A Wigner Surmise for Hermitian and Non-Hermitian Chiral Random Matrices

G. Akemann ${ }^{\sharp}$, E. Bittner ${ }^{b}$, M.J. Phillips ${ }^{\sharp}$, and L. Shifrin ${ }^{\sharp}$
\# Department of Mathematical Sciences \& BURSt Research Centre, Brunel University West London, Uxbridge UB8 3PH, United Kingdom
${ }^{\mathrm{b}}$ Institute for Theoretical Physics and Centre for Theoretical Sciences (NTZ), University Leipzig, P.O. Box 100 920, D-04009 Leipzig, Germany

(Dated: July 24, 2009)

Abstract

We use the idea of a Wigner surmise to compute approximate distributions of the first eigenvalue in chiral Random Matrix Theory, for both real and complex eigenvalues. Testing against known results for zero and maximal non-Hermiticity in the microscopic large- N limit we find an excellent agreement, valid for a small number of exact zero-eigenvalues. New compact expressions are derived for real eigenvalues in the orthogonal and symplectic classes, and at intermediate non-Hermiticity for the unitary and symplectic classes. Such individual Dirac eigenvalue distributions are a useful tool in Lattice Gauge Theory and we illustrate this by showing that our new results can describe data from two-colour QCD simulations with chemical potential in the symplectic class.

PACS numbers: $02.10 . Y n, 12.38 . G c$

1. Motivation. Probably one of the most used predictions of Random Matrix Theory (RMT) is the so-called Wigner surmise (WS) describing the universal repulsion of energy levels in many systems in nature, including neutron scattering, quantum billiards and elastomechanical modes in crystals [1]. For large matrices, the nearestneighbour (nn) spacing distribution $p^{(\beta)}(s)$ is universal and only depends on the repulsion strength which takes discrete values $\beta=1,2,4$ for the three classical WignerDyson (WD) ensembles. It can be computed with surprising accuracy using 2×2 matrices, which is the WS. Although simple arguments discussed in [2] lead to this rule for $\beta=1$, such an approximation is by no means obvious.

The extension from WD to non-Hermitian RMT introduced long ago by Ginibre [3] has become a very active field in the past decade, in particular due to applications in open quantum systems, see [4] for references and other applications. Here the spacing is known only for the class with broken time-reversal $(\beta=2)$ and has been applied in Lattice Gauge Theory (LGT) [5]. However, a simple surmise based on 2×2 matrices does not work here.

In this paper we investigate the existence of a surmise for the smallest eigenvalue in chiral RMT and its nonHermitian extensions. These have become relevant due to applications in Quantum Chromodynamics (QCD) initiated by [6] and extended to non-Hermitian QCD at finite quark chemical potential μ 7]. QCD at strong coupling is a notoriously difficult theory, and the chiral RMT approach has become an important tool for LGT with exact chiral fermions [8, 9]. For non-Hermitian QCD the complex action hampers a straightforward LGT approach, see [10] for a recent discussion and references. Here RMT predictions remain possible for various quantities [11, 12, 13].
In this paper we will show that an excellent approximation for the 1st non-zero eigenvalue is possible using a simple $2 \times(2+\nu)$ matrix calculation, capturing the
repulsion of a small number ν of zero eigenvalues. Being localised and non-oscillatory the 1st eigenvalue is much more suitable for LGT than the spectral density, compare e.g. [9] and [14]. Our surmise fills some gaps in predictions for real eigenvalues in the orthogonal and symplectic classes $(\beta=1,4)$ [15], where until very recently numerically generated RMT had to be used for comparison 16]. We also provide new predictions for intermediate non-Hermiticity and test them against QCD-like LGT data from [17]. This further completes the picture, compared to previous approximations 14 ($\beta=2$) based on a Fredholm determinant expansion [18], and exact results at maximal non-Hermiticity [19] $(\beta=2,4)$.
2. Level spacing in the WD class. We recall here the success of a WS for Hermitian, and its failure for nonHermitian, WD ensembles. The WD partition function for an $N \times N$ Hermitian matrix H with real, complex or quaternion real entries is given terms of eigenvalues by

$$
\begin{equation*}
\mathcal{Z}_{W D}^{(\beta)}=\int d H \mathrm{e}^{-\operatorname{Tr} H H^{\dagger}} \sim \int_{\mathbb{R}} \prod_{j=1}^{N} d \lambda_{j} \mathrm{e}^{-\lambda_{j}^{2}}\left|\Delta_{N}(\lambda)\right|^{\beta} . \tag{1}
\end{equation*}
$$

