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ABSTRACT 

Uric acid nephrolithiasis is prevalent among patients with type 2 diabetes and metabolic 

syndrome; it is correlated with an acidic urine and lower urinary ammonium excretion and is 

likely associated with insulin resistance.  Insulin stimulates ammoniagenesis in renal cell lines 

via increased phosphate-dependent glutaminase (PDG) activity and glutamine metabolism. 

Ammonium excretion into the proximal tubule is mediated at least in part by the Na+/H+-

exchanger NHE3 and in the collecting duct involving the Rhesus protein RhCG.  Here we tested, 

whether obesity and insulin resistance in a diet-induced mouse model could contribute to 

deranged ammonium excretion.  Diet-induced obesity was confirmed by pathological 

intraperitoneal glucose tolerance tests (IPGTT). Three groups of mice were compared: control 

mice; obese, glucose-intolerant with abnormal IPGTT (O-GI); or moderate weight with normal 

IPGTT (Non-Responders, NR).  Basal urinary ammonium excretion did not differ among groups.  

However, acid loading increased urinary ammonium excretion in all groups, but to a lesser 

extent in the O-GI group.  SNAT3 mRNA expression was enhanced in both obese groups.  PDG 

expression was elevated only in acid-loaded O-GI mice, whereas PEPCK was enhanced in both O-

GI and NR groups given NH4Cl.  NHE activity in the brush border membrane of the proximal 

tubule was strongly reduced in the O-GI group whereas RhCG expression was similar.  In sum, 

obesity and glucose intolerance impairs renal ammonium excretion in response to NH4Cl 

feeding most likely through reduced NHE activity. The stimulation of SNAT3 and ammoniagenic 

enzyme expression may be compensatory but futile.    
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INTRODUCTION 

The prevalence of diabetes from a global perspective has reached approximately 170 

million and is expected to rise further [1].  Interestingly, the incidence of nephrolithiasis in this 

population has increased in parallel, and it has been suggested that a relationship may exist 

between these metabolic disorders and renal stone formation [2-4]. A recent cross-sectional 

analysis comparing three large epidemiological studies over a 44 year period found that 

diabetes appeared to be a significant risk factor for developing uric acid nephrolithiasis (UAN), 

and had suggested that insulin resistance could be the effecter [5]. UAN is highly associated with 

low urinary pH and urine volume, hyper- or normouricosuria, and the increased incidence of 

diabetes or insulin resistance [6-10].  Pharmacological treatment with potassium or sodium 

citrate has been proven to increase urinary pH and inhibit UA stone formation, providing further 

evidence that UAN is linked to low urinary pH [11, 12]  [13, 14].  Patients with diabetes and UAN 

not only have low urinary pH values, but also exhibit decreased renal ammonium excretion. The 

mechanism likely involves defective renal ammoniagenesis or excretion since a low urinary pH 

usually is associated with enhanced ammonium excretion in the urine  [7, 11, 15-18].  

Furthermore, functional acid-loading tests in these patients resulted in a reduced capacity to 

acidify their urine in comparison to healthy controls [7].   

Renal ammoniagenesis and gluconeogenesis increase substantially in the proximal 

tubule (PT) in response to acute or chronic metabolic acidosis.  This is a direct result of the 

shunting of glutamine from the visceral or splanchnic pool to the kidney, with concomitant 

increases in glutamine extraction from blood [19, 20].  We and others have shown that 

glutamine influx is likely due to the basolateral proximal tubule glutamine transporter Slc38a3 

(SNAT3), since increased SNAT3 expression has been observed during metabolic acidosis [21-

25].  SNAT3 (Slc38a3) mediates the transport of glutamine while Na+ and H+ ions are exchanged 

[26]. Recent work by our group has also shown enhanced SNAT3 mRNA and protein in response 

to potassium restriction or a high protein diet, conditions that create an acidosis-like state and 

stimulate renal ammoniagenesis [27-34].  Glutamine is then transported into the mitochondria 
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of the PT cell and metabolized.  One ammonium ion is liberated through the deamidation of 

glutamine to glutamate via phosphate-dependent glutaminase (PDG), while another ammonium 

ion is produced upon conversion of glutamate to α-ketoglutarate.  In the PT cell cytosol, α-

ketoglutarate has two metabolic fates; as a substrate in the tricarboxylic acid cycle, or as a 

precursor of de novo glucose synthesis in the presence of phosphoenolpyruvate carboxykinase 

(PEPCK), resulting in the production of two bicarbonate molecules.  Increases in PDG and PEPCK 

enzyme activity during metabolic acidosis have been associated with a concomitant increase in 

mRNA levels and protein abundance and are thus important regulators of ammoniagenesis [35-

39].  These two enzymes are, however, differentially regulated.  PDG is augmented during MA as 

a result of increased stabilization of its mRNA secondary to the binding of ξ-

crystallin/NADPH:quinone reductase to a pH responsive AU-rich region in the 3’ untranslated 

region of its mRNA, while increases in PEPCK are mostly the result of augmented transcription 

of the PEPCK gene [39].  

