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Abstract

The vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a murine agonist of the stimulator of
interferon genes (STING), appears to target the tumor vasculature primarily as a result of stimulating pro-inflammatory
cytokine production from tumor-associated macrophages (TAMs). Since there were relatively few reports of DMXAA effects
in genetically-engineered mutant mice (GEMM), and models of non-small cell lung cancer (NSCLC) in particular, we
examined both the effectiveness and macrophage dependence of DMXAA in various NSCLC models. The DMXAA responses
of primary adenocarcinomas in K-rasLA1/+ transgenic mice, as well as syngeneic subcutaneous and metastatic tumors,
generated by a p53R172HDg/+; K-rasLA1/+ NSCLC line (344SQ-ELuc), were assessed both by in vivo bioluminescence imaging as
well as by histopathology. Macrophage-dependence of DMXAA effects was explored by clodronate liposome-mediated
TAM depletion. Furthermore, a comparison of the vascular structure between subcutaneous tumors and metastases was
carried out using micro-computed tomography (micro-CT). Interestingly, in contrast to the characteristic hemorrhagic
necrosis produced by DMXAA in 344SQ-ELuc subcutaneous tumors, this agent failed to cause hemorrhagic necrosis of
either 344SQ-ELuc-derived metastases or autochthonous K-rasLA1/+ NSCLCs. In addition, we found that clodronate liposome-
mediated depletion of TAMs in 344SQ-ELuc subcutaneous tumors led to non-hemorrhagic necrosis due to tumor feeding-
vessel occlusion. Since NSCLC were comprised exclusively of TAMs with anti-inflammatory M2-like phenotype, the ability of
DMXAA to re-educate M2-polarized macrophages was examined. Using various macrophage phenotypic markers, we found
that the STING agonists, DMXAA and the non-canonical endogenous cyclic dinucleotide, 2939-cGAMP, were both capable of
re-educating M2 cells towards an M1 phenotype. Our findings demonstrate that the choice of preclinical model and the
anatomical site of a tumor can determine the vascular disrupting effectiveness of DMXAA, and they also support the idea of
STING agonists having therapeutic utility as TAM repolarizing agents.
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Introduction

Strategies targeting the tumor vasculature represent an attrac-

tive approach in cancer therapy, and as such there has been much

interest in a class of drugs known as vascular disrupting agents

(VDA) [1,2]. The VDA, 5,6-dimethylxanthenone-4-acetic acid

(DMXAA; a.k.a. ASA-404) specifically targets immature and

unstable vasculature of solid tumors, leading to thrombosis,

hemorrhage, and necrosis [3]. In a host of preclinical studies

involving many different tumor types and primarily in subcuta-

neous tumor models, DMXAA has demonstrated potent anti-

tumor activity [4–6]. In addition, synergies were observed when

DMXAA was used in conjunction with cytotoxic chemotherapeu-

tic agents that targeted the viable rim of tumor cells that typically

survive DMXAA treatment [3,7–9].

There is evidence that the actions of DMXAA on tumor

vasculature involve both direct and indirect effects, via targeting of

the endothelium, and macrophages, respectively. The latter

appear to be the most important, and are the result of

DMXAA-triggered release of tumor-associated macrophage

(TAM)-derived factors, such as TNF-a and NO [5,7,10–12],

together with contributions from various other cytokines and

chemokines [2,6–8]. Following success in preclinical studies, the

impetus for moving DMXAA into a Phase III trial for NSCLC
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stemmed largely from the observed increase in overall survival

reported in a previous Phase II trial [13,14]. However, the larger

trial, and other Phase II trials, failed to produce favorable

outcomes [15–17]. This raised the question as to why there was

such a discrepancy between the positive results obtained using pre-

clinical animal models and the results in the clinic. Recently, it was

shown that DMXAA exhibits differential effects on murine and

human macrophages [18], and also that the stimulator of

interferon genes (STING), was a receptor for DMXAA [19–21].

The finding that DMXAA was unable to activate human STING

provided a salient explanation for the failure of this agent in the

human clinical trials [20,21].

With the goal of gaining further insight into additional variables

accounting for the differential effects of DMXAA between pre-

clinical and clinical trials, we examined the effects of this agent in

several mouse models, including: (a) syngeneic subcutaneous and

metastatic tumors due to a cell line (344SQ-ELuc) derived from

the p53R172HDg/+ K-rasLA1/+ genetically engineered mutant mouse

(GEMM) model of NSCLC [22–24]; (b) primary lung adenocar-

cinomas arising in the K-rasLA1/+ model of NSCLC; and (c)

subcutaneous and metastatic tumors due to the human MDA-MB-

231 breast cancer cell line [25]. Consistent with previous pre-

clinical studies, DMXAA led to massive hemorrhagic necrosis in

subcutaneously grown breast cancer and NSCLC cell line tumors.

In contrast, neither autochthonic lung adenocarcinomas arising in

K-rasLA1/+ transgenic mice [26], nor metastases derived from

intracardiac injections of syngeneic 344SQ-ELuc NSCLC cells

showed responses to DMXAA administration. In addition, we

found that clodronate liposome-mediated macrophage depletion

[27] abrogated DMXAA-induced intra-tumoral hemorrhagic

necrosis in 344SQ-ELuc subcutaneous tumors.

Although the macrophage-derived factors thought to mediate

the anti-tumor effects of DMXAA are characteristic of M1

polarized cells, we found that the murine NSCLC TAMs were

primarily M2-like. Thus, the responses of M1 and M2 macro-

phages to DMXAA were investigated. We found that M2

polarized bone marrow-derived macrophages, as well as M2-like

TAMs could be re-polarized to an M1 phenotype by DMXAA.

We further found that the endogenous STING ligand, 2939-

cGAMP, produced a similar repolarization phenotype. TAM re-

education represented a plausible mechanism whereby M2-like

TAMs were able to mediate vascular disruption in response to

DMXAA. Our results lend support to the idea of using STING

agonists as TAM repolarizing agents, and they also highlight the

importance of testing agents on a variety of preclinical models. In

addition, our study highlights the growing awareness of the utility

of GEMMs for preclinical drug studies [28,29].

