower levels

(levels three and beyond). The findings of Chapter 4 suggested that analyzing systems at

lower level of granularity (i.e., method and attribute level) can often show a different trend

to that of a similar analysis of the system at a higher grain (i.e., class and packages level).

In addition to incremental changes in an inheritance hierarchy, the Thesis also contributed

to a body of knowledge of how classes were moved within inheritance hierarchies. The

empirical findings in Chapter 5 suggested that in the set of OSS studied, 1) larger classes

and 2) tightly classes were more frequently moved within inheritance hierarchies than their

counterparts (smaller classes and loosely coupled classes). The findings also indicated that

larger classes and tightly coupled classes were less cohesive than smaller classes and

loosely coupled classes, respectively, and the lack of cohesion in those classes may have

influenced the decision to move them within their respective class hierarchies. The

evidence in Chapter 5 also indicated that, in line with other empirical evidence (Daly et al.

1996), a maximum of three levels of inheritance may be a preferred amount (from a depth

perspective) to be used in a system.

Again, we have found no prior empirical studies that have investigated class interaction

within and across inheritance hierarchy and its evolution. The findings in Chapter 6

suggested that the majority of method invocations were made to methods of the classes

where the majority of functionality existed (levels one and two of class hierarchy), and

there is a positive correlation between number of methods in a class and calls to methods

 198

of other classes. From a fault perspective, despite the fact that previous studies (Briand et

al. 2000, Briand et al. 2001, Briand et al. 2002, Cartwright and Shepperd 2000) have

investigated the role and impact of inheritance on fault-proneness, there is still a conflict of

views on inheritance in relation to fault-proneness. In Chapter 7 the warnings extracted by

FingBugs tool (FindBugs 2008) as a replacement to actual faults was explored. The

empirical evidence in Chapter 7 indicated that the majority of warnings were found where

the majority of functionality existed (levels one and two of class hierarchy), irrespective of

class position in the inheritance hierarchy. The evidence also suggested that the warnings

generated by FindBugs could highlight potential hotspots before actual faults appear, and

those warnings could be used to target potential refactorings in those systems.

8.3 Personal Achievement

There are numerous things that I have achieved over the course of the research in this

Thesis. I firstly, learned how empirical research is conducted and what makes good

research. I also acquired an appreciation of the difficulties associated with the process of

conducting sound research. That is, research is a challenging activity.

Time management is a key aspect of research. Good time management can help meet

deadlines. In addition, research collaboration and communication is an important aspect of

successful research. During the course of this Thesis, I communicated and when possible

collaborated with colleagues within the university (Brunel University UK) and across the

world. This included communicating my research with other researchers when attending

conferences and also collaborating in studies with some colleagues when possible (see list

of publications for the collaborative work).

My achievement also included an understanding of characteristic of the process of

undertaking research. For example, research should be thorough and focused in a small and

narrow area in order to make a contribution in the area of interest, rather than tackling a

wider area superficially. The process of conducting research also includes a need for an

advancement of the researcher‟s knowledge in the problem area, obtaining other

 199

researchers‟ views on the subject area and critical assessment of prior work carried out on

the research topic.

The research in this Thesis required a certain amount of data collection and statistical

analysis which helped me improve my understanding of data collection and

appropriateness of statistical tests for a set of data. Over the course of this Thesis, I also

learned that completing a PhD is only a learning process for further scientific research. It

helps acquire knowledge and expertise on how research is conducted, the ups and downs of

academic life and most importantly how to be a scholarly researcher post-completion of

the PhD.

8.4 Future Work

Since inheritance evolution has received little attention, if any, from the SE research

community, there are several research topics that this Thesis could lead to.

In Chapter 3 we investigated the trends in the additions and deletions of classes within

inheritance hierarchies in seven Java OSS and the changes of methods and attributes in

three of the seven OSS. Future work in this particular area will be to use various lower

level measures (i.e., lines of commented/non-commented code, number of statements) to

investigate evolutionary and maintenance forces of inheritance in the studied systems. This

will be of importance for two reasons, firstly, to capture lower-level change pattern and

secondly, to compare those lower-level changes to the changes of inheritance at class,

method and attribute level.

In Chapter 5 we manually investigated the movement of classes within inheritance

hierarchies in four Java OSS which could lead to a number of studies. Our results showed

that larger classes and highly coupled classes were more frequently moved within

inheritance hierarchies in the four systems. We firstly, plan to build a prediction model to

predict class movements within an inheritance hierarchy based on size, coupling and

cohesion. Another avenue of future work in this area would be to investigate high-level

refactorings (refactorings relating to restructuring of class hierarchy) carried out based on

 200

the class movements in those four systems. A third future research topic will be to

investigate the movement of methods and attributes within inheritance hierarchies in those

systems to inform our understanding of how methods and attributes moved in contrast to

movement of classes in those four systems.

Another area of future research is to investigate the impact of inheritance on actual faults

experienced in a system. In Chapter 7 we investigated this phenomenon using the

warnings, since actual fault data for OSS used was not available. While our analysis

presented some interesting results, we believe analyzing actual faults would have provided

further insight into the systems and their maintenance.

Another area of future work would be to employ various research methods to ascertain the

impact of inheritance on maintainability and its evolution. For example, it would be

interesting to carry out a qualitative analysis of inheritance using interviews and/or

questionnaires to obtain views of experts in academia and industry on inheritance. A

further avenue of future research would be to replicate the studies carried out in this Thesis

using proprietary systems. Throughout this Thesis we used eight OSS systems as a testbed.

While the OSS systems used herein are equivalent, from a size and functionality

perspective, to that of industrial systems, we believe it would be interesting to compare the

results of the studies on inheritance obtained from both OSS and proprietary systems and

draw further generalizable conclusions.

 201

Appendix A: Glossary of Software Engineering Terms

The terms define below are ubiquitous in software engineering. The purpose of this

glossary is to explicitly indicate what we mean by each term in this Thesis and avoid any

confusion by the reader.

Java Package

A package in Java is a namespace used to organise class files. This is done by creating a

directory, putting all classes with related functionally in that directory and giving it a

sensible name to clearly represent the functionality of those classes. The directory in which

all classes exist is called a package.

Class

A class is a unit of code from which instance objects are created and defines a set of

attributes and methods for those objects.

Inner class

In Java an inner class is a class defined within another class or method and have access to

its enclosing class.

Class Member

Class members are attributes and methods defined in a class.

Interface

An interface is a collection of well defined members (method signature) with empty

bodies. Interfaces are implemented by classes which provide body to the methods defined

in the interface. Interfaces cannot be instantiated.

Abstract Class

An abstract class is a class which defines methods and attributes and is declared as

abstract. Abstract classes cannot be instantiated. The difference between an abstract class

and interface is that all attributes defined in an interface must be static final and the

methods should always be abstract, whereas these criteria do not hold for an abstract class.

 202

Inheritance

Inheritance is a mechanism used in OO which provides the ability to define a new class

using methods an attributes of an existing class and adding its own specific methods and

attributes. The newly added class is then called subclass and the existing class is called

superclass.

Method

A method is a member function in a class consisting of a set of statements which may have

a set of arguments and may have a return type. Methods are used to provide overall class

behaviour.

