
Zurich Open Repository and
Archive
University of Zurich
Main Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2014

Ubiquitin-related modifiers of arabidopsis thaliana influence root
development

John, Florian; Philipp, Matthias; Leiber, Ruth-Maria; Errafi, Sanae; Ringli, Christoph

Abstract: Ubiquitins are small peptides that allow for posttranslational modification of proteins. Ubiquitin-
related modifier (URM) proteins belong to the class of ubiquitin-like proteins. A primary function of
URM proteins has been shown to be the sulfur transfer reaction leading to thiolation of tRNAs, a pro-
cess that is important for accurate and effective protein translation. Recent analyses revealed that the
Arabidopsis genome codes for two URM proteins, URM11 and URM12, which both are active in the
tRNA thiolation process. Here, we show that URM11 and URM12 have overlapping expression patterns
and are required for tRNA thiolation. The characterization of urm11 and urm12 mutants reveals that
the lack of tRNA thiolation induces changes in general root architecture by influencing the rate of lat-
eral root formation. In addition, they synergistically influence root hair cell growth. During the sulfur
transfer reaction, URM proteins of different organisms interact with a thiouridylase, a protein-protein
interaction that also takes place in Arabidopsis, since URM11 and URM12 interact with the Arabidopsis
thiouridylase ROL5. Hence, the sulfur transfer reaction is conserved between distantly related species
such as yeast, humans, and plants, and in Arabidopsis has an impact on root development.

DOI: 10.1371/journal.pone.0086862

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: http://doi.org/10.5167/uzh-105517
Published Version

 

 

Originally published at:
John, Florian; Philipp, Matthias; Leiber, Ruth-Maria; Errafi, Sanae; Ringli, Christoph (2014). Ubiquitin-
related modifiers of arabidopsis thaliana influence root development. PLoS ONE, 9(1):e86862. DOI:
10.1371/journal.pone.0086862

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ZORA

https://core.ac.uk/display/33608394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://doi.org/10.1371/journal.pone.0086862
http://doi.org/10.5167/uzh-105517
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.1371/journal.pone.0086862


Ubiquitin-Related Modifiers of Arabidopsis thaliana
Influence Root Development
Florian John¤a, Matthias Philipp, Ruth-Maria Leiber¤b, Sanae Errafi, Christoph Ringli*

Institute of Plant Biology, University of Zürich, Zürich, Switzerland

Abstract

Ubiquitins are small peptides that allow for posttranslational modification of proteins. Ubiquitin-related modifier (URM)
proteins belong to the class of ubiquitin-like proteins. A primary function of URM proteins has been shown to be the sulfur
transfer reaction leading to thiolation of tRNAs, a process that is important for accurate and effective protein translation.
Recent analyses revealed that the Arabidopsis genome codes for two URM proteins, URM11 and URM12, which both are
active in the tRNA thiolation process. Here, we show that URM11 and URM12 have overlapping expression patterns and are
required for tRNA thiolation. The characterization of urm11 and urm12 mutants reveals that the lack of tRNA thiolation
induces changes in general root architecture by influencing the rate of lateral root formation. In addition, they
synergistically influence root hair cell growth. During the sulfur transfer reaction, URM proteins of different organisms
interact with a thiouridylase, a protein-protein interaction that also takes place in Arabidopsis, since URM11 and URM12
interact with the Arabidopsis thiouridylase ROL5. Hence, the sulfur transfer reaction is conserved between distantly related
species such as yeast, humans, and plants, and in Arabidopsis has an impact on root development.
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Introduction

Ubiquitins (Ub) are small peptides that allow posttranslational

modification of proteins. Ubiquitylation is the reversible attach-

ment of Ub to proteins involving activation, conjugation, and

ligation of Ub via corresponding E1, E2, and E3 ligase activities,

respectively [1]. While polyubiquitylation targets proteins to

degradation via the proteasome, single ubiquitylation has non-

proteolytic effects on cellular processes such as transcription,

chromatin modifications, or vesicle dynamics. In addition to

ubiquitin, a number of ubiquitin-like modifiers are present in most

eukaryotes that are also able to tag proteins, usually in a transient

manner [2–4].

