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Abstract

For functions from the Sobolev space Hs(Ω), 1
2 < s < 3

2 , definitions of non-unique generalised
and unique canonical co-normal derivative are considered, which are related to possible exten-
sions of a partial differential operator and its right hand side from the domain Ω, where they are
prescribed, to the domain boundary, where they are not. Revision of the boundary value prob-
lem settings, which makes them insensitive to the co-normal derivative inherent non-uniqueness
are given. Some new facts about trace operator estimates, Sobolev spaces characterisations, and
solution regularity of PDEs with non-smooth coefficients are also presented.
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1 Introduction

While considering a second order partial differential equation for a function from the Sobolev space
Hs(Ω), 1

2 < s < 3
2 , with a right-hand side from Hs−2(Ω), the strong co-normal derivative of u

defined on the boundary in the trace sense, does not generally exist. Instead, a generalised co-normal
derivative operator can be defined by the first Green identity. However this definition is related to an
extension of the PDE operator and its right hand side from the domain Ω, where they are prescribed,
to the domain boundary, where they are not. Since the extensions are non-unique, the generalised
co-normal derivative appears to be a non-unique and non-linear unless a linear relation between the
PDE solution and the extension of its right hand side is enforced. This leads to a revision of the
boundary value problem settings, which makes them insensitive to the co-normal derivative inherent
non-uniqueness. For functions u from a subspace of Hs(Ω), 1

2 < s < 3
2 , which can be mapped by the

PDE operator into the space H̃t(Ω), t ≥ −1
2 , one can define a canonical co-normal derivative, which

is unique, linear in u and coincides with the co-normal derivative in the trace sense if the latter does
exist.

These notions were developed, to some extent, in [14, 15] for a PDE with an infinitely smooth
coefficient on a domain with an infinitely smooth boundary, and a right hand side from Hs−2(Ω),
1 ≤ s < 3

2 , or extendable to H̃t(Ω), t ≥ −1/2. In [16] the analysis was generalised to the co-normal
derivative operators for some scalar PDE with a Hölder coefficient and right hand side from Hs−2(Ω),
1
2 < s < 3

2 , on a bounded Lipschitz domain Ω.
In this paper, we extend the previous results on the co-normal derivatives to strongly elliptic

second order PDE systems on bounded or unbounded Lipschitz domains with infinitely smooth or
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Hölder-Lipschitz coefficients, with complete proofs. To obtain these results, some new facts about
trace operator estimates, Sobolev spaces characterisations, and solution regularity of PDEs with
non-smooth coefficients are also proved in the paper.

The paper is arranged as follows. Section 2 provides a number of auxiliary facts on Sobolev
spaces, traces and extensions, some of which might be new for Lipschitz domains. Particularly,
we proved Lemma 2.1 on two-side estimates and unboundedness of the trace operator, Lemma 2.2
on boundedness of extension operators from boundary to the domain for a wider range of spaces,
Theorem 2.4 on characterisation of the Sobolev space Hs

0(Ω) = H̃s(Ω) on the (larger than usual)
interval 1

2 < s < 3
2 , Theorem 2.5 on characterisation of the space Ht

∂Ω, t > −3
2 , Theorem 2.6 on

equivalence of Hs
0(Ω) and Hs(Ω) for s ≤ 1

2 , Lemma 2.7 and Theorem 2.8 on extension of Hs(Ω) to
H̃s(Ω) for s < 1

2 , s 6= 1
2 − k.

The results of Section 2 are applied in Section 3 to introduce and analyse the generalised and
canonical co-normal derivative operators on bounded and unbounded Lipschitz domains, associated
with strongly elliptic systems of second order PDEs with infinitely smooth coefficients and right
hand side from Hs−2(Ω), 1

2 < s < 3
2 . The weak settings of Dirichlet, Neumann and mixed problems

(revised versions for the latter two) are considered and it is shown that they are well posed in spite of
the inherent non-uniqueness of the generalised co-normal derivatives. It is proved that the canonical
co-normal derivative coincides with the classical (strong) one for the cases when they both do exist.

In Section 4 we extend the well know result about the local regularity of elliptic PDE solution
to the case of relaxed smoothness of the PDE coefficients. This is used then in Section 5, where all
results of Section 3 are generalised to non-smooth coefficients.

2 Sobolev spaces, trace operators and extensions

Suppose Ω = Ω+ is a bounded or unbounded open domain of Rn, which boundary ∂Ω is a simply
connected, closed, Lipschitz (n−1)−dimensional set. Let Ω denote the closure of Ω and Ω− = Rn\Ω
its complement. In what follows D(Ω) = C∞

comp(Ω) denotes the space of Schwartz test functions, and
D∗(Ω) denotes the space of Schwartz distributions; Hs(Rn) = Hs

2(Rn), Hs(∂Ω) = Hs
2(∂Ω) are the

Sobolev (Bessel potential) spaces, where s ∈ R is an arbitrary real number (see, e.g., [12]).
We denote by H̃s(Ω) the closure of D(Ω) in Hs(Rn), which can be characterised as H̃s(Ω) = {g :

g ∈ Hs(Rn), supp g ⊂ Ω}, see e.g. [13, Theorem 3.29]. The space Hs(Ω) consists of restrictions on Ω
of distributions from Hs(Rn), Hs(Ω) := {g|Ω : g ∈ Hs(Rn)}, and Hs

0(Ω) is closure of D(Ω) in Hs(Ω).
We recall that Hs(Ω) coincide with the Sobolev–Slobodetski spaces W s

2 (Ω) for any non-negative s.
We denote Hs

loc(Ω) := {g : φg ∈ Hs(Ω) ∀φ ∈ D(Ω)}.
Note that distributions from Hs(Ω) and Hs

0(Ω) are defined only in Ω, while distributions from
H̃s(Ω) are defined in Rn and particularly on the boundary ∂Ω. For s ≥ 0, we can identify H̃s(Ω)
with the set of functions from Hs(Ω), whose extensions by zero outside Ω belong to Hs(Rn), cf. [13,
Theorem 3.33], i.e., identify functions u ∈ H̃s(Ω) with their restrictions, u|Ω. However generally we
will distinguish distributions u ∈ H̃s(Ω) and their restrictions u|Ω, especially for s ≤ −1

2 .
We denote by Hs

∂Ω
the subspace of Hs(Rn) (and of H̃s(Ω)), which elements are supported on

∂Ω, i.e., Hs
∂Ω

:= {g : g ∈ Hs(Rn), supp g ⊂ ∂Ω}. To simplify notations for vector-valued functions,
u : Ω → Cm, we will often write u ∈ Hs(Ω) instead of u ∈ Hs(Ω)m = Hs(Ω;Cm), etc.

As usual (see e.g. [12, 13]), for two elements from dual complex Sobolev spaces the dual product
〈·, ·〉Ω associated with the inner product (·, ·)L2(Ω) is defined as

〈u, v〉Rn :=
∫

Rn

[F−1u](ξ)[Fv](ξ)dξ =: (F ū,Fv)L2(Rn) =: (u, v)L2(Rn),

u ∈ Hs(Rn), v ∈ H−s(Rn), (2.1)

2
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〈u, v〉Ω := 〈u, V 〉Rn =: (u, v)L2(Ω) if u ∈ H̃s(Rn), v ∈ H−s(Ω), v = V |Ω with V ∈ H−s(Rn), (2.2)

〈u, v〉Ω := 〈U, v〉Rn =: (u, v)L2(Ω) if u ∈ Hs(Rn), v ∈ H̃−s(Ω), u = U |Ω with U ∈ Hs(Rn) (2.3)

for s ∈ R, where ḡ is the complex conjugate of g, while F and F−1 are the distributional Fourier
transform operator and its inverse, respectively, that for integrable functions take form

ĝ(ξ) = [Fg](ξ) :=
∫

Rn

e−2πix·ξg(x)dx, g(x) = [F−1ĝ](x) :=
∫

Rn

e2πix·ξ ĝ(ξ)dξ.

For vector-valued elements u ∈ Hs(Rn)m, v ∈ H−s(Rn)m, s ∈ R, definition (2.1) should be under-
stood as

〈u, v〉Rn :=
∫

Rn

û(ξ) · v̂(ξ)dξ =
∫

Rn

û(ξ)>v̂(ξ)dξ =: (û, v̂)L2(Rn) =: (u, v)L2(Rn).

where û · v̂ = û>v̂ =
∑m

k=1 ûkv̂k is the scalar product of two vectors.
Let J s be the Bessel potential operator defined as

[J sg](x) = F−1
ξ→x{(1 + |ξ|2)s/2ĝ(ξ)}.

The inner product in Hs(Ω), s ∈ R, is defined as follows,

(u, v)Hs(Rn) := (J su,J sv)L2(Rn) =
∫

Rn

(1 + ξ2)sû(ξ)v̂(ξ)dξ

=
〈
u,J 2sv

〉
Rn , u, v ∈ Hs(Rn), (2.4)

(u, v)Hs(Ω) := ((I − P )U, (I − P )V )Hs(Rn) , u = U |Ω, v = V |Ω, U, V ∈ Hs(Rn).

Here P : Hs(Rn) → H̃s(Rn\Ω̄) is the orthogonal projector, see e.g. [13, p. 77].
To introduce generalised co-normal derivatives in Section 3, we will need several facts about traces

and extensions in Sobolev spaces on Lipschitz domain. First of all, it is well known [6, Lemma 3.7],
that the trace operators γ : Hs(Rn) → Hs− 1

2 (∂Ω) and γ± : Hs(Ω±) → Hs− 1
2 (∂Ω) are continuous for

1
2 < s < 3

2 on any Lipschitz domain Ω. Let γ∗ : H
1
2
−s(∂Ω) → H−s(Rn) denote the operator adjoined

to the trace operator,
〈γ∗v, w〉 = 〈v, γw〉 ∀ w ∈ Hs(Rn).

Now we can prove a statement about the trace operator unboundedness (cf. [12, Chapter 1, Theorem
9.5] for domains with infinitely smooth boundary) that follows from two-side estimates for the trace
operator and its adjoined.

LEMMA 2.1. Let Ω be a Lipschitz domain and 1
2 < s ≤ 1. Then

C ′√Cs‖v‖
H

1
2−s(∂Ω)

≤ ‖γ∗v‖H−s(Rn) ≤ C ′′√Cs‖v‖
H

1
2−s(∂Ω)

∀v ∈ H
1
2
−s(∂Ω) (2.5)

and thus
C ′√Cs ≤ ‖γ‖

Hs(Rn)→Hs− 1
2 (∂Ω)

= ‖γ∗‖
H

1
2−s(Rn−1)→H−s(Rn)

≤ C ′′√Cs, (2.6)

where Cs :=
∫∞
−∞(1 + η2)−sdη, C ′ and C ′′ are positive constants independent of s and v. The norm

of the trace operator γ : Hs(Rn) → Hs− 1
2 (∂Ω) tends to infinity as s ↘ 1

2 since Cs → ∞, while the
operator γ : H

1
2 (Rn) → L2(∂Ω) is unbounded.

3
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Proof. Let first consider the lemma for the half-space, Ω = Rn
+ = {x ∈ Rn : xn > 0}, where

x = {x′, xn}, x′ ∈ Rn−1. For v ∈ H
1
2
−s(Rn−1), the distributional Fourier transform gives

Fx→ξ{γ∗v} = Fx′→ξ′{v(x′)} =: v̂(ξ′).

Then for s > 1
2 we have,

‖γ∗v‖2
H−s(Rn) =

∫

Rn

(1 + |ξ|2)−s|v̂(ξ′)|2dξ

=
∫

Rn−1

[∫

R

(1 + |ξ′|2 + |ξn|2)−sdξn

]
|v̂(ξ′)|2dξ′ = Cs‖v‖2

H
1
2−s(Rn−1)

, (2.7)

where the substitution ξn = (1 + |ξ′|2) 1
2 η was used, cf. [5, Chap. 2, Proposition 4.6]. Thus

‖γ‖
Hs(Rn)→Hs− 1

2 (Rn−1)
= ‖γ∗‖

H
1
2−s(Rn−1)→H−s(Rn)

=
√

Cs →∞ as s ↘ 1
2
.

On the other hand, by (2.7) the norm ‖γ∗v‖
H− 1

2 (Rn)
is not finite for any non-zero v. This means

the operator γ∗ : H0(Rn−1) → H− 1
2 (Rn) and thus the operator γ : H

1
2 (Rn) → H0(Rn−1) is not

bounded, which completes the lemma for Ω = Rn
+ with C ′ = C ′′ = 1.

