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SUMMARY

DNA replication fork perturbation is a major chal-
lenge to the maintenance of genome integrity. It
has been suggested that processing of stalled forks
might involve fork regression, in which the fork re-
verses and the two nascent DNA strands anneal.
Here, we show that FBH1 catalyzes regression of a
model replication fork in vitro and promotes fork
regression in vivo in response to replication pertur-
bation. Cells respond to fork stalling by activating
checkpoint responses requiring signaling through
stress-activated protein kinases. Importantly, we
show that FBH1, through its helicase activity, is
required for early phosphorylation of ATM substrates
such as CHK2 andCtIP as well as hyperphosphoryla-
tion of RPA. These phosphorylations occur prior to
apparent DNA double-strand break formation.
Furthermore, FBH1-dependent signaling promotes
checkpoint control and preserves genome integrity.
We propose a model whereby FBH1 promotes early
checkpoint signaling by remodeling of stalled DNA
replication forks.

INTRODUCTION

Perturbation of DNA synthesis often leads to stalling of the DNA

replication fork. In the case of widespread fork stalling, cells enter

a state commonly referred to as ‘‘replication stress’’ (Branzei and

Foiani, 2010; Ciccia and Elledge, 2010; Jackson and Bartek,

2009).Severaldrugshavebeenused tostudy the replicationstress

response, including hydroxyurea, which causes stalling of replica-

tion forks due to depletion of dNTPs. Several factors are known to

recognize and act on stalled forks, and this leads ultimately to acti-

vation of checkpoint responses, aswell as repair and restart of the

fork. These responses are mediated through enzymatic remodel-

ing of the stalled forks; however, the mechanisms are in many cir-

cumstances not understood. An emerging regulator of the

response to stalled replication forks is the FBH1 helicase. FBH1

is a member of the conserved UvrD family of 30-50 DNA helicases

that has been shown to operate on a number of cellular substrates

includingstalled replication forks (Kimetal., 2002;Masuda-Ozawa

et al., 2013). FBH1 was shown recently also to efficiently promote

MUS81-inducedDNAbreakageandp53activation following long-

term HU treatment that leads to fork collapse (Fugger et al., 2013;

Jeong et al., 2013b). In line with a role of FBH1 in replication

stress responses, FBH1 was shown to accumulate at the stalled

fork shortly after exposure to HU (Fugger et al., 2009). However,

the functional role of FBH1 recruitment to stalled forks and

whether andhowFBH1maycontribute to the early stageprocess-

ing of stalled forks is still unclear. To gain insights into these

fundamental issues, we undertook to investigate the role of

FBH1 in response to short-term replication stress.

RESULTS

FBH1 Catalyzes Fork Regression In Vitro
It has been shown previously that FBH1 is recruited to ssDNA

areas following HU-induced fork stalling (Fugger et al., 2009)

and that FBH1 can unwind the lagging strand (Masuda-Ozawa

et al., 2013). Therefore, we hypothesized that FBH1 might be

involved in remodeling of stalled forks due to its helicase activity.

Regressed forks result from backtracking of the fork and the

pairing of the nascent leading and lagging strands (Atkinson

and McGlynn, 2009). To address a putative role of FBH1 in this

process, we tested whether purified recombinant FBH1 (Si-

mandlova et al., 2013) could catalyze fork regression using a pre-

viously validated substrate resembling a replication fork (Ralf

et al., 2006; Figure 1A). We found that FBH1 possesses a con-

centration-dependent fork-regression activity (Figure 1B), indi-

cating that FBH1 can promote fork regression in vitro. To further

substantiate this finding, we repeated the assay with helicase-

deficient FBH1, which did not promote regression of the model

fork substrate (Figure 1C). Consistent with this, FBH1-mediated
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regression was dependent on ATP hydrolysis, indicating that

FBH1 catalyzes fork regression through its helicase domain in

an ATP-dependent manner (Figure S1A). To compare the activity

of FBH1 to another bona fide fork regressor, BLM (Ralf et al.,

2006), we carried out comparative fork-regression assays. We

found that the two helicases were able to generate similar prod-

ucts; however, the activity of FBH1 was slightly higher than that

of BLM (Figure S1B). Taken together, these data indicate that

FBH1 is a fork-regressing helicase in vitro. The ssDNA product

generated by FBH1 and BLM helicases (Figure S1B), in addition

to the dsDNA regression product, is commonly observed due to

partial unwinding of the dsDNA product. This is not seen with

RecG, which lacks significant DNA helicase activity.

