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Abstract

We evaluate the bias from endogenous job mobility in fixed-effects estimates of worker- and
firm-specific earnings heterogeneity using longitudinally linked employer-employee data from the
LEHD infrastructure file system of the U.S. Census Bureau. First, we propose two new resid-
ual diagnostic tests of the assumption that mobility is exogenous to unmodeled determinants of
earnings. Both tests reject exogenous mobility. We relax the exogenous mobility assumptions by
modeling the evolution of the matched data as an evolving bipartite graph using a Bayesian latent
class framework. Our results suggest that endogenous mobility biases estimated firm effects to-
ward zero. To assess validity, we match our estimates of the wage components to out-of-sample
estimates of revenue per worker. The corrected estimates attribute much more of the variation in
revenue per worker to variation in match quality and worker quality than the uncorrected estimates.
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1 Introduction

We study the consequences of endogenous mobility for estimates of worker and firm effects on

labor market earnings. Our starting point is the fixed effects estimator for the statistical earn-

ings model developed by Abowd et al. (1999, AKM, henceforth), which decomposes log earnings

into components associated with unobserved worker and employer heterogeneity. Their statistical

model requires the assumption that mobility is exogenous to the earnings residual, or, equivalently,

that the assignment of workers to firms is random conditional on all observable characteristics and

the time-invariant unobservables. Structural interpretations of the estimated worker and firm ef-

fects are potentially useful as measures of unobserved skill and firm-specific wage premia as long

as mobility is exogenous. However, the nature of any endogenous mobility bias is necessarily

complex and difficult to assess. Our goal is to determine whether relaxing the exogenous mo-

bility assumption has major implications for estimates of worker and employer-specific earnings

heterogeneity.

We begin by clearly defining the exogenous mobility assumption entailed by the log earnings

model proposed in AKM. The assumption of exogenous mobility implies that job mobility and

job assignment depend only on time-invariant unobservable characteristics of workers and firms.

While this allows for certain types of sorting, it precludes mobility driven by learning about new

outside job opportunities that carry match-specific earnings premia (Woodcock 2008). It also rules

out models in which mobility is associated with learning about comparative advantage (Gibbons

et al. 2005), or idiosyncratic labor demand shocks (Helwege 1992). The exogenous mobility as-

sumption is, therefore, subject to considerable skepticism among economists.

Despite the widespread skepticism that mobility is endogenous to the wage residual, there

are no tests of exogenous mobility that can be computed from estimates made under the null

hypothesis. We fill this gap by developing two new residual diagnostic tests of the exogenous

mobility assumption, which we apply to longitudinally-linked employer-employee data from the

U.S. Census Bureau’s Longitudinal Employer Household Dynamics (LEHD) program. In both

tests, the LEHD data reject the null hypothesis of exogenous mobility.

Rejecting the exogenous mobility assumption leaves open the question of whether and how

endogenous mobility biases the estimates of worker- and firm-specific contributions to pay. To
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address these questions, we develop a latent class model of the data generating process that re-

laxes two key assumptions of the exogenous mobility model. Our model allows, first, for match

effects that are correlated with worker and firm heterogeneity. Second, we allow both earnings

and job mobility to be determined by latent classifications of workers, firms, and matches. We

estimate the model using Bayesian methods that, because of the non-nested structure of the latent

classifications, become computationally intensive. We exploit the network structure of the data

and associated model restrictions to speed computation by using a graph coloring algorithm.

We show that the uncorrected estimates from the AKM model derived under the assumption of

exogenous mobility support our modeling decisions. The results from estimating the endogenous

mobility model suggest that (1) match effects are a substantial determinant of earnings hetero-

geneity; (2) firm effects are biased toward zero in the uncorrected model; (3) there is very little

structural correlation between worker and firm components of earnings heterogeneity; (4) match-

specific wage variation acts to compress, rather than amplify, differences in earnings within and

across firms.

We go on to validate our estimates using data on firm revenues. Using the uncorrected AKM

estimates, we find a strong association of firm revenue with firm effects, but only a very weak asso-

ciation with firm-average worker and firm-average match effects. Using the endogenous-mobility

corrected estimates, we find revenue is strongly associated with all three components of wage

heterogeneity. The latter pattern is consistent with models in which worker and match effects in

earnings represent compensation for productive attributes.

Our analysis and methods are relevant in applications that use estimates of worker and firm

effects as measures of human capital and firm-specific wage premia. Examples include the analy-

sis of firm productivity (Iranzo et al. 2008), inter-industry wage differentials (Abowd et al. 2012),

exporter wage differentials (Krishna et al. 2014), job referral networks (Schmutte 2015), and wage

inequality (Card et al. 2013). Endogenous assignment also affects related empirical settings, in-

cluding the estimation of neighborhood effects on earnings (Combes et al. 2008) and the effects

of teachers on student test scores (Rothstein 2010; Koedel and Betts 2010). Kramarz et al. (2014)

use policy-induced random variation to correct for endogenous school assignment. They find that

endogenous assignment biases estimated school effects toward zero. We find a very similar result,
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albeit using rather different data and empirical methods.

2 Background and Motivation

2.1 The AKM Model for Labor Market Earnings

AKM proposed a framework for modeling individual log wages in matched employer-employee

data that allows for arbitrary heterogeneity across workers and across employers. In the AKM

model, the log wage of worker i in period t is

lnwit = Xitβ + θi + ψJ(i,t) + εit. (1)

The log wage depends on observable characteristics through Xitβ, unobservable individual-level

characteristics, θi, and an unobservable employer-specific component, ψJ(i,t), where J(i, t) is a

function that maps worker-year observations to their unique employer in that year. This model

applies to data that include observations on I individual workers and J employers. The data are

observed over T periods and in any period t, there are a total of Nt observations. The full sample

includes N worker-period observations.

In matrix notation, the wage model (1) is

lnw = Xβ +Dθ + Fψ + ε (2)

where lnw is the [N × 1] stacked vector of log wage outcomes lnwit, X is the [N × k] design

matrix of observable time-varying characteristics. In the analysis that follows, and in the empirical

work, lnw andX are measured as deviations from their overall means and we suppress the constant

term. The matrix D is the [N × I] design for the individual effects; F is the [N × J ] design

matrix for the employer effects (non-employment is suppressed here). The unknown effects to be

estimated,
[
βT θT ψT

]T
, have dimension [k × 1] , [I × 1] , and [J × 1] associated with each

of the design matrices.
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Identification and the Exogenous Mobility Assumption

Identification of the parameter vector
[
βT θT ψT

]T
in the statistical model requires the fol-

lowing orthogonality conditions:

E
[
XT ε

]
= 0; E

[
DT ε

]
= 0; E

[
F T ε

]
= 0. (3)

As long as the matrix of data moments has full rank, this conditional moment restriction yields a

consistent estimator for the full parameter vector, including the individual and employer effects.

The assumptions in (3) that E
[
DT ε

]
= 0 and E

[
F T ε

]
= 0 are particularly problematic. They

imply that there is no correlation between the wage residual and an individual’s decision to enter

or exit the labor market, and that there is no correlation between the residual and the assignment

of workers to employers. These assumptions do not have a clear behavioral foundation, but they

follow from the stronger assumption that mobility and assignment are independent of the wage

residual.

Specifically, we define exogenous mobility by the assumptions:

E [ε|X] = 0 (4)

Pr [D,F |X, ε] = Pr [D,F |X] .

If the exogenous mobility assumptions are satisfied, it is clear that E [ε|X,D, F ] = 0. The orthog-

onality conditions necessary for identification follow. See Abowd et al. (2002) for the method of

ensuring that D and F have full column rank.

Exogenous mobility requires that a worker’s employment history is completely independent

of the idiosyncratic part of earnings captured in ε. Specifically, knowledge of the entire history

of wage residuals does not convey any information that would help predict job assignment or

worker entry and exit. The exogenous mobility assumption is, thus, equivalent to assuming that all

assignments are pre-determined at birth given full knowledge of X,D, F and
[
βT θT ψT

]T
(Rothstein 2010).
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2.2 Testing the Exogenous Mobility Assumption

We formulate two tests that exploit the exogenous mobility assumption that current earnings resid-

uals should not be predictive of future employer assignments, and apply them to longitudinally in-

tegrated employer-employee data from the Longitudinal Employer-Household Dynamics (LEHD)

Program of the U.S. Census Bureau. Both tests strongly reject the null hypothesis of exogenous

mobility for these data. We describe the data and procedure for calculating both tests in detail in

Appendix A.

The first test, the match effects test, checks whether the firm effect of a worker’s future employ-

ers are independent of the average residual in the current job. The match effects test yields a test

statistics, X2 = 7, 438, 692, that is distributed chi-square with 8, 991 degrees of freedom. Using

conventional criteria, this test has a p-value less than 10−6. From a Bayesian viewpoint and as-

suming equal prior odds on the null and alternative, the change in the Bayes Information Criterion

(BIC) associated with going from the null hypothesis to the unconstrained alternative hypothesis is

166,049, which also indicates that the data strongly favor some model in which the AKM residuals

are related to job mobility.