Attribute

Attributes are data fields defined in a class to store information about each instance/object

of that class.

Superclass

A superclass is a class which contains all the common features (methods and attributes) to

be inherited by a set of classes and serves as an ancestor for those classes. The classes

inheriting those common features add their own specific features so that more specific

objects of the superclass can be created.

Subclass

A subclass is a class which inherits from another class or implements an interface.

Method Overriding

Method overriding is an OO feature which allows a subclass to have a specific

implementation of a method defined in its superclass(s). An overridden method must have

the same name and list of argument types as the default method.

Method Overloading

Method overloading is a special type of method overriding which allows a different

numbers and/or types of arguments to that of default method.

 203

Refactoring

Refactoring is the process of changing internal behaviour of a system, to make it easy to

understand and change, while preserving its external behaviour.

Rename Method (RM) Refactoring

RM refactoring is concerned with changing the name of a method to clearly state its

purpose (Fowler 1999).

Rename Field (RF) Refactoring

RF refactoring is concerned with changing the name of a field to clearly state its purpose

(Fowler 1999).

Move Field (MF) Refactoring

MF refactoring moves a field from a class to another, in which it is used more than the

class it is defined (Fowler 1999).

Pull Up Field (PUP) Refactoring

PUF refactoring moves a field defined in two or more subclasses to their superclass

(Fowler 1999). PUF eliminates code redundancy in a system.

Push Down Field (PDF) Refactoring

PDF refactoring moves a field which is not used in all subclasses, to the subclasses(s) in

which it is used (Fowler 1999).

Pull Up Method (PUM) Refactoring

PUM refactoring moves a method defined in two or more subclasses, to their superclass

(Fowler 1999). PUM also eliminates code redundancy in a system.

Push Down Method (PDM) Refactoring

PDM refactoring moves a method, which is not used by all subclasses, to the subclass in

which it is used (Fowler 1999).

 204

Code Smell

A code smell is an indication of a problem in the code which can be eliminated by

refactoring. This includes Duplicate Code: when a piece of code is detected in more than

one place (Fowler 1999). This code smell suggests a number of refactorings depending on

the system and the duplicated code.

Coupling

Coupling in OO is a measure of inter-dependency between classes. High coupling shows a

strong dependency which is undesirable from a complexity perspective.

Dependent Classes

Two classes are dependent on each other when there is coupling between them.

Cohesion

Cohesion is the extent of class components working together to perform one single and

precise task. Cohesion increases class comprehensibility and eases modification.

Encapsulation

Encapsulation also known as information hiding is an important feature of OO which is

concerned with the visibility or accessibility of elements (methods and attributes) of a class

to other classes.

Method Call/Invocation

Method call/invocation is the calls to a method define in the same class or a different class.

Software Metrics

Software metrics are measures of characteristics of a software project, product or process.

Depth of Inheritance Tree (DIT) Metric

DIT is a measure of depth of a class in an inheritance hierarchy from the class to the root.

In other words, it specifies the position of a class in an inheritance hierarchy from a depth

perspective. In Java every class inherits from Object hence the DIT value from a class not

inheriting from any other class is 1.

 205

Number of Children (NOC) Metric

NOC measures the number of immediate subclasses of a class.

Specialization Ratio (SR) Metric

SR measures the number of subclasses of a class divided by the number of its superclasses.

High values of the SR metric imply high level of reuse through subclassing.

Reuse Ratio (RR) Metric

RR metric measures the number of superclasses of a class divided by the total number of

classes. The total number of classes refers to total number of classes residing in an

inheritance hierarchy excluding class „Object‟.

Number of Methods (NOM) Metric

NOM metric measures the total number of methods in a class.

Number of Attributes (NOA) Metric

NOA metric measures the total number of local variables plus the total number of class

variables (including public, private and protected) in a class.

Calls to methods within Hierarchy (HIER) Metric

HIER metric measures the number of method calls that are in class hierarchy for a class.

Number of External methods calls (EXT) Metric

EXT metric measures the number of method calls in a class to methods of other classes

excluding HIER calls.

Lack of Cohesion Of the Methods in a class (LCOM) Metric

LCOM metric measures the relations of methods and local variables of a class by counting

the number of method pairs accessing different fields/variables minus the number of

method pairs accessing the same fields/variables.

 206

Message Passing Coupling (MPC) Metric

MPC metric measures the total number of method calls in the methods of a class to

methods of other classes. In other words, it measures the dependency of methods of a class

to the methods of other classes.

Lines of Code (LOC) Metric

LOC measures lines of code in a system or a class which may or may not include

comments and/or blank lines.

Warning

The term warning in the context of this Thesis indicates to the problems embedded in a

system which may potentially lead to a fault (FindBugs 2008).

 207

Appendix B: Raw Data on Number of Classes from the Eight Systems

The tables in this appendix provide some details on number of classes at each DIT level for

the eight systems. For example, from Table B.1, in version 1 of HSQLDB the maximum

DIT was two, 54 classes were residing at DIT one and only two classes were found at DIT

two.

