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Hence, there exists a constant C > 0 such that

Fn �
C

(n+ 1)jXj
2�nD(Q kP )

; for all sufficiently large n

which, together with the continuity of D(QX kPX) with respect to
QX , establishes (40) for case (B).
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On Defining Partition Entropy by Inequalities
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Abstract—Partition entropy is the numerical metric of uncertainty within
a partition of a finite set, while conditional entropy measures the degree of
difficulty in predicting a decision partition when a condition partition is
provided. Since two direct methods exist for defining conditional entropy
based on its partition entropy, the inequality postulates of monotonicity,
which conditional entropy satisfies, are actually additional constraints on
its entropy. Thus, in this paper partition entropy is defined as a function
of probability distribution, satisfying all the inequalities of not only par-
tition entropy itself but also its conditional counterpart. These inequality
postulates formalize the intuitive understandings of uncertainty contained
in partitions of finite sets. We study the relationships between these inequal-
ities, and reduce the redundancies among them. According to two different
definitions of conditional entropy from its partition entropy, the convenient
and unified checking conditions for any partition entropy are presented, re-
spectively. These properties generalize and illuminate the common nature
of all partition entropies.

Index Terms—Conditional entropy, inequality, partition entropy,
uncertainty.

I. INTRODUCTION

Learning is an important cognitive process that allows the making
of correct decisions and improves performance. From an information
theory point of view, learning can be seen as a reduction of uncertainty
and the amount by which the uncertainty is reduced can be an indicator
of the speed of learning [1]. Thus, partition entropy [2], measuring un-
certainty and impurity in a given partition of a finite set, is an important
concept in cognitive and computer science.

Conditional Entropy [2], defined based on its partition entropy, is
another significant concept. It describes the degree of difficulty in pre-
dicting a decision partition by a condition partition. It is also the mea-
sure of uncertainty left in a decision partition after a condition parti-
tion is provided. This concept is widely used in the field of Machine
Learning, as heuristics to guide the greedy search for suboptimal solu-
tions. For example, [3, Algorithm C4.5 ], which is a popular algorithm
for building a decision tree, uses the Shannon conditional entropy as
a metric to select the local “optimal” attribute to branch. In the algo-
rithm for attribute reduction of information view [4], the Shannon con-
ditional entropy is also selected as the measure of attribute importance
for decision predicting. In these algorithms, the one with the minimal
conditional entropy among all available options is chosen to continue
the following steps. Thus, only the relative magnitude of entropies for
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these options is considered, rather than the absolute value. Therefore,
in this paper, only the inequality postulates, which actually formalize
the intuitive understanding of uncertainty, are used to define partition
entropy, along with two inherent equality properties of symmetry and
expansibility (defined below).

In previous work, partition entropy is defined as the Schur-concave
function [5], which satisfies the inequalities on the majorization lattice
of probability distributions [6][7]. However, these inequalities concern
only partition entropy itself and do not involve its conditional counter-
part. Conditional entropy, as a function of a condition partition argu-
ment and a decision partition argument, inherently owns the following
two inequalities, which coincide with the intuitive understandings of
uncertainty in cognitive science as follows:

• if the decision partition is fixed, the finer a condition partition is,
the more competent it is to predict the decision partition, and thus
the less the conditional entropy is;

• if the condition partition is fixed, the finer a decision partition is,
the more difficult it is to be predicted from the condition partition,
and thus the greater the conditional entropy is.

These two postulates indicate that conditional entropy is monotonic
in the condition partition argument and dually monotonic in the deci-
sion partition argument. These are the monotonicity properties, which
conditional entropy holds inherently. Since direct method exists for
defining conditional entropy based on its partition entropy, these two
inequality postulates are actually additional constraints on partition
entropy.

In this correspondence, we add the aforementioned postulates to a
new definition of partition entropy, and reduce the redundancies in all
the inequality postulates. According to two different definitions of con-
ditional entropy based on its partition entropy, we present the checking
conditions (sufficient and necessary or sufficient only) for any partition
entropy, respectively. It should be noted that the partition entropy re-
sulted from the axiomatization method [2] by the equalities is within
the family of partition entropies defined in this paper. These results
generalize and illuminate the common nature of all partition entropies.