Results

NSCLC TAMs and Clodronate Liposome-mediated TAM
Depletion

Consistent with the evidence that macrophages play an

important role in the action of DMXAA [11,30], we found that

344SQ-ELuc subcutaneous tumors contained large numbers of

infiltrating macrophages, as detected by ionized Ca2+-binding

adaptor (Iba)-1 immunostaining. These cells were concentrated

primarily at the tumor periphery (Figure 1A), and the vast

Figure 1. Effectiveness of clodronate-mediated TAM depletion varied depending on tumor site. Representative 344SQ-ELuc
subcutaneous tumor sections were stained with antibodies against Iba-1 (A) and Arg-1 (B), demonstrating abundant M2-like macrophages primarily
at the tumor periphery. In contrast, much lower and variable macrophage infiltration was present in either the K-rasLA1/+ primary NSCLCs (C) or in
344SQ-ELuc metastases (D). (E) MTT assay conducted on BMDM (Mw) or 344SQ-ELuc cells to assess potential cytotoxicity in response to either
Clodrolip (Clod) or empty liposomes (EL). (F) Representative 344SQ-ELuc subcutaneous tumor and kidney metastases sections from Clod-treated mice
were stained with Iba-1 showing that TAM depletion only occurred in subcutaneous tumors (T = tumor, K = kidney). Scale bar = 100 mm (A–B) 50 mm
(C, D, F). Data represent the mean 6 SEM.
doi:10.1371/journal.pone.0099988.g001

STING Agonists Cause M2-To-M1 Repolarization
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majority of the TAMs were positive for the murine M2 marker,

arginase (Arg)-1 (Figure 1B). In contrast, spontaneously arising K-

rasLA1/+ lung adenocarcinomas contained a relative paucity of

TAMs, with only a few scattered cells located at the tumor

periphery (Figure 1C). To obtain metastases, 344SQ-ELuc

NSCLC cells were introduced via intracardiac, left-ventricle

(LV), injection in syngeneic mice. This route reproducibly resulted

in multiple kidney, adrenal gland, lung, and visceral fat pad

metastases (Figure S1). These metastases contained variable

levels of macrophage infiltration (Figure 1D) but at considerably

lower levels than were observed in the 344SQ-ELuc subcutaneous

tumors.

To investigate the role of macrophages in mediating DMXAA

vascular disruption, we depleted macrophages using clodronate-

encapsulated liposomes (Clodrolip) [27]. A comparison of the

effects of in vitro Clodrolip treatment of 344SQ-ELuc cells and

bone marrow-derived macrophages (BMDM) demonstrated an

,100-fold greater sensitivity of macrophages (Figure 1E). In vivo,

Clodrolip led to an ,50% decrease in CD11b+ F4/80+ marrow

cell populations (Figure S2A–B), and although we obtained

,100% depletion of TAMs within subcutaneous 344SQ-ELuc

tumors, no evidence of TAM depletion was seen in 344SQ-ELuc

metastases (Figure 1F). TAMs can play a supportive role during

tumor development, and consistent with this, we found that

Clodrolip-mediated TAM depletion slowed the growth of 344SQ-

ELuc subcutaneous tumors while growth of metastases was

unaffected, presumably due to the inability to obtain macrophage

depletion (Figure S2C–F).

Depletion of Macrophages in Subcutaneous 344SQ-ELuc
Tumors Alters the Response to DMXAA

Consistent with previous reports [22], 344SQ-ELuc NSCLC

subcutaneous tumors respond dramatically to DMXAA, with a

marked (,2-logs) decrease in bioluminescence (BLI) signals post-

Figure 2. TAM depletion prevented DMXAA-induced hemorrhagic necrosis of subcutaneous NSCLC. (A) BLI of bilateral 344SQ-ELuc
subcutaneous tumors in a representative syngeneic 129/Sv mouse at day 14 post-cell injection. Mice were randomized into two groups and
administered a single i.p. dose of 25 mg/kg DMXAA or DMSO vehicle and imaged again at 6 and 24 hours (N = 10). Regions of interest (ROIs) drawn
over tumors or whole body, to quantify photon emission rates, revealed a dramatic loss of signal intensity following DMXAA treatment of mice with
subcutaneous tumors. (B) (**p#0.01). (C) Histology of representative subcutaneous tumors taken at 24 hours post-DMXAA treatment demonstrated
hemorrhagic rims and necrosis (scale bars = 100 mm). (D) 344SQ-ELuc subcutaneous tumors were established in Clod or EL treated mice which were
then given DMXAA or vehicle control (N = 6 Clod plus DMXAA; N = 3 controls). Quantification of ROI demonstrated a significant drop in photon
emission rates in response to DMXAA (*p,0.05). (E) Histology of representative tumors at 24 hours demonstrates absence of hemorrhage at the
tumor periphery in the Clod plus DMXAA treated mice, however, necrosis still occurred (*) (scale bar = 100 mm). (F) Representative gross pathology of
subcutaneous 344SQ-ELuc tumors following DMXAA treatment, showing extensive hemorrhage both within and in the immediate vicinity of the
tumor. Note that Clod plus DMXAA treated tumors did not exhibit intra-tumoral hemorrhage, but rather showed thrombosis and hemorrhage
confined to larger feeding vessels (yellow asterisk). Data represent the mean 6 SEM.
doi:10.1371/journal.pone.0099988.g002
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drug injection (Figure 2A–B). This was accompanied by vascular

thrombosis and hemorrhage in the tumor periphery, and by the

development of extensive central necrosis (Figure 2C). The drop

in BLI following DMXAA treatment was not due to direct tumor

cell toxicity since DMXAA had no detrimental effect on 344SQ-

ELuc cell viability (Figure S3). Instead, tumor BLI signal loss was

attributable to greatly diminished blood, and hence luciferin

substrate, perfusion which would diminish ATP-dependent light

production. While decreased perfusion could conceivably have

resulted from reversible vasoconstriction, given the massive tumor

necrosis observed, it was more likely that decreased light emission

was the result of tumor vessel thrombosis and rupture.