Version DIT=1 DIT=2 DIT=3 DIT=4 Total

1 54 2 0 0 56

2 104 23 3 0 130

3 114 29 4 0 147

4 247 63 12 1 323

5 246 64 12 1 323

6 279 68 11 0 358

Table B.1. Number of classes at each DIT level for HSQLDB

Version DIT=1 DIT=2 DIT=3 Total

1 142 36 1 179

2 146 37 1 184

3 150 36 2 188

4 267 56 5 328

5 304 76 6 386

6 305 76 6 387

7 331 83 3 417

8 220 8 0 228

Table B.2. Number of classes at each DIT level for JColibri

Version DIT=1 DIT=2 DIT=3 DIT=4 DIT=5 Total

1 556 196 52 10 4 818

2 554 195 52 10 4 815

3 557 201 54 10 4 826

4 593 206 56 10 4 869

5 602 215 56 10 4 887

6 613 209 56 10 4 892

7 648 227 61 10 4 950

8 691 231 61 10 4 997

9 724 234 62 10 4 1034

10 729 240 63 10 4 1046

11 728 249 63 10 4 1054

12 761 258 65 10 4 1098

Table B.3. Number of classes at each DIT level for JasperReports

 208

Version DIT=1 DIT=2 DIT=3 DIT=4 Total

1 158 20 4 1 183

2 158 20 4 1 183

3 139 21 4 1 165

4 138 21 4 1 164

5 139 21 4 1 165

6 139 21 4 1 165

7 139 21 4 1 165

8 137 21 4 1 163

9 144 22 4 1 171

10 144 22 4 1 171

11 144 22 5 1 172

12 144 23 5 1 173

13 145 23 5 1 174

14 145 23 5 1 174

15 161 23 5 1 190

16 169 23 5 1 198

17 168 24 5 1 198

18 168 24 5 1 198

19 168 24 5 1 198

20 168 24 5 1 198

21 167 24 5 1 197

Table B.4. Number of classes at each DIT level for EasyWay

 209

Version DIT=1 DIT=2 DIT=3 DIT=4 DIT=5 DIT=6 DIT=7 Total

1 29 16 5 0 0 0 0 50

2 46 21 8 0 0 0 0 75

3 47 22 8 0 0 0 0 77

4 66 26 23 4 0 0 0 119

5 70 33 24 4 0 0 0 131

6 80 20 27 12 4 0 0 143

7 102 23 26 11 5 2 0 169

8 111 24 22 18 5 2 3 185

9 143 35 22 20 5 2 3 230

10 263 63 23 22 10 6 3 390

11 263 63 23 22 10 6 3 390

12 272 65 22 21 6 6 3 395

13 275 64 23 24 6 6 4 402

14 296 69 22 25 12 7 2 433

15 329 73 25 27 12 7 2 475

16 359 80 15 23 19 12 4 512

17 380 87 19 25 17 8 2 538

18 399 88 19 25 17 8 2 558

19 406 87 18 25 28 12 3 579

20 406 87 18 25 28 12 3 579

21 410 87 18 25 28 12 3 583

22 429 99 24 25 28 11 4 620

Table B.5. Number of classes at each DIT level for SwingWT

 210

Version DIT=1 DIT=2 DIT=3 DIT=4 Total

1 112 15 7 3 137

2 100 15 7 3 125

3 100 15 7 3 125

4 100 15 7 3 125

5 103 15 7 3 128

6 109 12 7 3 131

7 112 12 7 3 134

8 113 12 7 3 135

9 114 12 7 3 136

10 115 12 7 3 137

11 117 12 7 3 139

12 117 12 7 3 139

13 113 12 7 3 135

14 113 12 7 3 135

15 113 12 7 3 135

16 112 12 7 3 134

17 113 12 7 3 135

18 113 12 7 3 135

19 113 12 7 3 135

20 113 12 7 3 135

21 113 12 7 3 135

22 114 12 7 3 136

23 114 12 7 3 136

Table B.6. Number of classes at each DIT level for JAG

 211

Version DIT=1 DIT=2 DIT=3 DIT=4 DIT=5 DIT=6 DIT=7 Total

8 3141 599 155 33 4 1 1 3934

9 3152 599 155 33 4 1 1 3945

10 3223 622 156 33 4 1 1 4040

11 3499 645 172 34 4 1 1 4356

12 3247 629 158 33 4 1 1 4073

13 3771 683 178 38 4 1 1 4676

14 3790 689 179 38 7 1 1 4705

15 4176 693 168 23 7 1 1 5069

16 4195 690 168 23 7 1 1 5085

17 5942 1000 290 38 16 4 1 7291

18 4764 837 239 37 17 4 1 5899

19 6230 1046 293 39 16 4 1 7629

20 6259 1046 293 38 16 4 1 7657

21 4896 859 240 37 17 4 1 6054

22 6021 972 263 42 21 9 2 7330

23 7524 1152 378 101 29 12 2 9198

24 7468 1150 391 82 22 8 2 9123

25 7473 1149 392 82 22 8 2 9128

26 4643 809 251 69 15 5 1 5793

27 8536 1312 374 76 22 8 2 10330

28 4689 814 252 59 8 1 1 5824

29 4697 816 249 59 8 1 1 5831

30 8511 1285 367 73 22 8 2 10268

31 7715 1268 288 52 6 1 1 9331

32 7902 1319 295 51 6 1 1 9575

33 8545 1502 333 52 5 1 1 10439

34 7379 1345 295 55 6 1 1 9082

Table B.7. Number of classes at each DIT level for JBoss

 212

Version DIT=1 DIT=2 DIT=3 DIT=4 DIT=5 Total

1 41 34 22 22 3 122

2 45 41 23 25 5 139

3 45 41 23 25 5 139

4 45 42 22 29 5 143

5 96 13 63 0 0 172

6 96 13 63 0 0 172

7 96 13 63 0 0 172

8 96 13 63 0 0 172

9 96 13 63 0 0 172

10 96 13 63 0 0 172

11 96 13 63 0 0 172

12 96 13 63 0 0 172

13 96 13 63 0 0 172

14 96 13 63 0 0 172

15 96 13 63 0 0 172

16 96 13 63 0 0 172

17 96 13 63 0 0 172

18 96 13 63 0 0 172

19 96 13 63 0 0 172

20 96 13 63 0 0 172

21 96 13 63 0 0 172

22 96 13 63 0 0 172

23 96 13 63 0 0 172

24 96 13 63 0 0 172

25 96 13 64 0 0 173

26 96 13 64 0 0 173

27 101 26 65 0 0 192

28 103 31 65 0 0 199

29 103 33 65 0 0 201

30 109 36 66 0 0 211

31 109 36 66 0 0 211

32 112 37 66 0 0 215

33 112 40 66 0 0 218

34 113 40 66 0 0 219

35 112 41 66 0 0 219

36 125 39 67 0 0 231

37 139 41 66 0 0 246

38 141 42 69 0 0 252

39 141 42 69 0 0 252

40 143 47 79 0 0 269

41 145 47 81 0 0 273

42 146 47 81 0 0 274

43 143 47 81 0 0 271

44 143 47 81 0 0 271

45 142 49 82 0 0 273

Table B.8. Number of classes at each DIT level for Tyrant

 213

Appendix C: Raw Data on number of methods from the Eight Systems

The tables in this appendix provide some details on number of methods at each DIT level

for the eight systems. For example, from Table C.1, in version 1 of HSQLDB, 872

methods were residing at DIT 1 and 100 methods were found at DIT 2.

