
Zurich Open Repository and
Archive
University of Zurich
Main Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2014

Targeted in vivo inhibition of specific protein–protein interactions using
recombinant antibodies

Zábrady, Matej; Hrdinová, Vendula; Müller, Bruno; Conrad, Udo; Hejátko, Jan; Janda, Lubomír

Abstract: With the growing availability of genomic sequence information, there is an increasing need for
gene function analysis. Antibody-mediated “silencing” represents an intriguing alternative for the precise
inhibition of a particular function of biomolecules. Here, we describe a method for selecting recombinant
antibodies with a specific purpose in mind, which is to inhibit intrinsic protein–protein interactions in
the cytosol of plant cells. Experimental procedures were designed for conveniently evaluating desired
properties of recombinant antibodies in consecutive steps. Our selection method was successfully used
to develop a recombinant antibody inhibiting the interaction of ARABIDOPSIS HISTIDINE PHOS-
PHOTRANSFER PROTEIN 3 with such of its upstream interaction partners as the receiver domain of
CYTOKININ INDEPENDENT HISTIDINE KINASE 1. The specific down-regulation of the cytokinin
signaling pathway in vivo demonstrates the validity of our approach. This selection method can serve as
a prototype for developing unique recombinant antibodies able to interfere with virtually any biomolecule
in the living cell.

DOI: 10.1371/journal.pone.0109875

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: http://doi.org/10.5167/uzh-106923
Published Version

 

 

Originally published at:
Zábrady, Matej; Hrdinová, Vendula; Müller, Bruno; Conrad, Udo; Hejátko, Jan; Janda, Lubomír (2014).
Targeted in vivo inhibition of specific protein–protein interactions using recombinant antibodies. PLoS
ONE, 9(10):e109875. DOI: 10.1371/journal.pone.0109875

http://doi.org/10.1371/journal.pone.0109875
http://doi.org/10.5167/uzh-106923
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.1371/journal.pone.0109875


Targeted In Vivo Inhibition of Specific Protein–Protein
Interactions Using Recombinant Antibodies
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Abstract

With the growing availability of genomic sequence information, there is an increasing need for gene function analysis.
Antibody-mediated ‘‘silencing’’ represents an intriguing alternative for the precise inhibition of a particular function of
biomolecules. Here, we describe a method for selecting recombinant antibodies with a specific purpose in mind, which is to
inhibit intrinsic protein–protein interactions in the cytosol of plant cells. Experimental procedures were designed for
conveniently evaluating desired properties of recombinant antibodies in consecutive steps. Our selection method was
successfully used to develop a recombinant antibody inhibiting the interaction of ARABIDOPSIS HISTIDINE PHOSPHO-
TRANSFER PROTEIN 3 with such of its upstream interaction partners as the receiver domain of CYTOKININ INDEPENDENT
HISTIDINE KINASE 1. The specific down-regulation of the cytokinin signaling pathway in vivo demonstrates the validity of
our approach. This selection method can serve as a prototype for developing unique recombinant antibodies able to
interfere with virtually any biomolecule in the living cell.
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Introduction

The approach of choice for elucidating biological mechanisms is

to eliminate the functions of biomolecules and then to observe the

responses of the organism. A targeted application of specific

inhibitors in order to block a selected biomolecule function allows

better control over the process.

Biomolecular interactions constitute the core of biological

functions, and these can be defined by their specificity and

affinity. Many proteins have evolved into extraordinarily precise

biomolecules and can be exploited as specific inhibitors of

biomolecular interactions. Antibodies stand out for their unique

ability to recognize with relatively high specificity and affinity a

virtually unlimited number of target biomolecules, known as

antigens. This capability makes antibodies truly indispensable tools

in biological research today. Moreover, such tools can be used for

antibody-mediated protein ‘‘silencing’’.

Although the idea to exploit binding properties of recombinant

antibodies for in vivo applications was proven valid more than two

decades ago [1,2], since that time only a handful of successful

examples of intracellularly active antibodies – so-called intrabodies

– have been reported. Most such studies conducted on mamma-

lian cells have shown great potential in the treatment of human

HIV infection [3], cancer [4], and neurodegenerative diseases [5].

But recombinant antibodies have also found utilization in plant

research to induce pathogen resistance, inhibit small molecules, or

inhibit function of intrinsic proteins.

Pathogen resistance is an important topic in the biotechnology

of plants, because the biological stress induced by pathogens is a

major factor influencing agricultural production. Recombinant

antibodies have been used for inhibiting viral infections [6],

improving resistance to mold [7], and inhibiting bacterial

infections [8]. Moreover, plant hormones or their precursors have

been successfully inhibited using recombinant antibodies, thereby

contributing to deciphering the roles of abscisic acid [9],

jasmonate [10], and gibberellin precursors [11] in plant develop-

ment. Inhibition of other small compounds by recombinant

antibodies has also shown potential, such as for inducing herbicide

resistance in plants [12]. The recombinant antibodies produced by

plants have been termed ‘‘plantibodies’’ and the action of

intrabodies is known as ‘‘immunomodulation.’’