The Jacobians of the corresponding ensembles which are called GOE, GUE and GSE ($\beta=1,2$ and 4) include the Vandermonde determinant, $\Delta_{N}(\lambda) \equiv \prod_{k>l}^{N}\left(\lambda_{k}-\lambda_{l}\right)$.

The large- $N \mathrm{nn}$ spacing in the bulk of the spectrum can be computed approximately from $N=2$ (WS) by inserting $\delta\left(\left|\lambda_{1}-\lambda_{2}\right|-s\right)$ in $\mathcal{Z}_{W D}^{(\beta)}$:

$$
\begin{equation*}
p_{W S}^{(\beta)}(s)=a_{\beta} s^{\beta} \exp \left[-b_{\beta} s^{2}\right] . \tag{2}
\end{equation*}
$$

The constants a_{β}, b_{β} follow from fixing the norm and first moment to unity (see e.g. in [1]). The latter can always be achieved from $\int_{0}^{\infty} d s s \hat{p}(s)=m$ by rescaling $p^{(\beta)}(s)=$ $m \hat{p}^{(\beta)}(m s)$. This fixes the scale compared with $N=\infty$.

The exact result $p^{(\beta)}(s)$ is cumbersome, given in terms of an infinite product of eigenvalues of spheroidal functions (e.g. in [2]), the 5th Painlevé transcendent [2], or

FIG. 1: Left: surmise $p_{W S}^{(\beta)}(s)$ (red) vs exact result (dashed blue) in [20]. Right: $p_{\text {Gin }}^{(2)}(r)$ for $N=2,3,4,20$ (red to blue).
combining a Taylor series with coefficients given by sums over permutations and Dyson's asymptotic expansion in a Padé approximation [20]. This is compared to the surmise Eq. (2) in Fig. 1 left. In Table [] we give the root of the integrated square deviation for later comparison,

$$
\begin{equation*}
\delta \equiv\left[\int_{0}^{\infty} d s\left(p^{(\beta)}(s)-p_{\text {surmise }}^{(\beta)}(s)\right)^{2}\right]^{\frac{1}{2}} \tag{3}
\end{equation*}
$$

The non-Hermitian WD ensembles are defined by dropping the Hermiticity constraint in Eq. (11) left 3]. We only display the complex eigenvalue representation for $\beta=2$ and 4 and their Jacobians $\mathcal{J}_{\beta}(z)$ computed in [3]:

$$
\begin{align*}
& \mathcal{Z}_{\text {Gin }}^{(\beta)}=\int_{\mathbb{C}} \prod_{j=1}^{N} d^{2} z_{j} \mathrm{e}^{-\left|z_{j}\right|^{2}} \mathcal{J}_{\beta}(z) \tag{4}\\
& \mathcal{J}_{2}(z)=\left|\Delta_{N}(z)\right|^{2}, \mathcal{J}_{4}(z)=\Delta_{2 N}\left(z, z^{*}\right) \prod_{j=1}^{N}\left(z_{j}-z_{j}^{*}\right)
\end{align*}
$$

For $\beta=2$ the spacing is obtained from an $N=2$ surmise by inserting $\delta\left(\left|z_{1}-z_{2}\right|-r\right)$ in $\mathcal{Z}_{\text {Gin }}^{(2)}$, and putting one eigenvalue at the origin. The exact spacing for any N obtained in [21] uses translational invariance in the bulk

$$
\begin{equation*}
\hat{p}_{\text {Gin }}^{(2)}(r)=-\frac{\partial E_{\text {Gin }}^{(2)}(r)}{\partial r}, E_{\text {Gin }}^{(2)}(r)=\prod_{j=1}^{N-1} \mathrm{e}^{-r^{2}} \sum_{k=0}^{j} \frac{r^{2 k}}{k!} \tag{5}
\end{equation*}
$$