Version DIT=1 DIT=2 DIT=3 DIT=4 Total

1 872 100 0 0 972

2 1588 314 17 0 1919

3 1651 405 29 0 2085

4 3231 749 178 0 4158

5 3224 756 178 1 4159

6 3800 856 171 0 4827

Table C.1. Number of methods at each DIT level for HSQLDB

Version DIT=1 DIT=2 DIT=3 Total

1 986 167 2 1155

2 1005 170 1 1176

3 1025 169 5 1199

4 1674 299 17 1990

5 2078 405 29 2512

6 1959 484 46 2489

7 2325 382 30 2737

8 1231 21 0 1252

Table C.2. Number of methods at each DIT level for JColibri

Version DIT=1 DIT=2 DIT=3 DIT=4 DIT=5 Total

1 4502 2596 1079 20 4 4502

2 4525 2590 1079 20 4 4525

3 4541 2615 1081 20 4 4541

4 4823 2647 1083 20 4 4823

5 4842 2693 1085 20 4 4842

6 4947 2750 1087 20 4 4947

7 5229 2815 1158 20 4 5229

8 6033 2844 1163 20 4 6033

9 6228 2853 1167 20 4 6228

10 6261 2887 1169 20 4 6261

11 6283 2946 1173 20 4 6283

12 6531 3044 1137 20 4 6531

Table C.3. Number of methods at each DIT level for JasperReports

 214

Version DIT=1 DIT=2 DIT=3 DIT=4 Total

1 1066 165 31 4 1266

2 1074 165 31 4 1274

3 879 190 31 4 1104

4 879 190 31 4 1104

5 881 191 31 4 1107

6 883 191 31 4 1109

7 881 191 31 4 1107

8 876 191 31 4 1102

9 917 201 31 4 1153

10 918 201 31 4 1154

11 931 201 32 4 1168

12 946 203 37 4 1190

13 950 204 37 4 1195

14 950 204 37 4 1195

15 1138 204 37 4 1383

16 1207 204 37 4 1452

17 1204 208 37 4 1453

18 1204 208 37 4 1453

19 1204 208 37 4 1453

20 1204 208 37 4 1453

21 1207 208 37 4 1456

Table C.4. Number of methods at each DIT level for EasyWay

 215

Version DIT=1 DIT=2 DIT=3 DIT=4 DIT=5 DIT=6 DIT=7 Total

1 216 110 52 0 0 0 0 378

2 370 201 86 0 0 0 0 657

3 372 220 110 0 0 0 0 702

4 451 243 150 0 0 0 0 844

5 506 282 154 0 0 0 0 942

6 584 114 301 17 0 0 0 1016

7 744 130 375 79 12 0 0 1340

8 839 138 388 279 15 21 5 1685

9 1147 164 407 335 15 22 5 2095

10 2323 512 600 412 88 76 13 4024

11 2264 512 629 443 87 76 13 4024

12 2312 454 620 440 64 76 13 3979

13 2371 544 643 456 64 76 14 4168

14 2623 584 606 537 116 105 6 4577

15 2817 639 702 549 122 112 6 4947

16 3103 690 305 775 297 114 50 5334

17 3334 884 389 826 298 106 44 5881

18 3562 891 385 840 309 106 44 6137

19 3430 855 389 879 662 170 46 6431

20 3706 1085 279 362 719 201 79 6431

21 3474 855 389 901 683 180 46 6528

22 3722 963 432 915 690 149 85 6956

Table C.5. Number of methods at each DIT level for SwingWT

 216

Version DIT=1 DIT=2 DIT=3 DIT=4 Total

1 1043 99 67 3 1212

2 992 99 67 3 1161

3 1015 99 67 3 1184

4 1020 99 67 3 1189

5 1093 99 67 3 1262

6 1163 69 67 3 1302

7 1167 69 67 3 1306

8 1173 69 67 3 1312

9 1177 69 67 3 1316

10 1207 69 67 3 1346

11 1227 69 67 3 1366

12 1227 69 67 3 1366

13 1227 69 67 3 1366

14 1227 69 67 3 1366

15 1227 69 67 3 1366

16 1250 69 67 3 1389

17 1260 69 67 3 1399

18 1260 69 67 3 1399

19 1284 69 67 3 1423

20 1289 69 67 3 1428

21 1293 69 67 3 1432

22 1316 69 67 3 1455

23 1333 69 67 3 1472

Table C.6. Number of methods at each DIT level for JAG

 217

Version DIT=1 DIT=2 DIT=3 DIT=4 DIT=5 DIT=6 DIT=7 Total

8 22918 3928 977 213 35 1 1 28073

9 23010 3919 980 213 35 1 1 28159

10 23605 4091 1016 213 35 1 1 28962

11 25310 4364 1137 229 35 1 1 31077

12 23709 4111 1078 213 35 1 1 29148

13 27203 4563 117 256 35 1 1 32176

14 27288 4605 1186 257 48 1 1 33386

15 29227 4539 1050 146 29 1 1 34993

16 29340 4533 1050 146 29 1 1 35100

17 42082 6720 2013 232 70 10 1 51128

18 33869 5475 1378 209 72 10 1 41014

19 44515 6995 2022 232 70 10 1 53845

20 35141 5682 1384 210 72 10 1 42500

21 44735 6996 2022 232 70 10 1 54066

22 44003 6538 1895 226 203 48 6 52919

23 51705 7430 2832 574 257 63 6 62867

24 50874 7137 2829 476 210 48 6 61580

25 50851 7138 2829 476 210 48 6 61558

26 33744 5232 1845 470 81 16 1 41389

27 57026 7991 2557 457 210 49 7 68297

28 33992 5233 1780 447 36 1 1 41490

29 34043 5251 1745 447 36 1 1 41524

30 56822 7866 2530 414 210 49 7 67898

31 50977 7536 2002 304 25 1 1 60846

32 51907 8022 2042 304 25 1 1 62302

33 56863 8532 2300 253 18 1 1 67968

34 51338 8035 2060 318 25 1 1 61778

Table C.7. Number of methods at each DIT level for JBoss

 218

Version DIT=1 DIT=2 DIT=3 DIT=4 DIT=5 Total

1 364 224 198 185 11 982

2 414 279 216 221 16 1146

3 416 280 217 221 16 1150

4 437 299 206 281 16 1239

5 978 286 143 0 0 1407

6 978 286 143 0 0 1407

7 978 286 143 0 0 1407

8 978 286 143 0 0 1407

9 978 286 143 0 0 1407

10 978 286 143 0 0 1407

11 978 286 143 0 0 1407

12 978 286 143 0 0 1407

13 978 286 143 0 0 1407

14 978 286 143 0 0 1407

15 978 286 143 0 0 1407

16 978 286 143 0 0 1407

17 978 286 143 0 0 1407

18 978 286 143 0 0 1407

19 978 286 143 0 0 1407

20 978 286 143 0 0 1407

21 978 286 143 0 0 1407

22 978 286 143 0 0 1407

23 978 286 143 0 0 1407

24 991 287 143 0 0 1421

25 1001 287 144 0 0 1432

26 1003 295 144 0 0 1442

27 1043 373 145 0 0 1561

28 1029 442 144 0 0 1615

29 1045 474 144 0 0 1663

30 1087 480 158 0 0 1725

31 1087 480 158 0 0 1725

32 1112 490 158 0 0 1760

33 1129 507 159 0 0 1795

34 1149 515 159 0 0 1823

35 1156 523 158 0 0 1837

36 1269 521 164 0 0 1954

37 1417 558 185 0 0 2160

38 1435 574 193 0 0 2202

39 1468 583 196 0 0 2247

40 1495 594 216 0 0 2305

41 1502 500 227 0 0 2229

42 1503 603 228 0 0 2334

43 1500 607 229 0 0 2336

44 1511 621 226 0 0 2358

45 1516 631 227 0 0 2374

Table C.8. Number of methods at each DIT level for Tyrant

 219

Appendix D: Raw Data on Number of Attributes from the Eight Systems

The tables in this appendix provide some details on number of attributes at each DIT level

for the eight systems. For example, from Table C.1, in version 1 of HSQLDB, 616

attributes were residing at DIT 1 and only 6 attributes were found at DIT 2.