The low redox potential found in the cytosol [13] accounts for

difficulties in developing recombinant antibodies active in vivo
[14], and very few successful such studies in plants have been

reported to date [15–19]. This scarcity of successful reports points

up problems either in targeted selection of recombinant antibodies

or relating to the ambiguity of their impact in the living organism

[17]. These limitations are being circumvented by, for example,

designing novel protein scaffolds with enhanced stability (see

review by Grönwall and Ståhl [20]). In order to evaluate the

benefits of new protein scaffolds for in vivo applications, however,
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more experimental confirmations need to be produced. Yet

another promising approach is to exploit techniques for analyzing

protein–protein interactions in vivo, and this can be used to

streamline the selection process. Several yeast-based hybrid

selection systems have been developed [21–23], and these were

reported, to provide efficient selection of recombinant antibodies

along with optimal binding properties for intracellular applica-

tions.

In this work, we have designed and verified a novel method for

the selection of recombinant antibodies active in vivo from diverse

sources. This method permits focused development of a specific

inhibitor interfering with intrinsic protein–protein interactions in

living cells. If the rate of developing candidates for antibody-

mediated protein ‘‘silencing’’ will be more efficient, then there will

be better availability of these exceptional tools for studying and

controlling biological processes.

Materials and Methods

Yeast Two-Hybrid Assay
The yeast two-hybrid assay was performed with vectors from

Matchmaker System (Clontech). The Gal4 DNA binding domain

(BD) protein fusions of AHP proteins have been shown to

transactivate the transcription of marker genes in the yeast two-

hybrid assay (personal communication J. Horák). Therefore, to

eliminate false positive results during the selection process, the

pGBKT7 vector, containing the Gal4 DNA binding domain, was

used for the cloning of recombinant antibody sequences within

NcoI and NotI restriction sites. The pGADT7-DEST vectors

encoding AHP proteins fused to Gal4 DNA activation domain

(AD) were obtained from Horák et al. [24]. The S. cerevisiae strain

PJ69-4A (MATa trp1-D901 leu2-3,112 901 ura3-52 his3-D200

gal4D gal8D. GAL2-ADE2 LYS2::GAL1-HIS3 met2::GAL7-lacZ)

[25] was transformed by the LiAc/PEG method [26] and plated

onto transformation selection media composed of a CSM amino

acid premix lacking Leu and Trp (MP Biomedicals); 2% glucose;

and 6.7 g/L YNB without amino acids (Sigma). The yeast was

grown for approximately 3 days and then 5 colonies were

inoculated into 0.5 mL of the same liquid media and grown

overnight at 30uC. The next day, cultures were diluted to OD600

nm 0.5, grown to OD600 nm 1.0, then plated onto the drop-out

media with CSM amino acid premix lacking Leu, Trp and His or

Ade. Yeast growth was recorded after 3 days at 30uC. For more

stringent selection conditions, the competitive inhibitor of the

HIS3 marker gene product 1–5 mM 3-Amino-1,2,4-triazole

(Sigma) was added to the media. In addition, liquid yeast cultures

were harvested and analyzed by western blot to determine the

correct expression of the AHP and recombinant antibody fusion

proteins with Gal4 DNA AD and Gal4 DNA BD, respectively

(Figure S1 and Figure S2).

Yeast Three-Hybrid Assay
The pY3HS vector (Figure 1C) is an enhanced version of the

pY3H vector (Dualsystems) with the multiple cloning site replaced

within the BamHI and XhoI restriction sites, thereby eliminating

the BamHI restriction site. The cassette is composed of the BglII

restriction site; the N-terminal StrepTag II; the NcoI, NotI, and

EcoRI restriction sites; and the stop codon 59-GATCGAGATC-

TatgtggtctcacccacaattcgaaaagTCCATGGGCGGCCGCAGAAT-

TCtaaCTCGA-39. Additionally, the intrinsic NcoI restriction site in

the URA3 marker gene sequence of the vector was removed by

silent mutation using the QuickChange Lightning Kit (Agilent) with

the primer 59-CTTAACTGTGCCCTCCATcGAAAAATCAGT-

CAAGATATCC-39 (silent mutation in lower case). The design of

the pY3HS vector allows a simple directional cloning of recombi-

nant antibodies between the NcoI and NotI restriction sites. The

pGADT7-DEST vectors encoding AHP proteins and pGBKT7-

DEST vector encoding CKI1 RD from Pekárová et al. [27] were

co-transformed into the PJ69-4A yeast strain together with pY3HS

vector encoding recombinant antibodies. The transformation and

handling with the yeast were performed as in the yeast two-hybrid

assay, with the exception that the CSM amino acid premix used in

the media was additionally lacking Ura. For more stringent selection

conditions, the competitive inhibitor of the HIS3 marker gene

product 1 mM 3-Amino-1,2,4-triazole (Sigma) was added to the

media. In addition, liquid yeast cultures were harvested and

analyzed by western blot to determine the correct expression of

recombinant antibodies (Figure S3).