For a general Lipschitz domain Ω, let {ωj}J
j=1 ⊂ Rn be a finite cover of ∂Ω and {φj(x) ∈ D(ωj)}J

j=1

be a partition of unity subordinate to it,
∑J

j=1 φj(x) = 1 for any x ∈ ∂Ω. For any j there exists a
half-space domain Ωj such that ωj

⋂
Ωj = ωj

⋂
Ω and Ωj can be transformed by a rigid translation

to a Lipschitz hypograph Ω̃j = {x′ ∈ Rn−1 : xn > ζj(x′)}, where ζj are some uniformly Lipschitz
functions, and κj : Rn → Rn is the Lipschitz-smooth invertible function such that Rn

+ 3 x 7→ κj(x) ∈
Ωj , Dj(x′) is the Jacobian of the corresponding boundary mapping Rn−1 3 x′ 7→ κj(x′) ∈ ∂Ωj , and
Dj ∈ L∞(Rn−1). For v ∈ L2(∂Ω), w ∈ D(Rn), we have,

〈γ∗v, w〉Rn = 〈v, γw〉∂Ω =
∫

∂Ω
v(x)w(x)dσ(x) =

J∑

j=1

∫

∂Ω
φj(x)v(x)w(x)dσ(x) =

J∑

j=1

∫

Rn−1

[(φjv) ◦ κj ](x′)[w ◦ κj ](x′)Dj(x′)dx′ =

J∑

j=1

〈Dj(φjv) ◦ κj , γ0[w ◦ κj ]〉Rn−1 =
J∑

j=1

〈γ∗0 [Dj(φjv) ◦ κj ], w ◦ κj〉Rn ,

where γ0, γ∗0 are the trace operator on Rn
+ and its adjoined, respectively. Taking into account density

of D(Rn) in Hs(Rn) and L2(∂Ω) in H
1
2
−s(∂Ω), we have,

‖γ∗v‖H−s(Rn) = sup
w∈Hs(Rn)

|〈γ∗v, w〉Rn |
‖w‖Hs(Rn)

= sup
w∈Hs(Rn)

∣∣∣∣∣∣

J∑

j=1

〈
γ∗0 [Dj(φjv) ◦ κj ],

w ◦ κj

‖w‖Hs(Rn)

〉

Rn

∣∣∣∣∣∣
(2.8)

for any v ∈ H
1
2
−s(∂Ω).

It is well known (see e.g. [13, Theorem 3.23 and p. 98]) that

‖v‖2

H
1
2−s(∂Ω)

=
J∑

j=1

‖Dj(φjv) ◦ κj‖2

H
1
2−s(Rn−1)

,
1
2

< s ≤ 3
2
, (2.9)

4
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C̃ ′‖w‖Hs(Rn) ≤ ‖w ◦ κj‖Hs(Rn) ≤ C̃ ′′‖w‖Hs(Rn), j = 1, ..., J, 0 ≤ s ≤ 1, (2.10)

where C̃ ′, C̃ ′′ are some positive constants independent of s. By (2.7) and (2.9),

‖γ∗0 [Dj(φjv) ◦ κj ]‖H−s(Rn) =
√

Cs‖Dj(φjv) ◦ κj‖
H

1
2−s(Rn−1)

≤
√

Cs‖v‖
H

1
2−s(∂Ω)

.

Then (2.8) and (2.10) imply

‖γ∗v‖H−s(Rn) ≤ C̃ ′′J
√

Cs‖v‖
H

1
2−s(∂Ω)

∀v ∈ H
1
2
−s(∂Ω),

which is the right inequality in (2.5).
On the other hand, we have for v ∈ L2(∂Ω), w ∈ D(Rn),

〈φjγ
∗v, w〉Rn = 〈v, γ(φjw)〉∂Ω =

∫

∂Ω
v(x)φj(x)w(x)dσ(x) =

∫

∂Ω∩ωj

v(x)φj(x)w(x)dσ(x) =
∫

Rn−1

[(φjvj) ◦ κj ](x′)[w ◦ κj ](x′)Dj(x′)dx′ =

〈Dj [(φjvj) ◦ κj ], γ0[w ◦ κj ]〉Rn−1 = 〈γ∗0{Dj [(φjvj) ◦ κj ]}, w ◦ κj〉Rn .

By (2.10) this implies,

‖φjγ
∗v‖H−s(Rn) = sup

w∈Hs(Rn)

∣∣∣∣∣
〈

γ∗0{Dj [(φjv) ◦ κj ]}, w ◦ κj

‖w‖Hs(Rn)

〉

Rn

∣∣∣∣∣ =

sup
w∈Hs(Rn)

∣∣∣∣∣
〈

γ∗0{Dj [(φjv) ◦ κj ]}, w ◦ κj

‖w ◦ κj‖Hs(Rn)

〉

Rn

‖w ◦ κj‖Hs(Rn)

‖w‖Hs(Rn)

∣∣∣∣∣ ≥

C̃ ′ sup
w∈Hs(Rn)

∣∣∣∣∣
〈

γ∗0{Dj [(φjv) ◦ κj ]}, w ◦ κj

‖w ◦ κj‖Hs(Rn)

〉

Rn

∣∣∣∣∣ = C̃ ′‖γ∗0{Dj [(φjv) ◦ κj ]}‖H−s(Rn), (2.11)

that is by (2.7) and (2.9),

J∑

j=1

‖φjγ
∗v‖2

H−s(Rn) ≥ C̃ ′2
J∑

j=1

‖γ∗0{Dj [(φjv) ◦ κj ]}‖2
H−s(Rn) =

C̃ ′2Cs

J∑

j=1

‖Dj [(φjv) ◦ κj ]‖2

H
1
2−s(Rn−1)

= C̃ ′2Cs‖v‖2

H
1
2−s(∂Ω

. (2.12)

Since
C̃j‖γ∗v‖H−s(Rn) ≥ ‖φjγ

∗v‖H−s(Rn) (2.13)

for φj ∈ D(Rn), (2.12) gives the left inequality in (2.5).
Obviously, (2.5) implies (2.6) for γ∗ and thus for γ.
As was shown in the first paragraph of the proof, the functional γ∗0{Dj [(φjv)◦κj ]} is not bounded

on H
1
2 (Rn) for any non-zero v, then (2.11), (2.13) imply that the operator γ∗ : H0(∂Ω) → H− 1

2 (Rn)
and thus the operator γ : H

1
2 (Rn) → H0(∂Ω) is not bounded.

LEMMA 2.2. For a Lipschitz domain Ω there exists a linear bounded extension operator γ−1 :
Hs− 1

2 (∂Ω) → Hs(Rn), 1
2 ≤ s ≤ 3

2 , which is right inverse to the trace operator γ, i.e., γγ−1g = g for
any g ∈ Hs− 1

2 (∂Ω). Moreover, ‖γ−1‖
Hs− 1

2 (∂Ω)→Hs(Rn)
≤ C, where C is independent of s.

5
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Proof. For Lipschitz domains and 1
2 < s ≤ 1, the boundedness of the extension operator is well

known, see e.g. [13, Theorem 3.37].
To prove it for the whole range 1

2 ≤ s ≤ 3
2 , let us consider the classical single layer potential

V∆ϕ with a density ϕ = V−1
∆ g ∈ Hs− 3

2 (∂Ω), solving the Laplace equation in Ω+ with the Dirichlet
boundary data g, where V∆ is the direct value of the operator V∆ on the boundary. The operators
V−1

∆ : Hs− 1
2 (∂Ω) → Hs− 3

2 (∂Ω) and V∆ : Hs− 3
2 (∂Ω) → Hs

loc(R
n) are continuous for 1

2 ≤ s ≤ 3
2 as

stated in [11, 10, 9, 19, 6]. Thus it suffice to take γ−1 = χV∆V−1
∆ , where χ ∈ D(Rn) is a cut-off

function such that χ = 1 in Ω̄+. The estimate ‖γ−1‖
Hs− 1

2 (∂Ω)→Hs(Rn)
≤ C, where C is independent

of s, then follows.

Note that for s = 1
2 the trace operator γ is understood in the non-tangential sense, and continuity

of the operator γ was not needed in the proof.
To characterise the space Hs

0(Ω) = H̃s(Ω) for 1
2 < s < 3

2 , we will need the following statement.

LEMMA 2.3. If Ω is a Lipschitz domain and u ∈ Hs(Ω), 0 < s < 1
2 , then

∫

Ω
dist(x, ∂Ω)−2s|u(x)|2dx ≤ C‖u‖2

Hs(Ω). (2.14)

Proof. Note first that the lemma claim holds true for u ∈ D(Ω), see [13, Lemma 3.32]. To prove it
for u ∈ Hs(Ω), let first the domain Ω be such that

dist(x, ∂Ω) < C0 < ∞ (2.15)

for all x ∈ Ω, which holds true particularly for bounded domains. Let {φk} ∈ D(Ω) be a sequence
converging to u in Hs(Ω). If we denote w(x) = dist(x, ∂Ω)−2s, then w(x) > C−2s

0 > 0. Since
(2.14) holds for functions from D(Ω), the sequence {φk} ∈ D(Ω) is fundamental in the weighted
space L2(Ω, w), which is complete, implying that φk ∈ D(Ω) converges in this space to a function
u′ ∈ L2(Ω, w). Since both L2(Ω, w) and Hs(Ω) are continuously imbedded in the non-weighted space
L2(Ω), the sequence {φk} converges in L2(Ω) implying the limiting functions u and u′ belong to this
space and thus coincide.

If the condition (2.15) is not satisfied, let χ(x) ∈ D(Rn) be a cut-off function such that 0 ≤
χ(x) ≤ 1 for all x, χ(x) = 1 near ∂Ω, while w(x) < 1 for x ∈ supp (1 − χ). Then (2.15) is satisfied
in Ω

⋂
suppχ(x) and

∫

Ω
w(x)|u(x)|2dx =

∫

Ω
(1− χ(x))w(x)|u(x)|2dx +

∫

Ω
χ(x)w(x)|u(x)|2dx ≤

‖u‖2
L2(Ω) +

∫

Ω
w(x)|

√
χ(x)u(x)|2dx ≤ ‖u‖2

Hs(Ω) + C‖
√

χ(x)u‖2
Hs(Ω) ≤ C1‖u‖2

Hs(Ω).

due to the previous paragraph.

Lemma 2.3 allows now extending the following statement known for 1
2 < s ≤ 1, see [13, Theorem

3.40(ii)], to a wider range of s.

THEOREM 2.4. If Ω is a Lipschitz domain and 1
2 < s < 3

2 , then Hs
0(Ω) = H̃s(Ω) = {u ∈ Hs(Ω) :

γ+u = 0}.
Proof. The first equality, Hs

0(Ω) = H̃s(Ω), is well known for 1
2 < s < 3

2 , see e.g. the last part of
Theorem 3.33 in [13]. The second equality for 1

2 < s ≤ 1 is stated in [13, Theorem 3.40(ii)].
Let 1 < s < 3

2 . If u ∈ H̃s(Ω), then evidently γ+u = 0 since D is dense in H̃s(Ω) and the trace
operator γ+ is bounded in Hs(Rn). To prove the second equality of the theorem, it remains, due

6
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to the first part of Theorem 3.33 in [13], to prove that for any u ∈ Hs(Ω) such that γ+u = 0, its
extension, ũ, by zero outside Ω, belongs to Hs(Rn). We remark first of all that ũ ∈ H1(Rn) due to
the previous paragraph and then make estimates similar to those in the proof of [13, Theorem 3.33],

‖ũ‖2
Hs(Rn) ∼ ‖ũ‖2

W 1
2 (Rn) +

∫

Rn

∫

Rn

|∇ũ(x)−∇ũ(y)|2
|x− y|2(s−1)+n

dx dy

= ‖u‖2
W 1

2 (Ω) +
∫

Ω

∫

Ω

|∇u(x)−∇u(y)|2
|x− y|2(s−1)+n

dx dy

+
∫

Rn\Ω

∫

Ω

|∇u(x)|2
|x− y|2(s−1)+n

dx dy +
∫

Ω

∫

Rn\Ω

|∇u(y)|2
|x− y|2(s−1)+n

dx dy

= ‖u‖2
W s

2 (Ω) + 2
∫

Ω
|ws−1(x)∇u(x)|2 dx,

where
ws−1(x) :=

∫

Rn\Ω

dy

|x− y|2(s−1)+n
, x ∈ Ω,

and W s
2 (Ω) is the Sobolev-Slobodetski space. Introducing spherical coordinates with x as an origin,

we obtain, ws−1(x) ≤ C dist(x, ∂Ω)−2(s−1) for x ∈ Ω. Then, taking into account that ∇u ∈ Hs−1(Ω)
and ‖∇u‖Hs−1(Ω) ≤ ‖u‖Hs(Ω), we have by Lemma 2.3,

‖ũ‖2
Hs(Rn) ≤ ‖u‖2

W s
2 (Ω) + 2C‖u‖2

Hs(Ω) ≤ Cs‖u‖2
Hs(Ω) .

Let us now give a characterisation of the space Ht
∂Ω.

THEOREM 2.5. Let Ω be a Lipschitz domain in Rn.
(i) If t ≥ −1

2 , then Ht
∂Ω = {0}.

(ii) If −3
2 < t < −1

2 , then g ∈ Ht
∂Ω if and only if g = γ∗v, i.e.,

〈g,W 〉Rn = 〈v, γW 〉∂Ω ∀ W ∈ H−t(Rn), (2.16)

with v = γ∗−1g ∈ Ht+ 1
2 (∂Ω), i.e.,

〈v, w〉∂Ω = 〈g, γ−1w〉Rn ∀ w ∈ H−t− 1
2 (∂Ω), (2.17)

where v is independent of the choice of the non-unique operators γ−1, γ∗−1, and the estimate ‖v‖
Ht+1

2 (∂Ω)
≤

C‖g‖Ht(Rn) holds with C independent of t.

Proof. We will follow an idea in the proof of Lemma 3.39 in [13] (see also [5, Proposition 4.8]),
extending it from a half-space to a Lipschitz domain Ω.

Let Ω+ = Ω and Ω− = Rn\Ω̄. For any φ ∈ D(Rn), let us define

φ±(x) =

{
φ(x) if x ∈ Ω±,

0 if x 6∈ Ω±.