Since TAMs could be efficiently depleted by Clodrolip in the

344SQ-ELuc subcutaneous tumors, we evaluated the responses of

these tumors to DMXAA. Mice treated with empty liposomes (EL)

served as the control group. DMXAA still provoked a dramatic

drop (,2-logs) in bioluminescence signal intensity (Figure 2D),

however, this occurred in the absence of the characteristic intra-

tumoral thrombosis and hemorrhage. Instead, DMXAA led to

massive non-hemorrhagic, ‘dry’, necrosis (Figure 2E). The latter

appeared to result from DMXAA-induced occlusion of tumor-

feeding vessels (Figure 2F). Although it was conceivable that

Clodrolip had sensitized the feeding vessels to DMXAA, this result

suggested the VDA effects of DMXAA were not confined to the

intra-tumoral vasculature, but rather that tumor-feeding arterioles

had also been compromised by this agent. Indeed, DMXAA may

have a direct effect on endothelial cells [3,7–9]. While it is

plausible that clodronate treatment may have sensitized the tumor

vasculature, for example, by increasing vessel fragility or

interfering with pericyte coverage, we have found that large

tumor-feeding vessel thrombosis is also present after DMXAA

administration to non-Clodrolip exposed mice (data not shown).

The results suggest that DMXAA mediates its effects in two ways:

by causing macrophage-induced intra-tumoral microvessel disrup-

tion and by causing thrombosis of tumor-feeding vessels.

Regardless, it was clear that subcutaneous 344SQ-ELuc tumor

TAM depletion was effective in preventing DMXAA-induced

intra-tumoral hemorrhagic thrombosis.

Both DMXAA and the Non-canonical Cyclic Dinucleotide
2939-cGAMP are able to Re-educate M2 Macrophages
towards an M1 Pro-inflammatory Phenotype

Since the intra-tumoral hemorrhagic response of subcutaneous

344SQ-ELuc tumors to DMXAA was dependent on TAMs, we

next examined the effect of DMXAA directly on macrophages.

DMXAA is known to stimulate the production of cytokines, such

as TNFa, CXCL10 (IP-10), MIP-1a, and MIP-1b, [7,10], in order

to mediate vascular disruption, and these factors are typical of M1

macrophage responses. However, we found that the majority of

344SQELuc TAMs were M2-like (Figure 1A–B). Hypothesizing

that DMXAA would alter macrophage polarization, supernatant

cytokine and chemokine profiles of DMXAA-treated BMDM M1-

and M2-polarized macrophages (Figure S4 A) were evaluated by

a cytokine/chemokine discovery array. The top fold-changed

cytokines are listed in Table 1 (for the raw data see Table S1).

Although the majority of the up-regulated cytokines were

characteristic of M1-polarized cells (e.g. CXCL10, CXCL9, IL-

1a and b), we also found that compared to the M1 cells, the IL-4

polarized M2 macrophages displayed 2–10 fold greater inductions

of these factors in response to DMXAA, indicative of their re-

education towards an M1 phenotype [31–33]. Furthermore,

analysis of RNA transcripts provided additional evidence that

M2 macrophages had been shifted towards an M1 phenotype, as

demonstrated by decrease in the M2 markers, Arg-1 and Fizz1,

and acquisition of the M1 markers, iNOS and IL-12p40

(Figure 3A). The repolarizing effect of DMXAA was even

evident at relatively low concentrations (e.g. 5 mg/ml) of this agent

(Figure 3B). Consistent with STING-TBK1 pathway activation

[34], by reverse-phase protein array, we found that DMXAA-

mediated upregulation of the NF-kB pathway as shown by

increased p65 phosphorylation in M2 macrophages (Figure S4B).

Since one of the targets of DMXAA is murine STING, we

tested another STING agonist, the non-canonical endogenous

cyclic dinucleotide 2939-cGAMP [35,36] on M2 macrophages. As

was the case with DMXAA, we found that 2939-cGAMP

administration to M2-polarized macrophages dramatically in-

creased interferon-b, as well as expression of M1 markers iNOS

and IL-12p40, and this was accompanied by decreased expression

of the M2 markers, Arg-1 and Fizz1 (Figure 3C–D). Together,

Table 1. DMXAA-induced factors in M1- and M2-polarized BMDMs.

M1 + DMXAA M2 + DMXAA

Factor (fold change ± SEM) (fold change ± SEM)

IL-1a [1.060.3] 1.9602

IL-1b 1.960.4 2.861.2

IL-6 4.160.4 1.260.4

IP-10 (CXCL10) 36.562.3 357.5618.4**

MCP-1 (CCL2) 6.960.6 9.662.2

MIG (CXCL9) 1.160.004 43.9622.7

MIP-1a 17.362.7 76.6619.9

MIP-1b 109.9614.1 247.8641.8

RANTES (CCL5) 1.160.05 181.8648.8

TNF-a 2.460.3 5.861.5

VEGF [1.860.4] [2.560.9]

Note: Brackets indicate a negative fold-change (**p#0.01).
doi:10.1371/journal.pone.0099988.t001

STING Agonists Cause M2-To-M1 Repolarization
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our results using these chemically distinct agonists indicated that

STING activation was the key factor responsible for the observed

M2-to-M1 macrophage re-education.

RNA transcripts from spleens of mice treated in vivo with

DMXAA also demonstrated induction of iNOS and down-

regulation of Arg-1 (Figure 4A), as well as diminished anti-Arg-

1 immunohistochemical staining (Figure 4B). Importantly,

subcutaneous tumor lysates also demonstrated evidence of

DMXAA-mediated repolarization (Figure 4C), with diminished

Arg-1 staining being evident as early as 6 hours post-DMXAA

exposure (Figure 4D). In summary, these results suggest that

STING activation can mediate M2-like TAM re-education.

Discordant Effects of DMXAA on 344SQ-ELuc
Subcutaneous Versus Metastatic Tumors

In contrast to the dramatic results obtained using 344SQ-ELuc

subcutaneous tumors, DMXAA treatment of 344SQ-ELuc me-

tastases yielded no decrease in photon emission rates (Figure 5A–

B), with the tumors remaining histologically similar to controls

after this treatment (Figure 5C). To confirm this effect was not

peculiar to the 344SQ-ELuc cell line, we also compared the effects

of DMXAA on subcutaneous versus metastatic tumors generated

in MDA-MB-231-Luc2 human breast cancer xenografts. Similar

to 344SQ-Eluc tumors, the MDA-MB-231-Luc2 model demon-

strated dramatic hemorrhagic necrosis of subcutaneous tumors but

not bone metastases (Figure 6).

Subcutaneous tumors grow rapidly up to ,1 cm3, whereas the

multiple metastases generated by 344SQ-ELuc cells are not able of

reach this size owing to the lethal tumor burden that would ensue.