Bimolecular Fluorescent Complementation Assay
A. thaliana Col-0 plants were grown in a controlled environ-

ment on a short day under 100–150 mE light conditions.

Bimolecular fluorescent complementation vectors were used for

the transfection [28], allowing different combinations of split YFP

fusions. The AHP3 [24] without stop codon was sub-cloned by

Gateway (Invitrogen) cloning and the scFv-hB7A from pY3HS

vector was sub-cloned with the BglII and EcoRI restriction sites.

The mesophyll protoplasts were transfected with 10 mg of total

DNA following the protocol outlined by Yoo et al. [29], consisting

of bimolecular fluorescent complementation vectors with AHP3

and scFv hB7A, together with nuclear-localized mCherry as a

transfection control [28]. After 16 h at room temperature to allow

maturation of the YFP, the cells were imaged on a Leica SPE

confocal scanning light microscope.

Luciferase Reporter Assay
For the luciferase reporter assay, A. thaliana Col-0 plants as well

as ahp 1,2,4,5 and ahp 1,3,4,5 mutant lines were grown in a

controlled environment on a short day under 100–150 mE light

conditions. The ahp 1,2,4,5 and ahp 1,3,4,5 mutant lines were

obtained from the ahp 1,2-1,3/+,4,5 line, and genotyping was

performed as described previously [30]. Generally, 26104

mesophyll protoplasts prepared from plants 4–5 weeks old [29]

were co-transfected with 20 mg of total DNA, of which 20%

consisted of the luciferase reporter TCS:LUC DNA, 20% of the

constitutively expressed 35 s:Renilla Luciferase internal control

DNA, and including various amounts of the vector DNA

containing scFv hB7A (adjusted with pMERM7 – empty vector

DNA for control). Each of the three technical replicates of the

transfection reaction were split into two samples of 16104 cells,

incubated for 2 h to allow the expression of recombinant

antibodies prior to the hormonal treatment, and thereafter one

of the samples was treated with 100 nM trans-Zeatin. Each sample

was measured independently after 14–16 h of incubation using the

Dual-Luciferase Reporter Assay System (Promega).

Phage Display
All AHP antigens were prepared following the protocol outlined

by Pekárová et al. [27]. The protocol for the phage display

selection was adopted from Gahrtz and Conrad [31] and

performed for the recombinant antibody libraries Human Single

Fold scFv Library A+B (hereinafter ‘‘scFv library’’) [32]. Three

rounds of the phage display panning procedure were performed

for each of the scFv Libraries with 2 mg/well of the adsorbed

AHP3 antigen. From the third round of panning, 96 colonies from

each of the scFv libraries were tested. The activity against the

AHP3 and the cross-reactivity against the AHP1 protein were

simultaneously tested by indirect phage ELISA and by indirect

In Vivo Inhibition of Protein Function
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ELISA of soluble recombinant antibodies. The best candidates

from each scFv Library were separately tested by indirect ELISA

for activity against bovine serum albumin and AHP2, AHP3,

AHP5 proteins. The coding sequence of selected specific

recombinant antibodies (List S1) was determined by sequencing

of the respective pIT1 vector DNA and analyzed using CLC Main

Workbench (QIAGEN) while following the guidelines published in

first parts of the second book of Antibody Engineering [33].

Bacterial Expression of Recombinant Antibodies
Recombinant antibody sequences originating from the phage

display phagemid vector pIT1 [31] are bounded by the NcoI and

NotI restriction sites. The pET22b(+) (EMD Millipore) bacterial

expression vector was used for the expression of recombinant

antibodies and was enhanced by a DNA insertion cassette

composed of a c-terminal c-myc-tag sequence 59-GCGGCCGCa-

gaacagaaactgatctctgaagaagacttataaCTCGAG-39 ending with a

stop codon, cloned in between the NotI and XhoI restriction

sites. The BL21(DE3) (Invitrogen) bacterial strain was transformed

and plated on MDAG-11 media [34] with 200 mg/l ampicillin,

and inoculum stocks were prepared from fresh colonies by

cultivation in MDAG-11 media with 100 mg/l ampicillin at

250 rpm and 37uC for 8 h. After centrifugation at 1000 rpm, the

bacterial pellet was frozen in 10% glycerol in 1/10 of the initial

culture volume. TBM-5052 was used for the expression. This

essentially is ZYM-5052 auto-induction media [34] with 12 g/l

tryptone and 24 g/l yeast extract instead of the ZY and trace

metals from the M9 minimal media recipe [35]. Erlenmeyer flasks

filled to 5% of the maximum volume were inoculated with 1/100

of the inoculum stock and cultivated at 250 rpm and 22uC for

24 h. To prepare periplasmic extracts, the harvested bacterial

culture was resuspended in 5 ml/1 g wet cell weight of the

extraction buffer (200 mM Boric acid, 150 mM NaCl, 1 mM

EDTA, pH 8) and incubated on a vertical shaker for 3 h at 4uC.

