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Abstract

We consider the problem of the public release of statistical information about a
population–explicitly accounting for the public-good properties of both data ac-
curacy and privacy loss. We first consider the implications of adding the public-
good component to recently published models of private data publication under
differential privacy guarantees using Vickery-Clark-Groves and Lindahl mecha-
nisms. We show that data quality will be inefficiently under-supplied. Next, we
develop a standard social planner’s problem using the technology set implied
by (ε, δ)-differential privacy with (α, β)-accuracy for the Private Multiplicative
Weights query release mechanism to study the properties of optimal provision
of data accuracy and privacy loss when both are public goods. Using the pro-
duction possibilities frontier implied by this technology, explicitly parameterized
interdependent preferences, and the social welfare function, we display proper-
ties of the solution to the social planner’s problem. Our results directly quantify
the optimal choice of data accuracy and privacy loss as functions of the technol-
ogy and preference parameters. Some of these properties can be quantified using
population statistics on marginal preferences and correlations between income,
data accuracy preferences, and privacy loss preferences that are available from
survey data. Our results show that government data custodians should publish
more accurate statistics with weaker privacy guarantees than would occur with
purely private data publishing. Our statistical results using the General Social
Survey and the Cornell National Social Survey indicate that the welfare losses
from under-providing data accuracy while over-providing privacy protection can
be substantial.

Keywords: Demand for public statistics; Technology for statistical agencies; Op-
timal data accuracy; Optimal confidentiality protection

JEL classification: C40, C81, H41



1 Introduction

Like so many other ideas in information economics, George Stigler (1980) began

the analysis of the economics of privacy, taking off as Posner (1981) noted from

contemporary legal analyses of privacy as the right to conceal details about one’s

life from others, including the government. While most of Stigler’s treatment

addresses the question of the origin of the demand for privacy by individuals,

he identified the source of angst driving the public discussions in the 1970s by

focusing squarely on the observation that: “[g]overnments (at all levels) are now

collecting information of a quantity and in a personal detail unknown in history”

(p. 623). And this more than a decade before the birth of the Internet. Stigler

correctly predicted that the problem would be how to properly constrain the use

of this information rather than how to defend against its acquisition in the first

place.

In its current form, the economics of privacy focuses on the economic value

of information about the habits of consumers that are known to the curators of

databases produced by intermediating commercial transactions on the Internet.

As Acquisti and Varian (2005) note, the privileged informational position of sell-

ers in this market allows individual-level price discrimination on a massive ba-

sis. Consumers may have a strong interest in concealing the data that allow this

price customization. Acquisti et al. (2013) experimentally evaluate individuals’

willingness-to-pay to protect otherwise public information and their willingness-

to-accept payment for permitting the disclosure of otherwise private information.

These experiments are explicitly set in the context of commercial enterprises that
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seek to acquire these private data as part of a mutually beneficial exchange with

well-informed consumers. The prototypical example is online shopping. In the

extensive literature that they review, the consumer’s benefit from increased pri-

vacy is a direct consequence of the value of her private information to the coun-

terparty in a commercial transaction. Specifically, they studied differences in con-

sumer behavior when choosing between a $10 anonymous loyalty card and a

$12 identifiable card (transactions could be linked to the actual consumer). Ac-

quisti et al. find that their experimental subjects displayed, for monetarily equiv-

alent transactions: (1) unequal willingness-to-pay to protect private data versus

willingness-to-accept payment to disclose the same private data and (2) order ef-

fects in their choices. Because of these endowment and order effects, they reject

the normative conclusion that consumers value privacy very little based on their

observed willingness to part with these data for very little compensation when

shopping online. In this paper, we recognize such a behavioral effect by using

explicit formulations of the payment systems and interdependent preferences to

reason about the economic value of the privacy loss from statistical summaries.