FBH1 Is Required for Fork Regression In Vivo
These initial findings prompted us to investigate whether FBH1

might be involved in fork regression in vivo. To do this, we first

analyzed whether replication forks stalled by treatment with HU

might beprone to regress.Usingelectronmicroscopy (EM) (Neel-

sen et al., 2014) to visualize replication intermediates (Figure 2A),

we found an approximately 4-fold increase in the occurrence of

regressed forks in HU-treated cells compared to mock-treated

cells (Figure 2B). Genomic DNA was crosslinked prior to lysis to

preserve intracellular fork structures during DNA isolation and

spreading. Importantly, we found that depletion of FBH1 resulted

in a 2-fold decrease in HU-induced fork regression (Figure 2B),

suggesting that FBH1 promotes at least a proportion of the

observed regressionof stalled replication forks in vivo. In contrast

to its role in fork regression, we did not find evidence that FBH1

affects resection of the regressed forks asmeasured by the pres-

ence of ssDNA at the regressed arm (Figure S1C). Hence, our
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(A) Schematic representation of the substrate used

in the fork-regression assay.

(B) Indicated concentration of FBH1 was incu-

bated with 5 pM replication fork substrate at 37�C
for 30 min and then digested with EcoRI. The re-

action products were separated by native PAGE.

Gels were dried and processed by Phosphor-

Imaging. RecG, a bona fide bacterial fork regres-

sor, was included as a positive control.

(C) FBH1 wild-type (WT) or helicase dead (HL)

were incubated with 5 pM replication fork sub-

strate at 37�C for 30 min and then digested with

EcoRI. The reaction products were separated by

native PAGE. Gels were dried and processed by

PhosphorImaging.

data define FBH1 as the first enzyme

that promotes fork regression in vivo in

higher eukaryotes. To substantiate the

data from EM studies, we utilized a

recently reported indirect approach for

detecting intermediates with unwound

newly synthesized strands, including re-

gressed forks (Couch et al., 2013). This in-

volves the use of the nucleotide analog,

BrdU, the epitope for which is masked under normal circum-

stances and is only detectable when exposed on ssDNA (Fig-

ureS1D).Using thismethod,we found thatHU treatment resulted

in a significant increase in ssDNA exposure of the nascent DNA

strands as evidenced by BrdU foci, indicative of fork remodeling

andpossibly regression (Figures 2Cand2D). In support of the EM

data, we found that this nascent strand exposurewas dependent

upon FBH1 (Figures 2C and 2D), further implying that efficient

HU-induced fork regression depends on FBH1.

To further strengthen the notion that FBH1 can actively pro-

mote fork regression in vivo, in a helicase-dependent manner,

we carried out the native BrdU assay in cells after inducing

expression of either wild-type (WT) or helicase-dead FBH1. We

found that the HU-induced fork processing as measured by

ssDNA exposure was augmented in the presence of FBH1 WT,

but not a helicase-dead allele (Figures 2E and 2F). In addition

to this, we found that overexpression of helicase-dead FBH1

suppressed ssDNA formation compared to the non-induced

HU-treated control, which argues that the helicase-deficient

allele inhibits endogenous FBH1 in a dominant-negative fashion

through its homo-dimeric interaction (Fugger et al., 2013).

Collectively, our data suggest that FBH1 directly promotes

regression of stalled replication forks in vivo through its helicase

activity.

FBH1 Promotes DSB Checkpoint Signaling from
Stalled Forks
We and others have shown previously that FBH1 is required for

fork cleavage and checkpoint signaling following prolonged fork

stalling, which is linked to DNA breakage (Fugger et al., 2013;

Jeong et al., 2013b). We reasoned that the fork-regression
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activity of FBH1 might also be involved in early signaling elicited

from stalled forks. To address the role of FBH1 following short-

term HU treatment, which causes stalling, but not collapse, of

the fork, we used a cell line carrying an FBH1-specific shRNA ex-

pressed under the control of a doxycycline-inducible promoter.

Cells depleted for FBH1 displayed a marked reduction in phos-

phorylation of RPA on Ser4 and Ser8 following HU treatment

for 0.5–4 hr, both in the chromatin-bound fraction and in the total

cellular pool (Figure 3A). The enzymology underlying RPA hyper-

phosphorylation is not fully understood, but it has been associ-

ated with checkpoint signaling following DNA breakage, such

as via DNA-PK activity (Bunting et al., 2010; Liaw et al., 2011).

Moreover, the ATM-mediated phosphorylation of CHK2 on

Thr68, and the phosphorylation-induced electrophoresis

mobility shift of the DNA end resection factor, CtIP, were both

markedly reduced following HU treatment of FBH1-depleted

cells (Figure 3A). This is in agreement with previous data showing

that depletion of FBH1 leads to a reduction of ATM-mediated

signaling after 8 hr treatment of HU (Jeong et al., 2013b). Unex-

pectedly, however, considering the known role of the ATR-CHK1

pathway in response to replication stress, we found that ATR-

CHK1 signalingwas unaffected by depletion of FBH1 (Figure 3A).

In addition to HU, a number of other agents and drugs interfere

with the replication fork, leading to fork stalling. To test whether

FBH1 was also required for checkpoint signaling in response to

other types of fork stalling, we treated cells with thymidine and

low-dose camptothecin, which does not lead to readily detect-

able DNA DSB formation at this concentration (Figure S2A).