Version DIT=1 DIT=2 DIT=3 DIT=4 Total

1 616 6 0 0 622

2 993 52 4 0 1048

3 1041 106 8 0 1155

4 2903 246 33 1 3183

5 2902 246 33 1 3182

6 3227 301 20 0 3548

Table D.1. Number of attributes at each DIT level for HSQLDB

Version DIT=1 DIT=2 DIT=3 Total

1 380 32 0 412

2 407 33 0 440

3 435 25 5 465

4 876 63 9 948

5 953 187 12 1152

6 919 176 17 1112

7 1075 194 6 1275

8 549 8 0 557

Table D.2. Number of attributes at each DIT level for JColibri

Version DIT=1 DIT=2 DIT=3 DIT=4 DIT=5 Total

1 2426 929 281 4 2 3642

2 2461 927 281 4 2 3675

3 2463 931 282 4 2 3682

4 2631 948 282 4 2 3867

5 2611 962 282 4 2 3861

6 2671 984 282 4 2 3943

7 2765 1016 316 4 2 4103

8 2979 1033 316 4 2 4334

9 3076 1042 319 4 2 4443

10 3109 1022 321 4 2 4458

11 3554 689 322 4 2 4571

12 3700 752 318 4 2 4776

Table D.3. Number of attributes at each DIT level for JasperReports

 220

Version DIT=1 DIT=2 DIT=3 DIT=4 Total

1 960 43 4 2 1009

2 963 43 4 2 1012

3 834 50 4 2 890

4 834 50 4 2 890

5 834 50 4 2 890

6 835 50 4 2 891

7 834 50 4 2 890

8 835 50 4 2 891

9 865 64 4 2 935

10 865 64 4 2 935

11 867 64 4 2 937

12 877 67 4 2 950

13 879 68 4 2 953

14 879 68 4 2 953

15 1009 68 4 2 1083

16 1049 68 4 2 1123

17 1050 68 4 2 1124

18 1050 68 4 2 1124

19 1050 68 4 2 1124

20 1050 68 4 2 1124

21 1051 68 4 2 1125

Table D.4. Number of attributes at each DIT level for EasyWay

 221

Version DIT=1 DIT=2 DIT=3 DIT=4 DIT=5 DIT=6 DIT=7 Total

1 130 34 100 0 0 0 0 264

2 160 47 19 0 0 0 0 226

3 160 59 27 0 0 0 0 246

4 308 66 37 0 0 0 0 411

5 316 86 37 0 0 0 0 439

6 375 33 87 3 0 0 0 498

7 434 38 102 7 0 0 0 581

8 478 37 107 53 2 5 3 685

9 639 44 108 71 2 6 3 873

10 1036 174 141 111 38 15 3 1518

11 1062 188 149 90 11 15 3 1518

12 1112 190 127 88 41 15 3 1576

13 1159 187 133 90 8 15 3 1595

14 1225 311 126 102 16 24 3 1807

15 1109 272 255 104 16 25 3 1784

16 1180 284 320 182 60 9 9 2044

17 1358 278 336 194 62 16 8 2252

18 1417 285 333 195 62 16 8 2316

19 1294 276 334 195 239 30 8 2376

20 1204 476 342 75 218 41 19 2375

21 1300 276 334 197 248 30 8 2393

22 1436 294 345 197 248 26 13 2559

Table D.5. Number of attributes at each DIT level for SwingWT

 222

Version DIT=1 DIT=2 DIT=3 DIT=4 Total

1 541 31 37 0 609

2 517 31 37 0 585

3 526 31 37 0 594

4 526 31 37 0 594

5 604 31 37 0 672

6 675 19 37 0 731

7 706 19 37 0 762

8 722 19 37 0 778

9 725 19 37 0 781

10 748 19 37 0 804

11 764 19 37 0 820

12 786 19 37 0 842

13 805 19 37 0 861

14 805 19 37 0 861

15 805 19 37 0 861

16 816 19 37 0 872

17 835 19 37 0 891

18 836 19 37 0 892

19 847 19 37 0 903

20 850 19 37 0 906

21 853 19 37 0 909

22 864 19 37 0 920

23 871 19 37 0 927

Table D.6. Number of attributes at each DIT level for JAG

 223

Version DIT=1 DIT=2 DIT=3 DIT=4 DIT=5 DIT=6 DIT=7 Total

8 8723 1330 369 87 12 1 0 10522

9 8754 1330 369 87 12 1 0 10553

10 8950 1338 389 87 12 1 0 10777

11 9387 1435 434 97 12 1 0 11366

12 8990 1341 390 87 12 1 0 10821

13 10077 1490 443 106 12 1 0 12129

14 10137 1496 443 104 14 1 0 12195

15 10854 1355 352 52 8 1 0 12622

16 10884 1353 352 52 8 1 0 12650

17 16008 1920 502 53 15 1 0 18499

18 13107 1602 458 61 15 1 0 15244

19 16716 2002 502 53 15 1 0 19289

20 13534 1656 455 61 15 1 0 15722

21 16758 2005 502 53 15 1 0 19334

22 16542 1937 503 55 46 10 0 19093

23 19908 2140 581 75 46 10 0 22760

24 19355 2102 644 67 46 10 0 22224

25 19359 2104 643 67 46 10 0 22229

26 12347 1503 401 67 8 1 0 14327

27 21583 2318 624 62 46 11 0 24644

28 12474 1503 381 63 8 1 0 14430

29 12481 1508 377 63 8 1 0 14438

30 21318 2306 640 56 46 11 1 24378

31 17936 2067 488 39 6 1 0 20537

32 18191 2220 501 39 6 1 0 20958

33 19923 2263 450 38 6 1 0 22681

34 18272 2205 503 39 6 1 0 21026

Table D.7. Number of attributes at each DIT level for JBoss

 224

Version DIT=1 DIT=2 DIT=3 DIT=4 DIT=5 Total

1 419 165 240 477 14 1315

2 514 204 249 536 24 1527

3 514 204 249 536 24 1527

4 535 213 99 696 25 1568

5 590 62 68 0 0 720

6 590 62 68 0 0 720

7 590 62 68 0 0 720

8 590 62 68 0 0 720

9 590 62 68 0 0 720

10 590 62 68 0 0 720

11 590 62 68 0 0 720

12 590 62 68 0 0 720

13 590 62 68 0 0 720

14 590 62 68 0 0 720

15 590 62 68 0 0 720

16 590 62 68 0 0 720

17 590 62 68 0 0 720

18 590 62 68 0 0 720

19 590 62 68 0 0 720

20 590 62 68 0 0 720

21 590 62 68 0 0 720

22 590 62 68 0 0 720

23 590 62 68 0 0 720

24 590 62 68 0 0 720

25 591 62 68 0 0 721

26 591 60 68 0 0 719

27 612 71 69 0 0 752

28 636 93 134 0 0 863

29 638 96 134 0 0 868

30 627 110 146 0 0 883

31 627 110 145 0 0 882

32 669 111 140 0 0 920

33 677 109 140 0 0 926

34 676 102 139 0 0 917

35 679 103 137 0 0 919

36 725 102 149 0 0 976

37 803 108 148 0 0 1059

38 810 110 151 0 0 1071

39 822 113 154 0 0 1089

40 922 113 172 0 0 1207

41 921 113 179 0 0 1213

42 926 114 179 0 0 1219

43 921 114 179 0 0 1214

44 920 108 173 0 0 1201

45 931 108 173 0 0 1212

Table D.8. Number of attributes at each DIT level for Tyrant

 225

References

Abreu, F., Carapuca, R. (1994) Object-oriented software engineering: measurement and

controlling the development process. Revised version: Originally published in the

Proceedings of the 4
th

 International Conference on Software Quality. McLean, VA 8

pages.

Advani, D., Hassoun, Y., Counsell, S. (2005) Refactoring trends across N versions of N

Java open source systems: an empirical study. Technical Report BBKCS-05-03-01.

Birkbeck, University of London: London, UK.