II. BASIC NOTATIONS AND NOTIONS

In the following, we adopt the notations in [2] and [6], and more
information on partition entropy can be found there. The set of reals,
the set of positive reals, the set of natural numbers, and the set of posi-
tive natural numbers are denoted by ; >0; ; >0, respectively. All
other sets considered in the following discussion are nonempty and
finite:
� = fA1; . . . ; Amg is a partition of a set A, iff [mi=1Ai = A and

Ai \ Aj = ;(i 6= j). A block of a partition refers to any element
in a partition of a set A. Let PART (A) be the set of partitions of set
A. The class of all partitions of finite sets is denoted by PART . The
one-block partition of A is denoted by �A. The partition ffag j a 2 Ag
is denoted by !A. Thus, �A is the most coarse partition of A, while !A
is the finest partition of A.

Let �; � 2 PART (A), then � � � if every block of � is included
in a block of � . It is obvious that !A � �A.

If A,B are two disjoint sets, � 2 PART (A); � 2 PART (B),
where � = fA1; . . . ; Amg; � = fB1; . . . ; Bng, then the partition
(� + �) 2 PART (A [B) is given by

� + � = fA1; . . . ; Am; B1; . . . ; Bng:

Let � 2 PART (A) and C � A. The “trace” of � on C is given by

�C = fAi \C jAi 2 � such that Ai \C 6= ;g:

It is clear that �C 2 PART (C).
Let �; � 2 PART (A) (two partitions defined on the same set A),

where � = fA1; . . . ; Amg; � = fB1; . . . ; Bng. The partition � ^ �

whose blocks consist of the nonempty intersections of the blocks of �
and � can be written as

� ^ � = �B + � � �+ �B = �A + � � �+ �A :

A. Partition Entropy

Partition entropy is a mapping

H : PART ! (1)

satisfying some additional conditions.
If � = fA1; . . . ; Ang is a partition of a set A, then the probability

distribution vector attached to � is P (�) = (p1; . . . ; pn), where pi =
jA j
jAj

for 1 � i � n. Thus, it is straightforward to consider the notion
of partition entropy via the entropy of the corresponding probability
distribution. We define the measure function of H as a mapping

M : �!

such that H(�) = M(P (�)) for every � 2 PART , where � =
fP (�) j � 2 PART g.

The blocks in a partition � are unordered while the elements inP (�)
are ordered. Thus, the inherent postulate of M is that it is symmetric
in the sense that

M(P (�)) =M(P (�)) (2)

where P (�) is any permutation of P (�).
The other equality postulate of M is expansibility in the sense that

for every P 2 �m

M(P ) =M(P ) (3)

where P = (p1; . . . ; pm); P = (p1; . . . ; pm; 0), and �m =
f(p1; . . . ; pm) : 0 � pi � 1 for i = 1; . . . ; m; p1 + � � �+ pm = 1g.

Formulas (2) and (3) are the only two equalities the partition entropy
in this paper must satisfy.

B. Entropically Comparable Relationship Between Partitions

For general p; q 2 �m, it is hard to say precisely when the prediction
under q is not easier than under p. However, there are special p and q for
which this can be done. Namely, if p; q 2 �2 and p = (�; 1��); q =
(�; 1��), then the prediction under p is not easier than that under q if
and only if (�; 1� �) is at least as close as (�; 1� �) to the uniform
distribution ( 1

2
; 1
2
). To be “at least as close” naturally means

��
1

2
� � �

1

2
: (4)

This observation can be applied to all vectors p; q 2 �m with only
two different coordinates. p is said to be a smoothing of q, in symbol
p = Sm(q), if there exist 1 � j 6= k � m such that all coordinates
of p and q coincide except the jth and kth, and these two coordinates
satisfy (4) for

� =
pj

pj + pk
and � =

qj

qj + qk
:

We extend the above smoothing relationship [5] between two proba-
bility distributions to the entropically comparable relationship between
partitions. Let � = fA1; . . . ; Amg; � = fB1; . . . ; Bng, and p =
P (�); q = P (�). Without loss of generality, if m < n we can add
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(n �m) 0’s to the right side of p to make the dimensions of the two
vectors equal while keeping the entropy unchanged. Then, the partial
order � on PART � PART is defined as follows. For any �; � 2
PART; � � � iff p = Sm(q) or exists � 2 PART (r = P (�)) s.t.
� � � and p = Sm(r). If � � � or � � �, it is easy to tell which
partition entropy is bigger between � and � because smoothing a prob-
ability distribution means to increase its partition entropy. This time it
can be said that � and � are entropically comparable with each other.

It is clear that the relationship� between partitions is reflexive, tran-
sitive and anti-symmetric.