Although we found that checkpoint signaling following HU treat-

ment was most sensitive to FBH1 depletion, signaling following
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Figure 2. FBH1 Mediates Fork Regression

In Vivo

(A) (Top) U2OS cells were transfected with control

or FBH1 siRNA for 48 hr before treatment with

2 mM HU for 4 hr before psoralene crosslinking.

Genomic DNA was extracted and prepared

for EM, and images were acquired using TEM.

(Bottom) Graphical representation of a regressed

replication fork; nascent strands (blue arrow),

parental strand (black arrow), regressed arm (red

arrow).

(B) Quantification and statistical analysis of re-

gressed forks from (A) was performed using

Graphpad Prism 6 software. At least 70 replication

intermediates were analyzed for each condition.

Error bars represent SD from three independent

experiments.

(C) U2OS cells were seeded on coverslips and

transfected with control or FBH1 siRNA for 48 hr.

Cells were then pulse labeled with 10 mM BrdU for

10 min and subsequently treated with HU for 4 hr

before fixation. Cells were subjected to immuno-

fluorescence with anti-BrdU antibody, and images

were acquired using AxioVert microscope. Image

analysis was performed using Volocity software.

The scale bar represents 10 mm.

(D) Quantification and statistical analysis of BrdU

intensity of samples from (C) were performed using

Graphpad Prism 6 software. Boxplot with whiskers

representing min to max values.

(E) U2OS cells expressing either WT or helicase

mutant (*HL) GFP-FBH1 in a doxycycline-inducible

fashion were seeded on coverslips, and expres-

sion was induced or not for 24 hr. Cells were then

pulse labeled with 10 mM BrdU for 10 min and

subsequently treated or not with HU for 4 hr before

fixation. Cells were subjected to immunofluores-

cence with PCNA and anti-BrdU antibody, and

images were acquired using the Olympus ScanR

system (as described in the Experimental Pro-

cedures section). Quantification and statistical

analysis was performed using Graphpad Prism 6

software. Error bars represent SD.

(F) Immunoblotting of samples from (E) showing

GFP-FBH1 expression.
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treatment with thymidine or low-dose CPT was also partially

dependent on FBH1 (Figure S2A). This suggests that FBH1 oper-

ates in response to several types of replication stress, where it

may modulate the structure of the fork in order to elicit efficient

checkpoint signaling through key replication and repair factors

such as RPA and CtIP.

DSB Checkpoint Signaling Occurs in the Absence
of Detectable DNA Breaks
The phosphorylation of RPA andCtIP has been reported to occur

after DSB formation (Bunting et al., 2010; Li et al., 2000). In a time

course experiment combining western blotting and pulsed-field

gel electrophoresis (PFGE), we found, however, that these phos-
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Figure 3. FBH1 Mediates DNA DSB Check-

point Signaling through Its Helicase Activity

following Replication Fork Stalling

(A) U2OS/shFBH1 cells were either induced or not

with doxycycline for 48 hr before treatment with

2 mM HU. Cells were collected at the indicated

time points and subjected to immunoblotting with

the indicated antibodies.

(B) U2OS cells were transfected with FBH1 or

MUS81 siRNA for 48 hr. Cells were treated with

2 mM HU for 4 hr, collected, and subjected to

immunoblotting with the indicated antibodies.

(C) U2OScells were either untreated or pre-treated

with an ATM inhibitor (10 mM) for 30 min prior

to treatment with either 2 mM HU for 4 hr or 1 mM

CPT for 1 hr. Cells were collected and subjected to

immunoblotting with the indicated antibodies.

(D) U2OS cells were transfected with UNC or CtIP

siRNA for 48 hr. Cells were either left untreated or

treated with 2 mM HU for 4 hr, collected, and

subjected to immunoblotting with the indicated

antibodies.

(E) U2OS cells expressing either humanWT or *HL

GFP-FBH1 in a doxycycline-inducible fashion

were depleted using siFBH1 targeting in the 30

UTR for 48 hr. Expression of GFP-FBH1 was

induced 24 hr post-transfection. Cells were either

left untreated or treated with 2 mM HU for the

indicated times, collected, and subjected to

immunoblotting.

(F)MESCs, either FBH1WTorHLwere treatedwith

0.5 mM HU, collected at the indicated time points,

and subjected to immunoblotting with the indi-

cated antibodies. Asterisk indicates a cross-re-

acting band.

phorylation events occurred in a time

frame (2–12 hr) where DSBs were not

readily detectable. Indeed, detectable

HU-induced DNA breaks did not appear

until 24 hr after HU addition, in agreement

with previous findings (Figure S2B, bot-

tom; Hanada et al., 2007; Petermann

et al., 2010). To rule out the possibility

that breaks were not detected at early

time points due to the limitations of the

PFGE assay, we treated cells with the

topoisomerase I inhibitor CPT that, at

the high dose used, induces DSBs at replication forks (Ryan

et al., 1991). Already 30–60 min after addition of CPT, we could

observe a moderate accumulation of DNA breaks (Figure S2C),

despite the fact that the intensity of DSB signaling through

RPA and CtIP was comparable to that after only 4 hr of HU treat-

ment (Figure S2D). Therefore, the strong HU-induced ATM-

mediated signaling probably originates either from a very small

number of DSBs or from the generation of other types of DNA

structures at the stalled replication forks.