 Once ammonium is produced in the PT, it is transported into the tubular lumen.  This is 

accomplished either via diffusion as NH3 where it can trap protons, or it can be transported as 

ammonium.  A key protein involved in the luminal transport of ammonium as well as providing 

protons for bicarbonate reabsorption is the Na+/H+ exchanger, NHE3,  localized to the brush 

border membrane of the PT and increased during NH4Cl-induced MA [40-42].  Reabsorption of 

ammonium produced by the PT occurs in the medullary thick ascending limb largely by the 

activation of a luminal Na+/K+/2Cl- cotransporter (NKCC2) [43].  After accumulation in the 

medullary interstitium, a process dependent on sulfatides, ammonium is ultimately excreted in 

the final urine, via the Rhesus factor Rhcg protein [44-47].  

The ammoniagenic pathway is also regulated by several hormones: angiotensin II and 

insulin stimulate ammoniagenesis whereas prostaglandin PGF2 reduces it [48-50]. The renal 

proximal tubule is also an important gluconeogenic site and in contrast to ammoniagenesis 

gluconeogenesis is reduced by insulin [51-55]. Induction of diabetes in rats in vivo or in renal 

cortex slices results in increased gluconeogenesis, while supplying insulin results in a 
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substantial decrease in gluconeogenic activity [56-58].  Further, insulin can also stimulate 

NHE3 activity in the proximal tubule [59-62].  A recent study has shown that Zucker diabetic 

fatty rats with a mutation in the leptin receptor gene exhibit reduced urinary ammonium and 

pH, with a concomitant reduction in renal brush border membrane NHE3 activity, suggesting 

that renal ammonium excretion is reduced in part by a reduction in NHE3 activity [63].   

Given that both ammoniagenesis and gluconeogenesis are closely linked in the renal 

proximal tubule cell, we hypothesized that a diet-induced, glucose-intolerant state could alter 

renal ammoniagenesis through dysregulation of the glutamine transporter SNAT3, renal 

ammoniagenic and gluconeogenic enzymes, PDG and PEPCK, or transport proteins involved in 

renal ammonium excretion.  Modifications in the regulation of these proteins could ultimately 

result in perturbations in ammoniagenesis and excretion, and could help to explain the 

pathogenesis of UAN in subjects with diabetes and metabolic syndrome.    
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MATERIAL AND METHODS 

Animals 

Male C57BL6 mice (n=72) were randomly assigned to two different dietary treatment 

groups and placed on either a standard diet (control, n = 24) or “cafeteria” style diet (n = 48) for 

10 weeks.  A cafeteria style diet consists of various combinations of energy dense foodstuffs, and 

is widely used as a model for diet-induced obesity [64].  Our experimental cafeteria diet 

consisted of unsalted ground peanuts (40%), cookies (25%) and chocolate (15%) mixed with 

standard rodent chow (20%) to ensure adequate macro- and micronutrient composition.  The 

nutrient composition of the cafeteria diet was as follows: 460 kcal, 15 g of protein, 25 g of 

carbohydrate and 34 g of fat per 100 g of ground food.  Mice had ad libitum access to food and 

water during the 10 week dietary treatment period, and were housed in climate controlled and 

12 h light-cycled rooms.  All mice were weighed weekly.  Animal experiments were conducted 

according to the Swiss animal welfare laws and approved by the Swiss local animal authority, 

Zurich, Switzerland.     

 

Intraperitoneal glucose tolerance tests (IPGTT) 

After 10 weeks of dietary treatment, each mouse was subjected to IPGTT.  The test was 

performed over a 2 h period.  Mice were fasted overnight with free access to water.  A single 

dose of glucose (2 mg/g body weight) was given upon initiation of testing, followed by blood 

collections from the tail vein every 30 minutes.  Glucose monitoring was performed using the 

Accu-chek blood glucose meter (Roche).  After the IPGTT, mice were divided into various groups 

depending on the test outcome: control with normal IPGTT; Obese, Glucose-Intolerant mice with 

abnormal IPGTT (subsequently named: O-GI); or moderately obese with relatively normal 

IPGTT (Non-Responders, NR).  All mice were allowed to recover from the IPGTT for one week, 

and were subsequently housed in metabolic cages for the next series of experiments. 