The Role of Statistical Agencies

What does the economics of privacy have to say about Stigler’s Orwellian govern-

mental databases? For agencies that enforce laws with criminal and civil penal-

ties, the citizen/consumer’s interest in concealing certain private information is

apparent and amenable to study using the private valuation models we just in-

troduced. But what would Stigler have said about the appropriate way to think
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about constraining the government’s use of private personal information when

that information is collected by an agency whose sole statutory purpose is to pub-

lish statistical summaries based on those personal data?

Stigler explicitly acknowledged the public-good nature of these publications,

and, of course, he applied the Coase Theorem to make the following argument.

The private information will be collected and disseminated efficiently if the prop-

erty rights are fully assigned and the transactions costs of acquisition and dissemi-

nation are minimized. He recognized that dissemination was a very low marginal

cost activity, even in 1980, and that using markets to control the re-use of the in-

formation after it had been acquired in a voluntary transaction between informed

adults might remain very difficult. There is an important insight here for model-

ing statistical agencies. If one wishes to study their optimal use of private data,

one must understand the derived demand for the statistical information those

data convey to the citizens. In order to apply the Coase Theorem, one must un-

derstand both the social costs of the use of private information by agencies that

collect it and the social benefits derived from its dissemination in statistical sum-

maries. Whether or not there is a market failure to analyze, understanding effi-

cient breaches of privacy requires modeling their full social cost and benefit.

In this paper we focus on the public-good properties of the statistical informa-

tion disseminated by government agencies and the public-good properties of the

privacy protections they provide. We use techniques from economics, computer

science, and statistics to make our arguments, but our main goal is to demon-

strate that using methods from all three disciplines permits a more complete un-
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derstanding of both the privacy protection technologies and the sources of the

citizen/consumer’s interest in accurate public data.

This is not a trivial proposition. Around the world, national statistical offices

exist for the primary purpose of collecting and publishing data about their cit-

izens and the businesses that operate within their jurisdictions. Since these are

costly functions, and since most statistical agencies are prohibited from perform-

ing law enforcement functions using the data that they collect for statistical pur-

poses, we need to model how the business of data provision directly relates to

citizen demand for particular kinds of information. In our model, this demand

arises because utility depends upon properties of the population that require sta-

tistical data to assess. This is not a new idea. Akerlof (1997) posited essentially the

same interdependent preferences that we use when he hypothesized that utility

might depend upon the deviation of the individual’s choice from the average in

the economy. How can one evaluate such preferences without data on the popu-

lation averages? The literature that grew out of Akerlof’s work took the existence

of fully accurate population statistics as given, and assumed that they could be

collected without any privacy loss.

Our consumers also display preference interdependence. Specifically, we as-

sume that individuals care about their place in the income distribution and their

relative health status within the population. They cannot evaluate these relative

preferences without statistical information. They explicitly recognize that such

data can have varying quality. If they acquire statistical information of known

quality from a private provider who acquires data-use rights through a Vickery-
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Clark-Groves (VCG) auction, the consumers won’t buy accurate enough data be-

cause their private demand will not reflect the benefit that others in the population

get from knowing that same information with given quality. Data-rights acquisi-

tion via a Lindahl mechanism improves upon the VCG auction but still does not

attain the socially optimal data release and privacy protection. We solve the com-

plete social planner’s problem when the accuracy of the published statistical data

and the privacy loss from providing the confidential inputs are both public goods.

We prove that the socially optimal data accuracy exceeds both the Lindahl and

VCG levels and the socially optimal privacy losses are greater than those gener-

ated by private data suppliers using either the Lindahl or VCG mechanisms.

Our work is thus related to a burgeoning literature in public economics on the

role of preference interdependence in the provision of public goods. It can be dif-

ficult to show that relative status affects individual behavior because models of

interdependent preferences are not usually identified without restrictive assump-

tions (Manski 1993; Postlewaite 1998; Luttmer 2005). Preference interdependence

is also important for explaining discrepancies between macroeconomic and mi-

croeconomic outcomes (Futagami and Shibata 1998) and for the design of public

policy. Aronsson and Johansson-Stenman (2008) show that preference interdepen-

dence affects the optimal provision of public goods, but the direction is theoret-

ically ambiguous. Their work also shows that preference interdependence will

affect the optimal tax schedule–an aspect of the public goods problem we ignore

in our formulation in order to focus on the optimal trade-off between privacy loss

and data accuracy. We think that our use of preference interdependence to gen-
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erate the demand for accurate statistical data is an important contribution to this

literature.