We investigated further the potential role of DNA DSB forma-

tion because prolonged HU treatment leads to the collapse of

stalled replication forks accompanied by DNA breakage medi-

ated by FBH1 and the MUS81 endonuclease (Fugger et al.,

1752 Cell Reports 10, 1749–1757, March 17, 2015 ª2015 The Authors



2013; Hanada et al., 2007; Jeong et al., 2013b). Ablation of

MUS81, therefore, prevents the accumulation of DSBs following

HU treatment. To test whether prevention of MUS81-specific

DNA breakage would have any impact on the observed check-

point signaling, we depleted MUS81 using siRNA. Depletion of

MUS81 did not have any effect on ATM-mediated phosphoryla-

tion of either CHK2 or RPA at early times after HU treatment,

further supporting the notion that FBH1 promotes checkpoint

signaling through events that precede and are independent of

marked DNA DSB formation (Figure 3B).

DSB Signaling Occurs in an ATM-Dependent
but Resection- and Recombination-Independent
Manner following Fork Stalling
HU treatment is known to activate ATR through the formation of

RPA-coated ssDNA (Cimprich and Cortez, 2008), which raised

the possibility that the apparent ATM-dependent checkpoint

signaling to CtIP was instead mediated by ATR. Using an

ATM-specific inhibitor (Hickson et al., 2004), we found a clear

reduction in the HU-mediated phosphorylation of CtIP, ATM,

CHK2, KAP1, and p53, but not of CHK1, gH2AX, or RPA (Fig-

ure 3C), suggesting that HU does indeed induce ATM activation

within a time frame where DNA DSBs are not detectable. Hyper-

phosphorylation of RPA has been shown to occur following DNA

breaks in a CtIP-dependent fashion through resection of the

DNA ends (Sartori et al., 2007). Given that CtIP was highly phos-

phorylated and presumably activated in response to HU treat-

ment, we tested whether the RPA phosphorylation was depen-

dent on the activity of CtIP. However, in contrast to high-dose

CPT treatment, we did not find any dependency on CtIP for

RPA phosphorylation following HU treatment, suggesting that

this modification occurs by a resection-independent mechanism

(Figure 3D). Interestingly, it was recently shown that hyperphos-

phorylation of RPA is important for preserving genome integrity

during replication stress (Ashley et al., 2014). Taken together,

our data define a critical role for FBH1 upstream of the RPA hy-

perphosphorylation at early stages in response to replication fork

stalling, where it might serve to protect and/or rescue replication

forks that have stalled through efficient checkpoint signaling.

Next, we investigated how FBH1 could affect the response

to fork stalling. FBH1-ablated cells have been shown to form

spontaneous RAD51 foci (Fugger et al., 2009; Laulier et al.,

2010; Lorenz et al., 2009). To test the possibility that increased

chromatin-bound RAD51 could protect replication forks from

being processed and thus lead to reduced DNA DSB signaling,

cells were depleted of RAD51 and treated with HU. However,

we found no evidence for a rescue of the decreased HU-induced

signaling in FBH1-depleted cells by co-depletion of RAD51, but

rather a further decrease in checkpoint response was seen,

most likely due to the cell-cycle delay observed in RAD51-

depleted cells (Figure S2E; data not shown). This suggests that

the specific effect of FBH1 depletion on these signaling events

occurring after HU treatment is independent of RAD51.

FBH1 Promotes DSB Signaling through Its
Helicase Activity
The lack of detectable DNA breakage following short-term HU

treatment combined with the strong DSB-like signaling sug-

gested to us that FBH1 mediates rearrangement of stalled forks

into structures that provides the basis for the observed signaling.

Given our data indicating that FBH1 catalyzes fork regression, it

seemed plausible that the checkpoint signalingmight in principle

involve the regressed fork because this would form a free DNA

end that resembles a conventional DNA DSB with a resected

end, which is known to be capable of inducing checkpoint

signaling (Ray Chaudhuri et al., 2012). To test this hypothesis,

we assessed the contribution of the helicase activity of FBH1

to the checkpoint signaling seen following replication arrest. Us-

ing siRNA targeting the 30 UTR of FBH1, we could reconstitute

cells with ectopic expression of FBH1 using the doxycycline-

inducible system described above. Whereas cells depleted for

FBH1 did not show any detectable phospho-RPA 90 min after

HU treatment, induction of wild-type FBH1, but not a helicase-

dead version, could completely rescue RPA phosphorylation in

response to HU treatment (Figure 3E). This indicates that FBH1

promotes checkpoint signaling through a helicase-dependent

mechanism at early time points after fork stalling.