Therefore, we evaluated the effect of DMXAA on subcutaneous

344SQ-ELuc tumors having a size (,2 mm3) comparable to that

of the metastases. As with the large subcutaneous tumors,

DMXAA administration to mice with small subcutaneous tumors

still led to ,2-log decreases in photon emission at both 6 and 24

hours (Figure 5D–E). This was also accompanied by the

development of pathology similar to that of the large subcutaneous

Figure 3. Exposure to either DMXAA or 2939-cGAMP repolarized M2 macrophages towards an M1 phenotype in vitro. (A) Triplicate
samples of non-polarized macrophages (Mw), M1-, and M2-polarized macrophages were exposed to 20 mg/ml DMXAA for 24 hours in vitro and RNA
transcript levels measured by qRT-PCR. DMXAA down-regulated Arg-1 and Fizz1 expression, while increasing expression of iNOS and IL-12p40. (B)
Shows reciprocal changes in Arg-1 and iNOS expression in M2 cells in response to increasing concentrations of DMXAA (N = 3). (C) RNA transcripts
were also taken from triplicate samples of M2-polarized macrophages exposed to 20 or 40 mg/ml 2939-cGAMP plus LF2000 for 6 and 24 hours in vitro.
LF2000 alone served as the control (designated as ‘M2 alone’ in the graphs). 2939-cGAMP led to down-regulation of Arg-1 and Fizz1, and dramatic
increases in iNOS and IL-12p40 expression in a dose-dependent manner. (D) IFN-b induction provided an indication of STING activation in response
to 2939-cGAMP, with strong inductions at 6 hours that returned to baseline by 24 hours (*p,0.05, **p,0.01, ***p,0.001).
doi:10.1371/journal.pone.0099988.g003

STING Agonists Cause M2-To-M1 Repolarization
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tumors (Figure 5F). Thus, differences in tumor volume did not

account for the differential effects of DMXAA on subcutaneous

versus metastatic tumors.

Primary Pulmonary Adenocarcinomas Arising in K-Rasla1/+

Transgenic Mice Show No Response to DMXAA
We next evaluated the effects of DMXAA on spontaneously

arising primary NSCLCs in the K-rasLA1/+ transgenic model [26]

of lung cancer. Again, in contrast to the dramatic results seen with

the subcutaneous tumors, DMXAA treatment of K-rasLA1/+ mice

(,150 days old) produced no discernable histological effect on the

lung adenocarcinomas (Figure 7A). It was possible that the

variable level of macrophage infiltration amongst different tumor

sites may have accounted for the inconsistent responses to

DMXAA. Thus, while primary K-rasLA1/+ lung tumors have even

fewer numbers infiltrating macrophages (Figure 1C) than

systemic metastases, subcutaneous tumors show abundant infil-

trates of macrophages and neutrophils (data not shown) in the

tumor periphery (Figure 7B). Thus, the level of TAM infiltration

could be one potential variable determining whether DMXAA will

cause vascular disruption and hemorrhagic necrosis.

Primary NSCLC Tumors Exhibit Increased Evans Blue Dye
Permeability

DMXAA is known to target the unstable, leaky vasculature of

tumors [3,7–9], thus, we investigated whether diminished perme-

ability might be a potential factor rendering the primary tumor

vasculature resistant to DMXAA. Using a modified Miles assay,

we injected mice with the Evans blue dye to look for interstitial

leakage in K-rasLA1/+ lung adenomas and adenocarcinomas, and in

344SQ-ELuc subcutaneous tumors. Primary lung neoplasms

(adenomas and adenocarcinomas) demonstrated similar dye

permeability as subcutaneous tumors (Figure 8A). Frozen sections

of K-rasLA1/+ lung (Figure 8B), and subcutaneous tumors

(Figure 8C) demonstrated similar dye leakage into tumors at

both sites (see also Figure S5). Hence, the possibility that vessel

impermeability to small molecules such as DMXAA was a factor

accounting for the inability of this agent to cause vascular

disruption in the primary tumors was discounted.

Subcutaneous and Metastatic 344SQ-Eluc Tumors Exhibit
Differences in Vasculature Structure

Since differences in tumor vascular bed structure could be a

factor accounting for the differential responses to DMXAA, we

compared subcutaneous 344SQ-ELuc tumors and p53R172HDg/+ K-

rasLA1/+ lung adenocarcinoma-derived spontaneous metastases

using a 3D-microcomputed tomography (micro-CT) imaging

quantification method we previously described [22]. Interestingly,

3D renderings of 344SQ-ELuc subcutaneous tumors and

p53R172HDg/+ K-rasLA1/+ metastases displayed significant differences

with respect to overall appearance (Figure 9A), vessel thickness

(Figure 9B), and most strikingly, with respect to internal

avascular areas, as demonstrated by a sphere-filling computational

technique [22] (Figure 9C). Quantification of vessel parameters

demonstrated a significant drop in vessel density (VV/TV)

(Figure 9D) as well as overall vessel number (V.N) and

connectivity (Conn.D) in subcutaneous tumors (Figure S6).

Interestingly, there was a similar pattern in vessel thickness

(V.Th) when compared as a percentage of vessels present,

although the metastases had larger-diameter vessels (Figure 9E).

Vessel separation (V.Sp), on the other hand, demonstrated a

significant difference between the two different tumor sites, with

subcutaneous tumors having markedly less small-diameter spheres

(an indication of well vascularized areas) (Figure 9F), thus

confirming the presence of larger avascular/ischemic areas in the

subcutaneous tumors (as visualized by the red spheres in

Figure 9C). Thus, it was plausible that differences in the structure

of the tumor vascular network between the different tumor sites

might also contribute to the differential responses to DMXAA.