In addition to Ub, ubiquitin-related modifiers (URMs) were

identified that are not highly homologous to ubiquitin in respect to

the amino acid sequence but share a b-grasp motif as typical

structural feature of this type of protein. The primary identified

function of URM and URM-related peptides in many different

organisms such as archaea, yeast, and eukaryotes is as sulfur

carriers in tRNA thiolation [5–10]. This process involves

activation of URM by an E1-like protein such as Uba4p of yeast

which adenylates URMs and transfers sulfur to the terminal

glycine resulting in a thiocarboxylate. With the activity of

thiouridylases such as Nsc2p and Ncs6p in yeast, the thiol group

is then transferred onto uridine residues of tRNAs, a modification

which is thought to increase translation efficiency [11]. The

function of URMs in thiolation of tRNAs is reminiscent of sulfur

transfer reactions in prokaryotes in the synthesis of molybdopterin

and thiamine. The MoaD/ThiS proteins involved in this process

are not homologous in sequence to URMs, yet also show the b-
grasp motif [12]. Hence, URM-type proteins appear to have an

activity different from other ubiquitin-related proteins and,

because of their similarity to prokaryotic sulfur transfer systems,

are considered to be evolutionary intermediates between prokary-

otic sulfur transfer and eukaryotic ubiquitin-like protein conjuga-

tion systems [13]. In addition to the established role of URM

proteins in tRNA thiolation, there is increasing evidence for a

second role of URMs in urmylation, a protein modification similar

to ubiquitylation in which URMs are conjugated to lysine of target

proteins [14], [15].

Recently, two Arabidopsis genes, URM11 and URM12, were

identified encoding proteins that are involved in tRNA thiolation

[16]. URM11 and URM12 show homology to URM proteins of

other organisms and share the b-grasp motif and the terminal di-

glycine motif typical for these proteins. In addition to URM11 and

URM12, the Arabidopsis homologs of the yeast E1-ligase Uba4p

and thiouridylase Ncs6p were identified as CNX5/SIR1 and

ROL5, respectively. Both these Arabidopsis proteins have been

shown to be involved in the tRNA thiolation process. cnx5/sir1

mutants show a severe growth defect, whereas the rol5 mutant is

mainly affected in root growth and shows changes in cell wall

architecture. The enhanced severity of the cnx5/sir1 mutant

phenotype compared to rol5 is likely caused by a general defect in

sulfur transfer reactions in this mutant that also affects molybdop-

terin biosynthesis [16–19].
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This work presents a more detailed characterization of URM11

and URM12 of Arabidopsis. Our data support the finding that

URM11 and URM12 are involved in tRNA thiolation. The

protein interactions of the URM proteins are conserved in plants,

as they interact with the thiouridylase ROL5. Even though

URM11 is expressed to a higher level than URM12, there is a

significant synergistic interaction between the two proteins.

Finally, the analysis of mutants including a urm11 urm12 double

mutant shows that the lack of tRNA thiolation has an effect on the

general root architecture but also on root cell development.

Results

Arabidopsis Possesses Two Proteins with High Sequence
and Functional Similarity to Yeast Urm1p
Proteins with significant homology to ubiquitin-related modifier

(URM) proteins have been identified in a number of organisms.

The genome of Arabidopsis harbors two URM genes, (At2g45695

and At3g61113, respectively) which were termed URM11 and

URM12 [16]. URM11 and URM12 are homologous to the yeast

and human URM proteins, particularly in the C-terminal half

including the terminal di-glycine motif essential for URM protein

function. This suggests that the C-terminus is less tolerant to

variations in amino acid sequence. The two URM proteins of

Arabidopsis share high homology to each other with an identity of

87% and a similarity of 91% (Figure 1; [16]).

The involvement of URM11 and URM12 in the sulfur carrier

process important for the thiolation of eukaryotic cytoplasmic

transfer RNAs (tRNAs) was indicated by the successful comple-

mentation of the yeast Durm1 mutant defective in tRNA thiolation

[8] with URM11 and URM12 [16]. To assess whether URM

proteins fused to reporter proteins can be used to assess

localization of URM proteins, complementation efficiency of the

yeast Durm1 mutant by URM and GFP-URM proteins was

compared. The Durm1 mutant transformed with cDNAs for

URM11 or GFP-URM11 and GFP-URM12 constructs under the

control of a constitutively active yeast promoter was analyzed for

the presence of thiolated tRNAs. The binding of N-acryloylamino

phenyl mercuric chloride (APM) to 2-thiouridine residues leads to

the retardation of thiolated tRNAs in acrylamide gels, making

them readily detectable. The thiolated tRNAs detectable in wild-

type yeast but absent in the Durm1mutant are present in the Durm1
mutant complemented with either GFP-URM11 or GFP-URM12

to an extent that is comparable to the complementation with

URM11 (Figure 2A). This confirms the finding by [16] that the

Arabidopsis URM proteins are functional in the sulfur transfer

reaction in yeast. Furthermore, this experiment shows that

URM11 and URM12 are active with an additional GFP reporter

protein at the N-terminus that is considerably bigger in size than

the URM proteins.