The second test, the productive workforce test, checks whether the average worker effect of

future employees of a particular employer are predictive of the residuals on that firm’s current

period wage payments. The productive workforce test has a test statisticX2 = 172, 295 that is

distributed chi-square with 900 degrees of freedom. Again, using conventional criteria, this test

has a p-value less than 10−6. The change in the BIC is 13,714, which also strongly favors some

model in which the AKM residuals are related to job mobility.

3 Empirical Model

To relax the assumption of exogenous mobility, we develop a model in which a match-specific

component of the earnings residual predicts the movement of workers between employers. The

huge number of workers and employers render the problem of predicting job mobility extremely

challenging. To make progress, we use a latent class framework. Each of the three populations of

interest – workers, employers, and job matches – are associated with latent heterogeneity classes
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that affect wages, mobility and job assignment. Our model allows for arbitrary correlation between

worker and employer types on observed matches, and also allows for sorting by comparative ad-

vantage by allowing arbitrary correlation between job match quality and worker and employer

attributes.

3.1 Model Setup

Population Heterogeneity

The agents are workers, indexed i ∈ {1 . . . I} ≡ I and employers, indexed j ∈ {0 . . . J} ≡ J .

By convention, when a worker is not employed, we say he is assigned to employer j = 0. On

entry to the labor market, a worker i samples his type from one of L latent ability classes, ai ∈ A.

Likewise, each employer, except j = 0, samples her type from one of M latent classes, denoted

bj ∈ B. Again, by convention, the non-employment state is associated with its own latent class,

b0 = M + 1

In our empirical application, we have access to data on the complete population of workers and

employers. Each potential worker-employer match (a job) has an associated latent heterogeneity

component that affects both wages and mobility: kij ∈ K, where K has cardinality Q. To make

the subsequent formulas easier to interpret, we represent the elements of A,B and K as rows from

the identity matrices IL, IM+1 and IQ, respectively For instance, if the number of latent worker

types, L = 2, A = {(1, 0), (0, 1)}.

We assume workers and employers sample their latent ability and productivity classes indepen-

dently from multinomial distributions with parameters πa, πb. However, the distribution of match

quality is not independent of worker or employer type. The probability that the latent quality of the

match between worker i and employer j is of type k is Pr (kij = k|ai = a, bj = b) = πk|ab. This

specification allows for independent match effects as a special case. If match quality is indepen-

dent of worker and employer heterogeneity, then AKM estimates of the worker and firm effects are

unbiased even in the presence of endogenous mobility.
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Earnings Determination

The log of earnings on any match is given by the following generalization of the AKM model

lnwijt = α +Xijtβ + aiθ + bjψ + kijµ+ εit (5)

where Xijt is a vector of observable time-varying characteristics and θ, ψ, µ are vectors of param-

eters describing the effect on the level of log earnings associated with membership in the various

heterogeneity classes. We take ε to be normal with mean 0 and variance σ2, independent and

identically distributed across individuals and over time.

Mobility Model

We relax exogenous mobility by allowing those matches and employment durations that are ob-

served to depend on match quality. The separation indicator, sit = 1 if i separates from his current

job at the end of period t, and sit = 0 otherwise. Recall J (i, t) is the index function that returns

the identifier of the firm in which i is employed in period t. The probability of separation depends

flexibly on match quality:

Pr
[
sit = 1|ki J(i,t)

]
= fse

(
ai, bJ(i,t), ki J(i,t); γ

)
≡ γabk (6)

where 0 ≤ γabk ≤ 1.

Furthermore, conditional on separation, the productivity class of the next employer depends

on the quality of the current match, in addition to the productivity of the current employer and the

ability of the worker:

Pr
[
bJ(i,t+1)|ai, bJ(i,t), ki J(i,t)

]
= ftr

(
ai, bJ(i,t), ki J(i,t); δ

)
≡ δabk ∈ ∆M+1 (7)

where δabk ≡
[
δ0|abk, ..., δM |abk

]
is a 1 × (M + 1) vector of transition probabilities, ∆M+1 is the

unit simplex, and J (i, 0) = 0 for all i. The transition probabilities are indexed by all of the latent

heterogeneity in the model. Within a heterogeneity class, the identity of the precise employer

selected is completely random.
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3.2 The Network Interpretation of Labor Mobility

The labor market is an evolving graph of connections between workers and their employers. At

time t, let the set of identifiers for all I individuals who work in one of the J employers (including

non-employment), P (t) , and the set of J employers, E (t) , be arranged in a bipartite graph where

A (t) and E (t) are the two (disjoint) vertex (or node) sets. There is a link between i ∈ A (t) and

j ∈ E (t) if and only if i is employed by j at date t. The totality of the links (jobs) active at

date t can be represented as an I × J matrix B (t) ,which is the upper right-hand block of the full

adjacency matrix for the bipartite graph, with i on the rows and j on the columns, and is sometimes

called the biadjacency matrix.

The collection of labor market relationships at time t, summarized by the adjacency matrix

B (t), we call the realized employment network. The observed labor market data are snapshots of

the market at points in time,B(t1), ..., B(tT ),where T is the total number of available time periods.

Our adjacency matrix representation can be directly related to the AKM framework. When the data

are sorted first by time, t, and then by workers, i, the design matrix of employer effects is

F =


B (1)

B (2)
...

B (T )


where B (t) is the adjacency matrix from the bipartite labor market graph.

Each adjacency matrix, B(t), describes which outcomes (job matches) were observed at each

point in time from the collection of I × J + 1 potential outcomes at each moment of time. The

potential outcomes are given by a structural wage equation, which we introduced in equation (5).

In this sense, the problem of endogenous mobility is a sample selection problem. Under exogenous

mobility, potential outcomes are selected for observation conditionally at random given X,D, and

F .

To address these selection biases, our model groups together workers and firms with similar

mobility and earnings patterns by assigning them to latent types. Our application and proposed

procedure are, therefore, related to stochastic block models, modularity maximization, and other
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methods for the detection of “communities” of nodes in complex social and economic networks.

Our main innovation is the use of both node and edge characteristics in predicting the matches

(Hoff et al. 2002; Newman and Leicht 2007; Schmutte 2014).

3.3 Likelihood Function

The observed data, yit, consist of wage rates, observable time-varying characteristics, separations,

accessions, and identifier information:

yit =
[
lnwi J(i,t)t, Xit, sit, i, J (i, t) , J (i, t+ 1)

]
for i = 1, ..., I and t = 1, ...T. (8)

The latent data vector, Z, consists of the heterogeneity classifications:

Z = [a1, . . . , aI , b1, . . . , bJ , k11, k12, . . . , k1J , k21, . . . , kIJ ] . (9)

Finally, the complete parameter vector is

ρT =
[
α, βT , θT , ψT , µT , σ, γ, δ, πa, πb, πk|ab

]
, ρ ∈ Θ. (10)

The observed data matrix is denoted Y . The likelihood function for the parameters is the joint

distribution of observed and latent data (Y, Z) :

£ (ρ|Y, Z) ∝
I∏
i=1



T∏
t=1

1√
2πσ2

exp

[
−(lnwit−α−Xitβ−aiθ−bJ(i,t)ψ−ki J(i,t)µ)

2

2σ2

]
×

T−1∏
t=1

[
1− γ〈ai〉〈bJ(i,t)〉〈ki J(i,t)〉

]1−sit [
γ〈ai〉〈bJ(i,t)〉〈ki J(i,t)〉

]sit
×

T−1∏
t=1

[
δ〈bJ(i,t+1)〉|〈ai〉〈bJ(i,t)〉〈ki J(i,t)〉

]sit


×

I∏
i=1

J∏
j=1

[(
L∏
`=1

M∏
m=1

Q∏
q=1

(πa`)
ai` (πbm)bjm

(
πq|`m

)kijq)] (11)

where the notation πa` denotes the `th element of πa (similarly for πbm, bjm, etc.) and 〈x〉 means

the index of the non-zero element of the indicator vector x.
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The likelihood function factors into a part due to the observed data conditioned on the latent

data, and the latent data conditioned on the parameters. The observed-data likelihood conditional

on the latent data factors further into separate contributions from the earnings and the mobility

processes. The mobility process is Markov, and conditionally independent of the earnings realiza-

tions once we know the latent classifications of the workers, firms and matches. We assume that

the matches initially observed are exogenous.

The power of the model comes from the predictive equation for the latent data Z – the unob-

served types associated with worker, employer, and match heterogeneity. Given the observed data

and the parameters, the posterior predictive distribution of Z is computed as the complete-data

likelihood divided by the observed-data likelihood. The observed-data likelihood is calculated by

integrating out the latent data. We describe our estimation procedure in detail in Section 4.