Advani, D., Hassoun, Y., and Counsell, S. (2006) Extracting Refactoring Trends from

Open-source Software and a Possible Solution to the „Related Refactoring‟ Conundrum.

Proceedings of ACM Symposium on Applied Computing (SAC 2006). Dijon, France,

pp.1713-1720.

Arisholm, E., Briand, L.C. (2006) Predicting fault-prone components in a Java legacy

system. Proceedings of the ACM/IEEE International Symposium on Empirical Software

Engineering. Rio De Juniero, Brazil, pp.8-17.

Arisholm, E., Briand, L.C., Foyen, S. (2004) Dynamic coupling measurement for object-

oriented software. IEEE Transactions on Software Engineering, 30(8):491-506.

Arisholm, E., Briand, L.C., Fuglerud, M.J. (2007) Data Mining Techniques for Building

Fault-Proneness Models in Telecom Java Software. Simula Technical Report. 01-2007.

Basili, V. R., (1990) Viewing maintenance as reuse-oriented software development. IEEE

Software, 7(1):19-25.

Basili, V.R., Briand, L.C., Melo, W.L. (1996a) A validation of object-oriented design

metrics as quality indicators. IEEE Transactions on Software Engineering, 22(10):751-

761.

Basili, V.R., Briand, L.C., Melo, W.L. (1996b) How reuse influences productivity in

object-oriented systems. Communications of the ACM, 39(10):104-116.

Belady, L.A. and Lehman, M.M. (1972) Introduction to Growth Dynamics. Proceedings of

Conference on Statistical Computing, Performance Evaluation, Brown University. 1971,

Academic Press, WFreiberger (ED), pp.503-511.

Bergel, A., Ducasse, S., Nierstrasz, O. (2005) Classbox/j: Controlling the Scope of Change

in Java. Proceedings of the ACM International Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA). California, USA,
pp.177-189.

 226

Bieman, J.M. and Zhao, J. (1995) Reuse through inheritance: A quantitative study of C++

software. Proceedings of the 1995 ACM Symposium on Software Reusability. Seattle,

Washington, USA, pp.47-52.

Booch, G. (1993) Object-Oriented Analysis and Design with Applications, 2nd ed.,

Benjamin/Cummings, California, USA.

Briand, L.C., Arisholm, F., Counsell, S., Houdek, F., Thevenod-Foss, P. (1999a) Empirical

studies of object-oriented artifacts, methods and processes: state of the art and future

directions. Empirical Software Engineering-An Internation Journal, 4(4): 387-404.

Briand, L.C., Daly, J., Wust, J. (1998) A unified framework for cohesion measurement in

object-oriented systems. Empirical Software Engineering-An International Journal,

3(1):65-117.

Briand, L.C., Daly, J., Wust, J. (1999b) A unified framework for coupling measurement in

object-oriented systems. IEEE Transactions on Software Engineering, 25(1):91-121.

Briand, L.C., Melo, W.L. and Wust, J. (2002) Assessing the applicability of fault-

proneness models across OO software projects. IEEE Transactions on Software

Engineering, 28(7):706-720.

Briand, L.C. and Wust, J. (2002) Empirical Studies of Quality Models in Object-Oriented

Systems. Advances in Computers, Vol. 59. Academic Press, pp.97-166.

Briand, L.C., Wüst, J., Daly, J.W. and Victor Porter, D. (2000) Exploring the relationships

between design measures and software quality in object-oriented systems. The Journal of

Systems and Software, 51(3):245-273.

Briand, L.C., Wust, J.K. and Lounis, H. (2001) Replicated Case Studies for Investigating

Quality Factors in OO Designs. Empirical Software Engineering, 6(1):11-58.

Briand, L.C., Wust, J., Lounis, H., and Ikonomovski, S.V. (1999c) Investigating Quality

Factors in Object-Oriented Designs: an Industrial Case Study. Proceedings of 21
st

International Conference on Software Engineering. Los Angeles, USA. pp.345-354.

Buckley, J., Exton, C., Good, J. (2004) Characterizing programmers‟ information-seeking

during software evolution. Proceedings of the 12
th

 International Workshop on Software

Technology and Engineering Practice. Illinois, USA. pp.23-29.

Buckley, J., Mens, T., Zenger, M., Rashid, A. and Kniesel, G. (2005) Towards a taxonomy

of software change. Journal of Software Maintenance and Evolution: Research and

Practice, 17(5):309-332.

Capiluppi, A., Morisio, M., and Ramil, J. (2004) Structural Evolution of an Open Source

System: A Case Study. Proceedings of the 12
th

 Internaltional Workshop on Program

Comprehension. Bari, Italy, pp.172-182.

 227

Capiluppi, A. and Ramil, J. (2004) Studying the evolution of open source systems at

different levels of granularity: Two case studies. Proceedings of 7
th

 International

Workshop on Principals of Software Evolution. Kyoto, Japan, pp.113-118.

Cartwright, M. (1998) An empirical view of inheritance. Journal Information and Software

Technology, 40(14):795-799.

Cartwright, M., and Shepperd, M. (2000) An Empirical Investigation of an object-oriented

(OO) system. IEEE Transactions on Software Engineering, 26(8):786-796.

Chidamber, S.R., Darcy, D.P., Kemerer, C.F. (1998) Managerial use of metrics for object-

oriented software: an exploratory analysis. IEEE Transactions on Software Engineering,

24(8):629-639.

Chidamber, S.R., Kemerer, C.F. (1994) A metrics suite for object-oriented design. IEEE

Transaction on Software Engineering, 26(8):476-493.

Chikofsky, E.J. Cross, J.H., II (1990) Reverse engineering and design recovery: a

Taxonomy, IEEE Software, 7(1):13-17.

Cohen, J., Cohen, P., West, S.G. and Aiken, L.S. (2003) Applied Multiple

Regression/Correlation Analysis for the Behavioral Science (3
rd

 edition). Hillside, NJ:

Lawrence Erlbaum Associates.

Counsell, S. (2008) An Analysis of Faulty and Fault-Free C++ Classes Using an Object-

Oriented Metrics Suite. Book Chapter: Innovative Techniques in Instruction Technology,

E-learning, E-Assessment, and Education. pp.520-525.

Counsell, S., Hassoun, Y., Johnson, R., Mannock, K., Mendes, E. (2003) Trends in Java

Code Changes: the key to identification of refactorings. Proceeding of the 2
nd

 International

Conference on the Principles and Practice of Programming in Java. Kilkenny, Ireland,

pp.45-48.

Counsell, S., Hassoun, Y., Loizou, G., Najjar, R. (2006a) Common refactorings, a

dependency graph and some code smells: an empirical study of Java OSS. Proceedings of

the 2006 ACM/IEEE International Symposium on Empirical Software Engineering

(ISESE‟06). Rio de Janeiro, Brazil, 288-296.

Counsell S, Loizou G, Najjar. R (2006b) Ignore size and inner classes, poor class layout

and feature order are the real enemies of OSS developers. Birkbeck Technical Report,

BBKCS-06-08.

Counsell, S. and Swift, S. (2008) An Empirical Study of Potential Vulnerability Faults in

Java Open-Source Software. Book Chapter: Innovative Techniques in Instruction

Technology, E-learning, E-Assessment, and Education. pp.514-519.