C. Equivalents of Entropically Comparable Relationship

The decreasing rearrangement of P (�) is denoted by P#(�) =
(p[1]; p[2]; . . . ; p[n]), where p[1] � p[2] � � � � � p[n]. For entropically
comparable relationships between partitions, the following conditions
are equivalent [6]:

Let � = fA1; . . . ; Amg; � = fB1; . . . ; Bng, and p = P#(�); q =
P#(�), supposing m � n and adding (n�m) 0’s to the right side of
p as follows:

1) � � �;
2) p = qA for some doubly stochastic matrix A (Matrix A =

(ajk)
n
j;k=1 is said to be doubly stochastic if all its row and column

vectors belong to �n);
3) k

i=1 p[i] �
k

i=1 q[i] (k = 1; . . . ; n � 1); n

i=1 p[i] =
n

i=1 q[i].
Equivalent 2) shows that vector q post-multiplied by a doubly sto-
chastic matrix is equivalent to smoothing q. Equivalent 3) provides
a convenient method to check whether two partitions are entropically
comparable.

D. Two Definitions of Conditional Entropy

Given a set A, conditional entropy is a mapping

C : PART (A)2 ! : (5)

The first argument refers to a condition partition while the second one
refers to a decision partition. If �; � are two partitions of A; C(�; �)
measures the degree of difficulty in predicting � by �. Based on an
existing partition entropy, we give the definition of conditional entropy.

Definition II.1: Let �; � 2 PART (A); � = fA1; . . . ; Amg; � =
fB1; . . . ; Bng. A conditional entropy C1 is a function C in (5) such
that

C1(�; �) =

m

i=1

jAij

jAj
� H (�A )

where �A is the “trace” of � on Ai.

Definition II.1 states that the conditional entropy C1 is the expected
value of the entropies calculated according to the conditional distribu-
tions. Namely, C1(�; �) = EA (H(�A ));Ai 2 �.

Definition II.2: Let �; � 2 PART (A); � = fA1; . . . ; Amg; � =
fB1; . . . ; Bng. A conditional entropy C2 is a function C in (5) such
that

C2(�; �) = H(� ^ �)�H(�):

Definition II.2 states that the conditional entropy C2 is the difference
between two entropies: one is of the intersection of the condition and
decision partition, while the other is of the condition partition only.

The equality C1(�; �) = C2(�; �) yields the Shannon entropy.
Thus, this famous axiomatization of the Shannon entropy shows the
rationality of these two definitions.

III. INEQUALITY POSTULATES OF PARTITION ENTROPY

All the inequalities partition entropy and its corresponding condi-
tional counterpart must satisfy are listed in this section.

Postulate III.1: For any � 2 PART (A)

H(�A) � H(�) � H(!A):

Postulate III.2: Let any �; � 2 PART (A) and � � � , then

H(� ) � H(�):

Postulate III.3: Let any �; � 2 PART (A) and � � � , then

H(� ) � H(�):

When a functionH defined by (1) satisfies Postulate III.3, its corre-
sponding measure function M is Schur-concave. In the following, H
is Schur-concave or concave if and only if its corresponding measure
function M is Schur-concave or concave.

Postulate III.4: Let any �; � ; � 2 PART (A) and � � � , then

C(�; �) � C(� ; �):

Postulate III.5: Let any �; �; � 2 PART (A) and � � � , then

C(�; � ) � C(�; �):

Postulate III.4 and III.5 state that conditional entropy C should be
monotonic in the first argument and dually monotonic in the second
argument. Postulate III.4 shows that finer condition partition has more
ability for predicting, while Postulate III.5 shows that coarser decision
partition relaxes the requirement of precision for classification and thus
decreases the difficulty for predicting. They are two postulates condi-
tional entropy holds inherently.

IV. RELATIONSHIPS BETWEEN INEQUALITY POSTULATES OF

PARTITION ENTROPY

In this section we study the relationships among these inequality pos-
tulates, reduce the redundancies in them, and give a new definition of
partition entropy.

Theorem IV.1. [5]: If a function H defined by (1) satisfies Postu-
late III.3, it satisfies Postulate III.1.

Theorem IV.2. [5]: If a function H defined by (1) satisfies Postu-
late III.3, it satisfies Postulate III.2.

Proof: ��� implies ��� . Then it follows the conclusion.

Theorem IV.3: If a functionH defined by (1) satisfies Postulate III.3,
its conditional counterpart C1 satisfies Postulate III.5.