4 Estimation Method

Our empirical approach is Bayesian, but standard estimation techniques are not effective because

the worker and employer effects are not nested. We estimate the model by adapting the Gibbs

sampler for finite mixture models as developed in Tanner (1996) and Diebolt and Robert (1994)

to our model, allowing for multiple overlapping levels of correlation across observations. As in

the data augmentation algorithm, we iterate between sampling from the posterior distribution of

the parameters given the complete data – both observed and latent data – and sampling from the

posterior predictive distribution of the latent data – the unobserved worker, employer, and match

types – given the model parameters.

Below, we derive the posterior distribution of the model parameters given the latent data. The

derivation is standard, as is the method for sampling. The more challenging task, both analytically

and computationally, is deriving, and sampling from, the posterior predictive distribution for unob-

served types. Under the model, the posterior distribution for the latent type depends on the relative

likelihood contribution of a particular entity (worker, employer, or match) under each latent clas-

sification. Generically, the likelihood contribution of a worker depends not only on his own ability

classification, but also on the productivity classifications of the employers he works for, and the
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match quality.

We exploit the relational structure of the data together with conditional independence assump-

tions implied by the model to facilitate computation. We can update the worker effects first, then

the employer effects, then the match effects. Furthermore, the conditional independence assump-

tions in the model imply the latent classifications of the workers can be updated simultaneously (in

parallel). The same is true of the match heterogeneity classifications.

For employer heterogeneity, the situation is more complex. Because the probability of assign-

ment to a new employer is a function of the previous employer, the likelihood contribution of a

given employer is not independent of the employers to which it is directly connected through the

realized mobility network. Therefore, the latent classification of any employer is not independent

of the classification of its network neighbors. Without further analysis, this requires the employer

classifications be updated sequentially, which is very time consuming.

We use the network structure of the data to parallelize the computation. Specifically, the em-

ployer types are independent across groups of firms that are not connected through a direct job-

to-job transition; that is, firms that do not have a degree-one network connection. We apply a

graph coloring algorithm to the employer projection of the realized mobility network to partition

employer nodes into disjoint groups, based on this conditional independence, that can be updated

in parallel.

4.1 Prior and Posterior distributions

The prior on the parameter vector ρT =
[
α, βT , θT , ψT , µT , σ, γ, δ, πa, πb, πk|ab

]
is the product of

priors on its component terms. Each vector of probabilities, γ, δ, πa, πb, πk|ab, has a Dirichlet prior.

Each element of the Dirichlet parameter given by the inverse of the dimension of the probability

vector.

We choose conjugate priors for the wage and mobility model parameters. Conditional on the

population type probabilities, πa, πb, πk|ab, the coefficients in the log wage equation,
(
α, βT , θT , ψT , µT

)
have uninformative normal prior distributions. The variance parameter, σ, has the inverted gamma

prior IG (ν0, s0). In practice, we set ν0 = 1 and s0 = 1.

We also constrain the population probability-weighted average earnings heterogeneity effects
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to be zero. That is, πTa θ = πTb ψ = πTk|ab(`m)µ = 0 for all `,mwhere πk|ab(`,m) ≡ Pr [kij = k|ai = `, bj = m].

This assumption highlights the inherent sample selection problem. If all workers were observed

in all matches in all periods, there would be no endogenous mobility bias. With the preceding

assumptions, we derive the posterior distributions for each parameter in Appendix B.

4.2 Gibbs Sampler

We start the Gibbs sampler with initial values for the parameter vector and latent data, ρ(0), Z(0).

To update the parameter vector, we sample from the posterior distributions defined in Appendix B.

We must still define the posterior distribution for the latent data, Z, given the observed data and

parameters. To update the ability classifications for the workers, we sample from a multinomial

with probability that worker i falls in the `th class:

Pr (ai = `|a−i, b, k, Y, ρ) =
Pr (a−i, b, k, Y |ρ, ai = `) Pr(ai = `)

Pr (a−i, b, k, Y |ρ)

=
πa` Pr (a−i, b, k, Y |ρ, ai = `)∑L

`′=1 [πa`′ Pr (a−i, b, k, Y |ρ, ai = `′)]
. (12)

where a−i represents the classifications of all workers other than i. To calculate Equation 12

requires computing the likelihood contribution of i when assigned to each of the L ability classifi-

cations. Under our model, it is easy to show the posterior probability of ai is independent of a−i,

conditional on the rest of the data (latent and observed),

Pr (ai = `|a−i, b, k, Y, ρ) = Pr(ai = l|b, k, Y, ρ). (13)

This conditional independence allows us to speed computation by updating the latent classifica-

tions of each worker in parallel. The proof is a straightforward consequence of the conditional

independence across workers in the likelihood function for the complete data.

The posterior predictive distribution for the latent match quality is

Pr (ks = q|a, b, k−s, Y, ρ) = Pr (ks = q|a, b, Y, ρ) , (14)

12



which likewise follows from the conditional independence assumptions in the model. Hence, for a

given classification of workers and employers, (a, b), the latent quality of each match is condition-

ally independent from the others. We exploit the conditional independence by parallelizing these

updates as well.

The posterior distribution for employer types exhibits a conditional dependence that is not

present for workers or matches. When a worker changes jobs, the latent type of the employer for

the successor job depends on the the latent type of the employer on the origin job. Therefore, the

posterior probability that a firm is of a particular type depends directly on the types of firms it is

connected to through the realized mobility network.

The posterior distribution is

Pr(bj = m|a, b−j, k, Y, ρ) = Pr(bj = m|a, bN(j), k, Y, ρ) (15)

where bN(j) denotes the latent classifications of the employers inN (j), the set of neighbors of j (in

the employer projection of the realized mobility network). We use this result to define a partition of

employers into groups that can be updated in parallel. The details of our graph coloring algorithm

appear in Appendix D.1.

5 Results

5.1 Data

We implement the model empirically using matched employer-employee data from the LEHD

program of the U.S. Census Bureau. Our analysis compares estimates from the standard AKM

decomposition applied to the entire sample with estimates from the model described in Section 3.

The comparison indicates that relaxing the exogenous mobility assumption may have a large effect

on estimated worker, employer, and match effects. To validate our model, we bring in data on firm

revenue, which is not part of the LEHD infrastructure file system. This section briefly describes

the sources of data and how we prepared the research files.
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The LEHD Data and AKM Decomposition

We begin with an analysis of the AKM decomposition using the full universe of LEHD dominant

job records over the period 1990–2010. The basic structure of the LEHD data is described in

Abowd et al. (2009). The data processing and procedures used to estimate the AKM decomposition

for these data are almost exactly as described in Abowd et al. (2003). The key difference is that

in our case, the AKM model was estimated on the full, national, sample, whereas Abowd et al.

(2003) estimated the model state-by-state and then combined the state-level estimates.

We also use the population estimates of the AKM parameters, θAKM and ψAKM to create

initial classifications of workers, firms, and matches for the Gibbs sampler. For each match, we

construct an AKM orthogonal match effect, µAKM , as the average residual during the match. Next,

we construct the deciles of θAKM , ψAKM , and µAKM within their respective populations (across

workers, across firms, and across matches). We initialize the Gibbs sampler by assigning each

worker, each firm, and each match to its corresponding decile. We discuss these starting values,

which also have implications for the exogenous mobility assumption, in Section 5.2.

Data for Structural Estimation

For estimation of our structural model, we restrict analysis to the population of workers who were

employed in the states of Illinois, Indiana, and Wisconsin in the in the years 1999-2003. There are

16.9 million workers in this three-state sub-population. For each of these workers, we attach all

dominant jobs in which they were ever employed, regardless of the state in which the employment

occurred, over the years 1990–2010. Thus, we include the complete 21-year dominant job work

history for each worker.

Estimation of the structural model on the full subpopulation is computationally infeasible. We

therefore draw a 0.5% simple random sample of workers from the analysis population, retaining

their full employment histories. The final analysis sample includes 1,778,490 Person-year obser-

vations (including years spent in non-employment) that cover 84,690 Persons, 181,592 Firms, and

389,718 Matches. We assign each observation in the analysis sample the appropriate θ-decile,

ψ-decile, and µ-decile based on the AKM estimates to use as starting values for the latent classifi-

cation of workers, employers, and matches.
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Firm Revenue Data

We match our analysis sample with firm-level data on total revenue per worker. The firm-level

revenue data is built up from the 2002 Economic Census. The population for the revenue data

is all establishments that appear in the Census Business Register. The Economic Census collects

sales data from a sample of establishments. The sampling is based on industry and establishment

size. For non-sampled establishments, which are missing conditionally at random, missing rev-

enue and capital data is multiply imputed using a model that conditions on all frame variables. The

results is a dataset that contains the universe of all business establishments with complete data on

revenue and employment. Next, the establishments in the LEHD are matched to establishments

in the Business Register. The establishment identifiers in the LEHD are distinct from the estab-

lishment identifiers in the Census Business Register, necessitating the use of a statistical matching

procedure. For multi-unit firms, we sum revenue and employment across all establishments and

compute revenue per worker directly.