URM11 and URM12 Accumulate in the Cytoplasm and
the Nucleus
In a next step, we aimed at analyzing the subcellular localization

of the Arabidopsis URM proteins. Since URM11 and URM12

appear to be functionally equivalent, URM11 subcellular locali-

zation was investigated in onion cells transiently transformed with

35S:GFP-URM11 and 35S:GFP. Both the GFP-URM11 fusion

protein as well as GFP alone localize to the cytoplasm and show a

signal in the nucleus (Figure S1). Since URM proteins are short

peptides, it cannot be excluded that the GFP moiety influences

protein localization. Therefore, localization was also investigated

by an alternative strategy, namely by analyzing the distribution of

an HA-URM11 protein in transgenic urm11 urm12 double mutants

(see below). Immunodetection by western blotting of proteins from

a total plant extract or a purified nuclear preparation revealed the

presence of HA-URM11 in both fractions that migrated at the

expected mass of around 13 kDa. In contrast, the histone H3

protein was only detectable in the nuclear preparation and not in

the total fraction, confirming a strong enrichment of nuclear

proteins in the nuclear fraction (Figure 2B). The detection of HA-

URM11 in the nuclear protein preparation suggests that a fraction

of URM11 and possibly URM proteins in general localize to the

nucleus. This is in line with the data of the high-throughput

analysis of protein localization in yeast (http://yeastgfp.

yeastgenome.org; [20]).

Arabidopsis URM Proteins Interact with ROL5
The protein network leading to tRNA thiolation has been

investigated in detail in yeast. Within this network, Urm1p

interacts with the thiouridylase Ncs6p [7], [8]. To get an insight

into the degree of conservation of this network in Arabidopsis,

URM11 and URM12 were tested for interaction with ROL5, the

Arabidopsis thiouridylase and functional homolog of Ncs6p [19].

To this end, a yeast-two-hybrid experiment was performed using

ROL5 as the bait protein and URM11 or URM12 as the prey

proteins. For both URM proteins, an interaction with ROL5 was

observed as cells grew on selective medium and resulted in GUS

activity. Control experiments with the ROL5-containing bait

vector and an empty prey vector or the empty bait vector with

the URM11- or URM12-containing prey vectors revealed no

autoactivation of any of the proteins (Figure 2C). The interaction

of URM11 and URM12 with ROL5 provides further evidence for

the conservation of the process of sulfur transfer leading to tRNA

modification across a wide range of species.

Figure 1. Homology between URM proteins of Arabidopsis and yeast. Alignment of the Arabidopsis URM11, URM12, and the yeast Urm1p.
Identical positions are indicated in black, colons indicate conservative amino acid substitutions, and periods indicate similar amino acids.
doi:10.1371/journal.pone.0086862.g001
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URM11 and URM12 are Ubiquitously Expressed
According to microarray data of the Genevestigator platform

[21], URM11 and URM12 are expressed at all developmental

stages of Arabidopsis. To investigate URM11 and URM12

expression patterns in more detail, the promoter sequences of

URM11 and URM12 were fused to the GUS gene and transformed

into Arabidopsis. Several independent transgenic lines were then

screened in the T2 generation for GUS activity at seedling and

adult stage and representative examples are shown in Figure 3. At

the seedling stage, the URM11 promoter induced homogenous

GUS expression while URM12 promoter-induced GUS expression

was mainly detectable in the vasculature. In adult plants, GUS

activity was found in most tissues, with URM11:GUS resulting in a

stronger GUS staining than URM12:GUS, which is in agreement

with microarray data that found URM11 to be expressed at a

higher level [21]. Again, staining was particularly strong in the

vascular tissue. This shows that expression of URM11 and URM12

is largely overlapping.

Mutations in the URM Genes Affect tRNA Modification
and Root Development
To determine the significance of URM11 and URM12 for plant

development, T-DNA insertion lines of these loci were identified.

For URM11, one insertion line (urm11-1) was used which contains

a T-DNA insertion in the first intron. For URM12, two insertion

lines were used; urm12-1 harbors the insertion 250 bp upstream of

the start codon and urm12-2 in the first intron (Figure 4A, allele

nomenclature according to [16]). RT-PCR experiments on total

RNA extracted from homozygous mutants revealed that the

urm12-1 line still produced URM12 mRNA (data not shown). By

contrast, both urm11-1 and urm12-2 lack detectable levels of gene

expression of URM11 and URM12, respectively (Figure 4B).

To test whether the absence of URM expression has an effect on

tRNA thiolation, tRNAs were isolated from wild-type and urm11-1

urm12-2 double mutant plants. Previously, a strong but not

complete reduction in tRNA thiolation has been shown for the

urm11-1 mutant [16]. As a control, tRNA of the rol5-1 mutant was

isolated which was previously shown to lack thiolated tRNAs [19].