To substantiate our findings, we used mouse embryonic stem

cells (MESCs) carrying biallelic deletions in the FBH1 helicase

domain (Fugger et al., 2013). Upon treatment with HU, the WT

MESCs showed a time-dependent increase in RPA and CtIP

phosphorylation that paralleled that of human cells, albeit with

slightly faster kinetics (Figure 3F). However, the FBH1 helicase-

deficient cells (HL) displayed almost complete abrogation of

RPA and CtIP phosphorylation following HU treatment, in agree-

ment with the findings in human cells.

FBH1 Is Required for G2 Checkpoint Control
and Genome Maintenance following Fork Stalling
ATM is a key factor in checkpoint pathways (Thompson, 2012),

and our finding that FBH1 promotes ATM activation following

fork stalling prompted us to investigate whether FBH1 plays a

role in cell-cycle control. To this end, we released cells from a

HU block and followed their progression through S phase and

into mitosis. We did not observe any obvious difference in S

phase progression between control and FBH1-depleted cells

(Figure S3A). Interestingly, however, we found that the FBH1-

depleted cells released from an arrest induced by HU entered

mitosis faster than did control cells (Figure 4A). In line with this,

we found that FBH1-depleted cells released from the HU-

induced arrest had a much-faster decay of the DSB-related

checkpoint response, as seen by a rapid decrease in RPA phos-

phorylation (Figures S3B and S3C). Taken together, this indi-

cates that cells released from an HU block traverse S phase

with an active checkpoint but then become delayed in the G2

phase via the FBH1-mediated G2/M checkpoint. This G2 delay

could provide time to complete DNA repair and finish replication

in areas of the genome with persistently inactivated forks.

Because FBH1-deficient cells exhibit an aberrant checkpoint

control following replication stress, we askedwhether these cells

released fromHU arrest would show signs of incomplete replica-

tion in the ensuingG1 phase. To this end, we chose to investigate

the formation of 53BP1 bodies in G1 cells, which has been asso-

ciated with fragile sites and difficult-to-replicate regions of the

genome (Harrigan et al., 2011; Lukas et al., 2011). Whereas

depletion of FBH1 itself did not lead to an increase in 53BP1
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body formation, treatment with HU led to a slight increase in the

frequency of 53BP1 bodies, which was significantly augmented

in cells depleted for FBH1 (Figures 4B and 4C). These data argue

that the FBH1-mediated checkpoint control following replication

stress is important to ensure a proper control of cell-cycle pro-

gression to guard genome integrity.

DISCUSSION

The mechanisms by which stalled forks are processed are not

well understood in mammalian cells. We have identified FBH1

as the first enzyme responsible for fork regression in vivo in

higher eukaryotes. The fact that FBH1 possesses fork-regres-

sion activity in vitro supports our notion that FBH1 is a bona

fide fork-regression enzyme in mammalian cells. FBH1 has

also been shown to specifically unwind the lagging strand of

stalled forks in vitro (Masuda-Ozawa et al., 2013), suggesting
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Figure 4. FBH1 Promotes Checkpoint Con-

trol and Genome Integrity

(A) U2OS/shFBH1 were either induced or not with

doxycycline for 48 hr before treatment with 2 mM

HU for 16 hr. Cells were released from the HU

block into fresh media containing nocodazole

(100 ng/ml) and collected at the indicated time

points, stained with phospho-H3-S10 antibody,

and analyzed by flow cytometry. Statistical anal-

ysis was performed using Graphpad Prism 6

software. Error bars represent SD.

(B) TIG3 cells were seeded on coverslips and

transfected with UNC or FBH1 siRNA for 48 hr

before treatment with HU for 18 hr. Cells were

released for 24 hr, fixed, and subjected to immu-

nofluorescence as described in the Experimental

Procedures section. Single-cell images of 53BP1

foci were acquired using the ScanR system (see

Experimental Procedures). The scale bar repre-

sents 10 mm.

(C) Quantification of 53BP1 foci from at least 5,000

G1 cells. Statistical analysis was performed using

Graphpad Prism 6 software. Error bars represent

mean with 95% CI.

(D) Model depicting how FBH1 mediates fork

processing and promotes checkpoint signaling

(see text for details).

that FBH1 could theoretically cooperate

with 50-30 helicases in vivo to augment

the regression process.

Replication arrest does not induce

detectable DNA DSB formation at early

times after HU treatment. In spite of this,

we observed that HU induces a marked

FBH1-dependent DNA-DSB-like sig-

naling response soon after HU treatment,

as evidenced by the phosphorylation of

DSB-related ATM targets. Moreover,

upon depletion of MUS81, which is

required for DNA breakage following pro-

longed exposure to HU, we observed no

effect on checkpoint signaling. This sug-

gests that the DSB signaling is induced by either a very small

number of DNA DSBs or even in the absence of breaks. Our

data imply a conceptually new signaling pathway, whereby

stalled forks are processed by FBH1 to form DNA structures

with ability to signal like DNA DSB structures. This could, in prin-

ciple, be explained by an accumulation of regressed replication

forks following HU treatment, a structure that, through pairing of

the nascent strands, generates a free DNA end (Figure 4D).