Discussion

Our findings using both DMXAA and 2939-cGAMP suggest

that STING activation was the common factor leading to M2

macrophage re-polarization, a process that undoubtedly played a

role in mediating the vascular disrupting effects of DMXAA we

observed on the subcutaneous 344SQ-ELuc tumors. Interestingly,

however, we found that the vascular disrupting effects of DMXAA

on subcutaneous tumors did not extend to either the 344SQ-ELuc

metastases obtained following intracardiac injection of these cells,

Figure 4. Evidence of DMXAA-mediated macrophage repolarization in vivo. (A) Spleen lysates from mice treated with 25 mg/kg DMXAA
(N = 3), versus DMSO vehicle (N = 4) demonstrated decreased Arg-1, and elevated iNOS, transcripts. (B) Representative histology of spleen showing
Arg-1 down-regulation in vivo in response to DMXAA. (C) 344SQ-ELuc whole tumor lysates from mice treated with 25 mg/kg DMXAA (N = 3), or
DMSO vehicle (N = 4), also demonstrate a DMXAA-induced drop in Arg-1 and increase in iNOS transcripts. (D) Representative tumor sections stained
with anti-Arg-1 showing a drop in Arg-1 staining as early as 6 hours post DMXAA. Scale bars = 100 mm. Data are the mean 6 SEM.
doi:10.1371/journal.pone.0099988.g004
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or to the spontaneously arising tumors in the K-rasLA1/+ GEMM

model of NSCLC. Indeed, the majority of successful pre-clinical

studies evaluating the utility of DMXAA were carried out in

subcutaneous tumor models, with relatively few studies examining

the effects of DMXAA on tumors in other anatomical sites

[37,38]. Echoing our results, experiments employing a different

vascular disrupting drug, flavone acetic acid (FAA), vessel

disruption was seen in subcutaneous tumors, but not systemic

tumors [39]. Thus, although the inability of DMXAA to activate

human STING provided an obvious reason for failure of DMXAA

in human cancer trials [20,21], our results nevertheless suggest

that vascular disruption might not occur in either primary or

metastatic human NSCLC if human STING agonists were

administered. With regard to correcting this defect, considerable

efforts are now underway involving the development of stable

cyclic dinucleotide analogs that will allow human STING

activation [40].

Differences in the density of TAM infiltration amongst different

tumor sites may have been one of several factors accounting for

the differential effects of DMXAA on subcutaneous versus 344SQ-

ELuc metastases. Supporting the key role of infiltrating TAMs, we

found that their depletion in subcutaneous 344SQ-ELuc tumors

prevented DMXAA-induced intra-tumoral hemorrhagic necrosis.

In the case of 344SQ-ELuc subcutaneous tumors, TAMs were

present as a dense rim at the tumor periphery and were thus well

positioned to support DMXAA-induced vascular disruption via

the production of pro-inflammatory mediators. There were

extensive regions of ischemic necrosis invariably present within

the subcutaneous 344SQ-ELuc tumors, signifying the availability

of macrophage activating environmental factors such as hypoxia

and the Toll-like receptor (TLR) 4-activating protein, high

mobility group, HMGB1 protein [41]. Thus, in addition to

quantitative differences in macrophage infiltration density between

tumor sites, there may have been substantial qualitative differences

between the TAMs at different tumor sites.

Macrophages are inherently plastic, with the M1- and M2-

polarized phenotypes representing the extremes of a spectrum

[33,42,43]. Although TAMs are often M2-like, there is now

evidence that such TAMs can be re-polarized towards an M1

phenotype that can inhibit tumor growth [31,32,44,45]. Herein,

Figure 5. NSCLC metastases failed to show vascular disruption in response to DMXAA. (A) BLI of metastatic 344SQ-ELuc tumors prior to
DMXAA or DMSO administration and again at 6 and 24 hours (N = 6 and 8 respectively). Whole body regions of interest (ROIs) demonstrate no loss of
BLI (B). (C) Representative kidney metastases (tumor = T, kidney = K) did not show evidence of hemorrhagic necrosis after DMXAA treatment. (D–E)
BLI of 344SQ-ELuc subcutaneous tumors at day 7 (N = 6) demonstrated a considerable drop in photon emission rates after DMXAA in mice with
smaller tumors (*p,0.05), and the latter were accompanied by evidence of hemorrhagic necrosis (F).
doi:10.1371/journal.pone.0099988.g005
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we show that the STING agonists DMXAA and 2939-cGAMP are

both able to repolarize M2-polarized marrow-derived macro-

phages in vitro, and we also provide evidence that DMXAA is able

to shift M2-like macrophages towards an M1-like phenotype

in vivo. The latter results were in agreement with a recent study

reporting an M2-like to M1 shift in TAM populations in response

to DMXAA treatment that was also were accompanied by an anti-

tumor effect [46]. Intra-tumoral TAM repolarization would

provide a source of pro-inflammatory cytokines and chemokines,

and reduce the levels of vascular endothelial growth factor, effects

that could contribute towards either vascular disruption, or

stabilization, respectively. TAM re-education with STING ago-

nists may play a role in other important processes, including

promotion of anti-tumor adaptive immune responses that are

dependent on type I interferons and dendritic cell activation

[47,48].

The sensitivity of tumor vasculature to DMXAA is thought to

be due to the immature and irregular vascular patterning within

tumors [2,7]. To produce subcutaneous tumors, large numbers of

cancer cells are implanted and these divide rapidly, rendering

Figure 6. DMXAA showed differential tumor site-specific vascular disruption in a human breast cancer xenograft model. (A) BLI of
MDA-MB-231-Luc2 subcutaneous tumors in NIH-III (nu/nu; bg/bg) mice 30 days post-cell inoculation, or metastases at day 21 post-cell inoculation.
Mice were randomized into two groups (N = 10 each) and administered DMXAA or vehicle control, and then re-imaged at 6 and 24 hours. ROI
encompassing the tumors or whole body were used to quantify photon emission rates. A significant drop in signal intensity in subcutaneous tumors
treated with DMXAA, however, there was no change in light emission from DMXAA treated mice with metastatic tumors (B) (***p,0.001). (C)
Representative histology of subcutaneous tumors demonstrating the presence of massive hemorrhagic necrosis in DMXAA treated mice (scale
bar = 100 mm), with bone metastases (T = tumor, CB = cortical bone, TB = trabecular bone) showing only very limited regions of hemorrhage in
response to DMXAA (scale bar = 50 mm). (D) Anti-Iba-1 staining was used to show the presence of macrophages in both subcutaneous and metastatic
tumors. Data represent the mean 6 SEM.
doi:10.1371/journal.pone.0099988.g006
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them sensitive to chemotherapeutic agents [49]. Growth of cells

introduced in this manner may outstrip the angiogenic capacity of

the host, leading to the development of large regions of ischemia

and necrosis that can promote macrophage infiltration and

activation. In both the 344SQ-ELuc metastases and the auto-

chthonic NSCLC tumors there were no areas of necrosis, in

contrast, subcutaneous 344SQ-ELuc tumors contained large

necrotic regions and were densely populated with macrophages.