The periplasmic extract was the recovered supernatant fraction

after centrifugation at 10 000 rcf for 30 minutes. The in vitro
activity of recombinant antibodies produced in bacteria was tested

by far-western blot. The total protein extracts of the bacterial

expression of six AHP proteins were prepared following the

protocol outlined by Pekárová et al. [27], separated by SDS-

PAGE, electroblotted onto a PVDF membrane in Towbin buffer

(25 mM Tris-HCl, 150 mM glycine, 10% methanol, pH 8.3) and

blocked for 1 h in blocking buffer (5% skimmed milk, TBS, 0.1%

Tween-20). The amount of the total protein extract loaded on

SDS-PAGE gels were normalized for each of the AHP protein by

comparing the detection of incorporated 6x-His-tag with 1:5000

primary anti-6x-His-tag antibody (Sigma) and the 1:20 000

secondary anti-mouse IgG AP conjugated antibody (Sigma). The

periplasmic extract containing recombinant antibodies was diluted

1:2 in the blocking buffer and applied for 1 h, and the bound

recombinant antibody was detected with 1:50 primary anti-c-myc-

tag antibody (hybridoma line 50 supernatant) and the 1:10 000

secondary anti-mouse IgG AP conjugated antibody (Sigma).

ELISA
The periplasmic extract of recombinant antibodies from 4 L

culture prepared as described before was precipitated overnight in

60% ammonium sulfate at 4uC and the precipitate was recovered

after 20 000 rcf for 30 minutes. The precipitated extract was

reconstituted in 30 mL Protein L equilibration buffer and loaded

onto a 1 mL Protein L column (Pierce) and purified following

manufacturer instructions. The purified and concentrated recom-

binant antibody in PBS was evaluated for purity on SDS-PAGE

gel.

The specificity of recombinant antibodies was determined as

followed. Purified AHP1, AHP2, AHP3 and AHP5 were coated in

(50 mM bi-carbonate buffer, pH 9.6) overnight onto Maxisorp

plates (Nunc), 500 ng/well at 4uC. The following steps were

performed for 1 h at 37uC with agitation. Wells were blocked in

the blocking buffer (5% skimmed milk, PBS, 0.05% Tween-20)

and recombinant antibodies in different concentrations. Bound

recombinant antibodies were detected with 1:50 primary anti-c-

myc-tag antibody (hybridoma line 50 supernatant) and 1:10 000

secondary anti-mouse IgG HRP conjugated antibody (Sigma) with

TMB substrate (TestLine).

The affinity of scFv hB7A was measured in competitive ELISA.

The 20 nM AHP3 antigen was coated and blocked as described

earlier. The following steps were performed for 1 h at 37uC with

agitation. The 45 nM scFv hB7A was equilibrated with 2-fold

dilutions of 1950 nM AHP3 in 500 mL PBS buffer. For each

dilution, four 100 mL samples were added to AHP3 coated wells.

Bound recombinant antibodies were detected with 1:10 primary

Figure 1. Schematic diagram of yeast two- and three-hybrid assay design with a representative vector map of pY3HS for ectopic
expression of the recombinant antibody. (A) Yeast two-hybrid selection. The interacting partner AHP protein and recombinant antibody
fused to the Gal4 AD and BD domains, respectively, allow recruitment of the transcription machinery which activates the expression of nutritional
markers HIS3 and ADE1. (B) Yeast three-hybrid selection. The ectopic expression of recombinant antibody is blocking interaction of the AHP
protein and its RD interaction partner. This results in no activation of the expression of nutritional markers HIS3 and ADE1. (C) pY3HS vector map.
Schematic representation of the vector for the ectopic expression of recombinant antibodies in Y3H. (AD = activation domain, BD = DNA binding
domain, HIS3 = histidine nutritional marker, ADE1 = adenine nutritional marker, AHP = ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN, RD =
ARABIDOPSIS HISTIDINE KINASE receiver domain, TEF1 = strong constitutive promoter, CYC1 = terminator, Ura3-uracyl nutritional marker, 2m= yeast
replication origin, AmpR = ampicilin resistance, pBS = bacterial replication origin).
doi:10.1371/journal.pone.0109875.g001

In Vivo Inhibition of Protein Function

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e109875



anti-c-myc-tag antibody (hybridoma line 50 supernatant) and

1:200 secondary anti-mouse IgG AP conjugated antibody (Sigma)

with pNPP substrate. The mean and standard deviation of

absorbance units collected from two independent measurements

were fitted with DYNAFIT software [36] for dissociation constant.