Proof: � � � implies �A � �A for every Ai 2 �. Thus,
�A � �A for every Ai 2 �. From Postulate III.3, H(�A ) �
H(�A ). It follows the conclusion immediately.

Theorem IV.4: If a functionH defined by (1) satisfies Postulate III.3,
its conditional counterpart C2 satisfies Postulate III.5.
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Proof: � � � implies (� ^ �) � (� ^ � ). Then it follows that
H(� ^ �) � H(� ^ � ) � 0. Thus

C2(�; �)� C2(�; � ) = H(� ^ �)�H(� ^ � ) � 0:

From the above theorems the definition of partition entropy is given
as follows.

Definition IV.1: When a function defined by (1) satisfies Postu-
late III.3 and Postulate III.4, and its corresponding measure function
M is symmetric and expansible, it is a partition entropy.

V. CHECKING CONDITIONS FOR PARTITION ENTROPY

A. When Conditional Entropy Defined as C1

Next we give a sufficient and necessary checking condition for any
partition entropy when conditional entropy is defined as C1. We first
give the definition of concavity for functions of n-dimensional inputs
as follows.

Definition V.1: Suppose X � n is a convex set. f : X ! is
concave if for any x; y 2 X , we have, for all � 2 (0; 1);

f(�x+ (1� �)y) � �f(x) + (1� �)f(y):

A direct property of concave functions is: if f : X ! is concave in
a convex set X � n, for any x1; . . . ; xm 2 X; �1; . . . ; �m 2 (0; 1)
and m

i=1
�i = 1, we have

f

m

i=1

�ixi �

m

i=1

�if(xi):

Lemma V.1. [6]: If a function H defined by (1) is concave and its
corresponding measure function is symmetric, it is Schur-concave.

Lemma V.2: When conditional entropy is defined as C1, if and only
if its corresponding H is concave, it satisfies Postulate III.4.

Proof ): Let � = fA11; . . . ; A1u ; . . . ; Am1; . . . ; Amu g;

� = fA1; . . . ; Amg; Ak = [
u

i=1Aki and � = fB1; . . . ; Bng. And
let jA \B j

jA j
= akij and �ki = jA j

jA j
, thus jA \B j

jA j
= u

i=1
�ki a

k
ij for

k = 1; . . . ;m and j = 1; . . . ; n. Because H is concave and M is the
measure function of H, it follows:

M

u

i=1

�
k
i a

k
i1; . . . ;

u

i=1

�
k
i a

k
in �

u

i=1

�
k
iM a

k
i1; . . . ; a

k
in :

Because M( u

i=1
�ki a

k
i1; . . . ;

u

i=1
�ki a

k
in) = H(�A ) and

M(aki1; . . . ; a
k
in) = H(�A ), it follows:

H (�A ) �

u

i=1

�
k
iH (�A );

jAkj

jAj
H (�A ) �

u

i=1

jAkij

jAj
H(�A ); for k = 1; . . . ;m:

Then
m

k=1

jAkj

jAj
H(�A ) �

m

k=1

u

i=1

jAkij

jAj
H(�A ):

It follows that

C1(�; �) � C1(� ; �):

(.
Let � = fA11; . . . ; A1u ; A2; . . . ; Amg; � = fA1; A2; . . . ; Amg;

A1 = [ui=1A1i, and � = fB1; . . . ; Bng. And let jA \B j

jA j
= a1ij

and �1i = jA j
jA j

, thus
jA \B j

jA j
= u

i=1
�1i a

1

ij . Because C1(�; �) �

C1(� ; �), it follows that

H (�A ) �

u

i=1

�
1

iH (�A )

which means thatH is concave.

Theorem V.1: When conditional entropy is defined as C1, if and only
if its correspondingH is concave and the measure functionM ofH is
symmetric and expansible, H is a partition entropy.

Proof: By Lemma V.1, Lemma V.2 and the definition of partition
entropy, it holds directly.

Corollary V.1: Let f : [0; 1]! ;M(pi; . . . ; pm) = m

i=1
f(pi)

be the measure function of a function H defined by (1) and f(0) = 0.
When conditional entropy is defined as C1, if f is concave in [0; 1],H
is a partition entropy.

Proof: It is clear that M is symmetric and expansible. If f is
concave in [0; 1];M is concave in [0; 1]m. By Theorem V.1, H is a
partition entropy.