 

Metabolic cage studies 



Busque and Wagner, Obesity and dysregulation of SNAT3 

 

 

6 

Mice were individually placed in metabolic cages for a total of 4 days, and continued on 

the experimental diets. Control, O-GI and NR mice were subdivided into NH4Cl treated groups; 

NH4Cl was powdered into the food (2 g/100 g chow) for the final 48 h.  Food and water intake, 

body weight and urinary output were monitored daily.  During the final 48 h of dietary 

treatment, urine was collected every 24 hours under mineral oil and urinary pH was 

immediately assessed using a pH microelectrode (691 pH meter, Metroholm). The Berthelot and 

Jaffe methods were used to assess urinary NH3/NH4+ and creatinine concentration [65, 66].  At 

the end of the experimental treatment, mice were anesthetized by intraperitoneal injection of 

ketamine and xylazine, and blood was collected in heparinized tubes, immediately centrifuged 

to extract serum, and frozen at -80ºC.  Mice were not perfused prior to harvesting kidneys given 

that neither SNAT3, nor PDG and PEPCK are expressed in whole blood or erythrocytes, 

respectively [67].  Although there is some evidence suggesting white blood cells exhibit PDG 

activity, exsanguination caused by the blood collections minimized the likelihood of blood cell 

contamination in our preparations [68].  Kidneys were harvested, flash-frozen in liquid nitrogen, 

and transferred to a -80ºC freezer until further use. 

 

Semi-quantitative Real-time RT PCR 

Previously frozen kidneys were homogenized using a Rotor-stator homogenizer, and 

RNA was immediately extracted using Qiagen RNeasy Mini Kit (Qiagen; Hilden, Germany).  

DNase digestion was performed using the RNase-free DNase Set (Qiagen; Hilden, Germany).  

Total RNA extractions were analyzed using the NanoDrop ND-1000 spectrophotometer 

(Wilmington, DE, USA).  cDNA was prepared from diluted RNA samples (100 ng/µl) using the 

TaqMan Reverse Transcriptase Reagent Kit containing 10X RT buffer, MgCl2, random hexamers, 

dNTPs, RNase inhibitors and Multiscribe reverse transcription enzyme (Applied 

Biosystems/Roche; Forster City, CA, USA). Thermocycling conditions for reverse transcription 

were set at 25ºC for 10 min, 48ºC for 30 min, and 95ºC for 5 min (Biometra TGradient 

thermocycler, Goettingen, Germany).  Semi-quantitative Real-time RT-PCR was used to 
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determine relative mRNA expression (7500 Fast Real-Time PCR system, Applied Biosystems).  

Thermocycling conditions were set at: 50 ºC (2 min), 95ºC (10 min), 95 ºC (15 sec; 40 cycles) 

and 60 ºC (1 min).  Forward and reverse primer concentration was 25 µM; probe concentration 

was 5 µM.  TaqMan Universal PCR master mix 2X (Applied Biosystems/Roche) was used as the 

Taq polymerase.  Primers and probes for SNAT3, phosphate dependent glutaminase (PDG), 

phosphoenolpyruvate carboxykinase (PEPCK), rhesus glycoprotein (Rhcg) and Hypoxanthine-

guanine phosphoribosyltransferase (HPRT) were generated using the Primer Express software 

from Applied Biosystems and synthesized at Microsynth (Balgach, Switzerland) as described 

previously [25].  The primer and probe sequences for Rhcg were 5’-GTT GGA GAA GAA GCG CAA 

GAA-3’, forward; 5’-CGA AGA CCA TGG CGT GTA CA-3’, reverse; 5’-TTA CTA TCG CTA CCC GAG 

CTT CCA G-3’, probe.  Probes were generated with the reporter dye FAM at the 5’ end and 

TAMRA at the 3’ end.  Each sample was run in triplicate including a negative control (without 

Multiscribe reverse transcription enzyme).  The cycle threshold (Ct) values obtained were 

ultimately compared to Ct values of the endogenous gene HPRT.  Relative mRNA expression 

ratios were calculated as R=2[Ct(HPRT)-Ct(gene of interest)].   