In Fig. 11 right we compare $N=2$ with increasing N, all curves having norm and first moment 1. Clearly a surmise does not work for the $\beta=2$ Ginibre ensemble ($\delta \approx 0.18$), as previously noted in [21]. For $\beta=4$ and 1 the spacing is currently unknown.
3. First eigenvalue in chiral RMT. The chiral ensembles with real eigenvalues called chGOE, chGUE, and chGSE are defined in terms of $N \times(N+\nu)$ rectangular

$$
\begin{array}{c||c||c||c|c|c||c|c|c}
& \delta_{W S} & & \delta_{\mu=0}^{\nu=0} & \delta_{\mu=0}^{\nu=1} & \delta_{\mu=0}^{\nu=2} & \delta_{\mu=1}^{\nu=0} & \delta_{\mu=1}^{\nu=1} & \delta_{\mu=1}^{\nu=2} \\
\hline \text { GUE } & 0.04 & \text { chGUE } & 0 & 3.8 & 7.7 & 8.0 & 12.3 & 14.8 \\
\text { GSE } & 0.015 & \text { chGSE } & 1.7 & 6.1 & 10.6 & 1.8 & 3.3 & 4.4 \\
\text { GOE } & 0.16 & \text { chGOE } & 3.6 & 0 & - & - & - & -
\end{array}
$$

TABLE I: Deviation Eq. (3) in units 10^{-3} between approximate $N=2$ and exact large- N results ($\delta_{W S}$ from [20]).
matrices W with real, complex or quaternion real elements without further symmetry restrictions. Switching to positive eigenvalues $\lambda_{j} \geq 0$ of the Hermitian Wishart (or covariance) matrix $W W^{\dagger}$ we obtain

$$
\begin{equation*}
\mathcal{Z}_{\nu}^{(\beta)}=\int_{0}^{\infty} \prod_{j=1}^{N} d \lambda_{j} \lambda_{j}^{d} \mathrm{e}^{-\lambda_{j}}\left|\Delta_{N}(\lambda)\right|^{\beta}, d \equiv \frac{\beta(\nu+1)}{2}-1 \tag{6}
\end{equation*}
$$

Here N_{f} massless flavours can be added by shifting $d \rightarrow$ $d+N_{f}$. The gap probability $E^{(\beta)}(s)$ that the interval $(0, s)$ is void follows by integrating in Eq. (6) from s to ∞. For $N=2$ we obtain

$$
\begin{equation*}
E_{\nu}^{(\beta)}(s) \sim \int_{0}^{\infty} d x d y[(x+s)(y+x+s)]^{d} \mathrm{e}^{-2(s+x)-y} y^{\beta} \tag{7}
\end{equation*}
$$

after shifting variables. The nested integrals can easily be evaluated. Note that $d=0$ for $\beta=2, \nu=0$, and $\beta=1=\nu$. These gap probabilities can be computed exactly for any N, and our surmise gives the exact result after rescaling.

To compare with Dirac operator eigenvalues we have to switch variables $\lambda_{j} \rightarrow y_{j}^{2}$, coming in eigenvalue pairs $\pm y_{j}$, and thus to $s \rightarrow s^{2}$. The distribution of the first positive Dirac eigenvalue follows: $p_{\nu}^{(\beta)}(s)=-\partial_{s}\left[E_{\nu}^{(\beta)}\left(s^{2}\right)\right]$.