1.1 Technologies for Privacy Protection

Like so many other ideas in the efficient operation of statistical agencies, Ivan Fel-

legi (1972) initiated the statistical analysis of data confidentiality. Fellegi under-

stood that ensuring the confidentiality of individual data collected by the agency,

an essential obligation, was most likely to be threatened by what he called “resid-

ual disclosure”–what would now be called a “subtraction attack” in computer

science or a “complementary disclosure” in statistical disclosure limitation (SDL).

This breach of privacy occurs when the statistical agency releases so much sum-

mary information that a user can deduce with certainty some of the private identi-

ties or attributes by subtracting one tabular summary from another. Fellegi estab-

lished the properties of what became the workhorse of SDL–primary and comple-

mentary suppression of items in the published statistical tables. Risky items–ones

that reveal a citizen’s private data–are suppressed–not published in the public

table–and just enough non-risky items are also suppressed so that the table is

provably secure from a subtraction attack. Armed with this tool, statistical agen-

cies around the world adopted this practice and a large literature, nicely sum-

marized in Duncan et al. (2011), emerged with related techniques. The choice of

primary suppressions is usually based on one of several risk measure (see, for

example, Federal Committee on Statistical Methodology (2005)). The choice of

complementary suppressions is inherently ad hoc in the sense that many sets of
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complementary suppressions meet the criteria for protecting the risky items but

the methods provide limited guidance for choosing among them.

To help assess the trade-off between privacy loss and data quality, statisticians

developed another important disclosure limitation tool that is immediately ac-

cessible to economists–the risk-utility (R − U ) confidentiality map. The R − U

confidentiality map first appeared in Duncan and Fienberg (1999), who used it to

characterize three different SDL strategies for publishing tabular count data. They

did not label the graph an R−U confidentiality map. Duncan et al. (2001) named

the R − U confidentiality map. They used it to model the trade-off between the

disclosure risk associated with a particular privacy protection method and the ac-

curacy of the released statistical summaries, which they called “data utility.” A

full treatment can be found in Duncan et al. (2011, p. 125-135). Economists will

instantly recognize the R − U confidentiality map as the production possibilities

frontier for the data publication technology when it is constrained by the require-

ment to protect against privacy loss. In this paper, we complete the formalization

of this idea by deriving the exact PPF for our privacy-preserving publication tech-

nology as part of our public-goods model. In what follows, we will reserve the

term “utility” for its usual role in economic theory.

It was another seminal contributor to the methodology of statistical agencies,

though, who first posed the SDL problem in the form that has become the dom-

inant methodology in computer science. Tore Dalenius (1977) hypothesized that

it was insufficient for a statistical agency to protect against direct disclosures of

the type studied by Fellegi. In Dalenius’ model, the statistical agency also had
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to protect against providing so much information that a user could “determine

the value” of a confidential data item “more accurately than is possible without

access to” the publicly released statistical summary (p. 433). This definition of

a statistical privacy breach is now called inferential disclosure. Duncan and Lam-

bert (1986) completed the mathematical formalization of inferential disclosure by

showing that the appropriate tool for studying such privacy losses was the pos-

terior predictive distribution of the confidential data given the released statistical

summaries. This formalization is at the heart of the modern data privacy literature

that emerged in computer science.

1.2 The Emergence of the Differential Privacy Paradigm

Cryptographers know how to protect secrets. The formal requirement for estab-

lishing the strength of an encryption algorithm is to publish the entire algorithm,

including all of its input data requirements and their values, but not including the

password or encryption key. Then, let other cryptographers try to break the code.