Results

The Yeast Two-Hybrid Assay is an Efficient Technique for
Screening the Activity of Recombinant Antibodies in vivo

Careful consideration was given to choosing the most appro-

priate technique for screening the in vivo activity of recombinant

antibodies. The yeast two-hybrid assay is a widely used technique

for evaluating protein–protein interactions, and this concept was

adopted (Figure 1A). Recombinant antibodies were tested in this

assay against all six highly homologous AHP proteins (Fig-
ure 2A).

The scFv hB7A specifically interacted only with AHP3, thus

corresponding with its in vitro activity (Figure 2B and Fig-
ure 2C). The yeast growth endured in the more stringent

selection conditions of 5 mM 3-Amino-1,2,4-triazole (Figure 3),

Figure 2. In vitro characterization of scFv hB7A to AHP antigens. (A) Sequence variability of AHP proteins amino acid sequence.
ClustalW tree of ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEINS (AHP1-6). Amino acid sequence identity of AHP proteins (compared to AHP3
in brackets). (B) Far-western blot of recombinant AHP proteins. Recombinant protein expression with incorporated 6x-His-tag detected was
confirmed by anti-6x-His-tag antibody immunodetection (top); AHP proteins were detected by recombinant scFv hB7A from the periplasmic extract
of the bacterial expression, incorporated c-myc-tag detected by anti-c-myc-tag antibody (bottom). (C) The specificity of scFv hB7A against AHP
proteins tested in indirect ELISA. Absorbance values of triplicates (6SD represented with error bars) at 450 nm are displayed for each AHP
protein (500 ng/well). (D) The affinity of scFv hB7A to AHP3 tested in competitive ELISA. Absorbance values at 405 nm normalized to
490 nm of quadruplicates from two independent measurements were pooled (6SD represented with error bars). The AHP3 was coated at 20 nM and
2-fold dilutions of 1950 nM AHP3 was equilibrated with 45 nM scFv hB7A prior loading to wells. The data was fitted with DYNAFIT software.
doi:10.1371/journal.pone.0109875.g002

Figure 3. In vivo binding specificity of scFv hB7A. The scFv hB7A
(Gal4 DNA binding domain BD fusion) and six AHP proteins (Gal4
activation domain AD fusion) in the yeast two-hybrid assay. The visible
yeast growth was recorded after incubation for 3 days on a different
yeast drop-out media lacking Leu (L), Trp (W) and His (H) or Ade (A). For
more stringent conditions 5 mM 3-Amino-1,2,4-triazole (3AT) was
added to the media. The empty pGATD7 was used as negative control.
The interaction of scFv hB7A with AHP3 is represented by a visible yeast
growth under stringent conditions.
doi:10.1371/journal.pone.0109875.g003
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thus suggesting a strong interaction between AHP3 and scFv

hB7A (Figure 2D).

While other recombinant antibodies did not interact specifically

with any of the AHP proteins, the data obtained demonstrate that

the yeast two-hybrid assay is an effective technique for the first step

in the selection method (Table S1). The ability to screen large

DNA libraries by means of yeast two-hybrid assay will be useful for

setting up a high-throughput screening step.

The Ectopic Expression scFv hB7A in Yeast Three-Hybrid
Assay Inhibits Protein–Protein Interactions

The aim of this selection method was to develop a potent

recombinant antibody for the antibody-mediated protein ‘‘silenc-

ing’’. Therefore, to ascertain the ability of the selected recombi-

nant antibody to inhibit a specific protein–protein interaction in
vivo, a yeast three-hybrid assay was adopted (Figure 1B). The

scFv hB7A in pY3HS for the ectopic expression was co-

transformed together with CKI1 RD and its natural interaction

partners AHP2, AHP3 and AHP5 in respective vectors.

With the ectopic expression of scFv hB7A, the recorded yeast

growth was inhibited only for the interaction partners AHP3 –

CKI1 RD, while other interaction partners of CKI1 RD were not

significantly affected (Figure 4).

CKI1 RD is upstream from the AHP proteins in the signaling

pathway. Therefore, other upstream interaction partners of the

AHP3 were tested and similar inhibitory effects of scFv hB7A in
vivo were shown. The design of this verification step allows for

complex evaluation of the inhibitory effects of selected recombi-

nant antibodies within a single experiment.

The scFv hB7A Interacts with AHP3 in A. thaliana
Before undertaking laborious experiments to elucidate the effect

of the scFv hB7A on the cytokinin signaling pathway, a last

verification step was designed to determine its activity in the

cytosol of A. thaliana. The interaction of scFv hB7A with the

AHP3 was confirmed by bimolecular fluorescent complementation

assay [28].