B. When Conditional Entropy Defined as C2

Next we give a sufficient checking condition for any partition en-
tropy when conditional entropy is defined as C2. For convenience and
clarity, we first give the following definition.

Definition V.2: A function f : [0; 1] �! is called additivity-
concave if for any n 2 >0 the following inequality is satisfied:

f(s)+ f(t)� f(s+ t) �

n

i=1

[f (ais) + f(bit)� f(ais+ bit)] (6)

where n

i=1
ai=

n

i=1
bi=1; 0�s�1; 0 � t � 1; 0 � s + t � 1,

and ai � 0; bi � 0 for i = 1; . . . ; n.

Lemma V.3: Let � = fA1; A2; . . . ; Amg. When conditional en-
tropy is defined as C2 and f(0) = 0, if and only f is additivity-con-
cave, H(�) = m

i=1
f( jA j

A
) satisfies Postulate III.4.

Proof: First, because H(�) = m

i=1
f( jA j

A
); H(�) is

symmetric. Let � = fA1 [ A2; . . . ; Amg; A = [mi=1Ai;

� = fB1; B2; . . . ; Bng; s = jA j
jAj

; t = jA j
jAj

; ai = jA \B j
jA j

,

and bi = jA \B j
jA j

for i = 1; . . . ; n

C2(� ; �)� C2(�; �) = f(s) + f(t)� f(s+ t)

�

n

i=1

[f (ais) + f(bit)� f(ais+ bit)]

):
if f is additivity-concave, then C2(� ; �) � C2(�; �) � 0, which

means that the combination of any two blocks in the condition partition
will increase the conditional entropy. Thus, it satisfies Postulate III.4.
(: trivial.

Theorem V.2: Suppose a function f : [0; 1] �! is continuous
and concave, f(0) = 0, the second derivative f exists in (0; 1) and
is continuous in (0; 1). And f satisfies the following inequality:

[f (u) + f (v)] � [f (x) + f (y)]

� [f (u) + f (v) + f (x) + f (y)]

� [f (u+ x) + f (v + y)]

whenever u; v; x; y2(0; 1); u+x<1; v+y<1; u+v<1; x+y<1. Let
� = fA1; A2; . . . ; Amg. Then H(�) = m

i=1
f( jA j

A
) is a partition

entropy when its conditional counterpart is defined as C2.
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Proof: Directly by Lemma V.3 and Theorem I.1 in the
Appendix.

Corollary V.2: Suppose a function f : [0; 1] �! ; f(0) = 0; f is
continuous on [0; 1], the third derivative f exists in (0; 1), f (x) � 0

and f (x) � 0 for any x 2 (0; 1). Let � = fA1; A2; . . . ; Amg.
ThenH(�) = m

i=1
f( jA j

A
) is a partition entropy when its conditional

counterpart is defined as C2.
Proof: Directly by Lemma V.5 and Corollary I.1 in the

Appendix.

VI. EXAMPLES OF PARTITION ENTROPY

This section gives some examples of partition entropy with con-
straints from the two definitions of conditional entropy C1 and C2, re-
spectively. All these examples are under the following assumption: let
� = fA1; . . . ; Ang be a partition of a set A, the probability distribu-
tion vector attached to � be P (�) = (p1; . . . ; pn), where pi = jA j

jAj

for 1 � i � n.

A. Examples With the Constraints From the Conditional Entropy C1

The examples in this subsection are partition entropies when their
conditional counterparts are defined as C1.

Example 1 (The Shannon Entropy): H(�) = n

i=1
pi log2

1

p
is a

partition entropy.

Example 2 ([8]): H(�) = n

i=1
pie

1�p is a partition entropy. A
generalized form of this partition entropy isH(�) = n

i=1
pi(e

a�p +
b), where a; b 2 .

Example 3: H(�) = n

i=1
pi(1 � pi) is a partition entropy.

Its conditional counterpart, defined as C1, is referred to as the
Gini Index in [9]. A generalized form of this partition entropy
is H(�) = n

i=1
a1p

3

i + a2p
2

i + a3pi, where a1; a2; a3 2 ;

(a1 � 0 ^ 3a1 + a2 � 0) or (a1 � 0 ^ a2 � 0).

Example 4 ([2], [10]): When � > 1;H(�) = k(1� n

i=1
p
�
i ) is

a partition entropy, where k 2 >0.

Example 5 ([2], [10]): When 0 < � < 1;H(�) = k( n

i=1
p
�
i �1)

is a partition entropy, where k 2 >0.