 

Immunoblotting 

Total membrane and cytosolic protein preparations were prepared from whole, non-

perfused kidneys using a K-HEPES buffer composed of 200 mM mannitol, 80 mM HEPES, 41 mM 

KOH, along with the protease inhibitors, PMSF, K-EDTA, and leupeptin (pH 7.5).  Kidneys were 

homogenized in 200 µl of ice-cold K-HEPES buffer using a tip sonicator and immediately 

centrifuged at 2000 rpm for 20 min (4ºC).  The supernatant was aspirated and placed in an 

ultracentrifuge (Sorvall, Thermo Fischer Scientific) for 1 h at 41,000 rpm 4ºC.  The supernatant 

containing cytosolic protein from this second centrifugation step was removed and the pellet 

containing membrane protein was resuspended in K-HEPES buffer and sonicated to evenly 

distribute proteins.  The BioRad Dc Protein assay was used to measure protein concentration 

(Bio-Rad; Hercules, CA, USA).  Total membrane (75 µg) or cytosolic (50 µg) protein containing 
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Laemmli sample buffer and loaded onto a 10% polyacrylamide gel and SDS-PAGE was 

performed.  Proteins were transferred to polyvinylidene difluoride membranes (PVDF; 

Immobilon-P, Millipore, Bedford, MA, USA).  Membranes were blocked with Tris-buffered saline 

/ 0.1% Tween and 5% non-fat dry milk for 1 h.  Primary antibodies were applied for 2 h at RT or 

overnight at 4ºC.  The primary antibodies used for this study were: phosphate-dependent 

glutaminase (PDG), which recognizes both the rat (KGA) and human (GAC) kidney-type isoforms 

of PDG forming the mature PDG protein (66 and 68 kDa; a kind gift from N. Curthoys, Colorado 

State University, USA; diluted 1:500) [69]; anti-PEPCK polyclonal antibody (63 kDa; Cayman 

Chemical, Ann Arbor, MI, USA; diluted 1:1,000), and mouse monoclonal antibody against -actin 

(42 kDa; Sigma, St. Louis, MO, USA; diluted 1:5,000).  The anti-Slc38a3 antibody (1:500) was 

generated as previously described [24].  The secondary antibodies used were anti-rabbit 

alkaline phosphatase conjugated diluted 1:5,000, and anti-mouse IgG alkaline phosphatase 

conjugated diluted 1:5,000 or anti-mouse IgG horseradish peroxidase-conjugated 1:10,000, and 

donkey anti-rabbit HRP 1:12,000.  After a series of washing steps and blocking, membranes 

were treated with alkaline phosphatase- or horseradish peroxidase-conjugated developing 

solution (Immobilion, location) and exposed to the Diana III chemiluminescence detection 

system (Raytest).  Specific bands on PVDF membranes were later quantified using AIDA Image 

analyzer version 3.44.  Membranes were stripped and reprobed for anti--actin and subsequent 

analysis of the protein of interest was determined relative to -actin quantification and reported 

as relative protein abundance (ratio of -actin/protein of interest).  

 

 

Brush border membrane acridine orange quenching experiments 

Renal brush border membrane vesicle preparations (BBMV) were prepared as 

previously described [70].  Briefly, kidneys were cut into small sections and homogenized using 

a Polytron homogenizer with a fine rod for 2 minutes in a buffer containing: 300 mM mannitol, 5 

mM EGTA and 12 mM Tris-HCl, pH 7.1.  A fraction of the homogenates was stored at -20 ºC for 
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immunoblotting, while 1 M MgCl2 was added to the remaining homogenate and allowed to 

precipitate on ice for 15 minutes.  The sample was then centrifuged at 4500 rpm for 15 minutes.  

The supernatant was aspirated and centrifuged at 18000 rpm for 30 minutes.  The pellet was 

resuspended in membrane buffer consisting of: 300 mM mannitol, 20 mM HEPES-Tris, pH 7.4.  