In the early 2000s, a group of cryptographers led by Cynthia Dwork (2006)

and including Dwork et al. (2006) formalized the privacy protection associated

with SDL in a model called ε-differential privacy. Using this framework, Dwork

proved that it was impossible to deliver full protection against inferential dis-

closures because a privacy protection scheme that provably eliminated all such

disclosures was equivalent to a full encryption of the confidential data, and there-

fore useless for data publication. She proposed developing a privacy protection

method that “captures the increased risk to one’s privacy incurred by participat-
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ing in a database” (p. 1), which she parameterized with ε ≥ 0, where ε = 0 is full

protection.

Dwork (2008, p. 3) foreshadowed our view that the differential privacy param-

eter is a public good when she wrote: “[t]he parameter ε ... is public. The choice

of ε is essentially a social question.” We begin our own analysis using the eco-

nomic commerce view of McSherry and Talwar (2007), which closely resembles

the framework that grew out of Stigler’s “incentive to conceal” notion of personal

privacy. Data custodians may purchase data-use rights from individuals whose

information was collected for legitimate but unrelated business purposes in order

to compute and release an additional statistical summary that was not originally

planned. The purchase is a private transaction between informed agents. How-

ever, a direct consequence of the economic commerce privacy work, as proven by

Ghosh and Roth (2011), is that privacy protection for this type of statistical data

release has a public good character–it is non-rival (Mas-Colell et al. 1995, p. 359)–

just as Dwork originally noted.

The amount of privacy an individual sacrifices by participating in an ε-differentially

private mechanism neither exacerbates nor attenuates the expected sacrifice of pri-

vacy for any other individual in the database. The protection provided by differ-

ential privacy (our Definition 2, which is identical to the one found in Dwork and

Roth (2014)) bounds the supremum across all individuals of the privacy loss–it is

worst-case protection for the entire database. Thus, differential privacy is inher-

ently non-rival. Any improvement in privacy protection is enjoyed by all entities

in the database, and any reduction in privacy is suffered by all entities.
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A subtle distinction emerges when considering the difference between volun-

tary and compulsory systems for participation in the database versus participa-

tion in the statistical summaries. Specifically, when an opt-in system is used for

producing the summaries, all those who elect to participate get ε-differential pri-

vacy by construction of the payment system. Those who opt out get 0-differential

privacy. In compulsory participation systems, all entities in the database get ε-

differential privacy. In either case, all members of the population receive at least

ε-differential privacy because ε > 0. For statistical agencies using population

censuses and administrative record systems, participation in the database and

in the statistical summaries is usually compulsory. Our analysis of the subop-

timality of private provision permits opting out of the statistical summaries but

not the database. Our analysis of optimal public provision assumes compulsory

participation in the both the database and the statistical summaries. The opt-in

method, which is a private provider’s only feasible technology, may produce bi-

ased summaries–a possibility that we do not analyze in this paper because it was

already recognized by Ghosh and Roth (2011), who carefully defined the target

level of accuracy to control self-selection bias.1

There were precursors to the differential privacy paradigm. Denning (1980)

studied the security risks of releasing summaries based on samples from a confi-

dential database. Agrawal and Srikant (2000) coined the phrase privacy-preserving

datamining and analyzed some preliminary ways to accomplish it. Sweeney (2002)

formalized the protection provided by SDL methods that guard against identity

1They nevertheless acknowledge that bias in the privately-provided summary statistics may
still exists in their solution (Ghosh and Roth 2011, Remark 5.2).
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disclosure with a model known as k-anonymity. Machanavajjhala et al. (2007) for-

malized SDL methods that guard against attribute disclosure with a model known

as `-diversity. Evfimievski et al. (2003) explicitly modeled privacy breaches based

on posterior predictive distributions in a formal setting very similar to differential

privacy. But it is the differential privacy algorithms, and their explicit formaliza-

tion of inferential disclosure protection, that have become the workhorse of the

computer science data-privacy literature. We base much of our modeling on the

methods in Dwork and Roth (2014). For economists, Heffetz and Ligett (2014) is a

very accessible introduction.