Example 6: H(�) = 1�maxni=1 pi is a partition entropy. Its con-
ditional counterpart is referred to as the Goodman-Kruskal coefficient
in [11][12].

By Corollary V.1, Examples 1 through 5 are proved to be partition
entropies. Because maxni=1 pi is convex in [0; 1]n for any n 2 >0,
Example 6 is easily proved to be a partition entropy by Theorem V.1.

B. Examples With the Constraints From the Conditional Entropy C2

The examples in this subsection are partition entropies when their
conditional counterparts are defined as C2.

Example 1: The Shannon entropy is also a partition entropy when
its conditional counterpart is defined as C2.

Example 2: H(�) = n

i=1
pi(1 � pi) is a partition entropy. Its

conditional counterpart defined as C2 is presented in [13], [14]. A gen-
eralized form of this partition entropy isH(�) = n

i=1
a1p

3

i +a2p
2

i +
a3pi, where a1; a2; a3 2 ; a1 � 0 ^ a2 � 0.

Example 3: When � > 2;H(�) = k(1� n

i=1
p
�
i ) is a partition

entropy, where k 2 >0.

The Shannon entropy satisfy the sufficient condition in The-
orem V.2, thus it is a partition entropy when the conditional entropy is

defined as C2. The results in Examples 2 and 3 can be easily proved
by Corollary V.2.

VII. CONCLUSION

In this correspondence, the monotonicity properties of conditional
entropy are formalized in Postulate III.4 (monotonicity in condition
partition argument of C) and III.5 (dual monotonicity in decision parti-
tion argument of C). We add these properties of conditional entropy to
the definition of partition entropy, and reduce the redundancies among
all the inequality postulates. This new definition of partition entropy is
more strict than the previous one [5], which is Schur-concave only.
The main theoretical contributions of this paper are Theorems IV.3
and IV.4, Lemma V.2, Theorems V.1 and V.2. Theorems IV.3 and
IV.4 show that the dual monotonicity in the decision partition argu-
ment of conditional entropy (defined as both C1 and C2) is a property
of a Schur-concave function. Lemma V.2 demonstrates that the mono-
tonicity in the condition partition argument of the conditional entropy
C1 is actually equivalent to the concavity of its partition entropy. The-
orem V.1 gives a sufficient and necessary condition for any partition
entropy when conditional entropy is defined as C1, while the condition
in Theorem V.2 are sufficient, but not necessary for any partition en-
tropy when conditional entropy is defined as C2. These results present
the mathematical insights into monotonicity properties of conditional
entropy, provide the convenient and unified checking methods for any
partition entropy. It should be noted that it is still an open problem
to find the sufficient and necessary condition for any partition entropy
when conditional entropy is defined as C2, which is actually the suffi-
cient and necessary condition for additivity-concave functions.

The theorems in this paper focus on partitions of finite sets, which
can be naturally defined by grouping objects with common values in
certain attributes and are widely used in Machine Learning. They illu-
minate a family of partition entropies, which can be used as heuristics
in the algorithms of Machine Learning. The existence of various types
of entropies suggests that different entropies should be used to produce
rather distinct patterns for classification and clustering.

APPENDIX I

Lemma I.1: A function f : [0; 1] �! is additivity-concave if and
only if the inequality (6) holds when n = 2.

Proof:
): Obvious.
(: Suppose the inequality (6) holds when n = 2. We prove by

induction on n that (6) holds for any positive integer n. We assume
that the inequality (6) is satisfied when n = k � 1, then when n = k

f(s) + f(t)� f(s+ t) � f

k�1

i=1

ai s + f

k�1

i=1

bi t

� f

k�1

i=1

ai s+

k�1

i=1

bi t

+ f(aks) + f(bkt)� f(aks+ bkt) (7)

�

k�1

i=1

[f(ais) + f(bit)� f(ais+ bit)]

+ f(aks) + f(bkt)� f(aks+ bkt) (8)

=

k

i=1

[f (ais) + f(bit)� f(ais+ bit)]

where (7) follows from the condition that the inequality holds when
n = 2 and (8) follows from the inductive assumption.
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Lemma I.1 suggests that A function f : [0; 1] �! is additivity-
concave if and only if the following inequality holds:

f(s) + f(t)� f(s+ t)

� f(as) + f(bt)� f(as+ bt)

+ f((1� a)s) + f((1� b)t)� f((1� a)s+ (1� b)t)) (9)

where 0 � a � 1; 0 � b � 1; 0 � s � 1; 0 � t � 1; s+ t � 1.