5.2 Diagnostic Analysis of the AKM Estimates

Evidence for Match Effects in the AKM Results

We begin by presenting diagnostic statistics based on the AKM model estimated under the assump-

tion of exogenous mobility. Figures 1 and 2 display the average (orthogonal) match effect (µAKM )

within cells defined by unique pairs of worker effect - firm effect deciles. Figure 1 displays this

information as a three-dimensional bar graph, akin to the presentation in Abowd et al. (2010) and

Card et al. (2013). Unlike the German data analyzed by Card et al. (2013), the LEHD sample

exhibits more variation in the average match effect across cells. Therefore, we report the same

information in Figure 2 as a grouped bar graph. The data are grouped by worker effect deciles

along the horizontal axis. Within each group are plotted bars for each firm effect decile, given

the worker effect decile, whose heights correspond to the average match effect within each. Fig-

ure 2 is thus a “flattened” version of Figure 1. While the average match effects are less than 2

log points in many cells, their magnitudes are sometimes quite large and vary considerably across

worker deciles and across firm deciles. In particular, low wage workers seem to be employed in

15



high-paying matches. Conversely, there is some tendency for high wage firms to employ workers

on low-paying matches, though this pattern is not as strong. As a diagnostic tool, Figure 1 supports

our inclusion of correlated match effects in the structural model.
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Figure 1: Mean residual from the AKM decomposition by Worker/Firm effect deciles.
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Figure 2: Mean residual from the AKM decomposition by Worker/Firm effect deciles, grouped bar
graph. Legend is firm types.
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Evidence on the Exogenous Mobility Assumption

The exogenous mobility assumption in Equation 4 implies, among other things, that for workers

who change jobs, the match effect (average residual) on the origin job should not help predict

the identity of the destination job. A straightforward corollary, following Bayes’ Rule, is that the

average match effect for workers changing jobs is independent of the type of firm to which they are

transitioning. Knowledge of the future firm type is uninformative about the current match effect

after controlling for the type of the worker and of the origin firm.

We assess this corollary implication graphically in Figure 3. The figure displays three grouped

bar graphs that each display, for a fixed worker type, the average match effect within cells defined

by origin firm–destination firm pairs. For parsimony, we display results for three worker types –

those in the first, fifth, and tenth decile of the AKM worker effect distribution. Each sub-figure is

organized with destination firm types along the horizontal axis. Within each destination firm type

are displayed 10 bars that each correspond to the average match effect for a specific origin firm

type.

If the assumption of exogenous mobility were valid, the pattern of average match effects should

not vary across destination firm types. Graphically, Figure 3a, for instance, would appear as a

repeating pattern across all destination firm types. Instead, there is a visually evident correlation

between destination firm and the average match effect. Specifically, it appears that movements

to low wage firms are predicted by low-wage matches. For low wage workers (Worker Type 1),

high average match effects on the origin job are predictive of movements to higher wage firms,

conditional on separation. Recall that we code transitions to non-employment as firm type “11”.

For all worker types, transitions to non-employment are predicted by low average match effects on

the origin job.

Finally, the data show some evidence of wage compression across worker types, and across

firms within worker types. The average match effects are larger , and more negative, as we move

from Worker Type 1 (low wage workers) to Worker Type 10 (high wage workers). Focusing on

Figure 3c, within a specific destination firm type, there is some evidence that the average match

quality is higher on origin jobs in low-wage firms and lower on origin jobs in high-wage firms.

The same pattern is exhibited across firm types in Figure 2. Altogether, these plots cast doubt
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on the plausibility of the exogenous mobility assumption for the LEHD data, consistent with the

residual diagnostic tests in Section 2.2. Furthermore, the compression pattern in the data suggests

endogenous mobility may bias estimated worker and firm effects toward zero.
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(b) Worker Effect Decile 5
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Figure 3: Mean AKM residual within origin/destination firm effect decile, disaggregated by worker
effect decile. Legend is firm types.
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5.3 Estimation Details

We fit the structural model to the 0.5% LEHD analysis sample using the Gibbs sampler. Our results

are based on 7, 922 draws, taken in approximately equal proportion, from three parallel runs of the

Gibbs sampler. The sampler appears to converge after roughly 300 iterations, but exhibits extensive

within-chain autocorrelation. Because of the computational demands, we could not take a large

enough sample to eliminate the effects of autocorrelation by thinning the sample by, say, selecting

every 1,000th sample to analyze. Instead, we report Monte Carlo standard errors, as described

in Appendix Section D.2, that properly account for the serial correlation within each sequence of

draws from the sampler.

Before the final estimation, we engaged in a model selection step to determine the number

of support points for the distribution of latent person, employer, and match heterogeneity. We

base model selection on the criterion that the structural model should explain as much of the

variation in earnings as the AKM decomposition. We estimated the model, adding support points

to latent heterogeneity distributions until the variance of the structural earnings residual was near

the variance of the AKM residual (after removing the orthogonal AKM match effect). That is, we

sought a model with granularity sufficient to have as much explanatory power in the wage equation

as the unrestricted AKM model.

We report results based on a model in which there are ten points of support for each distribution.

That is, there are ten worker types (L = 10), ten employer types (M = 10), and ten match types

(Q = 10). A comparison of the correlation with log earnings of εGibbs and εAKM reported in

Table 2 shows we were able to obtain a good fit on residual variation. The correlation between

the AKM residual and log earnings is Corr (y, εAKM) = 0.2003, while the correlation between

the structural residual and log earnings is Corr (y, εGibbs) = 0.2687. In practice, our model may

include more support points for the employer heterogeneity than needed. If so, the apparent lack of

parsimony does not introduce problems with our results, since we can collapse redundant classes

in our over-parameterized model.
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5.4 Summary of Structural Earnings Model Estimates

Figure 4 depicts the posterior distribution of the structural wage equation parameters. The figures

plot the posterior mean together with the 5th and 95th percentile of the posterior distribution (left

column) and the posterior mean ±2 ×MCSE (right column). For consistency with the conven-

tional AKM decomposition, we report the wage parameters as deviations from the grand mean of

log earnings.

Figure 4: Posterior distribution of wage equation parameters

Note that there is variation in the estimated earnings parameters on all three heterogeneity

dimensions. The dispersion of the match effects is much greater than that of the person effects (θ)

or employer effects (ψ). Also, there is very little variation in estimated employer effects between

classes 3 and 8. As we will see, our model only detects four distinct employer classes. All of these

posterior distributions are extremely tight around the posterior mean.

Table 1 reports the posterior mean and MCSE of the parameter governing the population dis-

tribution of worker types, πA, the population distribution of employer type, πB, and the marginal

probability for match type, πK . The latter probability is computed by integrating the conditional
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Table 1: Posterior Distribution of Worker, Firm, and Match Population Heterogeneity

(1) (2) (3)
Worker Firm Match

Mean MCSE Mean MCSE Mean

πA1 0.0875 0.0078 πB1 0.2038 0.2668 πK1 0.0093
πA2 0.1317 0.0127 πB2 0.5985 0.2682 πK2 0.0249
πA3 0.1448 0.0032 πB3 0.0003 0.0001 πK3 0.0916
πA4 0.1379 0.0094 πB4 0.0003 0.0001 πK4 0.0616
πA5 0.0988 0.0103 πB5 0.0003 0.0001 πK5 0.0509
πA6 0.1005 0.0064 πB6 0.0002 0.0001 πK6 0.0620
πA7 0.0835 0.0052 πB7 0.0002 0.0000 πK7 0.1014
πA8 0.0695 0.0034 πB8 0.0159 0.0114 πK8 0.1572
πA9 0.0968 0.0067 πB9 0.0203 0.0129 πK9 0.3463
πA10 0.0490 0.0017 πB10 0.1602 0.0049 πK10 0.0948

Columns (1) and (2) report the posterior distribution of the estimated probability that a worker (firm) belongs to each
latent heterogeneity class. The classes are sorted in increasing order by the associated wage heterogeneity component.
Columns (3) report the marginal distribution across the population of latent match heterogeneity classes. There are no
associated MCSE estimates because the marginal distribution is computed from the conditional distribution of match
quality given the worker and firm types.

probability, πk|ab over worker and employer types. All worker types occur in the population with

positive probability, however, workers are more likely to be of the highest and lowest type in the

population. The case is even more extreme for employers. The distribution of employer types

has only three points of support with non-negligible mass. The distribution of employer types is

thus very coarse. By contrast, the distribution of match classes is the most granular. The marginal

distribution of match types is clearly skewed toward higher match quality.