Let t > −1
2 . Then φ± ∈ H̃−t(Ω±) (see e.g. [13, Theorems 3.33, 3.40] for −1

2 < t ≤ 0, for greater t
it then follows by embedding), ‖φ− φ+ − φ−‖H−t(Rn) = 0, and there exist sequences {φ±k } ∈ D(Ω±)
converging to φ± in H̃−t(Ω±) as k →∞. Hence 〈g, φ〉 = limk→∞〈g, φ+

k + φ−k 〉 = 0 for any g ∈ Ht
∂Ω,

t > −1
2 , proving (i) for such t.
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Let us prove (ii). For g ∈ Ht
∂Ω, −3

2 < t < −1
2 , let v ∈ Ht+ 1

2 (∂Ω) be defined by (2.17), where
existence and continuity of γ−1 : H−t− 1

2 (∂Ω) → H−t(Ω) is proved in Lemma 2.2. Observe that

|〈v, w〉∂Ω| ≤ ‖g‖Ht(Rn)‖w‖H−t− 1
2 (∂Ω)

‖γ−1‖
H−t− 1

2 (∂Ω)→H−t(Rn)
,

so ‖v‖
Ht+1

2 (∂Ω)
≤ ‖γ−1‖

H−t− 1
2 (∂Ω)→H−t(Rn)

‖g‖Ht(Rn) ≤ C‖g‖Ht(Rn), where C is independent of t

due to Lemma 2.2 if γ−1 is chosen as in that lemma. We also have that

〈g, W 〉Rn − 〈v, γW 〉∂Ω = 〈g, ρ〉Rn ∀ W ∈ H−t(Rn),

where
ρ = W − γ−1γW ∈ H−t(Rn).

Then we have γρ = 0, which due to Theorem 2.4 implies ρ̃± ∈ H̃−t(Ω±), where ρ̃± are extensions
of ρ|Ω± by zero outside Ω± and ρ = ρ̃+ + ρ̃−. Thus there exist sequences {ρ±k } ∈ D(Ω±) converging
to ρ̃± in H̃−t(Ω±), implying 〈g, ρ〉Rn = 0 since g ∈ Ht

∂Ω, and thus ansatz (2.16). To prove that v
is uniquely determined by g , i.e., independent of γ−1, let us consider v′ and v′′ corresponding to
different operators γ′−1 and γ′′−1. Then by (2.16),

〈v′ − v′′, w〉∂Ω = 〈γ∗′−1g − γ∗′′−1g, w〉∂Ω = 〈g, γ′−1w − γ′′−1w〉Rn

= 〈v′, γ(γ′−1w − γ′′−1w)〉∂Ω = 0 ∀ w ∈ H−t− 1
2 (∂Ω).

It remains to deal with the case t = −1
2 in (i). Let g ∈ H

− 1
2

∂Ω . Since H
− 1

2
∂Ω ⊂ Ht

∂Ω for −3
2 < t < −1

2 ,
then g = γ∗v for some v ∈ Ht+ 1

2 (∂Ω) ∀t ∈ (−3
2 ,−1

2), and‖g‖Ht
∂Ω

= ‖γ∗v‖Ht
∂Ω
≥ C ′√C−t ‖v‖

H
1
2+t(∂Ω)

owing to Lemma 2.1. Since C−t →∞ as t ↗ −1
2 , this means ‖v‖

H
1
2+t(∂Ω)

→ 0 as t ↗ −1
2 implying

v = 0.

THEOREM 2.6. Let Ω be a Lipschitz domain in Rn and s ≤ 1
2 . Then D(Ω) is dense in Hs(Ω),

i.e., Hs(Ω) = Hs
0(Ω).

Proof. The proof for 0 ≤ s ≤ 1
2 is available in [13, Theorem 3.40(i)]. To prove the statement for any

s ≤ 1
2 we remark that if w ∈ Hs(Ω)∗ = H̃−s(Ω) satisfies 〈w, φ〉 = 0 for all φ ∈ D(Ω), then w ∈ H−s

∂Ω

and Theorem 2.5 implies w = 0. Hence, D(Ω) is dense in Hs(Ω), i.e., Hs(Ω) = Hs
0(Ω).

The following two statements give conditions when distributions from Hs(Ω) can be extended
to distributions from H̃s(Ω) and when the extension can be written in terms of a linear bounded
operator.

LEMMA 2.7. Let Ω be a Lipschitz domain, s < 1
2 , s 6= 1

2 − k for any integer k > 0. Then for any
g ∈ Hs(Ω) there exists g̃ ∈ H̃s(Ω) such that g = g̃|Ω and ‖g̃‖

H̃s(Ω)
≤ C‖g‖Hs(Ω), where C > 0 does

not depend on g.

Proof. Any distribution g ∈ Hs(Ω) is a bounded linear functional on H̃−s(Ω). On the other hand,
H̃−s(Ω) = H−s

0 (Ω) ⊂ H−s(Ω) for s ≤ 0 by [13, Theorem 3.33]. The latter holds true also for 0 < s < 1
2

since then H̃−s(Ω) = [Hs(Ω)]∗ = [Hs
0(Ω)]∗ = [H̃s(Ω)]∗ = H−s(Ω) by e.g. [13, Theorems 3.33 and

3.40]. Thus by the Hahn-Banach theorem g can be extended to a functional g̃ ∈ [H−s(Ω)]∗ = H̃s(Ω)
such that ‖g̃‖

H̃s(Ω)
= ‖g̃‖[H−s(Ω)]∗ = ‖g‖[H−s

0 (Ω)]∗ ≤ C‖g‖
[H̃−s(Ω)]∗ = C‖g‖Hs(Ω).

THEOREM 2.8. Let Ω be a Lipschitz domain and −3
2 < s < 1

2 , s 6= −1
2 . There exists a bounded

linear extension operator Ẽs : Hs(Ω) → H̃s(Ω), such that Ẽsg|Ω = g, ∀ g ∈ Hs(Ω).

8
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Proof. If 0 ≤ s < 1
2 , then H̃s(Ω) = Hs(Ω), see e.g. [13, Theorems 3.33 and 3.40], which implies Ẽs

can be taken as the identity (imbedding) operator.
Let −1

2 < s < 0. Since H̃−s(Ω) = H−s(Ω), we have Hs(Ω) = [H̃−s(Ω)]∗ = [H−s(Ω)]∗ = H̃s(Ω)
due to the previous paragraph. The asterisk denotes the dual space. This implies Ẽs can be taken
as the identity (imbedding) operator also in this case.

Let now −3
2 < s < −1

2 . For s in this range, the trace operator γ+ : H−s(Ω) → H−s− 1
2 (∂Ω)

is bounded due to [6, Lemma 3.6] (see also [13, Theorem 3.38]), and there exists a bounded right
inverse to the trace operator γ−1 : H−s− 1

2 (∂Ω) → H−s(Ω), see Lemma 2.2. Then due to Theorem
2.4, (I − γ−1γ

+) is a bounded projector from H−s(Ω) to H−s
0 (Ω) = H̃−s(Ω). Thus any functional

v ∈ Hs(Ω) can be continuously mapped into the functional ṽ ∈ H̃s(Ω) such that ṽu = v(I−γ−1γ
+)u

for any u ∈ H−s(Ω). Since ṽu = vu for any u ∈ H̃−s(Ω), we have, Ẽs = (I − γ−1γ
+)∗ : Hs(Ω) →

H̃s(Ω) is a bounded extension operator.

Note that for −1
2 < s < 1

2 Theorem 2.5 implies that the extension operator Ẽs : Hs(Ω) → H̃s(Ω)
is unique, and we will call it canonical extension operator. For −3

2 < s < −1
2 , on the other hand,

the operator γ−1 : H−s− 1
2 (∂Ω) → H−s(Ω) in the proof of Theorem 2.8 is not unique, implying

non-uniqueness of Ẽs : Hs(Ω) → H̃s(Ω).

3 Partial differential operator extensions and co-normal derivatives
for infinitely smooth coefficients

Let us consider in Ω a system of m complex linear differential equations of the second order with
respect to m unknown functions {ui}m

i=1 = u : Ω → Cm, which for sufficiently smooth u has the
following strong form,

Lu(x) := −
n∑

i,j=1

∂i[aij(x) ∂ju(x)] +
n∑

j=1

bj(x) ∂ju(x) + c(x)u(x) = f(x), x ∈ Ω, (3.1)

where f : Ω → Cm, ∂j := ∂/∂xj (j = 1, 2, ..., n), a(x) = {aij(x)}n
i,j=1 = {{akl

ij (x)}m
k,l=1}n

i,j=1,
b(x) = {{bkl

i (x)}m
k,l=1}n

i=1 and c(x) = {ckl(x)}m
k,l=1, i.e., aij , bi, c : Ω → Cm×m for fixed indices i, j. If

m = 1, then (3.1) is a scalar equation. In this section we assume that a, b, c ∈ C∞(Ω); the case of
non-smooth coefficients will be addressed in Sections 4, 5.

The operator L is (uniformly) strongly elliptic in an open domain Ω if there exists a bounded
m×m matrix-valued function θ(x) such that

Re{ζ̄>θ(x)
n∑

i,j=1

aij(x)ξiξjζ} ≥ C|ξ|2|ζ|2 (3.2)

for all x ∈ Ω, ξ ∈ Rn and ζ ∈ Cm, where C is a positive constant, see e.g. [8, Definition 3.6.1] and
references therein. We say that the operator L is uniformly strongly elliptic in a closed domain Ω̄
if its is uniformly strongly elliptic in an open domain Ω′ ⊃ Ω̄. We will need the strong ellipticity in
relation with the solution regularity, starting from Theorem 3.10.

3.1 Partial differential operator extensions and generalised co-normal derivative

For u ∈ Hs(Ω), f ∈ Hs−2(Ω), s ∈ R, equation (3.1) is understood in the distribution sense as

〈Lu, v〉Ω = 〈f, v〉Ω ∀v ∈ D(Ω), (3.3)
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where v : Ω → Cm and
〈Lu, v〉Ω := E(u, v) ∀v ∈ D(Ω), (3.4)

E(u, v) = EΩ(u, v) :=
n∑

i,j=1

〈aij∂ju, ∂iv〉Ω +
n∑

j=1

〈bj∂ju, v〉Ω + 〈cu, v〉Ω . (3.5)

Bilinear form (3.5) is well defined for any v ∈ D(Ω) and moreover, the bilinear functional E :
{Hs(Ω), H̃2−s(Ω)} → C is bounded for any s ∈ R. Since the set D(Ω) is dense in H̃2−s(Ω), expression
(3.4) defines then a bounded linear operator L : Hs(Ω) → Hs−2(Ω) = [H̃2−s(Ω)]∗, s ∈ R,

〈Lu, v〉Ω := E(u, v) ∀v ∈ H̃2−s(Ω). (3.6)

Note that by (2.3) one can rewrite (3.6) also as

(Lu, v)L2(Ω) := Φ(u, v) ∀v ∈ H̃2−s(Ω),

where Φ(u, v) = E(u, v̄) is the sesquilinear form.
Let 1

2 < s < 3
2 . In addition to the operator L defined by (3.6), let us consider also the aggregate

partial differential operator Ľ : Hs(Ω) → H̃s−2(Ω) = [H2−s(Ω)]∗, defined as,

〈Ľu, v〉Ω := E(u, v) ∀v ∈ H2−s(Ω). (3.7)

The aggregate operator is evidently bounded since ∂iv ∈ H1−s(Ω) = H̃1−s(Ω), v ∈ H2−s(Ω) ⊂
H1−s(Ω) = H̃1−s(Ω) ⊂ H̃−s(Ω), cf. the arguments in the proof of Theorem 2.8. For any u ∈ Hs(Ω),
the functional Ľu belongs to H̃s−2(Ω) and is an extension of the functional Lu ∈ Hs−2(Ω) from the
domain of definition H̃2−s(Ω) ⊂ H2−s(Ω) to the domain of definition H2−s(Ω).

The distribution Ľu is not the only possible extension of the functional Lu, and any functional
of the form

Ľu + g, g ∈ Hs−2
∂Ω (3.8)

gives another extension. On the other hand, any extension of the domain of definition of the functional
Lu from H̃2−s(Ω) to H2−s(Ω) has evidently form (3.8). The existence of such extensions is provided
by Lemma 2.7.

For u ∈ Hs(Ω), s > 3
2 , the strong (classical) co–normal derivative operator

T+
c u(x) :=

n∑

i,j=1

aij(x) γ+[∂ju(x)]νi(x), (3.9)

is well defined on ∂Ω in the sense of traces. Here ν(x) is the outward (to Ω) unit normal vector at
the point x ∈ ∂Ω.

We can extend the definition of the generalised co–normal derivative, given in [13, Lemma 4.3]
for s = 1, to a range of Sobolev spaces as follows.

DEFINITION 3.1. Let Ω be a Lipschitz domain, 1
2 < s < 3

2 , u ∈ Hs(Ω), and Lu = f̃ |Ω in Ω for
some f̃ ∈ H̃s−2(Ω). Let us define the generalised co–normal derivative T+(f̃ , u) ∈ Hs− 3

2 (∂Ω) as
〈
T+(f̃ , u) , w

〉
∂Ω

:= E(u, γ−1w)− 〈f̃ , γ−1w〉Ω = 〈Ľu− f̃ , γ−1w〉Ω ∀ w ∈ H
3
2
−s(∂Ω), (3.10)

where γ−1 : H
3
2
−s(∂Ω) → H2−s(Ω) is a bounded right inverse to the trace operator.