We first list all its known $N_{f}=0$ results in the universal microscopic limit for $\nu \in \mathbb{N}$ in Eqs. (8) - (10): the chGUE for all ν 15, 22], the chGOE for $\nu=0$ [23] and odd ν [15], and the chGSE for $\nu=0$ [23] and $\nu>0$ [24]. For the latter, only a convergent Taylor series is known with coefficients $a_{j}(\nu)$ given by sums over partitions (see Eq. (8) in [24]), much alike for the WS in the WD class,

$$
\begin{align*}
p_{\nu}^{(2)}(s) & =s \mathrm{e}^{-s^{2} / 4} \operatorname{det}_{i, j=1, \ldots, \nu}\left[I_{i-j+2}(s)\right] / 2, \tag{8}\\
p_{\nu=0}^{(1)}(s) & =\left[(2+s) \mathrm{e}^{-s^{2} / 8-s / 2}\right] / 4, \tag{9}\\
\hat{p}_{\nu=2 n+1}^{(1)}(s) & \sim s^{(3-\nu) / 2} \mathrm{e}^{-s^{2} / 8} \operatorname{Pf}_{i, j=-n+\frac{1}{2}, \ldots, n-\frac{1}{2}}^{\operatorname{Pin}}, \\
p_{\nu=0}^{(4)}(s) & =(\pi / 2)^{\frac{1}{2}} s^{\frac{3}{2}} \mathrm{e}^{-s^{2} / 2} I_{3 / 2}(s), \tag{10}\\
\hat{p}_{\nu>0}^{(4)}(s) & \sim s^{4 \nu+3} \mathrm{e}^{-s^{2} / 2}\left(1+\sum_{j=1}^{\infty} a_{j}(\nu) s^{j}\right) .
\end{align*}
$$

Next, we give examples following our surmise Eq. (7) where $p_{\nu}^{\beta}(s)$ is not known in elementary form, filling the gaps in Eqs. (8) - (10) for the first two values of $\nu>0$:

$$
\begin{align*}
\hat{p}_{\nu=2}^{(1)}(s) \sim & 3 s^{3} \mathrm{e}^{-\frac{s^{2}}{8}}+\left(6 s^{2}-\frac{s^{4}}{4}\right) \mathrm{e}^{-\frac{1}{16} s^{2}} \sqrt{\pi} \operatorname{Erfc}\left[\frac{s}{4}\right],(11) \tag{11}\\
\hat{p}_{\nu=4}^{(1)}(s) \sim & \left(s^{5}+\frac{s^{7}}{60}\right) \mathrm{e}^{-\frac{1}{8} s^{2}}+\left(2 s^{4}-\frac{s^{6}}{20}\right) \mathrm{e}^{-\frac{1}{16} s^{2}} \sqrt{\pi} \operatorname{Erfc}\left[\frac{s}{4}\right] \\
\hat{p}_{\nu=1}^{(4)}(s) \sim & s^{7}\left(13440+1440 s^{2}+60 s^{4}+s^{6}\right) \mathrm{e}^{-\frac{1}{2} s^{2}}, \tag{12}\\
\hat{p}_{\nu=2}^{(4)}(s) \sim & s^{11}\left(15482880+2150400 s^{2}+134400 s^{4}\right. \\
& \left.+4800 s^{6}+100 s^{8}+s^{10}\right) \mathrm{e}^{-\frac{1}{2} s^{2}} .
\end{align*}
$$

The normalisation constants suppressed above easily follow. However, we cannot set the 1st moment to one as

FIG. 2: $p_{\nu}^{(\beta)}(s)$ with $\nu=0,1,2$ in dashed blue to green for $\beta=2$ (top left), $\beta=4$ (top right) and $\beta=1$ (bottom). The $N=2$ surmise is in red. Our new result for $\nu=2$ at $\beta=1$ is compared to a numerical simulation at $N=20$ (black dots).
in the WD class. The position of $p_{\nu}^{(\beta)}(s)$ measures the repulsion by ν exact zero-eigenvalues, containing important information. Thus we fix the $N=2$ scale by setting the 1st moment equal to the exact one. Without exact ($\beta=1$, even ν) or concise $(\beta=4, \nu>0)$ results we instead fit to the increasing slope of the known microscopic density $\rho_{\nu}^{(\beta)}(s)$, being the first term in the Fredholm expansion of the 1st eigenvalue [18] (see also Eq. (18)). In Fig. 2 we compare approximate to exact 1 st eigenvalues for small topology $\nu=0,1,2$ and all β. The deviation measured by Eq. (3) in Table $\mathbb{1}$ increases with ν, becoming visible only for $\nu=2$ (see Fig. (2). This has to be compared to the statistical error in data, see e.g. Fig. 5

Note that in chiral RMT the nn spacing also obeys Eq. (21), but does not follow from an $N=2$ surmise [25].