For completeness, Table OA1 in Appendix E reports the posterior mean and MCSE for the

parameters associated with observed covariates included in the earnings model. These estimates

are qualitatively similar to the uncorrected estimates. Whatever correcting for endogenous mobility

does to estimated worker and employer effects, it seems to have no substantive effect on estimates

of time-varying observable characteristics.
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Comparison of AKM and Structural Estimates

Table 2 reports correlations, weighted by job duration, among earnings and its components as esti-

mated by least squares (labeled AKM) and from our structural endogenous mobility model (labeled

Gibbs). Column (1) reports the correlation of earnings (labeled lnw) with each of the earnings

components. In the structural estimates, much more of the variation in earnings is explained by

individual heterogeneity than in the AKM estimates. Much less of the variation is explained by

employer and match specific heterogeneity. As we will see, though, this is partially due to a strong

negative correlation between the structural match effect and the structural firm and worker effects.

Table 2: Correlation Matrix of Wage Equation Parameters: LEHD Data 0.5% Sample, (10, 10, 10)
Model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

lnw XβAKM θAKM ψAKM µAKM εAKM XβAKM θGibbs ψGibbs µGibbs εGibbs

lnw 1.00
XβAKM 0.44 1.00
θAKM 0.39 −0.49 1.00
ψAKM 0.50 0.07 0.17 1.00
µAKM 0.34 0.03 0.00 −0.00 1.00
εAKM 0.20 −0.02 0.00 0.00 −0.00 1.00

XβGibbs 0.78 0.56 0.25 0.24 0.04 −0.02 1.00
θGibbs 0.50 0.14 0.38 0.27 0.00 0.00 0.25 1.00
ψGibbs 0.27 0.02 0.12 0.42 0.11 0.00 0.10 0.04 1.00
µGibbs 0.06 0.05 −0.05 −0.10 0.28 0.00 −0.00 −0.23 −0.74 1.00
εGibbs 0.27 0.00 0.02 0.08 0.17 0.78 0.00 0.00 0.00 0.00 1.00

Table entries are means of the correlation between the indicated variables across 7, 922 draws from the Gibbs sampler
described in the text.

The AKM estimates of the person and firm effects have a positive correlation of 0.1665. This

result contrasts somewhat with prior estimates from LEHD data that reported a correlation much

closer to zero (Abowd et al. 2003; 2012). This discrepancy may reflect changes over time in the

nature of assortative matching, as seems to have been the case in Germany Card et al. (2013).

We also have a much longer sample than was available in the prior studies (1990–2012 versus

1990–2003), which attenuates any limited mobility bias Andrews et al. (2012). The AKM match

effect, because it is estimated from the least squares residual is restricted to be uncorrelated with

the AKM person and firm effects, as is the case in our subsample. However, the structural person
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and firm effects are weakly (person) and strongly (firm) negatively correlated with the structural

match effect.

In the structural estimation, the correlation between person and firm effects is much weaker, at

0.0430. Note that this need not be the case: our structural model allows for separation and assign-

ment outcomes to be arbitrarily associated with worker and firm types. In the structural model,

there is a very strong negative correlation between the structural match effect and the structural

worker effect (−0.2271) and the structural firm effect (−0.7350). The structural estimates also

exhibit a positive correlation between observed and unobserved components of individual earnings

heterogeneity: Corr (XβGibbs, θGibbs) = 0.2495. This result contrasts with the AKM estimates, for

which Corr (XβAKM , θAKM) = −0.4865.

The bottom-left panel of Table 2 reports the correlation between the inconsistent AKM param-

eters and the structural parameters. This panel provides some insight into the endogenous mobility

bias. Observe, first, there is a positive correlation between the AKM heterogeneity components and

their structural counterparts. Second, the AKM estimates of the worker and firm effects combine

information from the structural worker, firm, and match effects. In particular, the AKM person

effect is negatively correlated with the structural match effect, as is the AKM firm effect.

Table OA2 in Appendix E reports the same information in the form of a regression of the struc-

tural estimates of the wage decomposition components on the AKM estimates of all components.

These regressions, therefore, compute the conditional expectation of the structure given the AKM

estimates. They can be used to compute endogenous mobility-corrected estimates of the wage

components from data for which only the AKM estimates are available.

These results indicate that the positive correlation between the AKM person and firm effects

do not actually reflect positive assortative matching on latent worker and employer characteristics.

They arise instead because high wage workers are typically employed on low paying matches, and

the heterogeneity from those matches loads onto the OLS worker and firm effects. The structural

model indicates that workers are assigned randomly to firms, and that most earnings variation is

associated with worker and match-specific heterogeneity. However, that match-specific hetero-

geneity acts to compress the wage distribution.
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5.5 Summary of Structural Mobility Model

Figures 5 and 6 summarize the mobility model by presenting the stationary distribution of worker-

firm pairs and the expected match effect on each such pair. We obtain the steady-state distribution

by computing the kernel of the Markov transition matrix implied by our mobility model from the

estimated parameters, γ, δ, πA, πB and πK|AB. This gives us, for each worker type, the steady-state

probability of observing a worker of that type matched to a particular type firm on a particular type

of match.
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Figure 5: Expected structural match effect in steady-state by worker/firm type cells. Legend is firm
types.

Figure 5 is structured identically to its AKM analog (Figure 2). Each bar represents the ex-

pected match effect, conditional on a worker type–firm type cell. The bars are grouped by worker

type, so that within each worker type, we see the pattern of expected match effects for workers of

that type when matched to different firm types. The figure shows two key patterns: the expected

match effect is strongly decreasing with firm type, and weakly decreasing with worker type. Thus,

the mobility model in steady-state exhibits the same compression pattern we observed in Table 2,

as anticipated in our discussion of the AKM estimates.

Figure 5 tells us what the expected match effect will be conditional on observing a given
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Figure 6: Expected share of matches in steady-state for each worker-type firm-type combination.
Legend is firm types.

worker-firm combination. Figure 6 gives the probability of observing each worker-firm combi-

nation in steady-state. Again, the data are grouped by worker type, so that within each group,

the bars show the probability of observing a worker in a firm of each type. The pattern for each

worker type is very similar to the population distribution of firm types reported in Table 1. There

is some evidence of a selection effect: workers of type 10 are roughly 50 percent more likely to

be observed in high-wage firms as workers of type 1. This is consistent with the weak evidence of

positive assortative matching from Table 2. Overall, it appears as though worker-firm matches are

sampled almost randomly in steady-state.

Figure 7 shows the probability a worker is observed in non-employment, conditional on the

latent worker type. For comparison, we also show the corresponding probabilities when workers

are grouped by the decile of their AKM worker effect. The estimates from the structural model

show the employment probability is increasing in the latent worker type. That is, more highly paid

workers are more likely to be employed. This standard mover-stayer result is not assumed in esti-

mation. By contrast, the results based on the AKM worker effect deciles indicate that highly-paid

and low-paid workers are less likely to be employed than workers in the middle of the distribution.

The non-employment probabilities may seem high because they incorporate transitions out of the
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Figure 7: Probability of non-employment by latent worker type (Gibbs) and worker effect decile
(AKM)

labor force and into uncovered employment in addition to unemployment.

Finally, Figure OA1 in Appendix E reports the structural analog to Figure 3. It reports, for

workers who leave their job, the expected match effect on the origin job conditional on the worker

type, and on the type of the origin and destination job. Recall there are very few firms of types

3–7. The destination firm type is not independent of the match effect on the origin job, but the

predictive power of the match effect actually seems much weaker than was the case in Figure 3

based on the inconsistent AKM estimates.

5.6 Validation: Relationship with Revenue

If the AKM estimates are biased by endogenous mobility, we should observe a difference in the re-

lationship between employer revenues and the earnings heterogeneity components estimated from

our structural model. Table 3 reports the results of estimating a firm-level regression of log revenue

per worker onto the estimated firm effect, the average worker effect, and the average match effect.

For this analysis, we restrict the sample to jobs from 2002, which is the year the revenue data were

reported in the Economic Census. After this restriction, the sample consists of 60,116 firms. The

columns under (1) report the parameter estimates and standard errors from the regression onto firm-
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level aggregates of the structural wage components. The columns under (2) reports the estimates

from the regression onto firm-level aggregates of the uncorrected AKM wage components.

Table 3: Regression of Log Revenue Per Worker on Structural and AKM Estimates of Wage De-
composition Components

(1) (2)
Gibbs AKM

Coef Ste Coef Ste
Firm Avg. θ 0.2288 0.0119 0.0234 0.0059
ψ 0.2431 0.0082 0.6735 0.0133
Firm Avg. µ 0.2046 0.009 0.0158 0.0094
Firm Avg. Xβ or Exper 0.0343 0.0063 −0.0231 0.0045
Intercept 3.4898 0.0532 3.9476 0.0247
N 60, 116 60, 116

Coefficient estimates from firm-level regressions of log revenue per worker onto firm-level averages of estimated
earnings heterogeneity. Column (1) uses the estimated wage components corrected for endogenous mobility bias from
the structural model. Column (2) uses the uncorrected estimates computed using the AKM decomposition under the
assumption of exogenous mobility. The sample is based on data from 2002, the year for which revenue data are
reported in the 2002 Economic Census.