The notation T+(f̃ , u) corresponds to the notation T̃+(f̃ , u) in [16].
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LEMMA 3.2. Under hypotheses of Definition 3.1, the generalised co–normal derivative T+(f̃ , u) is
independent of the operator γ−1, the estimate

‖T+(f̃ , u)‖
Hs− 3

2 (∂Ω)
≤ C1‖u‖Hs(Ω) + C2‖f̃‖H̃s−2(Ω)

(3.11)

takes place, and the first Green identity holds in the following form,
〈
T+(f̃ , u) , γ+v

〉
∂Ω

= E(u, v)− 〈f̃ , v〉Ω = 〈Ľu− f̃ , v〉Ω ∀ v ∈ H2−s(Ω). (3.12)

Proof. For s = 1 the lemma proof is available in [13, Lemma 4.3], which idea is extended here to the
whole range 1

2 < s < 3
2 .

By Lemma 2.2, a bounded operator γ−1 : H
3
2
−s(∂Ω) → H2−s(Ω) does exist. Then estimate (3.11)

follows from (3.10).
To prove independence of the co-normal derivative T+(f̃ , u) of γ−1, let us consider two co-normal

derivatives generated by two different operators γ′−1 and γ′′−1. Then their difference is

〈T ′+(f̃ , u)− T ′′+(f̃ , u), w〉∂Ω = 〈Ľu− f̃ , γ′−1w − γ′′−1w〉Ω ∀ w ∈ H
3
2
−s(∂Ω).

By definition, Ľu− f̃ ∈ Hs−2
∂Ω , which by Theorem 2.5 means there exists w0 ∈ Hs− 3

2 (∂Ω) such that

〈Ľu− f̃ , γ′−1w − γ′′−1w〉Ω = 〈w0, γ
+γ′−1w − γ+γ′′−1w〉∂Ω = 〈w0, w − w〉∂Ω = 0 ∀ w ∈ H

3
2
−s(∂Ω).

To prove (3.12), consider the function v0 = v − γ−1γ
+v. Since γ+v0 = 0, we have v0 ∈ H̃2−s(Ω)

by Theorem 2.4, thus there exists a sequence {φj} ∈ D(Ω) converging to v0 in H̃2−s(Ω). Hence, the
equality (Lu)|Ω = f̃ |Ω ∈ Hs−2(Ω) implies,

E(u, v0) = lim
j→∞

E(u, φj) = lim
j→∞

〈f̃ |Ω, φj〉Ω = lim
j→∞

〈f̃ , φj〉Ω = 〈f̃ , v0〉Ω .

Then taking into account definition (3.10), we have,

E(u, v) = E(u, v0) + E(u, γ−1γ
+v) = 〈f̃ , v0〉Ω +

〈
T+(f̃ , u) , γ+v

〉
∂Ω

+ 〈f̃ , γ−1γ
+v〉Ω

= 〈f̃ , v〉Ω +
〈
T+(f̃ , u) , γ+v

〉
∂Ω

as required.

Because of the involvement of f̃ , the generalised co-normal derivative T+(f̃ , u) is generally non-
linear in u. It becomes linear if a linear relation is imposed between u and f̃ (including behaviour
of the latter on the boundary ∂Ω), thus fixing an extension of f̃ |Ω into H̃s−2(Ω). For example, f̃ |Ω
can be extended as f̌ := Ľu, which generally does not coincide with f̃ . Then obviously, T+(f̌ , u) =
T+(Ľu, u) = 0, meaning that the co-normal derivatives associated with any other possible extension
f̃ appears to be aggregated in f̌ as

〈f̌ , v〉Ω = 〈f̃ , v〉Ω +
〈
T+(f̃ , u) , γ+v

〉
∂Ω

(3.13)

due to (3.12). This justifies the term aggregate for the extension f̌ , and thus for the operator Ľu.
In fact, for a given function u ∈ Hs(Ω), 1

2 < s < 3
2 , any distribution t ∈ Hs− 3

2 (∂Ω) may
be nominated as a co-normal derivative of u, by an appropriate extension f̃ of the distribution
Lu ∈ Hs−2(Ω) into H̃s−2(Ω). This extension is again given by the second Green formula (3.12)
re-written as follows (cf. [2, Section 2.2, item 4] for s = 1),

〈f̃ , v〉Ω := E(u, v)− 〈
t, γ+v

〉
∂Ω

= 〈Ľu− γ+∗t, v〉Ω ∀ v ∈ H2−s(Ω). (3.14)
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Here the operator γ+∗ : Hs− 3
2 (∂Ω) → H̃s−2(Ω) is adjoined to the trace operator, 〈γ+∗t, v〉Ω :=

〈t, γ+v〉∂Ω for all t ∈ Hs− 3
2 (∂Ω) and v ∈ H2−s(Ω). Evidently, the distribution f̃ defined by (3.14)

belongs to H̃s−2(Ω) and is an extension of the distribution Lu into H̃s−2(Ω) since γ+v = 0 for
v ∈ H̃2−s(Ω).

For u ∈ C1(Ω) ⊂ H1(Ω), one can take t equal to the strong co-normal derivative, T+
c u ∈ L∞(∂Ω),

and relation (3.14) can be considered as the classical extension of f = Lu ∈ H−1(Ω) to f̃c ∈ H̃−1(Ω),
which is evidently linear.

3.2 Boundary value problems

Consider the BVP weak settings for PDE (3.1) on Lipschitz domain for 1
2 < s < 3

2 .
The Dirichlet problem: for f ∈ Hs−2(Ω), ϕ0 ∈ Hs− 1

2 (∂Ω), find u ∈ Hs(Ω) such that

〈Lu, v〉Ω = 〈f, v〉Ω ∀v ∈ H̃2−s(Ω), (3.15)
γ+u = ϕ0 on ∂Ω. (3.16)

The Neumann problem: for f̌ ∈ H̃s−2(Ω), find u ∈ Hs(Ω) such that

〈Ľu, v〉Ω = 〈f̌ , v〉Ω ∀v ∈ H2−s(Ω). (3.17)

Here Lu and Ľu are defined by (3.4) and (3.7), respectively.
To set the mixed problem, let ∂DΩ and ∂NΩ = ∂Ω\∂DΩ be nonempty, open sub–manifolds of

∂Ω, and Hs
0(Ω, ∂DΩ) = {w ∈ Hs(Ω) : γ+w = 0 on ∂DΩ}. We introduce the mixed aggregate operator

Ľ∂DΩ : Hs(Ω) → [H2−s
0 (Ω, ∂DΩ)]∗, defined as

〈Ľ∂DΩu, v〉Ω := E(u, v) ∀ v ∈ H2−s
0 (Ω, ∂DΩ).

The mixed operator Ľ∂DΩ is bounded by the same argument as the aggregate operator Ľ. For any
u ∈ Hs(Ω), the distribution Ľ∂DΩu belongs to [H2−s

0 (Ω, ∂DΩ)]∗ and is an extension of the functional
Lu ∈ Hs−2(Ω) from the domain of definition H̃2−s(Ω) = H2−s

0 (Ω) ⊂ H2−s
0 (Ω, ∂DΩ) to the domain

of definition H2−s
0 (Ω, ∂DΩ), and a restriction of the functional Ľu ∈ H̃s−2(Ω) from the domain of

definition H2−s(Ω) ⊃ H2−s
0 (Ω, ∂DΩ) to the domain of definition H2−s

0 (Ω, ∂DΩ).
For v ∈ H2−s

0 (Ω, ∂DΩ), the trace γ+v belongs to H̃s− 1
2 (∂NΩ). If Lu = f̃ |Ω in Ω for some

f̃ ∈ H̃s−2(Ω), then the first Green identity (3.12) gives,

〈Ľ∂DΩu, v〉Ω = E(u, v) = 〈f̌m, v〉Ω,

〈f̌m, v〉Ω = 〈f̃ , v〉Ω +
〈
T+(f̃ , u) , γ+v

〉
∂NΩ

∀ v ∈ H2−s
0 (Ω, ∂DΩ), (3.18)

where, evidently, f̌m ∈ [H2−s
0 (Ω, ∂DΩ)]∗. This leads to the following weak setting.

The mixed (Dirichlet-Neumann) problem: for f̌m ∈ [H2−s
0 (Ω, ∂DΩ)]∗, ϕ0 ∈ Hs− 1

2 (∂DΩ), find
u ∈ Hs(Ω) such that

〈Ľ∂DΩu, v〉Ω = 〈f̌m, v〉Ω ∀v ∈ H2−s
0 (Ω, ∂DΩ), (3.19)

γ+u = ϕ0 on ∂DΩ. (3.20)

The Neumann and the mixed problems are formulated in terms of the aggregate right hand sides
f̌ and f̌m, respectively, prescribed on their own, i.e., without necessary splitting them into the right
hand side inside the domain Ω and the part related with the prescribed co-normal derivative. If a
right hand side extension f̃ and an associated non-zero generalised co-normal derivative T+(f̃ , u)
are prescribed instead, then f̌ and f̌m can be expressed through them by relations (3.13), (3.18).

12
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Thus the co-normal derivative does not enter, in fact, the weak settings of the Dirichlet, Neumann
or mixed problem, and the non-uniqueness of T+(f̃ , u) for a given function u ∈ Hs(Ω), 1

2 < s < 3
2 ,

does not influence the BVP weak settings, (cf. [2, Section 2.2, item 4] for s = 1). On the other hand,
for a given u ∈ Hs(Ω) the aggregate right hand sides f̌ and f̌m are uniquely determined by (3.17),
(3.19), as are, of course, f and ϕ0 by (3.15), (3.16)/(3.20).

Note that one can take v = w̄ to make the settings (3.15)-(3.16), (3.17) and (3.19)-(3.20) look
closer to the usual variational formulations, cf. e.g. [12].

3.3 Canonical co-normal derivative

As we have seen above, for an arbitrary u ∈ Hs(Ω), 1
2 < s < 3

2 , the co-normal derivative T+(f̃ , u) is
not generally uniquely determined by u. An exception is T+(Ľu, u) ≡ 0 but such co-normal derivative
evidently differs from the strong co-normal derivative T+

c u, given by (3.9) for sufficiently smooth u.
Another one way of making generalised co-normal derivative unique in u ∈ H1(Ω) was presented in
[8, Lemma 5.1.1] and is in fact associated with an extension of Lu ∈ H−1(Ω) to f̃ ∈ H̃−1(Ω), such
that f̃ is orthogonal in H−1(Rn) to H−1

∂Ω ⊂ H−1(Rn). However it appears (see Lemma A.1), that
even for infinitely smooth functions f such extension f̃ does not generally belong to L2(Rn), which
implies that the so-defined co-normal derivative τu from [8, Lemma 5.1.1] does also not generally
lead to the strong co-normal derivative.

Nevertheless, it is still possible to point out some subspaces of Hs(Ω), 1
2 < s < 3

2 , where a unique
definition of the co-normal derivative by u is possible and leads to the strong co-normal derivative
for sufficiently smooth u. We define below one such sufficiently wide subspace.

DEFINITION 3.3. Let s ∈ R and L∗ : Hs(Ω) → D∗(Ω) be a linear operator. For t ≥ −1
2 , we

introduce a space Hs,t(Ω;L∗) := {g : g ∈ Hs(Ω), L∗g|Ω = f̃g|Ω, f̃g ∈ H̃t(Ω)} equipped with the
graphic norm, ‖g‖2

Hs,t(Ω;L∗) := ‖g‖2
Hs(Ω) + ‖f̃g‖2

H̃t(Ω)
.

The distribution f̃g ∈ H̃t(Ω), t ≥ −1
2 , in the above definition is an extension of the distribution

L∗g|Ω ∈ Ht(Ω), and the extension is unique (if it does exist), since otherwise the difference between
any two extensions belongs to Ht

∂Ω but Ht
∂Ω = {0} for t ≥ −1

2 due to the Theorem 2.5. The
uniqueness implies that the norm ‖g‖Hs,t(Ω;L∗) is well defined. Note that another subspace of such
kind, where L∗g|Ω belongs to Lp(Ω) instead of Ht(Ω), was presented in [7, p. 59].

If s1 ≤ s2 and t1 ≤ t2, then we have the embedding, Hs2,t2(Ω; L∗) ⊂ Hs1,t1(Ω;L∗).

REMARK 3.4. If s ∈ R, −1
2 < t < 1

2 , and L∗ : Hs(Ω) → Ht(Ω) is a linear continuous operator,
then Hs,t(Ω;L∗) = Hs(Ω) by Theorem 2.8.

LEMMA 3.5. Let s ∈ R. If a linear operator L∗ : Hs(Ω) → D∗(Ω) is continuous, then the space
Hs,t(Ω; L∗) is complete for any t ≥ −1

2 .

Proof. Let {gk} be a Cauchy sequence in Hs,t(Ω;L∗). Then there exists a Cauchy sequence {f̃k}
in H̃t(Ω) such that f̃k|Ω = L∗gk|Ω. Since Hs(Ω) and H̃t(Ω) are complete, there exist elements
g0 ∈ Hs(Ω) and f̃0 ∈ H̃t(Ω) such that ‖gk − g0‖Hs(Ω) → 0, ‖f̃k − f̃0‖H̃t(Ω)

→ 0 as k → ∞. On
the other hand, continuity of L∗ implies that |〈L∗(gk − g0), φ〉| → 0 for any φ ∈ D(Ω). Taking into
account that L∗gk|Ω = f̃k|Ω, we obtain

|〈f̃0 − L∗g0, φ〉| ≤ |〈f̃0 − f̃k, φ〉|+ |〈f̃k − L∗g0, φ〉|
≤ ‖f̃0 − f̃k‖H̃t(Ω)

‖φ‖H−t(Ω) + |〈L∗(gk − g0), φ〉| → 0, k →∞ ∀φ ∈ D(Ω),

i.e., L∗g0|Ω = f̃0|Ω ∈ Ht(Ω), which implies g0 ∈ Hs,t(Ω;L∗).