Samples were then centrifuged at 18500 rpm for 30 minutes.  Vesicle buffer was added to 

samples, containing: 280 mM mannitol, 5 mM MES/N-methyl-D-glutamine and 2 mM MgCl2, pH 

5.5.  Protein concentration was measured using the BioRad fast method.   

Acridine orange quenching measurements were performed as previously described 

[71]. Measurements were performed in a Shimadzu RF-5000 spectrofluometer equipped with a 

thermostatized cuvette (kept at 25°C). BBMVs were dissolved in a buffer containing 280 mM 

mannitol, 5 mM Mes, and 2 mM MgCl2 (adjusted to pH 5.5 with N-methyl-d-glucamine). Acridine 

orange was excited at 493 nm, and emission was monitored at 530 nm. The cuvette was filled 

with 2 ml of buffer (240 mM mannitol/20 mM Hepes/2 mM MgCl2, adjusted to pH 7.5 with N-

methyl-d-glucamine), containing 6 μM acridine orange. The experiment was started by injecting 

30 μl of BBMV suspension. After 60 s of equilibration, NHE activity was initiated by injection of 

80 μl of 2 M Na gluconate. NHE activity was calculated as ratio of ΔpH per min over Q, where Q is 

the initial quenching after injection of BBMV. All experiments were done at least in 

quadruplicates. 

 

Statistical analyses were performed using unpaired Student’s t-test, and results with p < 

0.05 were considered statistically significant.  Data are reported as means ± SEM.    
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RESULTS 

 

“Cafeteria-diet” feeding induces obesity and pathological glucose intolerance in mice 

After 10 weeks of a high fat, high energy “cafeteria-style diet”, or a standard control diet, 

all mice (n=72) were subjected to intraperitoneal glucose tolerance testing (IPGTT).  Control 

mice had the lowest body weight (31.3 ± 0.6 g) and showed no evidence for glucose intolerance 

(figure 1A, table 1). IPGTT revealed two distinct tiers of glucose intolerance among the cafeteria-

fed mice. Approximately half of the cafeteria-fed mice were significantly obese (43.5 ± 0.9 g) and 

did not reach euglycemia at the end of the IPGTT (Obese, Glucose-Intolerant; O-GI group), while 

the other half of cafeteria-fed mice were moderately obese (37.8 ± 1.4 g) and clearly less glucose 

intolerant (Non-Responders; NR group).  A similar phenomenon has been described in rats 

showing that chronic consumption of a high fat, high calorie diet led to a weight differential in 

roughly half of the study population tested, resulting in obesity and insulin resistance [72-74]. 

Furthermore, these observations were noted without a further increase in food intake in these 

animals, which has been suggested to be associated with irreversible changes in body weight 

and adiposity set-points.  

 

Abnormal urinary acid excretion in obese, glucose-intolerant mice 

 

Mice from all three groups (n = 48) were placed in metabolic cages after one week of 

recovery from IPGTT and maintained on their respective diets.  The O-GI, NR and control groups 

were subdivided and challenged with an acid load consisting of NH4Cl powdered into the food 

for 48 h (2 g/100 g food).  Food intake in the control groups was highest in the lean mice and 

similar between the O-GI and NR groups (control: 3.55 ± 0.16 g /day; O-GI: 2.02 ± 0.09 g/day; 

NR: 2.13 ± 0.11 g/day). NH4Cl addition reduced daily food intake in all groups but remained 

higher in the lean mice and was not significantly different between the two obese groups 

(control: 2.71 ± 0.21 g /day; O-GI: 1.27 ± 0.13 g/day; NR: 1.65 ± 0.08 g/day). Thus, NH4Cl intake 
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was higher in the lean group but comparable in the two obese groups.  The similar intake of 

NH4Cl in the obese groups is also reflected by similar rates of urinary chloride excretion in these 

two groups. Moreover, dietary acid load from involatile acids was also similar between these 

two groups as indicated by similar rates of urinary sulfate and phosphate excretion (table 1). 

At baseline, there were no differences in urinary pH or ammonium excretion between 

groups.  Differences were noted after the acid load was provided. Acid-loading resulted in 

significantly lower urinary pH in all groups in comparison to respective controls (Figure 2A, 

table 1).  Although most clinical data show an acidic urine pH in patients with metabolic 

syndrome [6, 7, 9], we observed a more alkaline urinary pH in O-GI/NH4Cl treated mice than 

acid-loaded control mice fed a standard diet.  Urinary electrolytes were analyzed to confirm the 

effect of acid-loading (table 1). Urinary phosphate levels were unremarkable between groups, 

however 24 h phosphate excretion relative to urine volume showed reduced phosphate 

excretion in the O-GI group compared to controls (table 1).  All acid-challenged mice had 

increased urinary ammonium excretion as expected, however, O-GI mice given NH4Cl had less 

ammonium excretion relative to urine volume (figure 2B, table 1).   