In addition to the situation of HU-induced fork stalling des-

cribed here, regressed forks have also been observed upon topo-

isomerase inhibition by low-dose CPT (Ray Chaudhuri et al.,

2012), after cyclin-E- and CDC25A-induced deregulation of the

replication program (Neelsen et al., 2013a) and in the presence

of template discontinuities (Neelsen et al., 2013b). FBH1 has

strong affinity for ssDNA (Fugger et al., 2009) andmarkedly accu-

mulates at HU-stalled forks. This may be one of the defining

structural features that underlie the ability of FBH1 to promote
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fork reversal after short-termHU. Interestingly, fork reversal in the

absence of detectable DSB correlated with DNA DSB signaling

after low-dose CPT treatment (Ray Chaudhuri et al., 2012) but

did not elicit a similar response under cyclin-E-induced deregula-

tion of the replication program (Neelsen et al., 2013a), suggesting

that fork reversal per se is insufficient to activate the checkpoint.

It is possible that DSB-independent ATM signaling upon fork

stalling is dependent on specific molecular features of the in-

duced reversed forks, which may escape detailed identification

by EM analysis. Furthermore, ATM signaling from double-

stranded ends at regressed arms may also require binding of

cellular mediators or removal of replicative factors, which may

only occur upon specific conditions of replication stress.

Collectively, our data link a novel FBH1 fork-remodeling activity

with checkpoint signaling that operates after the ATR-CHK1

pathway is activated (Figure 4D). Notably, this FBH1-mediated

checkpoint response to fork stalling is active prior to the MUS81-

catalyzed accumulation of DNA DSBs. Recently, phosphorylation

of RPA onSer4/8was shown to be required for promoting genome

stability after replication stress (Ashley et al., 2014). In agreement

with this, we observed moderately elevated genome instability in

cells depleted of FBH1 following fork stalling, as evidenced by

the increased presence of 53BP1 bodies in G1 phase.We hypoth-

esize that the FBH1-mediated response is of prime importance

when twoapproachingneighboring forksstall andcollapse, leaving

an unreplicated area in between. This is a very dangeroussituation,

because dormant origins are not available to rescue the unrepli-

cated DNA. However, the FBH1 response promotes checkpoint

signaling from such stalled forks that eventually can allow time

for fork restart and DNA repair pathways to complete replication.

Our present findings may also help explain the strong ATM

signaling in the context of the checkpoint tumorigenesis barrier

in early lesions experiencing replication stress (Halazonetis

et al., 2008). That ATM signaling has been attributed to eventual

breakage of DNA at forks leading to DNA DSB formation, but we

suggest that the novel FBH1-mediated checkpoint activation

following replication fork stalling could in some circumstances

contribute to such disease-associated ATM signaling. In this re-

gard, it is noteworthy that mutations in FBH1 have recently been

demonstrated in melanoma cell lines, which exhibit increased

survival in response to replication stress (Jeong et al., 2013a).

EXPERIMENTAL PROCEDURES

Cells, Chemicals, and siRNA

The human osteosarcoma cell line (U2OS) and human lung fibroblasts (TIG3)

were grown in DMEM with 10% FBS in case of TIG3 supplemented by non-

essential amino acids (GIBCO). U2OS cell lines carrying inducible expression

vectors of GFP-hFBH1 and shRNA were described previously (Fugger et al.,

2009). The following drugs were used in this study: hydroxyurea (Sigma),

camptothecin (Sigma), aphidicolin (Sigma), nocodazole (Sigma), thymidine

(Sigma), and ATM inhibitor (KU55933; Tocris Bioscience). For siRNA transfec-

tions, Lipofectamine RNAiMAX (Invitrogen) was used according to the manu-

facturer’s instructions, with the modification that the transfection reagent was

removed 4–6 hr after addition and freshmedia added. For FBH1 transfection, a

mix of siRNA nos. 1–3 was used, unless otherwise stated. The siRNA se-

quences used in this study are:

FBH1 no. 1 30 UTR (50GGGAUGUUCUUUUGAUAAAUU30 )
FBH1 no. 2 (50GUGCCUAUUUGGUGUAAGA30)

FBH1 no. 3 (50AAACAAAACCUCGUCAUUA30)
RAD51 (50UUGAGACUGGAUCUAUCAC30)
CtIP1 (50GCUAAAACAGGAACGAAUC30 )
MUS81 (50CAGCCCUGGUGGAUCGAUA30)

Culture of MESCs

Plates for theMESC culture were coated using 0.1% type-A gelatin (Sigma) for

5 min before used. MESCs were maintained in 50% Buffalo rat liver (BRL)-

conditioned medium/50% fresh DMEM supplemented with 10% fetal calf

serum, 0.1% b-mercaptoethanol, 2.4 mM glutamine, 1,000 U/ml leukemia

inhibitory factor (GIBCO), and non-essential amino acids. Cells were grown

at 37�C in a humidified atmosphere containing 5% CO2.