When we use the AKM components of earnings heterogeneity, revenue per worker is strongly

correlated with the AKM firm effect, and only negligibly correlated with the average worker and

match effects. When, by contrast, we use the estimates of earnings heterogeneity from the endoge-

nous mobility model, the average match effect and average worker effect are much more strongly

correlated with revenue. We also find that the correlation between the structural firm effect and log

revenue per worker is considerably smaller than when the AKM firm effect is used: 0.2431 versus

0.6735.

We interpret these results as supporting our correction for endogenous mobility. Revenue per

worker should be a function of total human capital, both in the form of average worker quality and

match quality. In the uncorrected estimates, there is no relationship between worker quality, match

quality, and revenue. The variation in revenue per worker, which drives workers across jobs, all

loads onto the firm effect. After the correction for endogenous mobility, worker heterogeneity and

match quality have the relationships we would expect with revenue per worker. It remains the case

that more productive firms – those with greater revenue per worker – are also high wage firms.
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6 Conclusion

Our analysis confirms the relevance of relaxing the assumption that job mobility is exogenous.

Exogenous mobility is entailed by the AKM earnings decomposition, as well as by all downstream

applications that use the estimated worker and firm effects as measures of skill and compensation

policy. We have shown that the assumption of exogenous mobility is rejected in data from the

LEHD program. Furthermore, the analysis of residuals from the AKM decomposition indicate the

presence of omitted match-specific heterogeneity, and that omitted match-specific heterogeneity is

predictive of the type of firm to which a worker moves.

To relax the exogenous mobility assumption, we estimate a latent class model that incorporates

these features. We allow for a match effect that is arbitrarily correlated with worker and firm

heterogeneity, and we allow the match effect to drive both the decision to separate and the type of

firm to which the worker moves. Our results indicate that allowing for correlated match effects has

a strong effect on estimated worker and firm-specific heterogeneity. Validation against firm revenue

data suggest that our corrections for endogeneity move the estimated effects in an economically

reasonable direction.

Our analysis is subject to some caveats. Our model is extremely computationally intensive,

requiring us to estimate on a sample of the LEHD data. While we have used a dense subsample, the

implications of sampling in relational, or network data, particularly for this sort of analysis remain

poorly understood. The parallelization afforded by the graph coloring algorithm can be scaled up,

but not within the computing facilities available through the Census Bureau. Additionally, we have

considered one model that relaxes the exogenous mobility assumption. The model we consider is

consistent with the residual diagnostics, but other models are possible.

For researchers working with these models, our results indicate that it is important to test for

failure of the exogenous mobility assumption. When it fails, it may also be important to attempt

to correct for endogenous mobility bias. We find that the OLS estimates from the AKM model

are positively correlated with conceptually appropriate effects that were estimated correcting for

endogenous mobility. However, correcting for endogenous mobility has a substantial affect on

the relationship between worker and firm earnings heterogeneity, and on the relationship of these

components with firm revenue per worker. These findings recommend that caution is warranted
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when interpreting worker and firm effects estimated under the AKM assumptions, as originally

noted by Abowd and Kramarz (1999).
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Appendices
A Online Appendix: Formal Test of Endogenous Mobility
We implement our tests using LEHD data covering 28 states over the period 1990–2004. Our esti-
mation sample for the AKM decomposition consists of all 982 million dominant job observations
in this time period. Recall from the main text that the dominant job is the one from which the
individual earns the most labor market earnings in a particular year. To implement the tests, we
discretize estimated person effects, firm effects, and residuals onto a fixed support. The quantiles
that define the support points are calculated from a point-in-time snapshot of the distribution of
dominant jobs in progress as of April 1, 2002. That distribution is restricted to full-time, full-year
jobs held by individuals age 18-70. Finally, in testing, we use all 465 million dominant job ob-
servations for workers 18-70 that occur between 1999 and 2002. Test 1, the match effects test,
uses data for about 104 million job changers during 1999-2004, inclusive. Test 2, the productive
workforce test, uses data for about 4 million firms alive in 2001.

A.1 Data Preparation and Definitions
Given the fitted values from the AKM decomposition, we select the sample of individuals and
employers active at the beginning of 2002, quarter 2 (April 1, 2002). For this sample, we compute
deciles from the estimated θ̂i, ψ̂J(i,t), and ε̂it as described above. Using the estimated deciles, we
discretize each component of the decomposition onto 10 fixed points of support. We adopt the
following notation:

Q (z) = a denotes quantile a for z ∈ {θ, ψ, ε}

and
]Q (z) denotes then number of quantiles for z ∈ {θ, ψ, ε} .

In the tests presented below, we use deciles, so ]Q (z) = 10.

A.2 Test Statistic 1: Match Effects Test
Under the hypothesis of exogenous mobility, the match effect for a given individual–employer pair
can be estimated using the average residual for the most recent completed job at j by i. We denote
these match effects as εit−1 for those individuals who change employers between periods t− 1 and
t. Formally,

εit−1 =

∑
{s|J(i,s)=j∧s<t∧J(i,s)6=J(i,t)}

ε̂is∑
1 {s|J (i, s) = j ∧ s < t ∧ J (i, s) 6= J (i, t)}

An individual for whom εit−1 > 0 received wage payments while employed at J (i, t− 1) = j that
exceeded their expected value, again under the hypothesis of exogenous mobility. The opposite is
true for individuals for whom εit−1 < 0.
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A.2.1 Derivation of the Match Effects Test Statistic

To form a test statistic that captures the potential for εit−1 to be predictive of the next employer type,
we count all (i, t) pairs where J (i, t− 1) 6= J (i, t) (job changers) in quantiles of the components
θ̂i, ψ̂J(i,t−1), ψ̂J(i,t), and εit−1:

nabcd =
∑

{i,t|J(i,t−1)6=J(i,t)}

1


Q
(
θ̂i

)
= a ∧

Q
(
ψ̂J(i,t−1)

)
= b ∧

Q
(
ψ̂J(i,t)

)
= c ∧

Q (εit−1) = d


. (A-1)

The joint probability of observing nabcd is

πabcd = Pr
{
Q (θi) = a ∧Q

(
ψJ(i,t−1)

)
= b ∧Q

(
ψJ(i,t)

)
= c ∧Q (εit−1) = d

}
.

Exogenous mobility implies that the match effect from period t− 1 should not be predictive of the
transition from ψJ(i,t−1)to ψJ(i,t) for an individual with θi. This hypothesis can be formalized as
conditional independence of the outcome(

Q (θi) = a ∧Q
(
ψJ(i,t−1)

)
= b ∧Q

(
ψJ(i,t)

)
= c
)

from Q (εit−1) = d. In terms of the joint probabilities we compute

X2
ν1

= Test (πabcd = πabc+π+++d) (A-2)

where the subscript + denotes the marginal distribution with respect to the indicated dimension,
and degrees of freedom are given by

ν1 =
(
# (Q (θi))×#Q

(
ψJ(i,t−1)

)
×#Q

(
ψJ(i,t)

)
− 1
)
× (#Q (εit−1)− 1) .

A.2.2 Computation of the Match Effects Test

We compute the test statistic (A-2) by direct calculation of the chi-squared statistic from the 4-way
contingency table defined by the discretized earnings heterogeneity under the conditional indepen-
dence assumption πabcd = πabc+π+++d. The population of job changers consists of individuals i
for whom J (i, t− 1) 6= J (i, t) for t = 1999, ..., 2003. The entire population of individuals and
employers was used to compute the quantiles of the θ̂i, ψ̂J(i,t−1), ψ̂J(i,t), and εit−1 distributions.
Then the counts (A-1) were tabulated using all observations in the job-changer population and
used to compute the relevant marginal frequencies for the test.
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A.3 Test Statistic 2: Productive Workforce Test
Our second test considers the implications of exogenous mobility for the employer’s choice of
workforce distributions over θi. The average amount by which wages deviate from their expecta-
tions, under exogenous mobility, for a given workforce at a point in time can be computed as the
average residual for all employees at J (i, t) = j in year t

ε̃jt =

∑
{i|J(i,t)=j}

ε̂it∑
1 {i|J (i, t) = j}

.

An employer for whom ε̃jt > 0 has paid higher than expected wages in period t; and the opposite is
true for ε̃jt < 0. Although there could be many reasons for this, we will refer to ε̃jt as a measure of
workforce productivity. However, the exogenous mobility hypothesis is silent about the meaning
of ε̃jt. What matters is its relationship to the within-employer distribution of θi. If ε̃js is predictive
of the within-employer distribution of θi for some period t > s, given ψj , then exogenous mobility
fails because the distribution of future employment depends on residuals in the theoretical AKM
decomposition.