 

Dysregulation of SNAT3 and key ammoniagenic enzymes in obese, glucose-intolerant mice 

 We and others have previously shown that gene expression of SNAT3, and the key 

ammoniagenic enzymes PDG and PEPCK increases after inducing acidosis with NH4Cl treatment 

[21, 22, 24, 25, 28, 37, 39, 75].  All acid-loaded groups showed enhanced SNAT3 mRNA and 

protein levels (figure 3A-K), however each group showed varying expression.  O-GI mice treated 

with NH4Cl had 2-fold higher SNAT3 mRNA abundance in comparison to controls given NH4Cl 

(figure 3H).  SNAT3 protein abundance was also 1.4-fold higher in O-GI/NH4Cl treated mice in 

comparison to NR/NH4Cl treated mice (figure 3J) despite lower total NH4+ excretion.  Similarly, 

immunoblotting revealed elevated SNAT3 protein abundance in O-GI/NH4Cl mice when 

compared to acid-loaded control mice (figure 3, H and I).  PDG expression followed similar 

trends, with increased mRNA expression in all groups treated with NH4Cl (figure 4A).  Acid-
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challenged obese mice (both O-GI and NR) showed relatively more PDG protein abundance 

than respective controls, similar to mRNA expression (figure 4, A-E).  O-GI/NH4Cl mice showed 

markedly elevated PDG mRNA abundance in comparison to NR/NH4Cl mice, however no 

differences were detected on protein level (figure 4A, F-G).  In parallel, PEPCK mRNA expression 

was markedly enhanced after an acid-load (2.5-fold) and in both obese groups (figure 5A); O-GI 

mice given NH4Cl showed the greatest fold change in mRNA expression (4.4-fold vs 2.2—fold; O-

GI and NR groups, respectively).  Protein abundance for PEPCK was also increased after an acid 

load, but similar to PDG, showed no differences among the two acid-loaded cafeteria fed groups 

(figure 5B-F).   

 

In addition to potential alterations in renal ammoniagenesis, we sought to determine if 

there were any distal defects in ammonium transport in the kidney, in particular of the Rhesus 

glycoprotein, Rhcg, in our mice.  Rhcg is largely expressed in the connecting tubule and the 

collecting duct, and plays an important role in apical ammonium extrusion into the final urine 

[44, 46, 76].  Rhcg mRNA expression was unremarkable between groups, however O-GI mice 

given an acute acid load showed increased Rhcg mRNA expression levels in comparison to O-GI 

treated without NH4Cl treatment (figure 6).     

 

Brush border membrane sodium-proton exchanger activity is reduced in acid loaded obese, 

glucose-intolerant mice 

To further identify mechanisms that could contribute to a reduction in urinary 

ammonium excretion, we examined the Na+/H+ exchanger (NHE) activity in the brush border 

membrane of proximal tubules.  Reduced NHE activity was observed in acid-loaded O-GI mice 

(figure 7).   
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DISCUSSION 

We created a mouse model of diet-induced obesity and glucose-intolerance to examine if 

changes in the regulation of the glutamine transporter, SNAT3, and enzymes involved in renal 

ammoniagenesis and gluconeogenesis, PDG and PEPCK could explain the urinary acidification 

and ammonium excretory defects seen in subjects with UAN and diabetes.  After 10 weeks of 

dietary treatment, cafeteria-diet fed mice fell into two distinct cohorts based on body weight and 

response to IPGTT.  O-IR mice were significantly obese and had severely elevated blood glucose, 

while NR mice were moderately obese with more normal blood glucose levels.  Similar 

observations have been previously reported in rats [72-74, 77].  Since we used a highly inbred 

mouse strain (C57/BL6) with very little genetic variance in our study, the underlying reason for 

this difference remains unknown at present and provides an excellent model to study the impact 

of obesity related defects on the same genetic an dietary background. We show that challenging 

these obese, diabetic mice with an oral acid load leads to defective urinary ammonium excretion 

despite enhanced expression of key ammoniagenic proteins.  O-GI mice exhibited strong 

upregulation of SNAT3, PDG and PEPCK mRNA and protein abundance suggesting enhanced 

ammoniagenesis. Moreover, the proximal tubular brush border membrane sodium-proton 

exchanger activity was rather reduced in obese and glucose-intolerant mice whereas Rhcg 

mRNA expression appeared normal. 