Flow Cytometry

To prepare cells for flow cytometry, U2OS cells were fixed in 70% ethanol.

The cells were stained with the indicated antibodies for 1 hr followed by 1 hr

incubation with Alexa-Fluor-conjugated secondary antibodies (Invitrogen;

1:1,000). DNA was stained with 0.1 mg/ml propidium iodide (PI) containing

RNase (20 mg/ml) for 30 min at 37�C. For EdU labeling, cells were incubated

with 10 mMEdU for 30 min before harvest. Click-it reaction was performed ac-

cording to the manufacturer’s description (Invitrogen). Flow cytometry was

performed on a FACS Calibur (BD Biosciences) using CellQuest Pro software

(Becton Dickinson).

Immunoblotting and Antibodies

For immunoblotting, cells were lysed on ice in cold EBC buffer (150 mM NaCl,

50mMTris [pH 7.4], 1 mMEDTA, and 0.5%NP-40/Igepal) containing protease

inhibitors (1% aprotinin, 5 mg/ml leupeptin, and 1 mM PMSF), phosphatase in-

hibitors (50 mM NaF, b-glycerophosphate, and 0.5 mMCalyculin A), and 1 mM

DTT. The lysates were sonicated using a digital sonifier (102C CE Converter;

Branson). Proteins were separated by SDS-PAGE and transferred to a nitro-

cellulose membrane. Blocking and blotting with primary antibodies were per-

formed in PBS-T supplemented with 5% skimmed milk powder. Proteins were

visualized on films using secondary HRP-conjugated antibodies (1:10,000;

Vector Laboratories) and ECL (GE Healthcare). Films were developed using

an automated developer (Valsoe; Ferrania Technologies). All immunoblots

shown are representative of at least three independent experiments. The

following commercial rabbit antibodies were used in this study: phospho-

CHK1-S317 (no. 2344; Cell Signaling Technology), phospho-CHK2-T68

(no. 2661; Cell Signal), phospho-p53-S15 (no. 9284; Cell Signal), phospho-

KAP1-S824 (ab70369; Abcam), vinculin (V9131; Sigma), CtIP (BL1914; Bethyl

Labs), phospho-RPA2-S4/8 (A300-245; Bethyl Labs), phospho-histone H3-

S10 (06-570; Millipore), and RAD51 (H-92; SCBT). The following commercial

mouse antibodies were used in this study: CHK1 (DCS-310; SCBT), CHK2

(DCS-270; SCBT), RPA (NA19L; Calbiochem), gH2AX (JBW301; Millipore),

ATM (ATM 11G12; Abcam), phospho-ATM-S1981 (10H11.E12; Millipore),

GFP (anti-GFP; Roche), and MUS81 (MTA30 2G10; Abcam). Rat antibody

against RPA2 (4E4; Cell Signal) was used for detection of RPA2 in mouse cells.

Rabbit antibodies raised against hFBH1 were described previously (Fugger

et al., 2009; Jeong et al., 2013b).

Immunofluorescence

Cells were grown on coverslips and treated as indicated in the figure legends.

The coverslips were fixed and stained as described previously (Fugger et al.,

2009). Briefly, the coverslips were fixed in Lillies with or without prior pre-

extraction in CSK buffer (0.5% Triton X-100 in 20 mM HEPES [pH 7.4],

50 mMNaCl, 3 mMMgCl, and 300 mM sucrose), permeabilized in 0.2% Triton

X-100/PBS, and incubated with the indicated antibodies diluted in DMEM sup-

plementedwith 10%serum. Samples were then stainedwith secondary Alexa-

Fluor-conjugated antibodies and mounted on glass slides using Vectashield

mounting medium with DAPI (Vector Laboratories).

Single-Cell Image Analysis of 53BP1 Foci in G1 Phase

TIG3 cells were transfected with siRNA for 56 hr. Cells were treated with 2 mM

HU for 18 hr followed by release into newmedium for another 24 hr. Cells were

fixed in 4% PFA for 15 min, washed by PBS, and permeabilized in PBS
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supplemented with 5% Triton-X. The fixed cells were immunostained by first

incubating in blocking solution (DMEM + 20% fetal serum) for 1 hr followed

by incubation with 53BP1 primary antibody (Santa Cruz Biotechnology; rabbit,

H-300; 1:300) and cyclin A (Lieca; mouse; 1:50) for 1 hr. Cells were washed

three times with PBS, followed by incubation with secondary Alexa Fluor anti-

bodies (Life Technologies; 1:1,000) dissolved in the blocking solution, followed

by three washes in PBS. After the last wash, cells dishes were incubated in

1 mg/ml DAPI (Sigma) in dH2O for 5 min and air dried. Dried and stained cells

were mounted using Vecta Shield (H-1000; Vector Labs) mounting medium.