A shifted tRNA band, i.e. thiolated tRNAs, were observed only in

the wild type but neither in rol5-1 nor in the urm11-1 urm12-2

double mutant (Figure 4C), indicating that this tRNA modification

is impaired in the absence of URM11 and URM12.

To investigate the importance of URM11 and URM12 for

plant development, the urm11-1 urm12-2 double mutant was

analyzed, since URM11 and URM12 appear to have a very

similar if not identical activity and thus are likely to be functionally

redundant. A defect in lateral root development was observed in

the double mutant. After growth for ten days, double mutant

seedlings had developed a lower density of lateral roots compared

to the wild type (Figure 5A). No obvious defect or retardation in

shoot development was observed in the double mutant. To test

whether the lateral root phenotype is indeed caused by the urm11-

1 and urm12-2 mutations, the double mutant line was comple-

mented with a 35S:HA-URM11 or 35S:HA-URM12 construct.

Complementation with either of the two constructs resulted in wild

type-like lateral root formation (Figure 5A), confirming that the

absence of URM11 and URM12 induces the reduction in lateral

root formation and that both HA-URM proteins are functional.

The locus coding for the URM11 and URM12-interacting

protein ROL5 was previously identified as a suppressor of the root

hair formation mutant lrx1 [19]. Since ROL5, URM11, and

URM12 are involved in the same process, we explored whether

mutations in the URM genes have the same effect on lrx1. As

shown in Figure 5B, root hairs are regularly formed in wild-type

Figure 2. Properties and activities of URM11 and URM12. (A)
Bulk tRNA was extracted from wild-type (WT), Durm1 and Durm1 yeast
strains complemented with URM11 or URM12. Thiolated tRNAs (arrow)
show slower migration than non-thiolated tRNAs (bottom of gel) in an
acrylamide gel containing APM. A band of unknown nature (arrowhead)
occasionally occurred. URM11 and the GFP-URM fusion proteins of
Arabidopsis are functional in yeast, resulting in tRNA thiolation in the
otherwise thiolation-defective Durm1 mutant. A representative result of
several repetitions is shown. (B) Western blotting of total protein
extracts and purified nuclei of urm11-1 urm12-2 double mutants
expressing HA-URM11 or non-transgenic double mutants. Immunola-
belling was done with an anti-HA (upper lane) and an anti-histone H3
(lower lane) antibody. The experiment was performed twice with
comparable outcome. (C) A representative result of the yeast-two-
hybrid experiment (performed three times independently) revealed the
interaction of URM11 and URM12 with ROL5, resulting in yeast growth
on selective medium and blue staining of the cells due to b-
galactosidase activity. Transformation with only one of two constructs
with the empty second plasmid did not result in yeast growth and b-
galactosidase activity.
doi:10.1371/journal.pone.0086862.g002

Ubiquitin-Related Modifiers of Arabidopsis

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e86862



seedlings, whereas they are malformed or absent in the lrx1

mutant. This defect is indeed suppressed in the lrx1 urm11-1 urm12-

2 triple mutant, which showed wild type-like root hair develop-

ment. By contrast, the lrx1 urm11-1 and lrx1 urm12-2 double

mutants showed largely an lrx1 phenotype (Figure 5B). Hence, the

urm11-1 and urm12-2 mutations synergistically interact, which

provides further evidence for URM11 and URM12 having similar

functions during root development. The urm11-1 urm12-2 double

mutant, however, did not reveal aberrant root hair morphology

compared to the wild type (data not shown). Finally, the lrx1

urm11-1 urm12-2 triple mutant was complemented with 35S:HA-

URM11 and 35S:HA-URM12 constructs. Transgenic lines ex-

pressing either of the two URM genes developed an lrx1-like root

hair phenotype (Figure 5C), confirming that the mutations in the

two URM loci account for suppression of lrx1.

Discussion

Ubiquitin-related modifier proteins (URMs) are found in

phylogenetically distantly related species. They can have a low

level of identity or similarity, as found for Arabidopsis URM11

and URM12 versus the yeast Urm1p or human Urm1 [16], but

are conserved in the b-grasp, a characteristic structure consisting

of a core with a pocket of four b-strands and diagonally arranged

a-helices, and the C-terminal di-glycine motif [1], [3], [4]. Despite

the limited conservation in the primary sequence, Arabidopsis

URM genes are able to complement the tRNA thiolation defect of

the yeast Durm1 mutant ([16]; this work). Our data also show that

GFP-URM fusion proteins are functional, which allows a GFP-

based analysis of protein accumulation in future studies. In the

sulfur transfer reaction, URM proteins interact with a thiour-

idylase. This interaction is also conserved in Arabidopsis, since

URM11 and URM12 interact with the Arabidopsis thiouridylase

ROL5, a protein that is essential for the sulfur transfer reaction, as

the rol5 mutant is also defective in tRNA thiolation [19]. In

addition to ROL5, URM11 and URM12 have been shown to

interact with the E1 ligase SIR1/CNX5 which is important for

activation of the URM proteins and essential for tRNA thiolation

[16]. Hence, to this point, interactions within the sulfur transfer

reaction are well conserved in a diverse range of organisms.