 

 

Studies by Abate et al. and Sakhaee et al. assessed whether or not insulin resistance is 

associated with UAN.  Most patients with UAN had symptoms of metabolic syndrome and a low 

urinary pH, but were without changes in urinary ammonium excretion.  The ammonium 

concentration as a major component of net acid excretion, however, was significantly reduced in 

these subjects [7, 15].  Our results show a slightly higher urinary pH and reduced urinary NH4+ 

excretion in O-GI but not NR mice after an acid challenge, but not at baseline.  This may be a 

species specific response to obesity and/or insulin resistance. However, it should also be noted 
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that previous studies reporting decreased urinary pH in patients with metabolic syndrome 

sampled urine only over 4 to 12 hours [7, 11].  In contrast, our samples were collected over 24 

hrs and the differences may thus reflect rather circadian rhythmicity of urine and acid excretion 

However, challenging mice with an acute acid load unmasked several defects.  O-IR mice showed 

slightly higher urinary pH, in contrast with clinical data suggesting that patients with UAN and 

insulin resistance showed consistently low urinary pH values [6-10].  Despite lower NH4Cl 

intake in comparison to controls, both groups of obese mice displayed appropriate responses to 

acid-loading, namely reduced urinary pH and increased NH4+ excretion. Importantly, the 

difference seen between the glucose-tolerant and glucose-intolerant obese cannot be explained 

by differences in NH4Cl intake.   

The renal manifestations of insulin resistance are not fully understood to date.  

Bobulescu et al. found that Zucker diabetic fatty rats exhibit reduced urinary ammonium 

excretion and pH, as well as reduced NHE3 activity in the renal brush border membrane [63].  

Interestingly, these rats showed an increase in renal triglyceride content, suggesting a lipotoxic 

effect of fatty acids in the kidney.  In opossum kidney cell lines (OKP), as a model of the PT cell, 

administration of long-chain fatty acids produced a similar reduction in NHE3 activity, NHE3 

membrane surface expression and ammonium excretion.  Thus, accumulation of lipids, 

particularly free fatty acids (FFA) in the kidney may result in alterations in normal, physiological 

cellular processes, such as ammoniagenesis or gluconeogenesis.  The etiological relationship 

between insulin resistance and low urinary pH has not been identified yet, but a major 

contribution of the proximal tubule is likely. O-GI mice showed strong upregulation of SNAT3, 

PDG and PEPCK on both protein and mRNA level, which would imply that ammoniagenesis and 

likely gluconeogenesis is being maximally fueled by the influx of glutamine into the PT cells.   

Ammonium excretion by the proximal tubule involves Na+/H+-exchange activity in the 

brush border membrane, mainly mediated by the NHE3 isoform. The activity and expression of 

NHE3 has been linked to ammonium excretion even though in mouse models of NHE3 deficiency 

no clear defect in ammonium excretion has been reported to date [78]. NHE3 expression and 
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activity in vivo and in the OKP cell line is stimulated by insulin [62]. We and Bobulescu et al.  

found that NHE3 expression or activity are altered in animal models of obesity and glucose 

intolerance pointing to a dysregulation of this important transporter [79].    

The reduced urinary ammonium excretion may also more distal defects. mRNA 

expression levels of Rhcg, critical for renal ammonium excretion, however, did not show 

significant differences between groups. Urinary pH was only slightly more alkaline in O-GI mice 

and is thus unlikely to account for a reduced driving force for NH3 secretion.   

 

In summary, a diet-induced mouse model of obesity and glucose-intolerance 

demonstrates major changes in the regulation of enzymes and transporters involved in proximal 

tubular ammoniagenesis, gluconeogenesis, and ammonium excretion suggesting that obesity 

and insulin-resistance lead to a profound dysregulation of this important pathway in renal acid-

base and glucose metabolism.   
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FIGURE LEGENDS 
 
 

Table 1 

Urine analyses were performed to determine the effect of cafeteria style feeding and NH4Cl 

treatment on urinary parameters.  Values are means ± SE of results from analyses for urinary 

electrolytes, PO43- and NH4+ relative to creatinine in mice (n = 8 mice per group) treated with a 

standard or cafeteria diet for 10 weeks, with or without NH4Cl supplementation in the food for 

the final 2 days.  aP ≤ 0.05; bP ≤ 0.01; cP ≤ 0.001, comparisons between control and treated 

groups.  dP ≤ 0.05; eP ≤ 0.01; fP ≤ 0.001, comparisons between cafeteria-fed groups.  gP ≤ 0.05; hP 

≤ 0.01; iP ≤ 0.001, comparisons between acid-loaded groups. 