The non-Hermitian chiral ensembles with $\mu \neq 0$ are given in terms of a two-matrix model [11, 26]. We only focus on $\beta=2,4$ here, with their complex eigenvalue representations for $N_{f}=0$ reading [11, 26]

$$
\begin{equation*}
\mathcal{Z}_{\nu \mathbb{C}}^{(\beta)}=\int_{\mathbb{C}} \prod_{j=1}^{N} d^{2} z_{j}\left|z_{j}\right|^{\beta \nu+2} K_{\frac{\beta \nu}{2}}\left(a\left|z_{j}\right|^{2}\right) \mathrm{e}^{b \Re e z_{j}^{2}} \mathcal{J}_{\beta}\left(z^{2}\right) . \tag{13}
\end{equation*}
$$

The weight $w(z)$ depends on $a \equiv \frac{1+\mu^{2}}{2 \mu^{2}}>b \equiv \frac{1-\mu^{2}}{2 \mu^{2}} \geq 0$, with $\mu \in(0,1]$. The limit $\mu \rightarrow 0$ leads back to real eigenvalues, and at $\mu=1$ non-Hermiticity is maximal. The definition of a gap probability on \mathbb{C} is not unique [14, 19]. For radial ordering it reads

$$
\begin{equation*}
E^{(\beta)}(r) \sim \prod_{j=1}^{N} \int_{r}^{\infty} d r_{j} r_{j} \int_{0}^{2 \pi} d \theta_{j} w\left(z_{j}\right) \mathcal{J}_{\beta}(z) \tag{14}
\end{equation*}
$$

Differentiation yields $\partial_{r} E^{(\beta)}(r)=\int_{0}^{2 \pi} d \theta p_{\nu}^{(\beta)}\left(r e^{i \theta}\right)$, the integrated 1st eigenvalue. For $\beta=2$ (4) the gap proba-
bility is given by a Fredholm determinant (Pfaffian) [19]

$$
\begin{equation*}
E^{(2)}(r) \sim \operatorname{det}_{1, \ldots, N}\left[\int_{r^{2}}^{\infty} d t t^{k+j+\nu-1} K_{\nu}(a t) I_{k+j-2}(b t)\right] \tag{15}
\end{equation*}
$$

Its matrix elements $A_{j k}^{(\nu)}$ can be computed recursively for any ν by differenting the following matrix element 19]:

$$
\begin{equation*}
A_{11}^{(0)}=\frac{b r^{2} I_{1}\left(b r^{2}\right) K_{0}\left(a r^{2}\right)+a r^{2} I_{0}\left(b r^{2}\right) K_{1}\left(a r^{2}\right)}{a^{2}-b^{2}} \tag{16}
\end{equation*}
$$

This leads to a $\beta \times \beta$ determinant (Pfaffian) representation for our $N=2$ surmise valid for any μ. At $\mu=1$ all Fredholm eigenvalues $1-\lambda_{k=0, \ldots, N-1}^{(\beta)}$ are explicitly known [19], providing an exact result for any N as in Eq. (5). It contains incomplete Bessel function series $I_{\nu}^{[k]}(x)$ truncated at power $k(\equiv 0$ for $k<0)$

$$
\begin{align*}
& \left(1-\lambda_{k}^{(2)}\right)=\frac{r^{2(2 k+\nu+1)}}{2^{2 k+\nu}(k+\nu)!k!} K_{\nu+1}\left(r^{2}\right) \tag{17}\\
& \quad+r^{2}\left(I_{\nu+2}^{[k-2]}\left(r^{2}\right) K_{\nu+1}\left(r^{2}\right)+I_{\nu+1}^{[k-1]}\left(r^{2}\right) K_{\nu+2}\left(r^{2}\right)\right)
\end{align*}
$$

For $\beta=4$ we have the relation $\lambda_{k}^{(4)}=\lambda_{2 k+1}^{(2)}$ with $\nu \rightarrow 2 \nu$ 19]. In Fig. 3 we compare our surmise to this result, truncated at $N=8$ because of rapid convergence. Here it works better for $\beta=4$ than $\beta=2$, in contrast to $\mu=0$. Due to angular integration only one scale has to be fixed after normalisation, which can be done as in the real case.