Mutations in URM11 and URM12 Affect Root
Development
The thiolation of the uridine in the wobble position of tRNAs

conferred by the protein network involving URM proteins is

assumed to increase codon-anticodon accuracy, while blocking this

tRNA modification is expected to have a negative impact on

translation efficiency [11]. However, absence of tRNA thiolation

does not have a deleterious impact on the organism. Both the yeast

Durm1 mutant [5], [22] and the Arabidopsis urm11-1 urm12-2

double mutant are missing detectable levels of thiolated tRNAs but

are viable. However, in both organisms, the growth process is

affected. The Arabidopsis urm11-1 urm12-2 double mutant

develops a modified root architecture with a lower lateral root

density compared to the wild type. Lateral root formation is under

the control of auxin and cytokinin, but is also strongly influenced

by nutrient availability [23–25]. This is similar to yeast where the

mutant Durm1 is impaired in pseudohyphal growth, a develop-

mental response to nutrient limitation [22]. Thus, URM proteins

of yeast and Arabidopsis, and possibly URM proteins in general,

affect processes that are modified by environmental conditions.

In addition to lateral root formation, mutations in URM11 and

URM12 also affect root hair development. Even though the urm11-

1 urm12-2 double mutant does not show impaired root hair

growth, it does suppress the root hair formation mutant lrx1.

LRX1 is an extracellular protein that is involved in root hair cell

wall formation [26–28]. The thiouridylase-defective rol5 mutant

was initially isolated as a suppressor of lrx1 [19], which is the

reason why a suppression of lrx1 was tested in the lrx1 urm11-1

urm12-2 triple mutant. The comparable effect of rol5 and the

urm11-1 urm12-2 double mutant suggests that interfering with

tRNA modification is causing the suppression of lrx1. Since lrx1 is

a cell wall formation mutant, suppression is likely induced by

changes in cell wall structures. Indeed, the rol5 mutant was shown

to induce modifications in cell wall structures [19]. A possible

mechanism by which changes in tRNA thiolation can affect root

architecture and cell wall formation is via the TOR (Target Of

Rapamycin) signaling network. The TOR network is a growth

controller in eukaryotic cells that senses growth factors and

nutrient availability and modulates cellular processes such as

translation, ribosome biogenesis, mitochondrial activity, or cyto-

skeletal dynamics [29]. Alterations in tRNA thiolation modify

Figure 3. Expression patterns of URM11 and URM12. The expression pattern of both genes was investigated by promoter GUS fusion constructs
in transgenic Arabidopsis. The URM11:GUS construct led to a homogeneous GUS staining at the seedling stage and the adult stage. URM12:GUS is
predominantly active in vascular tissue. Shoots (A) and roots (B) of seedlings and cauline leaves of adult plants (C) are shown. Bars = 2.5 mm.
doi:10.1371/journal.pone.0086862.g003
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translation efficiency and have been shown to modulate TOR

signaling [11], [22]. In addition, tRNAs are involved in nutritional

stress responses via modulating TOR activity [30].

In Arabidopsis, inhibiting the TOR network by rapamycin, a

macrocyclic lactone specifically inhibiting the TOR kinase [31],

leads to fewer lateral roots, modification of cell wall structures, and

suppression of the lrx1 root hair mutant phenotype [19], [32], [33].

Thus, the phenotypes caused by interfering with TOR signaling by

rapamycin treatment are comparable to those observed in the rol5

and urm11-1 urm12-2 mutant lines, supporting the hypothesis that

alterations in tRNA thiolation have an impact on TOR signaling.