1.3 Current Economic Uses of Differential Privacy

It isn’t just statistical agencies that release data as a public good. The standard

definition of a public good is that its use by one individual does not preclude

its use by another–non-rivalry in consumption. Sometimes a second condition

is added that one person’s use of the public good does not exclude another’s

use–non-exclusion in consumption. The second condition is not essential, and

governments often expend resources to allow exclusive use of otherwise public

data when they enforce patents and copyrights. It is easy to see how a statistical

agency’s publication of data on the distribution of income in the society, the cost of

living, incidence of diseases, or national income accounts satisfies the non-rivalry

and non-exclusivity conditions. It is perhaps less obvious, but equally true, that

the release of statistics about users, searches, “likes,” or purchases associated with

businesses like Amazon, Facebook and Google also satisfies these conditions. In
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addition, the publication of a scientific article based on confidential information

provided by a statistical agency or proprietary information provided by a busi-

ness satisfies these conditions.

Publication of the results of queries from private databases or search logs has

generated a series of papers in the electronic commerce literature. McSherry and

Talwar (2007) focused on the question of how a trusted custodian of private data

can efficiently compensate the data owners to permit the use of their data by an

analyst seeking the answer to an additional collection of queries.

Our work builds on the very thorough analysis in Ghosh and Roth (2011), who

study the specific problem of compensating a sample of individuals for the right

to use their data to compute a statistic from a private database already containing

those data–think: tabulations using Facebook friend networks. Each individual

who agrees to sell her data-use right is included in the published statistic, which

has a specific level of accuracy and is computed using an auction-determined level

of differential privacy protection. Their central contribution is to characterize the

properties of a VCG mechanism that achieves a specified query accuracy with the

least-cost acquisition of data-use rights (privacy loss).

We build on the Ghosh and Roth problem by allowing the privacy-preserving

answer to the query to be a public good. This is clearly within the spirit of their

work since they motivate their problem by modeling a data analyst who wishes

to obtain the most accurate estimate of a statistic within the constraints of a grant

budget. Most sponsored research is published in open-access scientific journals,

making the statistic under study by Ghosh and Roth a classic public good. Al-
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though the scientist elicits data for the study, and subsequently publishes the re-

sults in an open journal, the individuals who sell their data-use rights to the sci-

entist are presumed to get no utility from the published results in the Ghosh and

Roth framework. We let the subjects care about the quality of the scientific paper.

As noted above, we also consider whether it is reasonable to treat privacy loss it-

self as a fully-private good. Privacy-preserving publication by statistical agencies

treats all citizens as equally protected under the relevant confidentiality laws. Our

paper is the first use of the differential privacy paradigm to compare the economic

implications of public and private provision of privacy-preserving statistical data

in which both data quality and privacy loss are public goods.

1.4 Plan of This Paper

Section 2 provides a concise summary of the privacy and confidentiality mod-

els we use that is accessible to readers familiar with the computer science data-

privacy literature. We also provide sufficient detail on the legal, economic and

statistical underpinnings of our work so that readers can understand the rele-

vance of our arguments. Section 3 lays out the formal definitions of databases,

histogram representations, query release mechanisms, (ε, δ)-differential privacy,

and (α, β)-accuracy. This section is self-contained and includes a brief restatement

of the impossibility proof for eliminating inferential disclosures. Section 4 proves

the result that data accuracy is under-provided and privacy loss is too low when

a private data supplier uses either the VCG or Lindahl data-use rights acquisition

mechanisms as compared to the social optimum implied by the full public-goods
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model. Section 5 develops an efficient technology for providing accurate pub-

lic data and differentially private protection that admits a proper PPF. Using this

technology and well-defined interdependent preferences we solve the social plan-

ner’s problem for the optimal data accuracy and privacy loss. Section 6 uses data

from the General Social Survey and the Cornell National Social Survey to quantify

the parameters of our solution to the social planner’s problem. We consider the

publication of income distribution and relative health status statistics for the pop-

ulation. We quantify the welfare loss from suboptimal overprovision of privacy

protection and underprovision of data accuracy. Section 7 concludes.