13
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We will further use the space Hs,t(Ω;L∗) for the case when the operator L∗ is the operator L
from (3.4) or the operator L∗ formally adjoined to it (see Section 3.4).

DEFINITION 3.6. Let s ∈ R, t ≥ −1
2 . The operator L0 mapping functions u ∈ Hs,t(Ω; L) to

the extension of the distribution Lu ∈ Ht(Ω) to H̃t(Ω) will be called the canonical extension of the
operator L.

REMARK 3.7. If s ∈ R, t ≥ −1
2 , then ‖L0u‖

H̃t(Ω)
≤ ‖u‖Hs,t(Ω;L) by definition of the space

Hs,t(Ω; L), i.e., the linear operator L0 : Hs,t(Ω; L) → H̃t(Ω) is continuous. Moreover, if −1
2 < t < 1

2 ,
then by Theorem 2.8 and uniqueness of the extension of Ht(Ω) to H̃t(Ω), we have the representation
L0 := ẼtL.

As in in [16, Definition 3] for scalar PDE, let us define the canonical co-normal derivative operator.
This extends [7, Theorem 1.5.3.10] and [6, Lemma 3.2] where co-normal derivative operators acting
on functions from H1,0

p (Ω;∆) and H1,0(Ω; L), respectively, were defined.

DEFINITION 3.8. For u ∈ Hs,− 1
2 (Ω; L), 1

2 < s < 3
2 , we define the canonical co-normal derivative

as T+u := T+(L0u, u) ∈ Hs− 3
2 (∂Ω), i.e.,

〈
T+u , w

〉
∂Ω

:= E(u, γ−1w)− 〈L0u, γ−1w〉Ω = 〈Ľu− L0u, γ−1w〉Ω ∀ w ∈ H
3
2
−s(∂Ω), (3.21)

where γ−1 : Hs− 1
2 (∂Ω) → Hs(Ω) is a bounded right inverse to the trace operator.

Lemma 3.2 for the generalised co-normal derivative and Definition 3.3 imply the following state-
ment.

LEMMA 3.9. Under hypotheses of Definition 3.8, the canonical co-normal derivative T+u is inde-
pendent of the operator γ−1, the operator T+ : Hs,− 1

2 (Ω;L) → Hs− 3
2 (∂Ω) is continuous, and the first

Green identity holds in the following form,
〈
T+u , γ+v

〉
∂Ω

=
〈
T+(L0u, u) , γ+v

〉
∂Ω

= E(u, v)− 〈L0u, v〉Ω
= 〈Ľu− L0u, v〉Ω ∀ v ∈ H2−s(Ω).

Thus unlike the generalised co-normal derivative, the canonical co-normal derivative is uniquely
defined by the function u and the operator L only, uniquely fixing an extension of the latter on the
boundary.

Definitions 3.1 and 3.8 imply that the generalised co-normal derivative of u ∈ Hs,− 1
2 (Ω;L),

1
2 < s < 3

2 , for any other extension f̃ ∈ H̃s−2(Ω) of the distribution Lu|Ω ∈ H− 1
2 (Ω) can be

expressed as
〈
T+(f̃ , u) , w

〉
∂Ω

=
〈
T+u , w

〉
∂Ω

+ 〈L0u− f̃ , γ−1w〉Ω ∀ w ∈ H
3
2
−s(∂Ω). (3.22)

Note that the distributions Ľu− f̃ , Ľu−L0u and L0− f̃ belong to H2−s
∂Ω since L0u, Ľu, f̃ belong

to H̃2−s(Ω), while L0u|Ω = Ľu|Ω = f̃ |Ω = Lu|Ω ∈ Hs−2(Ω).
To give conditions when the canonical co-normal derivative T+u coincides with the strong co-

normal derivative T+
c u, if the latter does exist in the trace sense, we prove in Lemma 3.11 below that

D(Ω) is dense in Hs,t(Ω; L). The proof is based on the following local regularity theorem well known
for the case of infinitely smooth coefficients, see e.g. [18, 1, 12]; its counterpart for the case of Hölder
coefficients, Theorem 4.5, is proved in Section 4.
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THEOREM 3.10. Let Ω be an open set in Rn, s1 ∈ R, function u ∈ Hs1
loc(Ω)m, m ≥ 1, satisfy

strongly elliptic system (3.1) in Ω with f ∈ Hs2
loc(Ω)m, s2 > s1− 2, and infinitely smooth coefficients.

Then u ∈ Hs2+2
loc (Ω)m.

LEMMA 3.11. If s ∈ R, −1
2 ≤ t < 1

2 and the operator L is strongly elliptic on Ω, then D(Ω) is
dense in Hs,t(Ω;L).

Proof. We modify appropriately the proof from [7, Lemma 1.5.3.9] given for another space of such
kind.

For every continuous linear functional l on Hs,t(Ω; L) there exist distributions h̃ ∈ H̃−s(Ω) and
g ∈ H−t(Ω) such that

l(u) = 〈h̃, u〉Ω + 〈g, L0u〉Ω.

To prove the lemma claim, it suffice to show that any l, which vanishes on D(Ω), will vanish on
any u ∈ Hs,t(Ω; L). Indeed, if l(φ) = 0 for any φ ∈ D(Ω), then

〈h̃, φ〉Ω + 〈g, L0φ〉Ω = 0. (3.23)

Let us consider the case −1
2 < t < 1

2 first and extend g outside Ω to g̃ ∈ H̃−t(Ω) (cf. the proof of
Lemma 2.8). If t ≤ s− 2, then evidently g̃ ∈ H̃2−s(Ω). If t > s− 2, then equation (3.23) gives

〈h̃, φ〉Ω′ + 〈g̃, Lφ〉Ω′ = 〈h̃, φ〉Ω + 〈g, L0φ〉Ω = 0 (3.24)

for any φ ∈ D(Ω′) on some domain Ω′ ⊃ Ω, where the operator L is still strongly elliptic. This means
L∗g̃ = −h̃ in Ω′ in the sense of distributions, where L∗ is the operator formally adjoint to L, see
(3.29). Then Theorem 3.10 implies g̃ ∈ H2−s

loc (Ω′) and consequently g̃ ∈ H̃2−s(Ω).
In the case t = −1

2 , one can extend g ∈ H
1
2 (Ω) outside Ω by zero to g̃ ∈ H̃

1
2
−ε(Ω), 0 < ε, and

prove as in the previous paragraph that g̃ ∈ H̃2−s(Ω).
If −1

2 < t < 1
2 or [t = −1

2 , s ≤ 3
2 ], let us denote q := max{−t, 2 − s} and {gk} ∈ D(Ω) be a

sequence converging, as k → ∞, to g̃ in H̃q(Ω) and thus in H̃−t(Ω) and in H̃2−s(Ω). Then for any
u ∈ Hs,t(Ω; L), we have,

l(u) = lim
k→∞

{〈−L∗gk, u〉Ω + 〈gk, L
0u〉Ω

}
= lim

k→∞
{〈−L∗gk, u〉Ω + 〈gk, Lu〉Ω} = 0 (3.25)

since L∗gk ∈ H̃−s(Ω) and L∗gk → L∗g̃ in H̃−s(Ω). Thus l is identically zero.
On the other hand, if t = −1

2 , s > 3
2 , let {gk} ∈ D(Ω) be a sequence converging, as k →∞, to g

in H
1
2
0 (Ω) = H

1
2 (Ω), cf. Theorem 2.6, and thus to g̃ in H̃2−s(Ω). Employing then the same reasoning

about (3.25), as in the preceding paragraph, we complete the proof.

LEMMA 3.12. Let u ∈ Hs,− 1
2 (Ω;L), 1

2 < s < 3
2 , and {uk} ∈ D(Ω) be a sequence such that

‖uk − u‖
Hs,− 1

2 (Ω;L)
→ 0 as k →∞. (3.26)

Then ‖T+
c uk − T+u‖

Hs− 3
2 (∂Ω)

→ 0 as k →∞.

Proof. By Lemma 3.11 the sequence satisfying (3.26) does always exist. Using the definition of T+u

and the classical first Green identity for uk, we have for any w ∈ H
3
2
−s(∂Ω),

〈
T+u,w

〉
∂Ω

= E(u, γ−1w)− 〈L0u, γ−1w〉Ω = E(u− uk, γ−1w) + E(uk, γ−1w)− 〈L0u, γ−1w〉Ω
= E(u− uk, γ−1w) +

∫

∂Ω
w T+

c uk dΓ + 〈L0uk, γ−1w〉Ω − 〈L0u, γ−1w〉Ω
= E(u− uk, γ−1w) +

〈
T+

c uk, w
〉
∂Ω
− 〈L0(u− uk), γ−1w〉Ω →

〈
T+

c uk, w
〉
∂Ω

,

as k → ∞ due to (3.26). Since T+u is uniquely determined by u, this implies existence of the limit
of the right hand side and its independence of the sequence {uk}.
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The following statement gives the equivalence of the classical co-normal derivative (in the trace
sense) and the canonical co-normal derivative, for functions from Hs(Ω), s > 3

2 .

COROLLARY 3.13. If u ∈ Hs(Ω), s > 3
2 , then T+u = T+

c u.

Proof. If u ∈ Hs(Ω), s > 3
2 , then u ∈ Hs,− 1

2 (Ω;L) ⊂ H1,− 1
2 (Ω; L) by Remark 3.4. Let {uk} ∈ D(Ω)

be a sequence such that ‖uk − u‖Hs(Ω) → 0 and thus ‖uk − u‖
H1,− 1

2 (Ω;L)
→ 0 as k →∞. Then

‖T+u− T+
c u‖

H− 1
2 (∂Ω)

≤ ‖T+u− T+
c uk‖

H− 1
2 (∂Ω)

+ ‖T+
c (uk − u)‖

H− 1
2 (∂Ω)

, (3.27)

where the first norm in the right hand side vanishes as k →∞ by Lemma 3.12, while for the second
norm we have,

‖T+
c (uk − u)‖

H− 1
2 (∂Ω)

≤ ‖
n∑

i,j=1

aijγ
+[∂j(uk − u)]nj‖L2(∂Ω) ≤ max

∂Ω
|a| ‖uk − u‖Hs(Ω) → 0, k →∞.

Let us prove now that the classical and canonical co-normal derivatives coincide also in another
case, when the both do exist. First note, that C1(Ω) ⊂ H1(Ω) for bounded domain Ω and C1(Ω′) ⊂
H1(Ω′) for any bounded subdomain Ω′ of unbounded domain Ω .

COROLLARY 3.14. Let u ∈ C1(Ω)
⋂

H1,t
loc(Ω; L) for some t ∈ (−1

2 , 1
2) and ∂Ω ∈ C1. Then

T+u = T+
c u.

Proof. Evidently T+
c u, T+u ∈ H− 1

2 (∂Ω). Let the subdomain Ω′ε be such that Ω̄′ε ⊂ Ω and its
boundary ∂Ω′ε is equidistant from ∂Ω, namely, ∂Ω′ε = { y − εn(y) : y ∈ ∂Ω }, where ε > 0 is
sufficiently small. Let also Ωε := Ω \ Ω′ε be the layer between ∂Ω and ∂Ω′ε. For any v ∈ D(Ω) we
have,

〈T+
c u− T+u, γ+v〉∂Ω = [〈T+

c u, γ+v〉∂Ω − 〈T+
c u, γ+v〉∂Ω′ε ]− [〈T+u, γ+v〉∂Ω − 〈T+

c u, γ+v〉∂Ω′ε ]. (3.28)

The first square bracket in the right hand side tends to zero as ε → 0 due to continuity of ∇u and
v and to the chosen form of ∂Ω′ε → ∂Ω. The membership u ∈ H1,t

loc(Ω; L) implies u ∈ Ht+2(Ω′ε) by
Theorem 3.10. Then T+

c u = T+u on ∂Ω′ε by Corollary 3.13 and for the second bracket in (3.28) we
have,

[〈T+u, γ+v〉∂Ω − 〈T+
c u, γ+v〉∂Ω′ε ] = 〈T+u, γ+v〉∂Ωε = EΩε(u, v)− 〈L0u, v〉Ωε

≤ C1

[‖u‖H1(Ωε)‖v‖H1(Ωε) + ‖Lu‖Ht(Ωε)‖v‖H−t(Ωε)

]

≤ C2

[‖u‖H1(Ω)‖v‖H1(Ωε) + ‖Lu‖Ht(Ω)‖v‖H1(Ωε)

] → 0 ε → 0

since L0u = Lu ∈ Ht(Ω) = H̃t(Ω) for −1
2 < t < 1

2 and the Lebesgue measure of Ωε tends to zero.