The interaction was visualized while the shorter C-terminal

fragment of the YFP was fused to the C-terminal part of the

AHP3. The fusion orientation of the longer N-terminal fragment

of YFP with the scFv hB7A was not influencing the interaction

(Figure 5). These results were interpreted, that the binding

epitope of scFv hB7A is at the N-terminal part or in the central

part of the AHP3. The epitope mapping performed with the

trypsin-digested AHP3 indicates, the binding epitope is close to the

phosphorylation site of H82 (Figure S4).

This observation might not be in agreement with the results

obtained from the yeast two-hybrid assay, where both AHP3 and

scFv hB7A are C-terminal protein fusions. The bioinformatic

analysis showed that the AHP3 in the yeast two-hybrid assay forms

a longer peptide linker with the adjacent Gal4 AD protein, and

therefore scFv hB7A has a better accessibility to bind AHP3.

The scFv hB7A–Mediated Protein Silencing of AHP3
Down–Regulates the Cytokinin Signaling Pathway in
A. thaliana

It was important to quantify the inhibitory effects of scFv hB7A

(selected in consecutive steps as described above) on the cytokinin

signaling pathway. The information about potency of the selected

inhibitor is valuable for the design of future experiments involving

stable transgenic plants ectopically expressing the aforementioned

recombinant antibody. With the help of unique techniques based

on the TEAMP [29] and TCS:LUC reporter assay [37], the

response of the cytokinin signaling pathway upon transient

expression of scFv hB7A in A. thaliana mesophyll protoplasts

was measured.

Because the functional redundancy of endogenous AHP1-5

proteins was predicted to mask the AHP3 specific effect of scFv

hB7A on the cytokinin signaling pathway [38], quadruple ahp

1,2,4,5 mutant plants were used and compared with ahp 1,3,4,5

mutant plants along with Col-0 wild type plants as controls. The

relative increase of luminescence between the untreated and

100 nM trans-Zeatin treated samples defined the activity of the

cytokinin signaling pathway.

The ectopic expression of scFv hB7A did not affect the cytokinin

signaling pathway activity of Col-0 wild type plants and ahp

1,3,4,5 mutant plants. The levels of cytokinin signaling pathway

were strongly compromised in the ahp 1,2,4,5 mutant plants

(Figure 6), thus showing the targeted inhibition of endogenous

AHP3.

The reduced relative amount of the vector DNA encoding scFv

hB7A used for the transformation was still able dramatically to

Figure 4. In vivo inhibition of AHP3-CKI1 RD interaction. CKI1 receiver domain (RD) (Gal4 DNA binding domain BD fusion) interaction with
respective AHP interaction partners (Gal4 activation domain AD fusion) upon ectopic expression of scFv hB7A. The visible yeast growth was recorded
after incubation for 3 days on a different yeast drop-out media lacking Leu (L), Trp (W), Ura (U) and His (H) or Ade (A) or with added 1 mM 3-Amino-
1,2,4-triazole (3AT). Compared to the empty vector pY3HS, scFv hB7A specifically inhibits interactions of AHP3 in the yeast three-hybrid assay as
indicated by visible growth inhibition of yeast in different drop-out media. The interaction of AHP5 is naturally very weak and so it is difficult to
observe in the yeast three-hybrid assay.
doi:10.1371/journal.pone.0109875.g004
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inhibit the cytokinin signaling pathway. This result can be

interpreted as showing that scFv hB7A is a very potent inhibitor

of AHP3 and is specifically interfering with AHP3 function within

the cytokinin signaling pathway. Additionally, the AHP3 ‘‘node’’

was not removed from the complex protein–protein interaction

network and adverse effects resulting from such a removal were

thereby minimized.

Discussion

In this article, we report the first successful demonstration of

recombinant antibodies inhibiting intrinsic protein–protein inter-

actions in the cytosol of plants. The selection method used to

achieve antibody-mediated protein ‘‘silencing’’ is composed of four

consecutive steps. Each step is carefully designed to contribute to

successful selection of the in vivo active recombinant antibody

which is specifically inhibiting protein–protein interactions, and its

impact after the ectopic expression can be measured directly in A.
thaliana.

To provide proof of concept for the study’s findings,

ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PRO-

TEINS (AHP) were chosen as the target for inhibition. AHP1-5

proteins comprise five redundant and highly homologous compo-

nents of the cytokinin signaling pathway [38], which is a complex

regulatory network in A. thaliana involving promiscuous protein–

protein interactions [39]. They act through multi-step phosphor-

ylation, transmitting the perceived signal from membrane-bound

receptors to the nucleus. The inhibition of underlying interactions

of AHP proteins within the multi-step phosphorylation will

specifically disable the cytokinin signaling pathway.