2 Background

2.1 Differential Privacy and Statistical Disclosure Limitation

We work with the concept of differential privacy introduced by Dwork (2006). To

reduce confusion, we note that the SDL literature defines confidentiality protec-

tion as the effort to ensure that a respondent’s exact identity or attributes are not

disclosed in the published data. Computer scientists define data privacy as limits

on the amount of information contained in the published data about any person

in the population, respondent or not. The two literatures have much in common

but the main point of commonality that we use here are definitions of inferential

disclosure, due to Dalenius (1977), and differential privacy, due to Dwork (2006).

Inferential disclosure parameterizes the confidentiality protection afforded by

a particular SDL method using the ratio of the posterior odds of correctly as-
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signing an identity or a sensitive attribute to a particular respondent, given the

newly released data, to the prior odds, given all previously released data. Differ-

ential privacy parameterizes the privacy protection in a data publishing system

by bounding the same posterior odds ratio for all potential respondents in all po-

tential configurations of the confidential data.

To foreshadow what we develop below, we provide a concise summary of the

antecedents to our work here. We adopt the differential privacy definitions in

Blum et al. (2008) and Hardt and Rothblum (2010) explicitly, noting that these are

also used by Hardt et al. (2010), Gupta et al. (2012) and Dwork and Roth (2014).

Then, we consider normalized linear queries of the histogram representations of

databases with N entries. N is always the population under study, not a sample.

The global sensitivity of all such queries is 1
N
. We use the (α, β)-accurate query

mechanism from Definition III.1 and the (ε, δ)-differential privacy Definition III.2

from Hardt and Rothblum as adapted by Gupta et al. (2012) and Dwork and Roth

(2014). We consider only the maximally accurate allowable query; hence, our anal-

ysis sets their query round, k, at the allowable limit for the Private Multiplicative

Weight (PWM) mechanism in their Figure 1, which is their parameter c. We imple-

ment the enhancements to PMW found in Gupta et al. (2012)–in particular, tighter

accuracy bounds and an explicit limit on the number of query rounds required

to reach the target accuracy for given privacy loss parameters. Readers familiar

with the data privacy literature in computer science now have all the necessary

information to put our contribution in context. For the benefit of economists and

statisticians, the development below is self-contained with a road map to relate
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our proofs to the relevant papers in the differential privacy literature.

2.2 Statistical Data Releases and Privacy Protection Are Both Pub-

lic Goods

Publishing statistical data, whether the output of a government agency or of a

open scientific study, involves making statistical summaries of the information

that has been collected from the population under study available for anyone to

use. Consistent with this principle, we formalize publishing statistical data as

applying a query release mechanism with given privacy and accuracy properties

to a confidential database. Formally, in terms of the differential privacy model

summarized in Section 2.1, the answers to all c queries with (α, β)-accuracy from

the PWM query release mechanism with (ε, δ)-differential privacy are published

by the agency. Any individual may, therefore, use these statistics for any pur-

pose. Hence, they are public goods because their use is both non-rival and non-

exclusive.

We also assume that the ε parameter of the (ε, δ)-differential privacy guarantee

is a public good. Such an assumption means that all citizens are protected by the

same (ε, δ)-differential privacy parameters even though they may place different

utility values on ε. This is our interpretation of the “equal protection under the

law” confidentiality-protection constraint that most national statistical agencies

must provide. See, for example, U.S. Code Title 13 and Title 44 for an explicit

statement of this provision for the American data laws that govern the U.S. Census

Bureau (U.S. Code 1954) and American statistical agencies in general (U.S. Code
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2002).