Daly, J., Brooks, A, Miller, J., Roper, M. and Wood, M (1996) Evaluating Inheritance

Depth on the Maintainability of Object-Oriented Software. Empirical Software

Engineering: an International Journal, 1(2):109-132.

 228

Deligiannis, I., Shepperd, M., Roumeliotis, M., Stamelo, I. (2003) An empirical

investigation of an object-oriented design heuristic for maintainability. The Journal of

Systems and Software. 65(2):127-139.

DeMarco, T. (1982) Controlling Software Projects. Yourdon Press, New York, NY.

Demeyer, S., Ducasse, S., Nierstrasz, O. (2000) Finding refactorings via change metrics.

Proceedings of the ACM International Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA). Minneapolis, MN, pp.166-177.

Dvorak, J. (1994) Conceptual Entropy and its Effct on Class Hierarchies. Computer,

27(6):59-63.

El Emam, K., Benlarbi, S., Goel, N., Rai, S. (2001) The confounding effect of class size on

the validity of object-oriented metrics. IEEE Transactions on Software Engineering,

27(7):630-650.

English, M., Buckley, J. and Cahill, T. (2007) Fine-Grained Software Metrics in Practice.

Proceedings of the 1
st
 International Symposium on Empirical Software Engineering and

Measurement (ESEM‟07). Madrid, Spain, pp.295-304.

Fenton, N.E., Pfleeger, S.L. (2002) Software Metrics: ARigorous and Practical Approach.

International Thomson Computer Press, London, UK.

Fenton, N., Pfleeger, S. L. And Glass, R. (1994) Science and Substance: A Challange to

Software Engineers. IEEE Software, 11 (4):86-95.

Field, A. (2006) Discovering Statistics Using SPSS. Sage Publication, London, UK.

FindBugs Tool (2008) http://findbugs.sourceforge.net/

Fowler, M. (1999) Refactoring: improving the Design of Existing Code. Addison-Wesley,

Boston, MA, USA.

Gilb, T. (1976) Software Metrics. Chartwell-Bratt, Cambridge, MA.

Girba, T. and Ducasse, S. (2006) Modeling history to analyze software evolution. Journal

of Software Maintenance and Evolution: Research and Practice, 18(3):207-236.

Girba, T.; Lanza, M.; Ducasse, S. (2005) Characterizing the Evolution of Class

Hierarchies. Proceedings of the 9
th

 European International Conference on Software

Maintenance and Reengineering. Manchester, UK, pp.2-11.

Glasberg, D., El Emam, K., Melo, W., Madhavji, N. (2000) Validating OO Design

Metrics on a Commercial Java Application. Nat. Res. Council Canada, Institute for IT

(NRC/ERB-1080).

 229

Hall, T., Rainer, A., Jagielska, D. (2005) Using software development progress data to

understand threats to project outcomes. Proceedings of the 11
th

 IEEE International

Software Metrics Symposium (METRICS 2005). Como, Italy, 10 pages.

Harrison, R. Counsell, S., Nithi, R. (1998a) Coupling metrics for OO design, Proceedings

of the 5
th

 International Software Metrics Symposium (METRICS 1998). Bethesda, MD,

pp.150-157.

Harrison, R., Counsell, S., Nithi, R. (1998b) An evaluation of the MOOD set of object-

oriented software metrics. IEEE Transactions on Software Engineering, 24(6):491-496.

Harrison, R., Counsell, S., Nithi, R. (2000) Experimental assessment of the effect of

inheritance on the maintainability of object-oriented systems. Journal of Systems and

Software, 52(2-3):173-179.

Henderson-Sellers, B. (1995), Object-oriented metrics: measures of complexity, Prentice-

Hall, Inc. Upper Saddle River, NJ, USA.

Henry, S.M., Kafura, D.G. (1981) Software structure metrics based on information flow.

IEEE Transactions on Software Engineering, 7(5):510-518.

Hinkle, D. E., Wiersma, W. and Jurs, S., G. (1995) Applied Statistics for the Behavioural

Science, Boston: Houghton Mifflin.

JHawk Tool (2008): Available at: http://www.virtualmachinery.com/jhawkprod.htm .

Johnson, R.E., Foote, B. (1988) Designing reusable classes. Journal of Object-Oriented

Programming, 1(2):22-35.

Kemerer, C.F. and Slaughter, S. (1999) An Empirical Approach to Studying Software

Evolution. IEEE Transactions on Software Engineering, 25(4):493-509.

Kerievsky, J. (2004) Refactoring to Patterns. Addison Wesley, Reading, MA. Also

partially available online at: www.indstriallogic.com, 2002.

Kitchenham, B. (2004) Procedures for Performing Systematic Reviews, Keele University.

Kitchenham, B.A., Pfleeger, S.L. Fenton, N.E. (1995) Towards a framework for software

measurement validation. IEEE Transactions on Software Engineering, 21(12):929-944.

Kitchenham, B.A., Pfleeger, S.L., Pickard, L,. Jones, P., Hoaglin, D., El Emam, L., and

Rosenberg, J. (2002) Preliminary guidelines for empirical research in software

engineering. IEEE Transactions on Software Engineering, 28(8):721-734.

Lehman, M.M. (1974) Programs, Cities, Students, Limits to Growth? Inaugural Lecture,

May 1974, published in Imperial College of Science and Technology. Inaugural Lecture

Series, vol. 9, pp. 211-229. 1970-1074. Also in Programming Methodology, D. Gries Ed

(1979). New York: Springer-Verlag, pp.42-69.

http://www.virtualmachinery.com/jhawkprod.htm
http://www.indstriallogic.com/

 230

Lehman, M.M. (1978) Laws of Program Evolution – Rules and Tools for Programming

Management. Proceedings of Infotech State of the Art Conference, Why Software Projects

Fail, pp.11/1-11/25.

Lehman, M.M. (1980a) Understanding Laws, Evolution and Conservation in the Large

Program Life Cycle. The Journal of Systems and Software, 1(3):213-221.

Lehman, M.M. (1980b) Programs, life Cycle, and Laws of Software Evolution.

Proceedings of the IEEE, 68(9):060-1076.

Lehman, M.M. (1996) Laws of software evolution revisited. Position Paper, 5
th

 European

Workshop on Software Process Technology, Trondheim, Norway, LNCS 1149, Springer

Verlag, pp.108-124.

Lehman, M.M. and Ramil, J.F (2001) Rules and Tools for Software Evolution Planning

and Management. Annals of Software Engineering, 11(1):15-44.

Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., and Turski, W.M. (1997) Metrics

and Laws of Software Evolution - The Nineties View. Proceedings of the Fourth

International Symposium on Software Metrics (METRICS 97). pp.20-32.

Lewis, J., Henry, S., Kafura, D., Schulman, R. (1991) An Empirical study of the object-

oriented paradigm and software reuse. Proceedings of the ACM International Conference

on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).

Phoenix, AZ, pp.184-196.

Li, W. and Henry, S. (1993) Object-oriented metrics that predict maintainability. The

Journal of Systems and Software, 23 (2):111-122.

Lorenz, M., Kidd, I. (1994) Object-Oriented Software Engineering Metrics, Prentics-Hall

Englwood Cliff, NJ.