It is possible that the ischemia and necrosis that typifies

subcutaneous tumors renders their vessels more susceptible to

DMXAA. In addition, it is plausible that compared to vessels

derived from other vascular beds, dermal vasculature-derived

tumor vessels are inherently unstable, and hence more vulnerable

to DMXAA. Co-option of mature vessels may be a feature of both

systemic metastases and primary lung adenocarcinomas, and such

vessels, like other normal vascular beds in the animal, would be

predicted to be refractory to the vascular disrupting effects of

DMXAA. Our finding of structural differences in the vasculature

between tumors at different anatomical sites lends some support

the latter notion, an idea that was reinforced by the apparent

inability of clodronate liposomes to cause macrophage deletion in

344SQ-ELuc metastases. Indeed, the latter observation provided a

functional indication of structural differences between subcutane-

ous tumors and metastases. In summary, and as depicted in

Figure S7, the features of the subcutaneous 344SQ-ELuc tumor

vasculature may render them susceptible vascular disrupting

effects of DMXAA. In contrast, the 344SQ-ELuc metastases,

having arisen not only within different vascular beds, but

importantly, from a very much smaller initial tumor colonizing

cell numbers, contain vessels that are resistant to this agent.

In view of the evidence that DMXAA, acting via its effects on

TAMs and/or dendritic cells, has the capacity to augment

adaptive cytotoxic T cell anti-tumor activity, reviewed in [48], it

would be of considerable interest to determine whether chronic

administration of STING agonists might similarly lead to

spontaneous immunity against 344SQ-ELuc metastases and

primary lung adenocarcinomas. The fact that 344SQ-ELuc

metastases do not undergo hemorrhagic necrosis in response to

DMXAA would actually be of benefit in this setting, since it would

allow anti-tumor immunity to be readily quantified via changes in

photon emission rates.

Recent studies suggest GEMMs may be able to more faithfully

mimic their human counterparts, not only with respect to genetic

alterations, but also in their ability to predict responses to therapy

[28,29,50,51]. Thus, while primary orthotopic or subcutaneous

models are useful for initial drug screening, new agents also need

to be evaluated using a range of preclinical models before their use

in humans is contemplated [49]. Interestingly, we found that

metastases resulting from intra-cardiac injection of 344SQ-ELuc

cells failed to respond to DMXAA, suggesting that GEMM-

derived cell lines might serve as effective surrogates for the

corresponding slowly growing autochthonous cancers. Regardless

of whether or not STING agonists are ultimately found to cause

vascular disruption in human cancer, the potential for such agents

to repolarize TAMs will render them useful additions to the anti-

cancer armamentarium.

Materials and Methods

Mice
Male 129/Sv mice (6–12 week old) were used for syngeneic

tumor studies. Transgenic mice harboring the p53R172HDg/+ and K-

rasLA1/+ mutations were kindly provided Dr. G. Lozano (University

of Texas) [23,26,52]. Mice were maintained on standard mouse

chow (Pico-Vac Lab Mouse Diet #5062), and housed in a specific

pathogen-free barrier facility with ethics approval from the

University of Calgary Animal Care Committee (protocols

M10063 and M08112) and in accordance with Canadian Council

on Animal Care guidelines.

Cell Lines and Culture
The p53R172HDg/+ K-rasLA1/+ lung adenocarcinoma subcutane-

ous metastasis-derived 344SQ NSCLC (male) cell line, generously

provided by Dr. J. Kurie (University of Texas) [23,24], was

transfected with a EGFP-Luc2 fusion gene dual reporter as

previously described [22,25]. 344SQ-EGFP-Luc2 (designated

herein as 344SQ-ELuc) cells were cultured in RPMI 1640

(Invitrogen), supplemented with 10% FBS, 100 U/ml penicillin,

100 mg/ml streptomycin and 0.8 mg/ml geneticin (Invitrogen) in

Figure 7. DMXAA produced no evidence of vascular disruption
in spontaneous lung adenocarcinomas. (A) Representative histol-
ogy of lung adenocarcinomas in K-rasLA1/+ mice (,150 days of age)
following treatment with either vehicle (N = 3), or DMXAA (N = 6)
showing no evidence of hemorrhagic necrosis with the latter. The
responses of subcutaneous 344SQ-ELuc tumors (N = 6) to DMXAA
injection are shown for comparison purposes. (B) Tumor sections
stained with anti-Iba-1 demonstrated a thick rim of macrophages at the
tumor periphery in 344SQ-ELuc subcutaneous day 14 (top left) and day
7 (top right) tumors. In contrast, there were variable and much lower
levels of macrophage infiltration within 344SQ-ELuc metastases, for
example, in lung (bottom left) or liver (bottom right). Scale
bar = 100 mm (F, G), 50 mm (C, H). Data represent the mean 6 SEM.
doi:10.1371/journal.pone.0099988.g007
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a 37uC 5% CO2 humidified incubator. Bone marrow-derived

macrophages (BMDM) were collected from 129/Sv mice (N = 3).

Cells were resuspended in DMEM (Lonza) supplemented with

100 U/ml penicillin, 100 mg/ml streptomycin, 10 mM sodium

pyruvate, 20 mM L-glutamine (Invitrogen), 10% FBS (Hyclone)

and 20% L929 cell conditioned media. BMDM were plated onto

100 mm bacterial plates and incubated at 37uC in a 5% CO2

humidified atmosphere.

Tumor Generation and Drug Treatments
To generate subcutaneous tumors, 56105 344SQ-ELuc cells in

100 ml PBS were injected in both posterior flanks of mice.

Metastatic tumors were generated via intracardiac injection of

16104 344SQ-ELuc cells in 100 ml PBS into the left ventricles

(LV) of mice anaesthetized with 100 mg/kg ketamine and 6 mg/

kg xylazine, given intra-peritoneally (i.p.). Tumor growth was

monitored every 2–4 days via BLI. Mice were shaved to minimize

light signal attenuation. Once tumors were established (day 10 for

systemic metastases; day 7 or day 14 for subcutaneous tumors),

mice were given 25 mg/kg of DMXAA (D5817, Sigma-Aldrich),

or DMSO vehicle by i.p. injection. BLI was carried out at 6 and

24 hours as previously described [22]. K-rasLA1/+ mice, aged ,150

days received 25 mg/kg DMXAA or DMSO and were sacrificed

6 hours later. TAM depletion was carried out via i.p. injection of

Clodrolip (2 mg/20 g mouse) starting at day 21 prior to tumor

cell inoculation, and was maintained with 1 mg/20 g mouse given

every 3 days for the duration of the experiment. Empty liposomes

(EL) served as the controls [27].