REMARK 3.15. Note that the operator Ľ : Hs(Ω) → H̃s−2(Ω) defined by (3.7), is not generally
defined for s = 1 ± 1

2 . Thus the generalised co-normal derivative T+(f̃ , u) ∈ Hs− 3
2 (∂Ω) and the

canonical co-normal derivative T+u ∈ Hs− 3
2 (∂Ω) expressed through Ľ by (3.10) and (3.21), respec-

tively, are not well defined for s = 1± 1
2 either. On the other hand for s ≥ 3

2 , evidently, the operator
Ľ : Hs(Ω) → H̃σ−2(Ω) is bounded for any σ ∈ (1

2 , 3
2), implying that T+(f̃ , u) ∈ Hσ− 3

2 (∂Ω) is well
defined if u ∈ Hs(Ω), f̃ ∈ Hσ−2(Ω), while T+u ∈ Hσ− 3

2 (∂Ω) is well defined if u ∈ Hs,− 1
2 (Ω; L).

Moreover T+u = T+
c u ∈ Hs− 3

2 (∂Ω) for 3
2 < s < 5

2 (on Lipschitz boundary ∂Ω) if u ∈ Hs(Ω), as
follows from Corollary 3.13.
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3.4 Formally adjoined PDE and the second Green identity

The PDE system formally adjoined to (3.1) is given in the strong form as

L∗v(x) := −
n∑

i,j=1

∂i[ā>ji(x) ∂jv(x)]−
n∑

j=1

∂j [ b̄>j (x)v(x)] + c̄>(x)v(x) = f(x), x ∈ Ω. (3.29)

Similar to the operator L, for any v ∈ H2−s(Ω), s ∈ R, the weak form of the operator L∗ is

〈L∗v, u〉Ω := E∗(v, u) ∀u ∈ H̃s(Ω), (3.30)

where
E∗(v, u) = E(ū, v̄) = Φ(ū, v) (3.31)

is the bilinear form and so defined operator L∗ : H2−s(Ω) → H−s(Ω) = [H̃s(Ω)]∗ is bounded for any
s ∈ R.

For 1
2 < s < 3

2 let us consider also the aggregate operator Ľ∗ : H2−s(Ω) → H̃−s(Ω) = [Hs(Ω)]∗,
defined as,

〈Ľ∗v, u〉Ω := E∗(v, u) ∀u ∈ Hs(Ω), (3.32)

which is evidently bounded. For any v ∈ H2−s(Ω), the distribution Ľ∗v belongs to H̃−s(Ω) and is
an extension of the functional L∗v ∈ H−s(Ω) from the domain of definition H̃s(Ω) to the domain of
definition Hs(Ω).

Relations (3.32), (3.31) and (3.7) lead to the aggregate second Green identity,

〈Ľu, v̄〉Ω = 〈u, Ľ∗v〉Ω, u ∈ Hs(Ω), v ∈ H2−s(Ω),
1
2

< s <
3
2
. (3.33)

For a sufficiently smooth function v, let

T̃+
c v(x) :=

n∑

i,j=1

ā>ji(x) γ+[∂jv(x)]νi(x) +
n∑

i=1

b̄>i (x)γ+v(x)νi (3.34)

be the strong (classical) modified co-normal derivative (it corresponds to B̃νv in [13]), associated
with the operator L∗.

If v ∈ H2−s(Ω), 1
2 < s < 3

2 , and L∗v = f̃∗|Ω in Ω for some f̃∗ ∈ H̃−s(Ω), we define the generalised
modified co–normal derivative T̃+(f̃∗, v) ∈ H

1
2
−s(∂Ω), associated with the operator L∗, similar to

Definition 3.1, as
〈
T̃+(f̃∗, v) , w

〉
∂Ω

:= E∗(v, γ−1w)− 〈f̃∗, γ−1w〉Ω ∀ w ∈ Hs− 1
2 (∂Ω).

As in Lemma 3.2, this leads to the following first Green identity for the function v,
〈
T̃+(f̃∗, v) , u+

〉
∂Ω

= E∗(v, u)− 〈f̃∗, u〉Ω ∀ u ∈ Hs(Ω), (3.35)

which by (3.31) implies
〈
u+, T̃+(f̃∗, v)

〉
∂Ω

= E(u, v̄)− 〈u, f̃∗〉Ω ∀ u ∈ Hs(Ω). (3.36)

If, in addition, Lu = f̃ |Ω in Ω, where f̃ ∈ H̃s−2(Ω), then combining (3.36) and the first Green identity
(3.12) for u, we arrive at the following generalised second Green identity,

〈f̃ , v̄〉Ω − 〈u, f̃∗〉Ω =
〈
u+, T̃+(f̃∗, v)

〉
∂Ω

−
〈
T+(f̃ , u) , v+

〉
∂Ω

. (3.37)
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Taking in mind (3.35), (3.32) and (3.12), (3.7), this, of course, leads to the aggregate second Green
identity (3.33).

If 1
2 < s < 3

2 and v ∈ H2−s,− 1
2 (Ω; L∗), then similar to Definitions 3.6 and 3.8 we can introduce

the canonical extension L∗0 of the operator L∗, and the canonical modified co-normal derivative
T̃+v := T̃+(L∗0v, v) ∈ H

1
2
−s(∂Ω). In this case the second Green identity (3.37) takes form

〈f̃ , v̄〉Ω −
〈
u, L∗0v

〉
Ω

=
〈
u+, T̃+v

〉
∂Ω

−
〈
T+(f̃ , u), v+

〉
∂Ω

(3.38)

for u ∈ Hs(Ω), Lu = f̃ |Ω in Ω, where f̃ ∈ H̃s−2(Ω). This form was a starting point in formulation
and analysis of the extended boundary-domain integral equations in [14].

If, moreover, u ∈ Hs,− 1
2 (Ω; L), we obtain from (3.38) the second Green identity for the canonical

extensions and canonical co-normal derivatives,

〈
L0u, v̄

〉
Ω
−

〈
u, L∗0v

〉
Ω

=
〈
u+, T̃+v

〉
∂Ω

−
〈
T+u , v+

〉
∂Ω

. (3.39)

Particularly, if u, v ∈ H1,0(Ω;L), then (3.39) takes the familiar form, cf. [6, Lemma 3.4],
∫

Ω
[ v(x)Lu(x)− u(x)L∗v(x) ]dx =

〈
u+, T̃+v

〉
∂Ω

−
〈
T+u , v+

〉
∂Ω

.

4 Local solution regularity for strongly elliptic system with Hölder-
Lipschitz coefficients

In this section, after introducing some Hölder-Lipschitz type spaces for coefficients and giving state-
ments on boundedness of the considered PDEs with such coefficients, we extend the well know result
about the local regularity of elliptic PDE solution, Theorem 3.10, to the case of relaxed smooth-
ness of the PDE coefficients. This will be used then to prove a counterparts of Lemma 3.11 and
Corollary 3.14 in Section 5, where all results of Section 3 are generalised to non-smooth coefficients.

For an open set Ω let Wµ∞(Ω), µ ≥ 0, be the Sobolev-Slobodetskii space with the norm

‖g‖W µ
∞(Ω) :=

∑

0≤|α|≤µ

‖∂αg‖L∞(Ω) < ∞

for integer µ, and

‖g‖W µ
∞(Ω) := ‖g‖

W
[µ]
∞ (Ω)

+ |g|W µ
∞(Ω) < ∞, |g|W µ

∞(Ω) :=
∑

|α|=µ

∥∥∥∥
∂αg(x)− ∂αg(y)
|x− y|µ−[µ]

∥∥∥∥
L∞(Ω×Ω)

for non-integer µ. Evidently W 0∞(Ω) = L∞(Ω), while (possibly after adjusting functions on zero
measure sets) Wµ∞(Ω) is the usual Hölder space C0,µ(Ω) for 0 < µ < 1, Wµ∞(Ω) = C [µ],µ−[µ](Ω) for
non-integer µ > 1, and Wµ∞(Ω) is the Lipschitz space Cµ−1,1(Ω) for integer µ ≥ 1, where [µ] is the
integer part of µ.

Let us denote by R+(s) the set of all non-negative numbers if s is integer and of all positive
numbers otherwise.

DEFINITION 4.1. For an open set Ω and µ ≥ 0 let C̄µ(Ω) be the set of restrictions on Ω of
all functions from Wµ∞(Rn), equipped with the norm ‖v‖C̄µ(Ω) = infV |Ω=v ‖V ‖W µ

∞(Rn). Evidently
‖v‖W µ

∞(Ω) ≤ ‖v‖C̄µ(Ω), C̄0(Ω) = L∞(Ω), C̄µ(Ω) ⊂ Wµ∞(Ω) for µ > 0.
The set C̄µ

+(Ω) is defined as C̄µ(Ω) for integer non-negative µ and as
⋃

ν>µ C̄ν(Ω) for non-integer
nonnegative µ. Evidently g ∈ C̄µ

+(Ω) if and only if g ∈ C̄µ+ε(Ω) for some ε ∈ R+(µ).
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THEOREM 4.2. Let Ω be an open set, s ∈ R, g1 ∈ C̄µ(Ω), µ − |s| ∈ R+(s). Then g1g2 ∈ Hs(Ω)
for every g2 ∈ Hs(Ω), and

‖g1g2‖Hs(Ω) ≤ C‖g1‖C̄µ(Ω)‖g2‖Hs(Ω).

Proof. Note that the theorem is close to the statement given in [7, Theorem 1.4.1.1] without proof.
Let first Ω = Rn. The case s = 0 is evident. For s > 0 the estimate is obtained from [20, Theorem

2(b)] with parameters s1 = µ, s2 = s, p1 = ∞, q1 = p2 = q2 = p = q = 2 there (see also [7, Theorem
1.4.4.2]). A simpler proof for all s ∈ R is available in [3, Theorems 11-13].

When Ω 6= Rn, let G2 ∈ Hs(R) and G1 ∈ W s∞(R) are such that g2 = G2|Ω, ‖G2‖Hs(Rn) =
‖g2‖Hs(Ω), g1 = G1|Ω, ‖G1‖W µ

∞(Rn) < 2‖g1‖C̄µ(Ω). Then

‖g1g2‖Hs(Ω) ≤ ‖G1G2‖Hs(Rn) ≤ C‖G1‖W µ
∞(Rn)‖G2‖Hs(Rn) < 2C‖g1‖C̄µ(Ω)‖g2‖Hs(Ω).

Note that the condition on g1 in Theorem 4.2 is equivalent to the membership g1 ∈ C̄
|s|
+ (Ω).

Let u ∈ Hs(Ω), s ∈ R, a, b ∈ C̄µa
+ (Ω), c ∈ C̄µc

+ (Ω), where µa = 0 if s ≥ 1 and µa = |s − 1|
otherwise, µc = 0 if s ≥ 0 and µc = |s| otherwise. Then equation (3.1) in the distributional sense
has the same form (3.3)-(3.5), where the bilinear form E(u, v), given by (3.5), is well defined for
v ∈ D(Ω).

DEFINITION 4.3. We will say that the coefficients of equation (3.1) belong to the class Cσ
+(Ω),

i.e. {a, b, c} ∈ Cσ
+(Ω), if a ∈ C̄

|σ|
+ (Ω), b ∈ C̄

µb(σ)
+ (Ω), µb(σ) = max(0, |σ − 1

2 | − 1
2), c ∈ C̄

µc(σ)
+ (Ω),

µc(σ) = max(0, |σ| − 1).
For an open set Ω, as usual, {a, b, c} ∈ Cσ

+loc(Ω) means that {a, b, c} ∈ Cσ
+(Ω′) for any Ω′ ⊂ Ω.

By Theorem 4.2 we immediately have the following statement.

THEOREM 4.4. If s ∈ R and {a, b, c} ∈ Cs−1
+ (Ω), then bilinear form (3.5), E : {Hs(Ω), H̃2−s(Ω)} →

C is bounded and expressions (3.6), (3.30) define bounded linear operators L : Hs(Ω) → Hs−2(Ω),
L∗ : H2−s(Ω) → H−s(Ω).

The local regularity of solution to PDEs (3.1) and (3.29) for the case of infinitely smooth coeffi-
cients, Theorem 3.10, is well known (see e.g. [18, 1, 12]). The case a, b, c ∈ Ck,1(Ω̄), s1 = 1, s2 = k
with integer k ≥ 0 can be found in [13, Theorem 4.16], and the case a ∈ C0,1(Ω̄), b = 0, c = const,
s2 ∈ (−3/2,−1/2) in [17, Theorem 4], extended in [4] to general elliptic systems with all coefficients
from C0,1(Ω̄). For arbitrary Hölder coefficients the corresponding result formulated below seems to
be new.

THEOREM 4.5. Let Ω be an open set in Rn, s1 ∈ R, m ≥ 1, u ∈ Hs1
loc(Ω)m, f ∈ Hs2

loc(Ω)m,
s2 > s1 − 2. If u satisfies

(a) strongly elliptic system (3.1), Lu = f , in Ω with {a, b, c} ∈ Cs1−1
+loc (Ω)

⋂ Cs2+1
+loc (Ω) or

(b) strongly elliptic system (3.29), L∗u = f , in Ω with {a, b, c} ∈ C1−s1
+loc (Ω)

⋂ C−s2−1
+loc (Ω),

then u ∈ Hs2+2
loc (Ω)m.

Note that the theorem hypothesis s2 > s1 − 2 implies that either s1 6= 1 or s2 6= −1 and thus
a ∈ C̄µ

loc(Ω) for some µ > 0 and particularly, a ∈ C(Ω) (maybe after adjusting a on a zero measure
set, that we will assume to be done). To prove the theorem, we need first to prove Lemma 4.6 and
Corollary 4.7 below.