Figure 4. urm11 urm12 double mutant fails to thiolate tRNAs. (A)
Schematic structure of URM11 and URM12. Black boxes represent exons
and white boxes introns. T-DNA insertions are highlighted by black
arrows and are located in the first intron for urm11-1 and urm12-2,
which were further analyzed. (B) RT-PCR on total RNA of entire
seedlings revealed absence of URM11 and URM12 mRNA in the
corresponding mutants. The ACTIN2 gene was amplified as a control
for comparable RNA extraction efficiency. PCR on genomic DNA reveal
larger products due to introns. (C) The urm11-1 urm12-2 double mutant
is impaired in tRNA thiolation. In the presence of APM, thiolated tRNAs
show slower migration in an acrylamide gel, non-thiolated tRNAs
migrate faster (bottom of the gel). In contrast to the wild type, rol5-1
and urm11-2 urm12-2 mutants lack thiolated tRNAs (arrow). Bands of
unknown nature (arrowhead) occasionally occurred. Representative
examples of several independent experiments are shown. Col: wild-type
Columbia.
doi:10.1371/journal.pone.0086862.g004

Figure 5. Effects of urm11-1 urm12-2 on root development. (A)
Lateral root density is reduced in the urm11-1 urm12-2 double mutant
compared to the wild type. Complementation with a 35S:HA-URM11 or
35S:HA-URM12 construct restores lateral root formation. Error bars
represent the standard error, the asterisk indicates the only value
significantly different from the others (two-sided t-test; p = 0.01; n$25).
(B) In contrast to the wild type (Col), lrx1 mutants frequently have
collapsed root hairs. While urm11-1 or urm12-2 have no effect on lrx1,
an lrx1 urm11-1 urm12-2 triple mutant shows suppression of lrx1 and
develops wild type-like root hairs. (C) Suppression of lrx1 by urm11-1
urm12-2 is complemented with either 35S:HA-URM11 or 35S:HA-URM12,
resulting in the lrx1 root hair phenotype. Col: wild-type Columbia.
Bar = 0.5 mm.
doi:10.1371/journal.pone.0086862.g005
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The data presented here support the view that the tRNA

thiolation process is conserved across distantly related species. This

assumption is corroborated by the analysis of URM protein

function in Arabidopsis ([16], and this work) and the interaction of

URM11 and URM12 with ROL5, which is equivalent to the

interaction of the yeast Urm1p with Ncs6p [8]. A protein-protein

interaction requires an overlapping localization of the proteins in

the cell. This study revealed that the Arabidopsis URM11 localizes

to the cytoplasm and nucleus. Considering the functional similarity

of URM11 and URM12, e.g. both being able to complement the

yeast Durm1 mutant, it is quite probable that URM12 shows a

localization pattern that is comparable to URM11. Since the HA-

URM11 construct is under the control of the strong 35S promoter,

a possible ectopic detection of HA-URM11 protein in the nucleus

cannot be excluded. Yet, in a high-throughput analysis of yeast

protein localization, Urm1p was also localized to the cytoplasm

and the nucleus. Even though this localization was later changed

to cytoplasmic (manual curation of the localization data), there

seems no direct experimental evidence for this restriction (www.

yeastgenome.org). The URM11 and URM12 interaction partner

ROL5, however, appears to predominantly colocalize with

mitochondria [19]. Based on the function of ROL5 in the

modification of cytoplasmic tRNAs, ROL5 must, at least

transiently, be present in the cytoplasm. Dual localization of

proteins in different compartments and organelles is not unusual

[34], suggesting that ROL5 is a mobile protein that translocates

between mitochondria and the cytoplasm. The biological

significance of ROL5 in mitochondria and the URM proteins in

the nucleus remains to be elucidated.

Initially, URM-like proteins were expected to serve in a protein

conjugation process, comparable to ubiquitylation by ubiquitin

[4]. Indeed, target proteins of Urm1p were identified in yeast and

human cells where urmylation seems to be induced during

oxidative stress [14], [15], [35]. The HA-tagged URM11 and

URM12 proteins are functional and will serve as tools in future

studies to investigate protein urmylation in Arabidopsis.

Materials and Methods

DNA Constructs
For complementation of the yeast Durm1 mutant, cDNA clones

of the Arabidopsis URM11 and URM12 were amplified using the

primer pairs URM11_for(GGATCCATGCAATTAACTCTT-

GAATTCGGG)/URM11_rev(TTATCCACCATGCAAAGTG-

GAAAT) and URM12_for (GGATCCATGCAATTTACTCTT-

GAGTTCGGT)/URM12_rev (TCATCCACCGTGCA-

GAGTCGAAAT). The obtained fragments were cloned into

pGEM-T easy (Promega) for sequencing. For obtaining the N-

terminal GFP fusions, the correct cDNAs in pGEM-T easy

constructs were digested with BamHI and a GFP-BamHI cassette

[19] was inserted. The resulting clones were digested with NotI and

cloned into the yeast overexpression vector pFL61 [36].