Breast Cancer Metastases Model
The human breast cancer cell line MDA-MB-231 was

previously transfected with a dual reporter (an EGFP-Luc2 fusion

protein) [25]. MDA-MB-231-EGFP-Luc2 cell (designated herein

as MDA-MB-231-Luc2) were cultured in Dulbecco’s modified

Eagle medium (DMEM; Invitrogen), supplemented with 10% fetal

bovine serum (FBS), 100 U/ml penicillin, 100 mg/ml streptomy-

cin and 0.8 mg/ml geneticin (Invitrogen) in a 37uC 5% CO2

humidified incubator. Athymic-beige (NIH-III) female mice (4–5

week old) were purchased from Charles River Laboratories (St.

Constant, QC) and subcutaneous tumors (analyzed at day 21)

were generated by intradermal implantations of 56105 cells in

100 ml PBS over both the right and left posterior flanks. Metastatic

tumors (analyzed at day 30) were generated via LV injection of

26105 cells in 100 ml PBS into anesthetized mice (100 mg/kg

ketamine and 6 mg/kg xylazine, given i.p.). Knees were fixed at

4uC in 4% paraformaldehyde (PFA) for 7 days, followed by

decalcification in 14% ethylenediaminetetraacetic acid (EDTA)

prior to paraffin embedding and sectioning.

Figure 8. No differences in Evans blue permeability was present between primary lung neoplasms and subcutaneous tumors. (A)
Whole-mount images of adenoma- and adenocarcinoma-bearing K-rasLA1/+ lungs and 344SQ-ELuc subcutaneous tumors following Evans Blue dye
injection, or PBS control. (B) Fluorescence images of lung sections (phase contrast shown in grey, and reflected light in red) and subcutaneous tumor
sections in (C) (Scale bar = 100 mm). The dye was able to extravasate in both tumor locations, suggesting that lack of permeability to small molecules
did not account for the failure of DMXAA to disrupt the vasculature of primary lung neoplasms.
doi:10.1371/journal.pone.0099988.g008
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Histopathology
Tumors were fixed in 10% neutral buffered formalin (NBF), and

lungs were inflated with 10% NBF via a tracheal cannula. Tissues

were processed for paraffin embedding and sectioned at 4 mm

prior to staining with hematoxylin and eosin (H&E). For

immunohistochemistry, anti-Iba1, 1:500 (Wako) anti-Arginase-1,

1:100 (Santa Cruz Biotechnology) antibodies were used, with

Vectastain IgG (ABC kit, Vector Laboratories) secondary with

DAB substrate development (Sigma-Aldrich). Hematoxylin served

as the counterstain.

Cytotoxicity Assay
Assays for DMXAA and Clodrolip cytotoxicity used 3-(4,5-

dimethyl-2-thialolyl)-2,5-diphenyl-2H-tetrazoliumbromide (MTT

reagent; Sigma, St. Louis, MO) as per instructions provided by

the manufacturer. Absorbance values were determined on a

Multiskan Ascent Microplate Reader (Thermo Labsystems, Fin-

land).

Flow Cytometry
BMDM were collected from Clodrolip or EL treated mice and

suspended in 2% FBS/PBS and incubated with Fc Block (anti-

CD16/CD32), followed by anti-CD11b (BD), and anti-F4/80

antibodies (eBioscience). Samples were run on a FACScalibur

equipped with CellQuest software (BD) and quantified using

FlowJo software (TreeStar).

Reverse Phase Protein Array (RPPA)
M2-polarized (40 ng/ml IL-4 for 48 hours, N = 3) macrophages

were treated with 20 mg/ml DMXAA or DMSO vehicle for

30 min. Cells were then lysed and protein denatured in SDS

buffer and samples sent for RPPA analysis (RPPA Core Facility,

University of Texas, MD Anderson Cancer Center, Houston,

TX). Differential abundance of various proteins and/or their

phosphorylation status in response to DMXAA was assessed.

Vascular Perfusion and Micro-computed Tomography
(micro-CT)

Mice with 344SQ-ELuc subcutaneous tumors, and aged

p53R172HDg/+ K-rasLA1/+ mice (,200 day old) with metastases were

used to evaluate the tumor vasculature. Prior to sacrifice, mice

were given a sub-lethal i.p. dose of ketamine (100 mg/kg) plus

xylazine (6 mg/kg). Cardiac perfusions with Microfil were as

previously described [22,53]. Excised tumors were scanned using a

mCT35 (Scanco Medical AG) at a nominal resolution of 10 mm (55

kVp, 145 mA, 200 ms integration time, 1000 proj/180 degrees,

20.5 mm diameter field of view, 204862048 reconstruction

matrix, cone-beam reconstruction) as previously described [22].

Vascular Permeability
Vessel permeability in mice with subcutaneous 344SQ-ELuc

tumors and aged K-rasLA1/+ mice (,200 days old) was examined

using a modified Miles Assay. Mice were given a 4 ml/g dose of

Figure 9. Differences in vascular structure were present between subcutaneous 344SQ-ELuc tumors and metastatic p53R172HDg/+ K-
rasLA1/+ NSCLC. (A) Micro-CT 3D rendering of tumors from Microfil-perfused mice harboring 344SQ-ELuc subcutaneous tumors or p53R172HDg/+ K-
rasLA1/+ lung adenocarcinoma-derived metastases (N = 6). (B) Vessel thickness (V.Th) represented by heat-map, red vessels $0.2 mm diameter (C)
Vessel separation (V.Sp) represented by the maximal sphere-filling model (red spheres indicating a diameter of $2 mm between vessels). Full view
and cut-plane through tumor center demonstrates markedly increased avascularity of subcutaneous tumors as compared to metastases. (D)
Quantification of vessel density (VV/TV) confirms significantly less vessels present in subcutaneous tumors (**p,0.01). (E) Distribution of V.Th is
represented as a percentage of total vessels, indicates similar pattern in both tumor locations (Log10 scale). (F) Distribution of average number of
spheres as an indicator of V.Sp demonstrated significantly fewer small-diameter spheres in subcutaneous tumors (***p,0.001), indicative of ischemic
and/or necrotic regions (Log10 scale). Data are represented as the mean 6 SEM.
doi:10.1371/journal.pone.0099988.g009
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2% Evans Blue dye (Sigma) made up in 0.9% saline by i.p.

injection. After 5 hours, mice were perfused with PBS followed by

4% PFA using a Masterflex C/L perfusion pump (Cole-Parmer).