Lemma I.2: Suppose a function f : [0; 1] �! is continuous
and concave, f(0) � 0, the second derivative f exists in (0; 1) (thus
f � 0 in (0; 1)) and is continuous in (0; 1). If f satisfies the following
inequality:

[f (u) + f (v)] � [f (x) + f (y)]

� [f (u) + f (v) + f (x) + f (y)]

� [f (u+ x) + f (v + y)] (10)

whenever u; v; x; y2 (0; 1); u+x< 1; v+y < 1; u+v < 1; x+y < 1.
Then f satisfies (9).

Proof: First, we prove a weaker result : under the hypotheses of
the Lemma I.2, if f satisfies the following inequality instead of (10)
(notice the small difference between < and �!)

[f (u) + f (v)] � [f (x) + f (y)]

< [f (u) + f (v) + f (x) + f (y)]

� [f (u+ x) + f (v + y)] (11)

then f satisfies (9).
For fixed s; t 2 [0; 1], we define a function on [0; 1] � [0; 1]

H(a; b) = f(as) + f(bt)� f(as+ bt) + f((1� a)s)

+ f((1� b)t� f((1� a)s+ (1� b)t)) (12)

where a; b 2 [0; 1].
Since s + t � 1; s = 1 if t = 0 and s = 0 if t = 1. It is obvious

that the inequality (9) holds if s = 1 and t = 0 or t = 1 and s = 0. In
the following, we assume that s; t 2 (0; 1).

When a = 1; H(1; b) = f(s)+f(bt)�f(s+bt)+f(0). @H(1;b)
@b

=

tf (bt)� tf (s+ bt). Because f is concave, f � 0, which means f
is a decreasing function on (0; 1). It follows that @H(1;b)

@b
� 0. Thus,

H(1; b) is increasing as a function of b, and the following inequality
holds:

H(1; b) � H(1; 1) = f(s) + f(t)� f(s+ t) + f(0)

� f(s) + f(t)� f(s+ t): (13)

When a = 0; H(0; b) = f(s)+f((1�b)t)�f(s+(1�b)t)+f(0).
Using the similar method, we can prove that H(0; b) is decreasing as
a function of b, and the following inequality holds:

H(0; b) � H(0; 0) = f(s) + f(t)� f(s+ t) + f(0)

� f(s) + f(t)� f(s+ t): (14)

Using similar methods, we can also prove that

H(a; 1) � f(s) + f(t)� f(s+ t) (15)

H(a; 0) � f(s) + f(t)� f(s+ t): (16)

From (13), (14), (15) and (16), we see that H(a; b) � f(s) + f(t)�
f(s + t) holds when (a; b) lies in the boundary of [0; 1] � [0; 1].
Since H is continuous in [0; 1] � [0; 1], it reaches its maximum at
the boundary of [0; 1] � [0; 1] if H can not reach its maximum in the
interior of [0; 1] � [0; 1]. In that case (9) holds. In the following we
shall prove that if f satisfies the inequality (11), then H can not reach
its maximum in (0; 1) � (0; 1).

If f satisfies the inequality (11), then

[f (as) + f ((1� a)s)] � [f (bt) + f ((1� b)t)]

< [f (as) + f ((1� a)s) + f (bt) + f ((1� b)t]

� [f (as+ bt) + f ((1� a)s+ (1� b)t)]: (17)

With direct calculations, it follows from the inequality (17) that

det
@ H

@a

@ H

@a@b

@ H

@a@b

@ H

@b

< 0: (18)

Since the determinant of the Hessian matrix

@ H

@a

@ H

@a@b

@ H

@a@b

@ H

@b

of H is negative in (0; 1) � (0; 1), this matrix must be indefinite, and
thus H can not reach its maximum in (0; 1) � (0; 1). Thus we have
proved the weaker result we claim at the beginning of the proof.

Next, we will prove the lemma under the condition (10). Now f

satisfies (10). We take any continuous function g : [0; 1] �! with
the following properties: g(0) � 0; g (x) < 0; g (x) � 0 for any
x 2 (0; 1). (Such a ‘g’ exists, for instance, we may set g(x) = �x2.)
Then g satisfies (11). We shall show that f + g satisfies (11). For fixed
u; v; x; y, define

D(f) = [f (u) + f (v) + f (x) + f (y)]

� [f (u+ x) + f (v + y)]� [f (u) + f (v)]

� [f (x) + f (y)]: (19)

Similarly we define D(g);D(f + g). It is obvious that D(f) �

0; D(g) > 0.