Numerous recombinant antibodies with different in vitro
specificity against AHP proteins (Table S1.) were selected prior

to actual screening for in vivo activity (Figure S5 and Figure
S6). Selection and characterization of AHP protein-specific single

domain recombinant antibodies (sdAb) [40] is under study with

the aim of exploring this additional source.

In the first step, yeast two-hybrid assay was chosen as the most

appropriate technique. It had previously been used successfully to

confirm interactions of the components of the A. thaliana
cytokinin signaling pathway [27]. From all tested recombinant

antibodies, only scFv hB7A was found active in vivo. Interestingly,

another three recombinant antibodies selected from the same

source as scFv hB7A (hA6H, hA11C, hB3H) were not found to be

active, although they are composed of an identical amino acid

sequence in the framework regions (Figure S7). Therefore, the

discovery of a recombinant antibody framework with inherited in
vivo activity [41] was not possible in this study.

The purpose of the yeast three-hybrid assay in the next step was

to evaluate the inhibition of protein–protein interactions in vivo.

The scFv hB7A showed itself to be a competitive inhibitor of

Figure 5. Recombinant antibody scFv hB7A is interacting with AHP 3 in A. thaliana. Confocal images of A. thaliana mesophyll protoplasts
co-transformed with nYFP:scFv-hB7A (A) and scFv-hB7A:nYFP (B) interacts irrespective of the fusion orientation with AHP3:cYFP (I. - yellow channel).
The signal of the reconstituted split-YFP protein is localized in the cytosol and in the nucleus. Nuclear localized mCherry (II. - red channel) and
autofluorescence (.650 nm) of chloroplasts (III. - cyan channel) serve as co-localization markers. The integrity of the cell is visible from the overlay
picture together with transmission channel (IV.). Schematic representation of the experiment (V.) Negative control is shown in (Figure S8). Scale
bars: 20 mm.
doi:10.1371/journal.pone.0109875.g005
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AHP3 – CKI1 RD interaction. The pY3HS vector used in this

step is compatible with other yeast two-hybrid assays and can be

quickly adopted for other pre-existing experiments.

The bimolecular fluorescent complementation assay shed more

light as to where the potential binding epitope of scFv hB7A is

located. The C-terminal fusion of YFP protein to AHP3 hindered

the binding of scFv hB7A, thus indicating that the binding epitope

is on the other part of the protein. The recombinant antibody

remained active, irrespective of the split YFP protein fusion

orientation. This might allow functional protein fusions of scFv

hB7A in order to enhance or control its inhibitory activity.

The final step of the method designed in this study was directed

to measuring the impact of scFv hB7A-mediated protein

‘‘silencing’’ of AHP3. This was accomplished using a synthetic

promoter-driven expression of a luciferase reporter which reflects

activation of the cytokinin signaling pathway [37]. Designed to

measure hormonal responses and benefiting from the sensitivity of

the luminescent enzymatic reporter, TEAMP and TCS:LUC

provided a precise and sensitive technique for evaluating

recombinant antibodies in planta. The data from experiments

performed show that scFv hB7A is a highly potent and specific

inhibitor of AHP3 interaction with such of its upstream interaction

partners as CKI1 RD.

This technique is not limited only to the cytokinin signaling

pathway. Other reporters have been developed for plants, such as

the auxin responsive element known as DR5 [42]. Thus, virtually

any promoter sequence can be used to drive the expression of the

luciferase reporter. Because the inhibition of any biomolecule

affecting the activity of a given promoter can be conveniently

measured, this method can be applied for a broad range of target

molecules.

The antibody-mediated protein ‘‘silencing,’’ or immunomodu-

lation, approach used in this study is greatly limited by the

uncertainty of successfully selecting good candidates. The benefits

are nevertheless substantial and very well exemplified in success

stories regarding proteins that are difficult to study. The complete

genetic elimination of ABP1 protein has been found lethal in the

embryonic stage of development [43], and only the complemen-

tary approach of RNA silencing and the specific recombinant

antibody [44] has enabled its role in development of A. thaliana to

be deciphered [45–47].

To summarize, we have established a new strategy that allows

targeted selection of specific and potent inhibitory recombinant

antibodies. The four steps in the selection method are fast and

reliable, and a successful de novo selection of in vivo active

recombinant antibodies might be anticipated within a reasonable

period. The selection method was verified in a case study

demonstrating specific inhibition of the cytokinin signaling

pathway. The scFv hB7A-mediated AHP3 ‘‘silencing’’ provides a

tool for more precisely examining the role of AHP3 in A. thaliana.

In selecting scFv hB7A, and with the evidence of its activity, we

demonstrate that our method can be used for selecting unique in
vivo active recombinant antibodies with desired functions. This

method is modular and highly adaptable for many experimental

needs, and any source of recombinant antibodies or other binding

scaffolds can be compatible with its use.