Tissues were harvested and lungs were inflated via a tracheal

cannula prior to sinking them in 30% sucrose/PBS and OCT

embedding (Tissue-Tek). Whole tissues were imaged on a Stemi

SV 11 dissection microscope (Zeiss). Samples were cryosectioned

at 10 mm and imaged on an Axio Imager A2 (Zeiss) under a Cy5

filter.

Macrophage Polarization and Supernatant Cytokine
Assay

BMDM were seeded in 6-well plates at 26106 cells/well and

polarized for 48 hours with the addition of 50 ng/ml LPS (List

Biological Labs) and 50 ng/ml IFNc (Cedarlane) for M1, or

40 ng/ml IL-4 (R&D Systems) for M2 at 37uC in a 5% CO2

humidified atmosphere. Cells were re-plated in triplicate in 96-well

plates, 86105 cells/well, in media containing 20 mg/ml DMXAA

or DMSO control for 24 hours. Supernatants were subjected to a

mouse 32-plex cytokine/chemokine discovery array (Luminex)

(EVE Technologies, Calgary, Alberta).

RT-PCR
Subcutaneous tumors and control spleens were snap frozen in

liquid N2 prior to being homogenized in QIAzol lysis reagent

(Qiagen). M1 and M2 polarized macrophages were treated with

20 mg/ml DMXAA (or dose response) or DMSO vehicle for an

additional 24 hours. In addition, M2 polarized macrophages were

treated with 20 mg/ml or 40 mg/ml 2939-cGAMP (InvivoGen) in

the presence of Lipofectamine-2000 (LF2000, Invitrogen). Cells

were lysed with QIAzol lysis reagent (Qiagen) and RNA was

extracted with chloroform and isopropanol. To make cDNA, 1 mg

of RNA was treated with DNAse (Promega) followed by RT-PCR

with 10 mM dNTPs, random primers (Roche) and Superscript II

reverse transcriptase (Invitrogen). Real-time PCR of cDNAs was

carried out on the LightCycler using the LightCycler FastStart

DNA MasterPLUS SYBR Green kit (Roche). Data were

normalized to b-actin mRNA. Primer sequences were as

previously described [44,54,55].

Statistical Methods
Samples were compared using a student’s t-test, with Welch’s

correction on samples with unequal variance. P values of ,0.05

were considered significant.

Supporting Information

Figure S1 Intracardiac injection of 344SQ-ELuc cells
generated a spectrum of systemic metastases. BLI of mice

after intracardiac injection of 344SQ-ELuc cells at day 4, 7, 10

and 14. Dorsal view (A) and ventral view (B). Histology revealed

cells growing within the heart muscle (C), likely as a result of the

cell leakage at the LV injection site. Other common locations for

tumor growth included lung (D), adrenal gland (E), kidney (F),

visceral fat pad (G), and less frequently liver (H), and spleen (I).

Scale bars = 100 mm (F–G) and 50 mm (C, D, E, H, I).

(TIF)

Figure S2 Clodrolip depletion of macrophages prior to
344SQ-ELuc subcutaneous implantation modestly inhib-
ited tumor formation. (A) BMDM from Clod or EL treated

mice (N = 3) at day 10 were collected and stained for CD11b and

F4/80 and subjected to FACS, demonstrating an approximately

50% drop in CD11b+ F4/80+ macrophages as quantified in (B)

(***p,0.001, gated for monocytes). BLI growth rates of

subcutaneous (C; N = 5) and LV (E; N = 8) 344SQ-ELuc tumors

in 129/Sv mice demonstrated a modest lag in tumor formation in

subcutaneous tumors, but produced no difference in the

development of 344SQ-ELuc metastases following clodronate-

mediated macrophage depletion, with tumors still developing

regardless of inoculation route (D, F).

(TIF)

Figure S3 DMXAA did not show direct toxicity against
NSCLC cells in vitro. In vitro cytotoxicity of DMXAA on

344SQ-ELuc cells obtained via MTT assays. Data are represented

as the mean 6 SEM.

(TIF)

Figure S4 Polarization of BMDM. (A) BMDM were treated

with 50 ng/ml LPS and 50 ng/ml IFNc for M1 polarization, or

40 ng/ml IL-4 for M2 polarization. After 48 hours, RNA

transcript levels confirmed polarization had occurred by showing

upregulation of iNOS in M1 macrophages, and Arg-1 in M2

macrophages. (B) Reverse phase protein array analysis of M2

macrophages treated with 20 mg/ml DMXAA for 30 min showed

up-regulation of phosphorylated p65 (N = 3, ***p#0.001).

(TIF)

Figure S5 Vessel permeability of subcutaneous versus
metastatic tumors. (A) Phase-contrast and corresponding

fluorescence images of control tissues demonstrate Evans blue

dye outlining the vessels in the lung and kidney, consistent with

low levels of background dye leakage. The vessels in the brain,

however, showed no leakage, consistent with the dyes inability to

cross the blood brain barrier. (B) Representative images of Evans

Blue dye leakage in three different lung tumors, and (C)

subcutaneous tumors. Scale bar = 100 mm.

(TIF)

Figure S6 Quantification of vessel parameters of sub-
cutaneous versus metastatic tumors. (A) There was

decreased vessel connectivity in subcutaneous 344SQ-ELuc

tumors compared to primary adenocarcinoma-derived

p53R172HDg/+ K-rasLA1/+ metastases as well as a decrease in vessel

number (B) (not significant). Vessel surface area/vessel volume (C),

however, was similar between the tumor sites indicating that the

dimensions of the vessels present were comparable. Data

represented as mean 6 SEM.

(TIF)

Figure S7 Summary of DMXAA effects in the murine
NSCLC models. Induction of M2-like TAM repolarization

towards an M1-like phenotype by DMXAA accompanied the

rapid onset of hemorrhagic necrosis of subcutaneous tumors. In

contrast, DMXAA did not exhibit vascular disrupting effects on

either syngeneic metastases or spontaneously arising NSCLC in

tumors in KrasLA1 GEMM model.

(TIF)

Table S1 DMXAA induction of cytokines and chemo-
kines in M1 versus M2 polarized macrophages. Polarized

BMDM (N = 3) were treated with DMXAA or DMSO control and

serums were analyzed via cytokine array. Average values are

shown.

(DOCX)
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