For the yeast two-hybrid experiment, cDNAs of ROL5, URM11

and URM12 were amplified with the primer pairs KpnI-At2g44270-

1F(GGTACCATGGAGGCCAAGAACAAGAAAGCAG)/SmaI-

At2g44270-1R(CCCGGGTTAGAAATCCAGAGATCCA-

CATTG) for ROL5, XbaI-URM11-F (TCTAGAATGCAAT-

TAACTCTTGAATTCG)/BamHI-URM11-R(GGATCCT-

TATCCACCATGCAAAGTGGAA) for URM11 and XbaI-

URM12-F(TCTAGAATGCAATTTACTCTTGAGTTCGGTG-

GAG)/BamHI-URM2R (GGATCCTCATCCACCGTGCA-

GAGTCGAAATGAAA) for URM12. These fragments were then

cloned into pGEM-T easy for sequencing. Subsequently, one of

the ROL5 clones was digested with KpnI and SacI and cloned into

pLEXA-N (Dualsystems) cut with the same enzymes. The clones

of URM11 and URM12 were digested with XbaI and BamHI and

cloned into pGAD-HA (Dualsystems) cut with the same enzymes.

For expressing HA-tagged versions of URM11 and URM12,

genomic clones were amplified using the primer pairs URM11_-

HA_gen_for (CTCGAGATGTACCCATACGATGTTCCA-

GATTACGCTATGCAATTAACTCTTGAATTCGGGTAC)/

URM11_HA_gen_rev(TCTAGAGAAAGGACACTTAAAATT-

GATAAATACTCTAATATCA) and URM12_HA_gen_for

(CTCGAGATGTACCCATACGATGTTCCAGATTACGC-

TATGCAATTTACTCTTGAGTTCGGGTACACTATTAC)/

URM12_HA_gen_rev(TCTAGA TCATCCACCGTGCA-

GAGTCGAAATGAAAACTATA), respectively. For sequencing,

the clones were ligated into pGEM-T easy. Correct clones were

digested with XhoI and XbaI and cloned into the expression

cassette of pART7 [37], containing a 35S CaMV promoter and

OCS terminator, cut with the same enzymes. For plant transfor-

mation, the 35S-HAURM-OCS cassettes were cut out with NotI and

cloned into the plant transformation vector pBART [38] which is

identical to pART27 [37] but contains a gene for resistance to

basta instead of kanamycin.

The N-terminal genomic GFP fusion constructs for transient

expression in plants were produced by XhoI digestion of pART7-

HA-URM11 and insertion of an XhoI-GFP cassette. The GFP gene

was amplified from the vector pMDC83 [39] using the primer pair

GFP_XhoI_for(CTCGAGATGAGTAAAGGAGAA-

GAACTTTTC) and GFP_XhoI_rev_NOSTOP(CTC-

GAGGTGGTGGTGGTGGTGGTGTTT).

The URM11:GUS construct was produced by PCR amplifica-

tion of the promoter using the primers URM11Prom_F

(TTGCGACTCGGATTGGTTAGAATC) and URM11Prom_R

(CGTCGTTGATGTTTGCAGGAGG) and cloning into pENTR

(Invitrogen). A correct clone was then used for cloning of the

URM11 promoter into the gateway vectorMDC164 containing the

GUS gene [39].

For obtaining the URM12 promoter:GUS construct, 1.8 kb of

promoter sequence 59 upstream of the ATG start codon was PCR-

amplified using the primers URM12Prom_F (AAGCTTGGTAAA-

TAATCTATAGTTTGTTTAC) and URM12Prom_R (TCTAGA

CTTCAATGAAGTTTTGCGGTAAC) with an HindIII site and

a XbaI at the 59 and 39 end, respectively. After digestion with

HindIII and XbaI, the fragment was cloned into pGPTV-Bar [40]

digested with the same enzymes.

Plant Material and Growth Conditions
All plant lines used are Arabidopsis thaliana, accession Columbia.

The lrx1 allele is described in [41]. The urm11-1 and urm12-2 allele

are the Salk lines 024513 and 070672.47.90, respectively. The

urm12-1 allele not further used in this study is the line ET5108 and

is of the accession Landsberg erecta.

Seedlings and plants were grown in vitro and in soil as described

[19]. In brief, seeds were surface sterilized, washed and grown in a

vertical orientation with a 16-h-light/8-h-darkcycle at 22uC on

plates containing half-strength MS medium. For further growth

and propagation, seedlings were transferred to soil and grown with

a 16-h-light/8-h-dark cycle at 22uC.
Selection of transgenic plants produced by the standard floral

dip method was done on 20 mg/mL basta (for pBART and pGPTV-

bar vectors) or 20 mg/mL hygromycin (pMDC164).