To implement this test, consider two periods s < t and all employers with strictly positive
employment in period s. Compute the counts

nabc|s =
∑
j

1
{
Q
(
ψj
)

= a ∧Q (ε̃js) = c
}
×

∑
{i|J(i,s)=j∧Q(ψj)=a}

Q (θi) = b


and

nabc|t =
∑
j

1
{
Q
(
ψj
)

= a ∧Q (ε̃js) = c
}
×

∑
{i|J(i,t)=j∧Q(ψj)=a}

Q (θi) = b

 .

Note that the two counts are not independent because they condition on the same distribution of
employers alive in period s. Let

πabc|s = Pr
{
Q
(
ψj
)

= a ∧ (Q (θi) = b|s) ∧Q (ε̃js) = c
}

and
πabc|t = Pr

{
Q
(
ψj
)

= a ∧ (Q (θi) = b|t) ∧Q (ε̃js) = c
}
.

Then, the statistic for testing the conditional independence of the within-employer distribution over
θi with respect to the residual is

X2
ν2

= Test

(
ln

(
πabc|s
πabc|t

)
= ln

(
πab+|s
πab+|t

))
(A-3)
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with degrees of freedom ν2 = (#Q (θi)− 1)×(#Q (ε̃js)− 1)+
(
#Q

(
ψj
)
− 1
)
×(#Q (θi)− 1)×

(#Q (ε̃js)− 1).

A.3.1 Derivation of the Productive Workforce Test Statistic

To see why the test in equation (A-3) is correct, consider the log-linear model

ln

(
πabc|s
πabc|t

)
=

(
µa|s − µa|t

)
+
(
µb|s − µb|t

)
+
(
µc|s − µc|t

)
+
(
γab|s − γab|t

)
+
(
γac|s − γac|t

)
+
(
γbc|s − γbc|t

)
+
(
ρabc|s − ρabc|t

)
where the notation is as follows:

• µz|t denotes main effects of z ∈
{
Q
(
ψj
)
, Q (θi) , Q (ε̃js)

}
in period t,

• γyz|t denotes 2-way interactions of (y, z) ∈
{
Q
(
ψj
)
, Q (θi) , Q (ε̃js)

}
in period t,

• ρxyz|t denotes 3-way interactions of (x, y, z) ∈
{
Q
(
ψj
)
, Q (θi) , Q (ε̃js)

}
in period t.

The change in main effects of Q
(
ψj
)

from period s to t,
(
µa|s − µa|t

)
, must be 0 since the

population of employers is restricted to be identical in both periods. Similarly, the change in main
effects of Q (ε̃js) ,

(
µc|s − µc|t

)
, must be 0 since the workforce productivity distribution is only

measured at period s. The change in interaction of Q
(
ψj
)

and Q (ε̃js) ,
(
γac|s − γac|t

)
, must also

be 0 for the same reason.
This leaves two sets of parameters that are unconstrained by the null hypothesis–the change

in main effects of Q (θi),
(
µb|s − µb|t

)
, with df = (#Q (θi)− 1) and the change in interaction of

Q
(
ψj
)

and Q (θi),
(
γab|s − γab|t

)
, with df =

(
#Q

(
ψj
)
− 1
)
× (#Q (θi)− 1). The parameters

affected by the null hypothesis are the change in interaction of Q (θi) and Q (ε̃js),
(
γbc|s − γbc|t

)
,

with df = (#Q (θi)− 1) × (#Q (ε̃js)− 1) and the change in interaction of Q
(
ψj
)
, Q (θi) and

Q (ε̃js),
(
ρabc|s − ρabc|t

)
, with df =

(
#Q

(
ψj
)
− 1
)
× (#Q (θi)− 1) × (#Q (ε̃js)− 1). Under

the null hypothesis
(
γbc|s − γbc|t

)
= 0 and

(
ρabc|s − ρabc|t

)
= 0 with df = ν2 = (#Q (θi)− 1) ×

(#Q (ε̃js)− 1) +
(
#Q

(
ψj
)
− 1
)
× (#Q (θi)− 1)× (#Q (ε̃js)− 1).

A.3.2 Computation of the Productive Workforce Test Statistics

We use the method of moments for test (A-3). The observations are firms j with positive employ-
ment in s. For each firm compute

xj =


nj1t
nj+t
− nj1s

nj+s
nj2t
nj+t
− nj2s

nj+s

...
nj(#Q(θi)−1)t

nj+t
−

nj(#Q(θi)−1)s

nj+s
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where
njqt =

∑
{i|J(i,t)=j}

1 (Q (θi) = q) .

and xj is [(#Q (θi)− 1)× 1] . For each value of a and c compute the vector of means and the
covariance matrix

x̄ac =

∑
{j|Q(ψj)=a∧Q(ε̃js)=c}

nj+sxj

∑
{j|Q(ψj)=a∧Q(ε̃js)=c}

nj+s

Vac =

∑
{j|Q(ψj)=a∧Q(ε̃js)=c}

nj+s (xj − x̄ac) (xj − x̄ac)′

∑
{j|Q(ψj)=a∧Q(ε̃js)=c}

nj+s
.

N =
∑
j

1 (j|∃i : J (i, s) = j)

For each value of a compute the expected mean under the null hypothesis

x̄a =

∑
{j|Q(ψj)=a}

nj+sxj

∑
{j|Q(ψj)=a}

nj+s
.

Then,
X2
ν2

= N
∑
a,c

(x̄ac − x̄a)′ V −1ac (x̄ac − x̄a) .

Under the null hypothesis, X2
ν2

= 0 and follows a chi-square distribution with ν2 degrees of
freedom.
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B Online Appendix: Posterior Distribution of the Parameter
Vector

The posterior distribution of ρ given (Y, Z) is

p (ρ|Y, Z) ∝ £ (ρ|Y, Z)
1

σν0+1
exp

(
− s

2
0

σ2

) L∏
`=1

π
1
L
−1

a`

M∏
m=1

π
1
M
−1

bm (B-1)

×
L∏
`=1

M∏
m=0

Q∏
q=1

(
π

1
Q
−1

q|`m γ
1
2
−1

`mq

(
1− γ`mq

) 1
2
−1

M∏
m′=0

δ
1

M+1
−1

m′|`mq

)
.

This distribution factors into posterior distributions for the model parameters that are independent,
conditional on the latent data, from which we sample.

To characterize these distributions, we introduce new notation. The matrix G = [X ABK] is
the full design of observed characteristics, ability, productivity, and match types given the observed
and latent data. The term ν, which appears in the posterior of σ, is ν = N + ν0 − (L + M + Q).
The sum of squared log earnings residuals is

s2 =

lnw −G

ˆ
α
θ
ψ
µ



T lnw −G

ˆ
α
θ
ψ
µ




ν
. (B-2)

The remaining parameters are sampled from Dirichlet posteriors, denoted by D.
Key to estimation are various counts from the completed data. na` is the count of workers

with ability class `. nbm is the number of employers in productivity class m. nk|abq is the number
of matches observed in quality class q. nseplmq is the number of observations in which a worker
in ability class ` separates from an employer in productivity class m when match quality was q.
Finally, ntransm′|`mqis the number of transitions by workers in ability class ` from a match with an
employer in productivity class m and match quality class q to an employer in productivity class
m′.

The posterior distribution of the wage equation parameters is
α
β
θ
ψ
µ

 |σ ∼ N


ˆ
α
β
θ
ψ
µ

, σ2
(
GTG

)−1
 (B-3)
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where
ˆ
α
β
θ
ψ
µ

 =
(
GTG

)−1
GTw,

and

σ2 ∼ IG

(
ν

2
,

2

νs2

)
. (B-4)

The posterior distributions for the latent heterogeneity types are Dirichlet:

πa ∼ D

(
na1 +

(
1

L
− 1

)
, . . . , naL +

(
1

L
− 1

))
; (B-5)

πb ∼ D

(
nb1 +

(
1

M
− 1

)
, . . . , nbM +

(
1

M
− 1

))
; (B-6)

πk|ab ∼ D

(
nk|ab1 +

(
1

Q
− 1

)
, . . . , nk|abQ +

(
1

Q
− 1

))
. (B-7)

The posterior distributions of the separation and assignment parameters of the mobility model are
also Dirichlet:

γlmq ∼ D

(
nsep`mq +

(
1

2
− 1

)
, nstay`mq +

(
1

2
− 1

))
; (B-8)

δb|lmq ∼ D

(
ntrans0|`mq +

(
1

M + 1
− 1

)
, . . . , ntransM |`mq +

(
1

M + 1
− 1

))
. (B-9)

C Online Appendix: The Mobility Model in Steady-State
The stationary distribution of the mobility model gives a steady-state distribution of employment
spells across worker, employer, and match types. This, it turns out, is a model for the realized
mobility network, characterized in the data by the design matrix of employer effects, F , and the
associated cross-product term, DTF . We also interpret it as a characterization of the selection
model – the process by which particular matches are selected from the set of all possible matches.