McCabe, T. (1976) A software complexity measure. IEEE Transactions on Software

Engineering, 2(4):308-320.

McGraw, G. and Felten, E. (1998) Twelve rules for developing more secure Java. Java

World, 12/01/1998. available at: http://www.javaworld.com/javaworld/jw-12-1998/jw-12-

securityrules.html?page=1.

Mens, T., Tourwe, T. (2004) A survey of software refactoring. IEEE Transactions on

Software Engineering, 30(2):26-139.

Meyers, W. (1988) Interview with Wilma Osborne. IEEE Software, 5(3):104-105.

Najjar, R., Counsell, S., Loizou, G. and Mannock, K. (2003) The Role of Constructors in

the Context of Refactoring Object-Oriented Systems. Proceedings of the 7
th

 European

Conference on Software Maintenance and Reengineering. Benevento, Italy. pp.111-120.

http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules.html?page=1
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules.html?page=1

 231

Nasseri, E. and Counsell, S. (2008) Inheritance, „Warnings‟ and potential Refactorings.

Proceedings of the 3
rd

 International Conference on Software Engineering Advances.

Sliema, Malta. pp.132-39.

Nasseri, E., and Counsell, S. (2009a) System evolution at the attribute level: an empirical

study of three Java OSS and their refactorings. Proceedings of the 31
st
 International

Conference on Information Technology Interface, Cavtat, Dubrovnik, Croatia. pp.653-658.

Nasseri, E. and Counsell, S. (2009b) An Empirical study of Java System Evolution at the

Method Level. Accepted to appear in the Proceedings of the 7
th

 International Conference

on Software Engineering Research Management and Applications. Haikou, Hainan Island,

China.

Nasseri, E., and Counsell, S. (2009c) An Evolutionary Study of Inheritance and Method

Invocation in Java OSS. Accepted (subject to minor changes) to appear in the Software

Quality Journal.

Nasseri, E., Counsell, S. and Shepperd, M. (2008) An Empirical Study of Evolution of

inheritance in Java OSS. Proceedings of the 19
th

 Australian Software Engineering.

Conference, Perth, Australia. pp.269-278.

Nasseri, E., Counsell, S. and Shepperd, M. (2009) Class Movement and Re-location: an

Empirical Study of Java Inheritance Evolution. Accepted (subject to minor changes) to

appear in The Journal of Systems and Software.

O'Brien, M.P., Buckley, J., Exton, C. (2005) Empirically studying software practitioners -

bridging the gap between theory and practice. Proceedings of the 21
st
 IEEE International

Conference on Software Maintenance (ICSM ‟05), Budapest, Hungary. pp. 433-442.

Opdyke, W. “Refactoring object-oriented frameworks.” Ph.D. Thesis, University of

Illinois, 1992.

Opdyke, W.F., Johnson, R.E. (1993) Creating abstract superclasses by refactoring.

Proceedings of the ACM 1993 Computer Science Conference. Indianapolis, IN, pp. 66-73.

Opdyke, W.F., Johnson, R.E. (1990) Refactoring: and aid in designing application

framework and evolving object-oriented systems. Proceedings of the Symposium on

Object-Oriented Programming, Emphasizing Practical Applications (SOOPPA ‟90).

Poughkeepsie, NY. pp.145-161.

Ostrand, T.J., Weyuker, E.J., Bell, R.M. (2004) Where the Bugs are. Proceedings of the

2004 ACM SIGSOFT Internaltional Symposium on Software Testing and analysis. pp.86-

96.

Perry, D.E., Porter, A.A. & Votta, L.G. (2000) Empirical studies of software engineering: a

roadmap. Proceedings of the conference on The future of Software engineering. Limerick,

Ireland , pp.345-355.

 232

Ping, Y., Systa, T., Muller, H. (2002) Predicting fault-proneness using OO metrics. An

industrial case study. Proceedings of the 6
th

 European Conference on Software

Maintenance and Reengineering. Budapest, Hungary, pp.99-107.

Prechelt, L., Unger, B., Philippsen, M., and Tichy, W. (2003) A controlled experiment on

inheritance depth as a cost factor for code maintenance. The Journal of Systems and

Software, 65(2):115-126.

Rosenberg, J. (1997) Some misconceptions about lines of code. Proceedings of the 4
th

International Software Metrics Symposium. Albuquerque, NM, pp.137-142.

Rumbaugh, J., Jacobson, I., Booch, G. (1998) The Unified Modelling Language Reference

Manual. Addison Wesley, Reading, MA.

Sangwan, R.S., Vercellone-Smith, P. and Laplante, P.A. (2008) Structural Epochs in the

Complexity of Software over Time. IEEE Software, 25(4):66-73.

Seaman, C. (1999) Qualitative methods in empirical studies of software engineering. IEEE

Transactions on Software Engineering, 25(4):557-572.

Shepperd, M.J. (1995) Foundations of Software Measurement. Prentice Hall International,

Hertfordshire, UK.

Sintes, T. (2001) So what are inner classes good for anyway? Java World, 27/07/01.

available at: http://www.javaworld.com/javaworld/javaqa/2000-03/02-qa-

innerclass.html?page=1.

Skogland, M. (2003) Practical use of encapsulation in object-oriented programming.

Proceedings of the 2003 International Conference on Software Engineering Research and

Practice. Las Vegas, NV, pp.554-560.

Snyder, N. (1986) Encapsulation and inheritance in object-oriented programming

Language. Proceedings of the ACM International Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA). Portland, OR, pp.38-45.

Stamelos, I., Angelis, L., Oikonomou, A. and Bleris, L. (2002) Code quality analysis in

open source software development. Information Systems Journal, 12(1):43-60.

Swanson, E.B. (1976) The Dimensions of Maintenance. Proceedings of the 2
nd

 IEEE

International Conference On Software Engineering. San Francisco, California, pp.492-

497.

Tempero, E.D., Noble, J., Melton, H. (2008) how Do Java Programs Use Inheritance? An

Empirical Study of Inheritance in Java Software. Proceedings of the 22
nd

 European

Conference on Object-Oriented Programming. Paphos, Cyprus, pp.667-691.

Tilevich, E., and Smaragdakis, Y. (2005) Binary refactoring: improving code behind the

scenes. Proceedings of the 27
th

 International Conference on Software Engineering (ICSE).

St Louis, USA, pp.264-273.

http://www.javaworld.com/javaworld/javaqa/2000-03/02-qa-innerclass.html?page=1
http://www.javaworld.com/javaworld/javaqa/2000-03/02-qa-innerclass.html?page=1

 233

Tokuda, L., Batory, D. (2001) Evolving object-oriented designs with refactorings. Journal

of Automated Software Engineering, 8(1):89-120.

van Deursen, A. and Moonen, L. (2002) The Video Store Revisited – Thoughts on

Refactoring and Testing. Proceedings of the 3
rd

 International Conference on eXtreme

Programming and Flexible Processes in Software Engineering XP. Sardinia, Italy, pp.71-

76.

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin,

1(6): pp.80-83.

Wood, M., Daly, J., Miller, J. and Roper, M. (1999) Multi-method research: An empirical

investigation of object-oriented technology. The Journal of Systems and Software,

48(1):13-26.