LEMMA 4.6. Let s, t ∈ R, w ∈ Hs(Rn)m, g ∈ W σ+ε∞ (Rn)m, σ = |s − t−1
2 | + | |t|−1

2 | + 1 and
ε ∈ R+(σ). Then J t(gw)− gJ tw ∈ Hs−t+1(Rn)m and

‖J t(gw)− gJ tw‖Hs−t+1(Rn)m ≤ C|t|‖g‖W σ+ε∞ (Rn)m‖w‖Hs(Rn)m . (4.1)
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Proof. The proof below is given for m = 1, generalisation to the vector case, m > 1, is evident.

K(ξ) := F [J t(gw)− gJ tw](ξ) = (1 + |ξ|2)t/2(ĝ ∗ ŵ)(ξ)− (ĝ ∗ F [J tw])(ξ) =∫

Rn

[(1 + |ξ|2)t/2− (1 + |ξ− η|2)t/2]ĝ(η)ŵ(ξ− η)dη =
∫

Rn

[(η · ξ + η · (ξ− η)]f(ξ, ξ− η)ĝ(η)ŵ(ξ− η)dη

=
∫

Rn

∇̂g(η) ·
(

ξŵ(ξ − η)
2πi

− ∇̂w(ξ − η)
4π2

)
f(ξ, ξ − η)dη.

Here

f(ξ, ξ − η) :=
(1 + |ξ|2)t/2 − (1 + |ξ − η|2)t/2

|ξ|2 − |ξ − η|2
and we took into account that |ξ|2 − |ξ − η|2 = η · ξ + η · (ξ − η).

Using the inequality |cβ
1 − cβ

2 | ≤ |β||c1 − c2|(cβ−1
1 + cβ−1

2 ), for any c1, c2 > 0, β ∈ R, and denoting
p(ξ) = (1 + |ξ|2)1/2, we have,

|f(ξ, ξ − η)| ≤ |t|p
t−1(ξ) + pt−1(ξ − η)

p(ξ) + p(ξ − η)
≤ |t|p

t−1(ξ) + pt−1(ξ − η)
p(ξ − η)

,

for any t ∈ R, and the left inequality implies also

|ξf(ξ, ξ − η)| ≤ |t|[pt−1(ξ) + pt−1(ξ − η)].

Then

|K(ξ)| ≤ |t|
2π

∫

Rn

[
pt−1(ξ) + pt−1(ξ − η)

] |∇̂g(η)ŵ(ξ − η)|dη

+
|t|
4π2

∫

Rn

[
pt−1(ξ) + pt−1(ξ − η)

]
p−1(ξ − η)|∇̂g(η) · ∇̂w(ξ − η)|dη

=
|t|
2π

∫

Rn

[
pt−1(ξ)|∇̂g(η)ŵ(ξ − η)|+ |∇̂g(η)pt−1(ξ − η)ŵ(ξ − η)|

]
dη

+
|t|
4π2

∫

Rn

[
pt−1(ξ)|∇̂g(η) · [p−1(ξ − η)∇̂w(ξ − η)]|+ |∇̂g(η) · [pt−2(ξ − η)∇̂w(ξ − η)]|

]
dη

=
|t|
2π

[
pt−1(ξ){|∇̂g ∗ ŵ|}(ξ) + {|∇̂g ∗ (pt−1ŵ)|}(ξ)

]

+
|t|
4π2

[
pt−1(ξ){|∇̂g ∗ (p−1∇̂w)|}(ξ) + {|∇̂g ∗ (pt−2∇̂w)|}(ξ)

]
.

Taking into account Theorem 4.2, we obtain,

‖J t(gw)− gJ tw‖Hs−t+1(Rn) = ‖ps−t+1K‖L2(Rn)

≤ |t|
2π

∥∥∥ps|∇̂g ∗ ŵ|+ ps−t+1|∇̂g ∗ (pt−1ŵ)|
∥∥∥

L2(Rn)

+
|t|
4π2

∥∥∥ps|∇̂g ∗ (p−1∇̂w)|+ ps−t+1|∇̂g ∗ (pt−2∇̂w)|
∥∥∥

L2(Rn)

=
|t|
2π

[‖(∇g)w‖Hs(Rn) + ‖(∇g)(J t−1w)‖Hs−t+1(Rn)

+‖(∇g) · (J −1∇w)‖Hs(Rn) + ‖(∇g) · (J t−2∇w)‖Hs−t+1(Rn)

]

≤ C1|t|
[
‖g‖

W
|s|+1+ε1∞ (Rn)

‖w‖Hs(Rn) + ‖g‖
W
|s−t+1|+1+ε2∞ (Rn)

‖w‖Hs(Rn)

+‖g‖
W
|s|+1+ε1∞ (Rn)

‖w‖Hs(Rn) + ‖g‖
W
|s−t+1|+1+ε2∞ (Rn)

‖w‖Hs(Rn)

]
.
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for any ε1 ∈ R+(s), ε2 ∈ R+(s− t). That is,

‖J t(gw)− gJ tw‖Hs−t+1(Rn) ≤ 2C1|t|(‖g‖W
|s|+1+ε1∞ (Rn)

+ ‖g‖
W
|s−t+1|+1+ε2∞ (Rn)

)‖w‖Hs(Rn). (4.2)

On the other hand, let us denote v = J tw ∈ Hs−t(Rn) and remark that by inequality (4.2),
where t is replaced with −t and s with s− t, we have,

‖J t(gw)− gJ tw‖Hs−t+1(Rn) = ‖J t[gJ−tv − J−t(gv)]‖Hs−t+1(Rn) = ‖gJ−tv − J−t(gv)‖Hs+1(Rn)

≤ 2C1|t|(‖g‖W
|s−t|+1+ε2∞ (Rn)

+ ‖g‖
W
|s+1|+1+ε1∞ (Rn)

)‖v‖Hs−t(Rn)

≤ 2C1|t|(‖g‖W
|s−t|+1+ε2∞ (Rn)

+ ‖g‖
W
|s+1|+1+ε1∞ (Rn)

)‖w‖Hs(Rn).

Inequality (4.1) follows if we remark that

σ = |s− t− 1
2
|+ | |t| − 1

2
|+ 1 = min{max(|s|+ 1, |s− t + 1|+ 1), max(|s− t|+ 1, |s + 1|+ 1)}.

Let us denote by L0 the principal part of the operator L from (3.1), i.e.,

L0u(x) := −
n∑

i,j=1

∂i[aij(x) ∂ju(x)].

Taking in mind that the Bessel potential operator J commutate with differentiation, Lemma 4.6
implies the following statement.

COROLLARY 4.7. Let s, t ∈ R, u ∈ Hs(Rn)m, a ∈ W σ+ε∞ (Rn)m, σ = |s − t+1
2 | + | |t|−1

2 | + 1,
ε ∈ R+(σ). Then J t(L0u)− L0J tu ∈ Hs−t−1(Rn)m and

‖J t(L0u)− L0J tu‖Hs−t−1(Rn)m ≤ 2C|t|‖a‖W σ+ε∞ (Rn)m‖u‖Hs(Rn)m .

Now we are in a position to return to Theorem 4.5.

PROOF OF THEOREM 4.5. We give only a proof for part (a) of the theorem, organised in
several steps. The proof for part (b) is similar.

Step (i) As usual, c.f. [12, Chapter 2, Theorem 3.1 ], let us first consider the case a = const,
b = 0, c = 0 and Ω = Rn. Suppose a function U satisfies the distributional form of equation (3.1),
i.e., (3.3)-(3.4). Then the strong ellipticity condition (3.2) implies,

C0|ξ|2|Û(ξ)|2 ≤ Re{Û>(ξ) θ
n∑

i,j=1

aijξiξjÛ(ξ)} = (2π)−2Re{Û>(ξ) θf̂(ξ)} ≤ (2π)−2|Û(ξ)| |θ| |f̂(ξ)|,

where C0 > 0. Therefore also

C2
1 (1 + |ξ|2)2|Û(ξ)|2 ≤ |f̂(ξ)|2 + 2C2

1 |Û(ξ)|2,

implying
C2

1‖U‖2
Hs+2(Rn) ≤ 2‖f‖2

Hs(Rn) + 2C2
1‖U‖2

Hs(Rn) (4.3)

for any s ∈ R.
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Step (ii) Let now the coefficients {a, b, c} ∈ Cs1−1
+loc (Ω)

⋂ Cs2+1
+loc (Ω) are not generally constant, Ω is

not generally Rn, and u ∈ Hs1
loc(Ω). Let Bρ = By,ρ ⊂ Ω′ b Ω denote an open ball of radius ρ centred

at a point y ∈ Ω. Let a, b, c and u be extended outside Ω′ to {a′, b′, c′} ∈ Cs1−1
+ (Rn)

⋂ Cs2+1
+ (Rn)

and u′ ∈ Hs1(Rn), and we will further drop primes for brevity.
Let η ∈ D(Bρ) be a cut-off function such that η(x) = 1 in Bρ/2. Then U(x) := η(x)u(x) is

compactly supported in Bρ and satisfies equation

L0yU = ηf + Lηu− L−0 U in Rn. (4.4)

Here L0y is the principal part of the operator with the coefficient matrix a(y), i.e. constant in x,

Lηu = −
n∑

i,j=1

(∂iη)aij∂ju−
n∑

i,j=1

∂i[(∂jη)aiju]−
n∑

j=1

ηbj∂ju− ηcu, (4.5)

L−0 U = −
n∑

i,j=1

∂i(a−ij∂jU),

where a−(x) = a(x)− a(y).
If s2 + 1 ≤ s1 < s2 + 2, then by Theorem 4.2,

‖Lηu‖Hs2 (Rn) ≤ C2

[
‖(∇η)a∇u‖Hs2 (Rn) + ‖(∇η)au‖Hs2+1(Rn) + ‖ηb∇u‖Hs2 (Rn) + ‖ηcu‖Hs2(Rn)

]

≤ CC2

[
‖∇η‖

W
|s1−1|+ε1∞ (Rn)

‖a∇u‖Hs1−1(Rn) + ‖∇η‖
W
|s2+1|+ε2∞ (Rn)

‖au‖Hs2+1(Rn) +

‖η‖
W
|s2|+ε2∞ (Rn)

‖b∇u‖Hs2 (Rn) + ‖η‖
W
|s2|+ε2∞ (Rn)

‖cu‖Hs2(Rn)

]
≤ C3(ρ)‖u‖Hs1 (Rn), (4.6)

C3(ρ) := CC2

[
‖∇η‖

W
|s1−1|+ε1∞ (Rn)

‖a‖
W
|s1−1|+ε1∞ (Rn)

+ ‖∇η‖
W
|s2+1|+ε2∞ (Rn)

‖a‖
W
|s2+1|+ε2∞ (Rn)

+‖η‖
W
|s2|+ε2∞ (Rn)

‖b‖
W

µ0
b
+ε0

b∞ (Rn)
+ ‖η‖

W
|s2|+ε2∞ (Rn)

‖c‖
W

µ0
c+ε0c∞ (Rn)

]
, (4.7)

where by Definition 4.3,

µ0
b = min{|s| : s2 ≤ s ≤ s1 − 1} = max{µb(s1 − 1), µb(s2 + 1)},

µ0
c = min{|s| : s2 ≤ s ≤ s1} = max{µc(s1 − 1), µc(s2 + 1)},

and by the theorem hypothesis there exist ε1 ∈ R+(s1), ε2 ∈ R+(s2), ε0
b ∈ R+(µ0

b), ε0
c ∈ R+(µ0

c) such
that the norms of the coefficients a, b, c are bounded in (4.7).

Since a− ∈ C(B̄ρ) let us define a−0 (x) =

{
a−(x), x ∈ B̄ρ

a−(xρ/|x|), x 6∈ B̄ρ

. Then it is easy to see that

‖a−0 ‖W µ
∞(Rn) = ‖a−0 ‖Cµ(Rn) = ‖a−‖Cµ(B̄ρ), 0 < µ < 1. Thus, since suppU ⊂ B, we have by Theorem

4.2,

‖L−0 U‖Hs
2(Rn) ≤ C4‖a−∇U‖Hs2+1(Rn) = C4‖a−0 ∇U‖Hs2+1(Rn) ≤
CC4‖a−0 ‖W

|s2+1|+ε2/2
∞ (Rn)

‖∇U‖Hs2+1(Rn) ≤ 2CC4‖a−‖C|s2+1|+ε2/2(Bρ)C5‖U‖Hs2+2(Rn) (4.8)

for any ε2 ∈ R+(s2) such that |s2 + 1|+ ε2/2 < 1.
Applying estimate (4.3) to equation (4.4) and taking into account estimates (4.6) and (4.8), we

then have for s2 + 1 ≤ s1 < s2 + 2, 0 ≤ |s2 + 1|+ ε2/2 < 1,

C6(ρ)‖U‖2
Hs2+2(Rn) ≤ 4C2

7 (ρ)‖f‖2
Hs2 (Bρ) + 2C2

8 (ρ)‖u‖2
Hs1(Bρ), (4.9)
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C6(ρ) := C2
1 − 8C2C2

4C2
5‖a−‖2

C|s2+1|+ε2/2(B̄ρ)
, C7(ρ) := C‖η‖C̄|s2|+ε2 (B̄ρ), C2

8 (ρ) := C2
3 (ρ) + C2

1C2
7 (ρ).

Further in this step we prove the theorem under the following conditions (see also Fig. 1),

|s2 + 1| < 1, s2 + 1 ≤ s1 < s2 + 2. (4.10)

s
2

s
1

(ii)

(iii)

(iii)

0 1 2

-1

-2

(iv)

s
2
 s

1 
-2

s
2
>s

1 
-1

Figure 1: Zones of parameters s1, s2 with corresponding proof step numbers.