D(f + g) = D(f) +D(g) + [f (u) + f (v) + f (x) + f (y)]

� [g (u+ x) + g (v + y)]� [f (u) + f (v)]

� [g (x) + g (y)]

+ [g (u) + g (v) + g (x) + g (y)]

� [f (u+ x) + f (v + y)]� [g (u) + g (v)]

� [f (x) + f (y)]

� D(f) +D(g) + [f (x) + f (y)]

� [g (u+ x) + g (v + y)]

+ [g (u) + g (v) + g (x) + g (y)]

� [f (u+ x) + f (v + y)]

� [g (u) + g (v)] � [f (x) + f (y)]

� D(f) +D(g) + [f (x) + f (y)]

� [g (u+ x) + g (v + y)]

� [g (u) + g (v)] � [f (x) + f (y)]

� D(f) +D(g) > 0: (20)

So f + g satisfies (11), and thus satisfies (9). Since for any positive
integer m, the function g

m
satisfies the same conditions as g does, (9)

also holds for f + g

m
. Taking the limit

lim
m!1

f +
g

m
= f

we see that (9) holds for f . Now the result is established.

Theorem I.1: If a function f : [0; 1] �! satisfies all the hy-
potheses in Lemma I.2, f is additivity-concave.
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Proof: Directly by Lemma I.1 and Lemma I.2.

Corollary I.1: Let f : [0; 1] �! be a continuous function,
f(0) � 0, the third derivative f exists in (0; 1), f (x) � 0 and
f (x) � 0 for any x 2 (0; 1). Then f is additivity-concave.

Proof: If f � 0, then f is a decreasing function. Combining
f � 0, the inequality (10) is easily verified. By Lemma I.2, f is
additivity-concave.
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Application of Tauberian Theorem to the Exponential
Decay of the Tail Probability of a Random Variable

Kenji Nakagawa, Member, IEEE

Abstract—In this correspondence, we give a sufficient condition for the
exponential decay of the tail probability of a nonnegative random variable.
We consider the Laplace–Stieltjes transform of the probability distribution
function of the random variable. We present a theorem, according to which
if the abscissa of convergence of the LS transform is negative finite and the
real point on the axis of convergence is a pole of the LS transform, then
the tail probability decays exponentially. For the proof of the theorem, we
extend and apply so-called a finite form of Ikehara’s complex Tauberian
theorem by Graham–Vaaler.

Index Terms—Complex Tauberian theorem, exponential decay,
Graham–Vaaler’s finite form, Laplace transform, tail probability of
random variable.

I. INTRODUCTION

The purpose of this correspondence is to give a sufficient condi-
tion for the exponential decay of the tail probability of a nonnegative
random variable. For a nonnegative random variable X;P (X < x) is
called the tail probability of X . The tail probability decays exponen-
tially if the limit

lim
x!1

1

x
logP (X > x) (1)

exists and is a negative finite value.
For the random variable X , the probability distribution function of

X is denoted by F (x) = P (X � x) and the Laplace–Stieltjes trans-
form of F (x) is denoted by '(s) =

1

0
e�sxdF (x). We will give

a sufficient condition for the exponential decay of the tail probability
P (X > x) based on analytic properties of '(s).

In [11], we obtained a result that the exponential decay of the tail
probability P (X > x) is determined by the singularities of '(s) on
its axis of convergence. In this correspondence, we investigate the case
where '(s) has a pole at the real point of the axis of convergence, and
reveal the relation between analytic properties of '(s) and the expo-
nential decay of P (X > x).

The results obtained in this correspondence will be applied to
queueing analysis. In general, there are two main performance mea-
sures of queueing analysis, one is the number of customers Q in the
system and the other is the sojourn time W in the system. Q is a
discrete random variable and W is a continuous one. It is important to
evaluate the tail probabilities P (Q > q) and P (W > w) for designing
the buffer size or link capacity in communication networks. Even
in the case that the probability distribution functions P (Q � q) or
P (W � w) cannot be calculated explicitly, their generating functions
Q(z) = 1

q=0
P (Q = q)zq or W (s) =

1

0
e�swdP (W � w) can

be obtained explicitly in many queues. Particularly, in M/G/1 queue,
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