 

Figure 1 

Two tiers of glucose intolerance are unmasked in cafeteria-fed mice after intraperitoneal 

glucose tolerance testing.  Intraperitoneal glucose tolerance tests were performed on all mice 

(n = 72) after 10 weeks of a standard or cafeteria diet.  Mice were fasted overnight and blood 

glucose monitoring was performed every 30 minutes for 2 h after an initial glucose injection 

(2mg/g body weight), (A).  The most severely glucose-intolerant mice were subsequently 

named Obese, glucose-intolerant (O-GI), while the second tier of mice had moderately elevated 

blood glucose levels and were called the Non-responders (NR).   

 

Figure 2 

Acid challenging cafeteria-fed mice with NH4Cl reveals a difference in ammonium excretion 

and urinary acidification in O-GI mice.   

Mice were placed in metabolic cages and urine was collected for the final two consecutive 24 h 

intervals under mineral oil.  (A)  All acid-loaded groups exhibited low urinary pH values in 

comparison to respective controls, however O-GI mice showed a slightly more alkaline urine 
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than NH4Cl-loaded mice fed a standard diet. (B) 24 h urinary ammonium excretion relative to 

creatinine was significantly reduced in O-GI, but not NR mice. *p < 0.05, **p < 0.01, ***p < 0.001, 

n = 6 mice/group 

 

Figure 3 

O-GI mice show strong upregulation of SNAT3 mRNA and protein abundance after an acid 

challenge with NH4Cl. 

mRNA expression of SNAT3 was determined in kidneys using semi-quantitative real-time RT 

PCR in mice fed a standard or cafeteria diet for 10 weeks with or without NH4Cl 

supplementation in food, and normalized against HPRT mRNA expression.  All acid-loaded 

groups showed enhanced SNAT3 mRNA expression, with the O-GI group showing the highest 

upregulation of SNAT3 (A).  (B-K) Immunoblotting for SNAT3 in total membranes. All blots 

were stripped and reprobed for -actin to control for equal loading.  Original blots are depicted 

with bar graphs summarizing normalized data.  *p <  0.05, ** p < 0.01, and ***p < 0.001 between 

groups, n = 5 mice/ group. 

 

Figure 4 

Phosphate-dependent glutaminase is strongly enhanced in O-GI mice after an acid-load. 

mRNA expression of PDG was determined using semi-quantitative real-time RT PCR.  PDG 

mRNA was enhanced in all groups after an acid load, and most strongly in the O-GI group given 

NH4Cl when compared to acid-loaded control and NR mice (A).  (B-G) Cytosolic proteins were 

extracted from whole, non-perfused kidneys and probed for PDG.  All blots were stripped and 

reprobed for -actin to control for equal loading.  Original blots are depicted with bar graphs 

summarizing normalized data.  *p <  0.05, ** p < 0.01 between groups, n = 5 mice/ group. 

 

Figure 5 
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Phosphoenolpyruvate carboxykinase mRNA expression and protein abundance parallel 

PDG in cafeteria-fed mice. 

RNA was extracted from total kidney homogenates and mRNA expression was determined by 

semi-quantitative real-time RT PCR.  PEPCK mRNA expression was elevated in all acid-loaded 

groups, however both cafeteria fed groups showed the greatest increase in mRNA expression 

(A).  (B-F) Cytosolic proteins were extracted from whole, non-perfused kidneys and probed for 

PEPCK.  All blots were stripped and reprobed for -actin to control for equal loading.  Original 

blots are depicted with bar graphs summarizing normalized data.  *p <  0.05, ** p < 0.01, ***p ≤ 

0.001  between groups, n = 5 mice/ group. 

  

Figure 6 

Normal expression of the ammonia transporter Rhcg 

mRNA expression of Rhcg was determined in all groups. *P ≤ 0.05 between groups.               

 

Figure 7 

Sodium/hydrogen exchanger activity is reduced in BBMV from acid-loaded O-GI mice. 

BBMV preparations were made and acridine orange quenching experiments were performed 

(A).  O-GI mice given an NH4Cl load had reduced NHE activity relative to respective controls.  In 

contrast, acid-loaded NR mice showed enhanced NHE activity when compared with NR mice 

without NH4Cl treatment.   *P ≤ 0.05 and ***P ≤ 0.001 between groups. 
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Figure 5 Busque et al. 
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Figure 6 Busque et al. 
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Figure 7 Busque et al. 
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