FIG. 3: Integrated 1st eigenvalue at $\mu=1$ for $\nu=0,1,2$ (blue to green dashes) vs $N=2$ (red): $\beta=2$ (left) and $\beta=4$ (right).

Next we give a surmise for $p_{\nu}^{(\beta)}\left(r e^{i \theta}\right)$. In Eq. (14) we skip the integration over θ_{1} and differentiate wrt r_{1}. For $N=2$ we obtain an exact Fredholm expansion

$$
\begin{equation*}
p_{\nu}^{(\beta)}(z)=R_{1, \nu}^{(\beta)}(z)-\int_{0}^{r_{1}} d t t \int_{0}^{2 \pi} d \varphi R_{2, \nu}^{(\beta)}\left(z, t \mathrm{e}^{i \varphi}\right) \tag{18}
\end{equation*}
$$

with $z=r_{1} \mathrm{e}^{i \theta_{1}}=x+i y$. The 1 - and 2 -point spectral densities are expressed through the kernel of orthogonal Laguerre polynomials of norm h_{j} (see [11] for details)

$$
\begin{equation*}
R_{1, \nu}^{(2)}(z)=K_{N}^{(2)}\left(z, z^{*}\right)=w(z) \sum_{j=0}^{N-1} \frac{\left|L_{j}^{(\nu)}\left(\frac{z^{2}}{1-\mu^{2}}\right)\right|^{2}}{h_{j}} \tag{19}
\end{equation*}
$$

and $R_{2, \nu}^{(2)}(z, u)=R_{1, \nu}^{(2)}(z) R_{1, \nu}^{(2)}(u)-\left|K_{N}^{(2)}\left(z, u^{*}\right)\right|^{2}$. For $\beta=$ 4 we have a Pfaffian of a matrix kernel instead 26]. An

FIG. 4: $\int d \theta p_{\nu}^{(4)}\left(r e^{i \theta}\right)$ (red) vs Lattice data 17] (blue) with volume $V=4^{4}$, gauge coupling $1.3, \mu_{\text {Lat }}=0.2$ and mass 20 in Lattice units, using a very large number 10^{5} configurations.
example for $p_{\nu=0}^{(4)}(z)$ is shown in Fig. 5 top right. Here two scales have to be fixed: for z we fit to the increase of the known microscopic density in the x-direction, and for rescaling $2 N \mu^{2} \equiv \alpha^{2}$ to its decrease in the y-direction. Since $\alpha \leq 2$ for $N=2$, we conclude that at large- N for $\alpha>2 p_{\nu}^{(\beta)}(z)$ must become symmetric wrt rotation $(\beta=2)$ or reflections wrt the bisector of each quadrant $(\beta=4)$. We have checked this, as well as distributions for $0<\mu<1$ by generating ensembles of large random matrices.
4. Lattice data. In 17] two-colour QCD was compared to the $\beta=4$ microscopic spectral density in the complex plane from chiral RMT [26]. We use the same data here but with higher statistics, and refer to [17] for all simulation details. Because unimproved staggered fermions are used we are in the $\beta=4$ class at $\nu=0$. Our $N_{f}=2$ data are effectively quenched for the smallest eigenvalues due to a large mass. In Fig. 4 we compare to the 1st integrated eigenvalue, with $\alpha=1.352$ being close to maximal non-Hermiticity. No further fits compared to [17] are made. In Fig. 5 we compare LGT data at intermediate $\mu_{\text {Lat }}=0.1$ to the angle-dependent surmise Eq. (18) by taking cuts. Here the two scales are fitted to the data, finding an excellent agreement for $\alpha=0.65$.

FIG. 5: Top: contour plots for Lattice data as in Fig. 4 but with $\mu_{\text {Lat }}=0.1$ (left) vs surmise Eq. (18) (right). Bottom: cuts through a single peak in x - (left) and y-direction (left).