Images were automatically acquired using ScanR microscope system

(Olympus) with a 203 water immersion objective (UApo/340W; 0.70 W) to

obtain minimum 5,000 G1 cells per sample. In the analysis, G1 cells were

selected as cells negative for cyclin A signal and at the same time spanning

the G1 area according to the DAPI staining (see Figure S3D). 53BP1 foci

were detected using the ‘‘spot detection’’ function of the ScanR Analysis soft-

ware (Olympus). Experiments were done in three biologically independent rep-

licates, and data were statistically processed.

PFGE

For DNA break analysis, 106 cells were melted into each agarose insert. The

agarose inserts were incubated in proteinase K buffer (0.5MEDTA, 1%N-laur-

ylsarcosyl, and 1 mg/ml proteinase K) at 50�C for 48 hr and thereafter washed

four times in TE buffer prior to loading onto a 1% agarose gel (chromosomal

grade; Bio-Rad) and separated by CHEF DR III PFGE apparatus for 20 hr

(Bio-Rad; 120� angle; 60–240 s switch time; 4 V/cm). The gel was subsequently

stained with ethidium bromide and analyzed with Image Gauge software (FLA-

3000; Fujifilm). All PFGE figures are representative of at least three indepen-

dent experiments.

EM

In vivo psoralen crosslinking, isolation of total genomic DNA, and enrichment

of the replication intermediates and their EM visualization were performed as

described previously (Neelsen et al., 2014). In brief, cells were collected by

trypsinization and genomic DNA was crosslinked by two rounds of incubation

in 10 mM4,50,8-trimethylpsoralen and 2min of irradiation with 366-nmUV light.

Cells were lysed, and genomic DNAwas isolated from the nuclei by proteinase

K digestion and phenol-chloroform extraction. Purified DNAwas digested with

PvuII, and replication intermediates were enriched on a BND cellulose column.

The DNAwas spread on carbon-coated grids and visualized by platinum rotary

shadowing. Images were acquired on a transmission electron microscope

(G2 Spirit; FEI Tecnai) and analyzed with ImageJ (NIH). Analysis of replication

intermediates using EM was performed in three independent biological

experiments.

In Vitro Fork-Regression Assay

Fork-regression assays were performed as described previously (Ralf et al.,

2006). The replication fork substrate (5 pM) was incubated with the indicated

concentrations of either FBH1, BLM, or RecG in buffer H (50 mM Tris-HCl

[pH 7.5], 50 mM NaCl, 2 mM MgCl2, 2 mM ATP, 1 mM DTT, and 100 mg/ml

BSA). Reactions were incubated for 30 min at 37�C and were then quenched

with 5 mM AMP-PNP and 125 ng of M13 ssDNA. Reactions were then

incubated with EcoRI for a further 30 min, and the reaction products were

separated on a 10% polyacrylamide gel. Gels were dried and exposed to

PhosphorImaging screens for analysis and quantification using a Typhoon

FLA 7000 scanner (GE Healthcare). Fork-regression assays were performed

at least three times, and representative figures are shown.

BrdU-Based Indirect Fork-Regression Assay

The BrdU assay was performed essentially as previously described (Couch

et al., 2013). Briefly, U2OS cells were seeded on coverslips and transfected

with siRNA for 48 hr. Cells were treated with 10 mM BrdU for 10 min and

washed in fresh media before treatment or not with 2 mM HU for 4 hr. Cells

were fixed with 4% formaldehyde and immunostained with anti-BrdU antibody

(RPN20AB; GE Life Sciences) under native conditions. Images were acquired

using AxioVert microscope. Image analysis and statistical analysis were per-

formed using Volocity and Graphpad Prism 6 software, respectively. For

analyzing ssDNA formation in GFP-FBH1-inducible cell lines, cells were

treated as above, pre-extracted (PBS supplemented with 0.2% Triton X-100

for 2 min on ice), and co-stained for PCNA (Immuno Concepts no. 2037) Quan-

tification was performed by automated multichannel fluorescence microscopy

on an Olympus ScanR system (motorized IX81microscope) with ScanR Image

Acquisition Software and an UPLSAPO 103/0.4 dry objective, fast-switching

excitation and emission filter wheels for DAPI, Cy3 and Cy5 fluorescent

dyes, an MT20 Illumination system, and a digital monochrome Hamamatsu

C9100 electron-multiplying CCD camera. Image information of more than

2,000 cells per condition was acquired under non-saturating conditions;

BrdU fluorescence intensity in PCNA-positive cells was quantified using the

ScanR Image Analysis Software. Spotfire data visualization software (TIBCO)

and Graphpad Prism 6 were used for statistical analysis.
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