The stationary distribution is simple to characterize: define λ`,m,q to be the expected number
of matches in steady-state between workers of type ` and employers of type m on matches with
quality q. Now define the diagonal matrix

Λ = diag([λ111, λ112, . . . , λLMQ]T ). (C-1)

Note that Λ does not account for transitions to non-employment. For exposition, suppose L =
M = Q = 2 so Λ is 8 × 8. In estimation, we let L, M , and Q vary and report results for the case
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L = Q = M = 10.
In steady-state, observed log earnings data lnw are drawn from a discrete distribution propor-

tional to Λ. Net of the statistical residual, and the effect of observed time-varying characteristics,
Xβ, the potential outcomes lnw −Xβ − ε are completely characterized by an LMQ× 1 vector,
ỹ with

ỹ`,m,q = α + θ` + ψm + µq. (C-2)

The model therefore specifies

• Potential Outcomes: ỹ, and

• Selection Process: Λ.

Define a set of indicator matrices analogous to the person, employer, and match design matri-
ces. For the 2× 2× 2 model, this matrix is simply

[
D̃ F̃ G̃

]
=



1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 0 1
0 1 1 0 1 0
0 1 1 0 0 1
0 1 0 1 1 0
0 1 0 1 0 1


. (C-3)

The notation D̃,F̃ , and G̃ highlights the connection between these reduced-dimension objects and
the design matrices of worker and employer effects in the full data AKM model.

Net of Xβ and ε, the earnings data are sampled from a distribution proportional to

Λỹ = Λ
(
D̃θ + F̃ψ + G̃µ

)
(C-4)

and the full cross-product matrix is

[
D̃ F̃ G̃

]T
Λ
[
D̃ F̃ G̃

]
=

D̃TΛD̃ D̃TΛF̃ D̃TΛG̃

F̃ TΛD̃ F̃ TΛF̃ F̃ TΛG̃

G̃TΛD̃ G̃TΛF̃ G̃TΛG̃

 . (C-5)

Notice that the upper-left block of the cross-product matrix in (C-5) is a model for the Laplacian
of the realized mobility network, which is random noise around this steady-state distribution.
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D Online Appendix: Estimation Details

D.1 Parallelization of Employer Updates through Graph Coloring
To speed computation of the employer updates, we exploit the conditional independence restriction
in the update formula, equation (15). For any employers, j and j′, we say j and j′ are degree-
one connected if any worker was observed to move from j directly to j′ in the sample. The set,
N (j), is the set of all employers, j′, that are degree-one connected to j. Equation (15) implies
that if j′′ is not in N (j) and j is not in N (j′′), then Pr [bj = m|a, b−j, k, Y, ρ] is independent of
Pr [bj′′ = m|a, b−j′′ , k, Y, ρ] and, therefore, conditional on the rest of the latent data, the latent type
of j and j′′ can be updated at the same time (in parallel).

To fully exploit the network structure and conditional independence assumptions, we need
groups of employers such that no two employers are degree-one connected. In the language of
graph theory, this problem is equivalent to graph coloring in which the task is to color each node
of a graph so that no two degree-one connected nodes have the same color, and to do so using the
fewest colors possible.

For a general graph, the problem of finding the minimum number of colors is intractable. For
our task, it is sufficient to find a coloring that yields a small number of partitions relative to the
highest degree node in the data (well over 1,000). To that end, we implement the greedy sequential
coloring algorithm described in Gebremedhin et al. (2005). Briefly, the algorithm sorts network
nodes from highest to lowest degree (that is, sorting employers in descending order by the number
of job-to-job separations). The first node is assigned a color at random. For every other node, we
assign the least frequent color that has not already been applied to one of its neighbors. If there is
no such color, we add a new color to the list and continue.

In our data, this algorithm yields a coloring that partitions employers into 24 non-intersecting
subsets. We update the employer classes in parallel within each subset, and in sequence across the
subsets. Our partition is well below the algorithmic worst-case guarantee: a coloring with as many
colors as the highest-degree node in the graph, which is much greater than 1,000.

D.2 Calculation of Monte Carlo Standard Errors
When reporting results, we report Monte Carlo standard errors (MCSE) in place of, or in addition
to, the posterior standard deviation. Unsurprisingly, we observe substantial autocorrelation across
draws from the Gibbs sampler. The MCSE are computed using time-series methods that account
for uncertainty about the location of the posterior distribution associated with autocorrelation in the
chain. Using MCSE provides a practical and rigorous method for combining information across in-
dependent runs of the Gibbs sampler (we use three). The MCSE also fully exploit the information
within each sample, while addressing within-thread autocorrelation, relative to more conventional
ad hoc approaches like thinning the sample. Our ability to do so is all the more important given the
computational burden of each draw. Even with the parallelization described in Section D.1, draw-
ing from the Gibbs sampler is very time-consuming. Here, we describe implementation choices
that affect our analysis. We refer the reader interested in the theoretical and practical details of
computing the MCSE to the survey by Geyer (2011).
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In calculating the MCSE, we implement the multivariate extension developed in Kosorok
(2000) of initial sequence methods originally proposed by Geyer (1992). There are three variants
of the initial sequence method, all of which exploit reversibility of the Markov Chain to determine
the largest lag to include when computing the autocorrelation coefficient. The values reported in
our tables are estimates from the initial positive sequence method, which are the most conserva-
tive. The other two methods, which we also implement, are the initial monotone and initial convex
sequence methods. There is no meaningful difference across the estimates. In practice, we com-
pute the univariate MCSE for each parameter due to numerical instability in the auto-covariance
matrices.
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E Online Appendix: Supplemental Tables and Figures

Table OA1: Posterior Mean of Observed Covariate Parameters

Variable Mean (MCSE) Variable Mean (MCSE)

age 0.5810 (.0029) yr1992 −0.0275 (.0008)
age2 −0.1880 (.0009) yr1993 −0.0477 (.0013)
age3 0.0277 (.0001) yr1994 −0.0437 (.0018)
age4 −0.0016 (.0000) yr1995 −0.0352 (.0020)

female× age 0.0036 (.0007) yr1996 −0.0225 (.0026)
age2 −0.0117 (.0004) yr1997 0.0036 (.0029)
age3 0.0030 (.0001) yr1998 0.0442 (.0033)
age4 −0.0002 (.0000) yr1999 0.0550 (.0037)

black× age −0.0004 (.0012) yr2000 0.0670 (.0040)
age2 −0.0025 (.0007) yr2001 0.0619 (.0043)
age3 0.0005 (.0001) yr2002 0.0696 (.0046)
age4 0.0000 (.0000) yr2003 0.0659 (.0049)

hispanic× age 0.0263 (.0008) yr2004 0.0751 (.0053)
age2 −0.0173 (.0009) yr2005 0.0776 (.0058)
age3 0.0029 (.0002) yr2006 0.0830 (.0062)
age4 −0.0001 (.0000) yr2007 0.0927 (.0065)
sixq2 0.6879 (.0079) yr2008 0.0880 (.0069)
sixq3 1.5227 (.0115) yr2009 0.0784 (.0074)
sixq4 2.0854 (.0119) yr2010 0.0843 (.0077)
sixq5 2.5327 (.0112) σ 0.3659 (.0003)
sixq6 2.6913 (.0084)

sixqleft −0.0951 (.0031)
sixqright −0.0568 (.0027)
sixq4th 0.0989 (.0003)

sixqinter −0.4108 (.0027)

Table entries are means and Monte Carlo Standard Errors of the parameters on the indicated control variable across
7,922 draws from the Gibbs sampler described in the text.
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Table OA2: Regression of Structural Wage Decomposition Components on AKM Estimates of
Wage Decomposition Components

XβGibbs θGibbs ψGibbs µGibbs εGibbs

XβAKM 0.4084 0.0357 0.0035 0.4664 0.0047
(.0021) (.0020) (.0012) (.0125) (.0001)

θAKM 0.3302 0.1946 0.0265 0.1652 0.0069
(.0028) (.0099) (.0014) (.0095) (.0002)

ψAKM 0.2424 0.2398 0.9221−0.3824 0.0608
(.0011) (.0135) (.0243) (.0281) (.0009)

µAKM 0.0384 −0.0020 0.2524 0.5658 0.1432
(.0000) (.0002) (.0106) (.0111) (.0009)

εAKM −0.0243 0.0069 0.0036 0.0351 0.9574
(.0001) (.0006) (.0008) (.0017) (.0001)

Constant 5.9418 −0.1450 0.0103−3.4534−0.0322
(.0302) (.0086) (.0006) (.0838) (.0006)

Results from running a regression of the wage components estimated under the endogenous mobility model on wage
components estimated using the AKM decomposition. The reported values are the mean parameter estimate and the
correlated-draw Monte Carlo standard errors across 7,922 draws from the Gibbs sampler.
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(a) Worker Type 1
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(c) Worker Type 10

Figure OA1: Expected match effect within origin/destination employer type cells, disaggregated
by worker type. Legend is firm types.
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