Yeast Strains and Growth Conditions
Yeast strains used in this study were obtained from EURO-

SCARF, Frankfurt, Germany. The wild-type strain is BY4741

with the relevant genotype MATa; his3D 1; leu2D 0; met15D 0;
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ura3D 0, and the Durm1 strain has the relevant genotype BY4741;

Mat a; his3D1; leu2D0; met15D0; ura3D0; YIL008w::kanMX4.

Yeast strains were grown at 30uC for 2 d on SD plates

supplemented with His, Leu, Ade for strains complemented with

pFL61 constructs and His, Leu, Ade and Ura for growth of the

wild type.

Transient Gene Expression in Onion Epidermal Cells
For transient gene expression, onion epidermal cells were

transformed by particle bombardment as described [42]. Bom-

barded tissue was incubated for 1 day at room temperature and

the fluorescence pattern was microscopically analyzed.

Isolation of Nuclear Proteins and Western Blotting
Nuclei were isolated from 1 gram (fresh weight) Arabidopsis 2-

week old seedlings grown under sterile conditions following the

protocol of [43].

For western blotting, proteins were prepared by mixing nuclear

extracts or total seedling material with standard SDS-PAGE

loading buffer prior to heat denaturation. SDS-PAGE, blotting

onto nitrocellulose, and immunodetection by ECL technology was

performed as described by Ringli [44]. Immunodetection was

performed using a rat anti-HA antibody (Roche, # 11867423001)

and a rabbit anti-histone H3 antibody (Abcam, Ab # 1791),

followed by horseradish-coupled goat anti-rabbit and anti-rat

antibodies (Santa Cruz Biotechnology, # sc-2004 and sc-2006,

respectively), all of which were used in 1:3000 dilutions.

Microscopy
Epidermal GFP fluorescence was analyzed using a Zeiss Imager

Z1 microscope equipped with an Axiocam HRC. GFP fluores-

cence of yeast cells was analyzed with a Leica DM6000 equipped

with a Leica BFC 350FX. Phenotypic observations and GUS

expression analysis were done with a Leica LZ M125 stereomi-

croscope. Data points of lateral root development represent $25

seedlings. The experiment was done several times. For the root

hair phenotype, over 30 seedlings of each line were analyzed.

RNA Extraction and RT-PCR
Seedlings were grown vertically on half-strength MS Medium in

a vertical orientation for 7 d as described above. The tissue of 120

entire seedlings was frozen in liquid nitrogen and grinded. The

powder was then used for RNA extraction using the SV Total

RNA isolation System kit (Promega). The reverse transcription

was conducted with 500 ng of total RNA using the i_script kit

(Biorad). One tenth of the obtained cDNA was then used for RT-

PCR using the primer pairs ACTIN2F (59-AATGAGCTTCG-

TATTGCTCC-39) and ACTIN2R (59GCACAGTGTGAGACA-

CACC-39), URM11_rt_for (ATGCAATTAACTCTT-

GAATTCG)/URM11_rt_rev(TTATCCACCATGCAAAGTG-

GAA), and

URM12_rt_for(ATGCAATTTACTCTTGAGTTCG)/

URM12_rt_rev (TCATCCACCGTGCAGAGTCGAA). The AC-

TIN2 PCR was done with 25 cycles,.the URM PCRs with 30 cycles

of amplification.

tRNA Extraction and Analysis
Arabidopsis seedlings were grown vertically on plates for 14 d as

described. Approximately 250 seedlings were used for extraction.

The seedlings were grinded in liquid nitrogen and the material was

extracted two times with 8 ml acidic phenol (Sigma), 0.8 ml

chloroform and once with 4 ml acidic phenol, 0.4 ml chloroform.

Yeast strains were grown at 30uC in 50 ml liquid SD media

supplemented with His, Leu, Ade for strains complemented with

pFL61 constructs and His, Leu, Ade and Ura for growth of the

wild type or Durm1 mutant. The tRNA was extracted 2 times with

4 ml acidic phenol, 0.4 ml chloroform.

After extraction of the plant or yeast material, tRNA was

purified with AX100 columns from MACHEREY NAGEL

following manufacturer’s instructions. For analysis, the purified

tRNA was separated on an acrylamide gel supplemented with N-

acryloylamino phenyl mercuric chloride (APM) by the method

adapted from [11].

Accession Numbers
The Arabidopsis genes discussed in this study have the following

accession numbers: URM11: At2g45695; URM12: At3g61113;

LRX1: At1g12040; ROL5: At2g44270.

Supporting Information

Figure S1 Arabidopsis GFP-URM11 localizes to the
cytoplasm and the nucleus. Transient transformation of

35S:GFP-URM11 and 35S:GFP into onion cells results in a

comparable pattern of cytoplasmic and nuclear fluorescence. For

each construct, at least 15 transformed cells were analyzed.

Bar = 100 mm.

(TIF)
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