An alternative to Eq. (18) is the truncated Fredholm expansion in the microscopic large- N limit 18] which was successfully applied to the $\beta=2$ class 14]. However, integrals of higher order terms rapidly become cumbersome.
5. Conclusions. Conceptually it is possible within chiral RMT to approximate the 1st eigenvalue distribution using a $2 \times(2+\nu)$ matrix calculation, for both real and complex eigenvalues. It is remarkable that this surmise works and captures the repulsion of ν zero-eigenvalues. We derived new compact expressions for $\beta=1$ and 4 with real eigenvalues for $\nu>0$. Second, we have shown that our surmise for $\beta=4$ successfully describes $S U(2)$ Lattice data, in an intermediate regime for $\mu \neq 0$ where no results were previously known. It would be very interesting to extend our results to the $\beta=1$ non-Hermitian chiral class, having both real and complex eigenvalues.

Support by ENRAGE MRTN-CT-2004-005616 (G.A., E.B.), EPSRC grant EP/D031613/1 (G.A., L.S.) and DFG grant JA483/22-1 (E.B.) is acknowledged.
[1] T. Guhr, A. Müller-Groeling, H.A. Weidenmüller, Phys. Rep. 299 (1998) 190.
[2] M.L. Mehta, Random Matrices, Academic Press, Third Edition, London 2004.
[3] J. Ginibre, J. Math. Phys. 6 (1965) 440.
[4] Y.V. Fyodorov, H.J. Sommers, J. Phys. A36 (2003) 3303.
[5] H. Markum, R. Pullirsch, T. Wettig, Phys. Rev. Lett. 83 (1999) 484.
[6] E.V. Shuryak, J.J.M. Verbaarschot, Nucl. Phys. A560 (1993) 306.
[7] M. Stephanov, Phys. Rev. Lett. 76 (1996) 4472.
[8] R.G. Edwards, U.M. Heller, J.E. Kiskis, R. Narayanan, Phys. Rev. Lett. 82 (1999) 4188.
[9] J. Bloch, T. Wettig, Phys. Rev. Lett. 97 (2006) 012003.
[10] S. Ejiri, PoS (LATTICE 2008) 002.
[11] J.C. Osborn, Phys. Rev. Lett. 93 (2004) 222001.
[12] G. Akemann, J.C. Osborn, K. Splittorff, J.J.M. Verbaarschot Nucl. Phys. B712 (2005) 287.
[13] K. Splittorff, J.J.M. Verbaarschot, Phys. Rev. Lett. 98 (2007) 031601; Phys. Rev. D75 (2007) 116003.
[14] G. Akemann, J. Bloch, L. Shifrin, T. Wettig, Phys. Rev. Lett. 100 (2008) 032002.
[15] P.H. Damgaard, S.M. Nishigaki, Phys. Rev. D63 (2001) 045012.
[16] P.V. Buividovich, E.V. Luschevskaya, M.I. Polikarpov, Phys. Rev. D78 (2008) 074505.
[17] G. Akemann, E. Bittner, Phys. Rev. Lett. 96 (2006) 222002.
[18] G. Akemann, P.H. Damgaard, Phys. Lett. B583 (2004) 199.
[19] G. Akemann, M.J. Phillips, L. Shifrin, J. Math. Phys. 50 (2009) 063504.
[20] B. Dietz, F. Haake, Z. Phys. B80 (1990) 153.
[21] R. Grobe, F. Haake, H.J. Sommers, Phys. Rev. Lett. 61 (1988) 1899.
[22] T. Wilke, T. Guhr, T. Wettig, Phys. Rev. D57 (1998) 6486; S.M. Nishigaki, P.H. Damgaard, T. Wettig, Phys. Rev. D58 (1998) 087704.
[23] P.J. Forrester, Nucl. Phys. B402 (1993) 709.
[24] M.E. Berbenni-Bitsch, S. Meyer, T. Wettig, Phys. Rev. D58 (1998) 071502.
[25] A.Y. Abul-Magd, G. Akemann, P. Vivo, J. Phys. A42
(2009) 175207.
[26] G. Akemann, Nucl. Phys. B730 (2005) 253.