Let first s2 = −1, and consider estimate (4.9) with s2 + 1 = ε2 = 0. Then for any sufficiently
small ρ > 0, the norm ‖a−‖C|s2+1|+ε2/2(B̄ρ) = ‖a−‖C(B̄ρ) becomes small enough for C6(ρ) in (4.9) to
be positive since a−(y) = 0.

Let now 0 < |s2 + 1| < 1. Due to the theorem hypothesis there exists ε2 ∈ (0, 1− |s2 + 1|) such
that a− ∈ C |s2+1|+ε2(B̄ρ). This implies that C3 and thus C8 are bounded and we have estimate

‖a−‖C|s2+1|+ε2/2(B̄ρ) ≤ ‖a−‖C(B̄ρ) + (2ρ)ε2/2|a|C|s2+1|+ε2 (B̄ρ),

|a|C|s2+1|+ε2 (B̄ρ) := sup
x,x′∈B̄ρ

|a(x)− a(x′)|
|x− x′||s2+1|+ε2

< ∞.

Thus again for any sufficiently small ρ > 0, the norm ‖a−‖C|s2+1|+ε2/2(B̄ρ) becomes small enough for
C6(ρ) in (4.9) to be positive.

This means U ∈ Hs2+2(Rn) implying u ∈ Hs2+2(By,ρ/2). Since the point y is arbitrary, we thus
proved the theorem under conditions (4.10).

Step (iii) Let us prove the theorem under conditions

|s2 + 1| ≥ 1, s2 + 1 ≤ s1 < s2 + 2. (4.11)

First of all, for arbitrary η ∈ D(Ω) the function uη = ηu ∈ Hs1(Rn) satisfies equation

L0uη = fη, fη = ηf + Lηu,

where Lη is given by (4.5) and Lηu ∈ Hs2(Rn) by estimate (4.6). This implies fη ∈ Hs2(Rn)
Let t = −1− s2 and v := J −tuη. Then v ∈ Hs1+t(Rn) and satisfies equation

J tL0(v) = fv, (4.12)

where fv = fη − [L0J tv − J tL0v].
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If s2 ≤ −2, we can employ Corollary 4.7 for v with s = s1 + t = s1 − 1− s2 and thus σ = 1− s1

due to conditions (4.11), and the theorem hypothesis imply [L0J tv − J tL0v] ∈ Hs1−1(Rn). Then
taking in mind the second condition (4.11) again, we obtain fv ∈ Hs2(Rn).

If s2 ≥ 0, then similarly the hypothesis of Corollary 4.7 are satisfied for v with s = 0 and thus
σ = 1 + s2, which implies [L0J tv − J tL0v] ∈ Hs2(Rn) and fv ∈ Hs2(Rn).

Thus in both these cases (4.12) gives L0(v) = J −tfv ∈ H−1(Rn) implying v ∈ H1
loc(R

n) by Step
(ii). On the other hand we have,

uη = ηuη = J tJ −tηuη = J t{ηJ −tuη + [J −t(ηuη)− ηJ −tuη]} = J t(ηv) + J t[J −t(ηuη)− ηJ −tuη],

which by Lemma 4.6 and the second condition (4.11) means uη ∈ Hs2+2(Rn)
⋃

Hs1+1(Rn) =
Hs2+2(Rn). This gives u ∈ Hs2+2

loc (Ω), which implies the theorem claim under conditions (4.11).

Step (iv) Now we prove the theorem for

s1 − 1 < s2. (4.13)

Since f ∈ Hs2
loc(Ω), we have by (4.13) also f ∈ Hs1−1

loc (Ω), i.e., we arrive at the situation covered
by Steps (ii) and (iii) with s2 = s1 − 1, which implies u ∈ Hs1+1

loc (Ω). If s1 < s2, we iterate this
procedure, obtaining at the end u ∈ Hs1+k

loc (Ω), where k = s2− s1 +1 if s2− s1 is integer and k is the
integer part of s2 − s1 + 2 otherwise. Recalling that f ∈ Hs2

loc(Ω), we can apply Steps (ii) and (iii)
again, which proves the theorem under condition (4.13).

5 PDE extensions and co-normal derivatives for Hölder-Lipschitz
coefficients

In this section we give further comments on validity of the statements of Section 3 when the PDE
coefficients are not infinitely smooth.

Due to Theorem 4.2 and the same argument as for the infinitely smooth coefficients, we have the
following statement.

THEOREM 5.1. If 1
2 < s < 3

2 and {a, b, c} ∈ Cs−1
+ (Ω), then expressions (3.7), (3.32) define bounded

linear operators Ľ : Hs(Ω) → H̃s−2(Ω), Ľ∗ : H2−s(Ω) → H̃−s(Ω), and the aggregate second Green
identity (3.33) holds true.

For u ∈ Hs(Ω), s > 3
2 , and a ∈ C(Ω̄), the strong co–normal derivative T+

c u given by (3.9) is well
defined on ∂Ω in the sense of traces.

Let u ∈ Hs(Ω), 1
2 < s < 3

2 and {a, b, c} ∈ Cs−1
+ (Ω). Then we can still use Definition 3.1 of the

generalised co–normal derivative T+(f̃ , u), Lemma 3.2 holds true and the weak settings of the BVPs
and conclusions about them made in Subsection 3.2 remain valid.

One can observe that the space Hs,− 1
2 (Ω; L) and thus the canonical extension L0 are well defined

by Definitions 3.3 and 3.6, respectively, when the operator L is well defined, which is particularly the
case when 1

2 < s < 3
2 , {a, b, c} ∈ Cs−1

+ (Ω). Under these conditions the canonical co-normal derivative
operator is also well defined by Definition 3.8 and Lemma 3.9 along with relation (3.22) hold true.

To consider the cases when the canonical co-normal derivative T+u coincides with the strong co-
normal derivative T+

c u, we will need higher smoothness of the coefficients than needed for continuity
of the PDEs in Theorem 5.1. First of all, we remark by Theorem 4.2 and Definition 4.3 that if
{a, b, c} ∈ Ct+1

+ (Ω), t ≥ −1
2 , then D(Ω) ⊂ Hs,t(Ω; L) (and moreover, D(Ω) ⊂ Hs,t+ε(Ω;L) for some

ε ∈ R+(t)) for any s ∈ R. The following counterpart of Lemma 3.11 holds.
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LEMMA 5.2. If s ∈ R, −1
2 ≤ t < 1

2 , {a, b, c} ∈ Cs−1
+ (Ω)

⋂ Ct+1
+ (Ω) and the operator L is strongly

elliptic on Ω, then D(Ω) is dense in Hs,t(Ω; L).

Proof. The proof coincides with the proof of Lemma 3.11. One should only remark that the hypothesis
on the coefficients in Lemma 5.2 imply that since φ ∈ D(Ω), then φ ∈ Hs,t(Ω;L) in (3.23) and
Theorem 4.5(b) is applicable to conclude that (3.24) implies g̃ ∈ H2−s

loc (Ω′).

Let us prove an analog of Lemma 3.12 for non-smooth coefficients.

LEMMA 5.3. Let 1
2 < s < 3

2 , {a, b, c} ∈ Cs−1
+ (Ω)

⋂ C
1
2
+(Ω), u ∈ Hs,− 1

2 (Ω;L), and {uk} ∈ D(Ω) be a
sequence such that ‖uk−u‖

Hs,− 1
2 (Ω;L)

→ 0 as k →∞. Then ‖T+
c uk−T+u‖

Hs− 3
2 (∂Ω)

→ 0 as k →∞.

Proof. Using the definition of the canonical co-normal derivative by (3.21), we have for any w ∈
H

3
2
−s(∂Ω),
〈
T+u,w

〉
∂Ω

= E(u, γ−1w)− 〈L0u, γ−1w〉Ω = E(u− uk, γ−1w) + E(uk, γ−1w)− 〈L0u, γ−1w〉Ω.

By the lemma hypothesis on the coefficients, there exists ε ∈ (0, s − 1
2) such that

∑n
j=1 aij∂juk ∈

H
1
2
+ε(Ω). Then there exist sequences {Wp}∞p=1, {Uqi}∞q=1 ∈ D(Ω) such that

lim
p→∞ ‖γ−1w −Wp‖H2−s(Ω) = 0, lim

q→∞ ‖
n∑

j=1

aij∂juk − Uqi‖
H

1
2+ε(Ω)

= 0

and we have

E(uk, γ−1w)−
n∑

j=1

〈bj∂juk, γ−1w〉Ω − 〈cuk, γ−1w〉 =
n∑

i,j=1

〈aij∂juk, ∂iγ−1w〉Ω

= lim
p,q→∞

n∑

i=1

〈Uqi, ∂iWp〉Ω = lim
p,q→∞

n∑

i=1

{∫

∂Ω
UqiνiWp dΓ−

∫

Ω
(∂iUqi)Wp dΩ

}

=
n∑

i,j=1

{∫

∂Ω
aij∂jukνiw dΓ− 〈∂i(aij∂juk), γ−1w〉Ω

}

=
〈
T+

c uk, w
〉
∂Ω

+ 〈L0uk, γ−1w〉Ω −
n∑

j=1

〈bj∂juk, γ−1w〉Ω − 〈cuk, γ−1w〉 .

Thus we obtain,

〈
T+u,w

〉
∂Ω

= E(u− uk, γ−1w) +
〈
T+

c uk, w
〉
∂Ω

+ 〈L0uk, γ−1w〉Ω − 〈L0u, γ−1w〉Ω
= E(u− uk, γ−1w) +

〈
T+

c uk, w
〉
∂Ω
− 〈L0(u− uk), γ−1w〉Ω →

〈
T+

c uk, w
〉
∂Ω

by the convergence of uk to u as k → ∞. Since T+u is uniquely determined by u, this implies
existence of the limit of the right hand side and its independence of the sequence {uk}.

Note that the class Cs−1
+ (Ω)

⋂ C
1
2
+(Ω) in Lemma 5.3 coincides with C

1
2
+(Ω) if 1 ≤ s < 3

2 . Now we
can prove the counterpart of Corollary 3.13.

COROLLARY 5.4. If {a, b, c} ∈ C
1
2
+(Ω) and u ∈ Hs(Ω), s > 3

2 , then T+u = T+
c u.

Proof. The proof coincides with the proof of Corollary 3.13 if we remark that C0
+(Ω)

⋂ C
1
2
+(Ω) = C

1
2
+(Ω)

and the first norm in the right hand side of (3.27) vanishes as k →∞ by Lemma 5.3.
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Let us prove now the counterpart of Corollary 3.14 for non-smooth coefficients.

COROLLARY 5.5. Let {a, b, c} ∈ C
1
2
+(Ω) and u ∈ C1(Ω)

⋂
H1,t

loc(Ω;L) for some t ∈ (−1
2 , 1

2) and
∂Ω ∈ C1. Then T+u = T+

c u.

Proof. The corollary hypothesis and Definition 4.3 imply that there exists t′ ∈ (−1
2 , t) such that

{a, b, c} ∈ Ct′+1
+ (Ω) and u ∈ C1(Ω)

⋂
H1,t′

loc (Ω; L). The proof then coincides with the proof of Corol-
lary 3.14 if one replaces there t with t′ and references to Theorem 3.10 and Corollary 3.13 by references
to their counterparts, Theorem 4.5 and Corollary 5.4, respectively.

For a sufficiently smooth function v, the strong (classical) modified co-normal derivative T̃+
c v

given by (3.34) is well defined if a, b ∈ C(Ω). One can readily check that the results of Section 3.4 on
the modified co-normal derivatives and different forms of the second Green identity hold true under
condition {a, b, c} ∈ Cs−1

+ (Ω).

A APPENDIX

LEMMA A.1. There exist a distribution w ∈ H−1
∂Ω and a function f ∈ L2(Rn), f = 0 on Ω−, such

that (w, f)H−1(Rn) 6= 0.

Proof. Under the definition (2.4) of the inner product in Hs(Rn),

(w, f)H−1(Rn) = 〈w,J −2f〉Rn . (A.1)

By Theorem 2.5, for any distribution w ∈ H−1
∂Ω there exists a distribution v ∈ H−1/2(∂Ω) such that

〈w,J −2f〉Rn = 〈v, γJ −2f〉∂Ω, (A.2)

where γ is the trace operator.
Denoting Φ = J −2f ∈ H2(Rn), we have, J 2Φ = f in Rn, and taking in mind the explicit

representation for the operator J 2, the latter equation can be rewritten as

J 2Φ ≡ − 1
4π2

∆Φ + Φ = f in Rn (A.3)

and its solution as

J −2f(y) = Φ(y) = Pf :=
∫

Ω
F (x, y)f(x)dx, y ∈ Rn.

Here P is the Newton volume potential and F (x, y) is the well known fundamental solution of equation
(A.3). For example, for n = 3,

F (x, y) = C
e−2π|x−y|

|x− y| . (A.4)

Then (A.1), (A.2) give,

(w, f)H−1(Rn) = 〈v, γJ −2f〉∂Ω = 〈v, γPf〉∂Ω. (A.5)

If we assume (w, f)H−1(Rn) = 0 for any w ∈ H−1
∂Ω , then (A.5) implies γPf = 0, which is not the case

for arbitrary f ∈ L2(Ω) and particularly for f = 1 in Ω due to (A.4).
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