Supporting Information

Figure S1 An example western blot of AHP1-6 protein
fusions with Gal4 AD from the yeast two-hybrid assay.
Lanes 1. and 9. - AHP1, lanes 2. and 10. - AHP2, lanes 3. and 11.

- AHP3, lanes 4. and 12. - AHP4, lanes 5. and 13. - AHP5, lanes 6.

and 14. - AHP6, lanes 7. and 15. – Control protein, 8. - PageRuler

Prestained Protein Ladder 10–170 K (Pierce).

(TIFF)

Figure S2 An example western blot of the recombinant
antibody protein fusions with Gal4 DNA BD from the
yeast two-hybrid assay. Lanes 1.-7.- scFv hB7A, lane 8. -

PageRuler Prestained Protein Ladder 10–170 K (Pierce), lanes 9.-

15. - scFv m1A10.

(TIFF)

Figure S3 An example western blot of the ectopic
expression of scFv hB7A from the yeast three-hybrid
assay. Lanes 1. and 20. - PageRuler Prestained Protein Ladder

10-170 K (Pierce), lanes 2.-4. CKI1 RD interactions with AHP

proteins, lane 5. scFv hB7A interaction with AHP3 protein, lanes

6.-10. ETR1 RD interactions with AHP proteins, lanes 11.-15.

AHK5 RD interactions with AHP proteins, lanes 16.-19. in AHK4

interactions with AHP proteins.

(TIFF)

Figure S4 The MALDI-TOF analysis of the binding
epitope of scFv hB7A from AHP3. (A) The comparison
of identified AHP3 peptides between negative control
and sample. Negative control is 50 mg AHP3 protein, 1:50

digested with trypsin and inhibited with 1 mM PMSF after 30

minutes. The digest was loaded and eluted from 1 mL Protein L

column (Pierce). The sample was prepared like the negative

control, with 50 mg of scFv hB7A added to the reaction after

PMSF inhibition, to enrich the elution fraction with specific

peptides. (B) The aminoacid sequence of identified
peptides with their theoretical molecular weight. (C)

Homology model of AHP3 based on PDB 4G78 (54.9%

sequence identity). The identified peptides are highlighted green

with His82 shown in red.

(TIFF)

Figure S5 The specificity of scFv hA11C against AHP
proteins tested in indirect ELISA. Absorbance values of

Figure 6. Specific down-regulation of the cytokinin signaling
pathway in A. thaliana mesophyll protoplasts after ectopic
expression of scFv hB7A. Levels of the TCS:LUC induced luciferase
activity correspond to the activity of the cytokinin signaling pathway
activated with 100 nM trans-Zeatin (tZ) and normalized to the
transfection control 35S:Renilla Luciferase. The ectopic expression of
scFv hB7A is sorted by the amount of total (20 mg) co-transfected DNA
(expressed in percent). The Col-0 wild type plants (white) and ahp
1,3,4,5 mutant plants with solitary active AHP2 (gray) show no
significant effect. The ahp 1,2,4,5 mutant plants (black) with solitary
active AHP3 were severely affected
doi:10.1371/journal.pone.0109875.g006
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triplicates (6SD represented with error bars) at 450 nm are

displayed for each AHP protein (500 ng/well).

(TIFF)

Figure S6 The specificity of scFv hA6H against AHP
proteins tested in indirect ELISA. Absorbance values of

triplicates (6SD represented with error bars) at 450 nm are

displayed for each AHP protein (500 ng/well).

(TIFF)

Figure S7 A simple protein alignment of scFv hB7A,
hA11C, hA6H and hB3H. Identical aminoacids are represented

with dots (.) and the annotated framework regions (FR) are shown.

(TIF)

Figure S8 Recombinant antibody scFv hB7A is not
interacting with CKI1 RD in A. thaliana. A negative control

for confocal images of A. thaliana mesophyll protoplasts co-

transformed with nYFP:scFv-hB7A and cYFP:CKI1 RD (I. -

yellow channel). Nuclear localized mCherry (II. - red channel) and

autofluorescence (.650 nm) of chloroplasts (III. - cyan channel)

serve as co-localization markers. The integrity of the cell is visible

from the overlay picture together with transmission channel (IV.).

Schematic representation of the experiment (V.) Scale bars:

20 mm.

(TIFF)

Table S1 A table of recombinant antibodies tested for
the activity against AHP proteins, categorized by used
techniques. The definition of symbols: (+) positive, (2) negative,

(N/A) not determined.

(PDF)

List S1 DNA sequences of recombinant antibodies
selected from Human Single Fold scFv Library A + B.

(PDF)

Methods S1 Western Blots of Yeast Extracts.

(DOCX)
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46. Kubeš M, Yang H, Richter GL, Cheng Y, Młodzińska E, et al. (2012) The
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