In this equal-protection sense, privacy protection is non-exclusive in consump-

tion in the same manner as access to legal recourse through the courts is non-

exclusive–it is a right of citizenship. But unlike access to the courts, where there

is rivalry in consumption because one party’s litigation congests the access of an

unrelated party’s litigation, statutory privacy protection is non-rival when it is

provided via differential privacy. The reason for the non-rivalry is that the dif-

ferential privacy protection is “worst case” protection. If the query release mech-

anism’s worst possible breach is limited by the differential privacy bounds, then

every citizen’s protection is increased or decreased when the bounds are tightened

or loosened, respectively. Alice can have more privacy in this sense if and only if

Bob also enjoys the same increment. There is no crowding out of one party’s pri-

vacy protection when privacy protection is provided to another party.

In our formal setup, only the published-data accuracy parameter α and the

privacy protection parameter ε are considered explicit objects of production and

consumption. These are the formal public goods. We hold the other parameters

of the data publication process: c, β, and δ constant. It is a subject for future work

to make these choices endogenous.

3 Preliminaries

This section provides all formal definitions used in our application of differential

privacy. The goal is to highlight the important tools that may be unfamiliar to
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economists and statisticians. Our summary draws on several sources to which

we refer the reader who is interested in more details (Hardt and Rothblum 2010;

Dwork and Roth 2014; Wasserman and Zhou 2010). Our notation follows Dwork

and Roth (2014).

3.1 Databases, Histograms and Queries

A statistical agency, or other data curator, is in possession of a database, D. We

model D as a table in which each row represents information for a single indi-

vidual and each column represents a single characteristic to be measured. The

database D contains N rows. The set χ describes all possible values the variables

in the columns of the database can take. That is, any row that appears in the

database is an element of χ.2 All variables are discrete and finite-valued. This

does not impose a limitation, since continuous data are always given discrete, fi-

nite representations when recorded on censuses, surveys or administrative record

systems.

3.1.1 Histograms

For our analysis, we represent the database D by its unnormalized histogram x ∈

Z∗|χ|. The notation |χ| represents the cardinality of the set χ, and Z∗ is the set

of non-negative integers. Each entry in x, xi, is the number of elements in the

2For example, if the variables recorded in the database are a binary indicator for gender, g ∈
{0, 1}, and a categorical index for six different completed levels of schooling, s ∈ {1, . . . , 6}, then
χ = {0, 1} × {1, . . . , 6}.
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database D of type i ∈ χ. We use the `1 norm:

||x||1 =

|χ|∑
i=1

|xi| . (1)

Observe that ||x||1 = N , the number of records in the database. Given two his-

tograms, x and y, ||x − y||1 measures the number of records that differ between x

and y. We define adjacent histograms as those for which the `1 distance is at most

1.3

3.1.2 Queries

A linear query is a mapping f : [−1, 1]|χ| × Z∗|χ| → Z∗ such that f(m,x) = mTx

where x ∈ Z∗|χ| and m ∈ [−1, 1]|χ|. A counting query is a special case in which mi is

restricted to take a value in {0, 1}. Counting queries return the number of obser-

vations that satisfy particular conditions. They are the tool an analyst would use

to calculate multidimensional margins for the contingency table representation of

the database. A normalized linear query is a mapping f : [−1, 1]|χ| × Z∗|χ| → [0, 1]

such that if f̃ is a linear query then f(m,x) = f̃(m,x)/||x||1.

We model queries about population proportions, or averages, rather than counts.

These correspond to the proportions from a contingency table or the cell aver-

ages in a general summary table. To that end, we work with normalized linear

3If x is the histogram representation of D, y is the histogram representation of D′, and D′ and
is constructed from D by deleting exactly one row, then ||x − y||1 = 1. So, D and D′ are adjacent
databases and x and y are the adjacent histogram representations of D and D′, respectively. Some
caution is required when reviewing related literature because definitions may be stated in terms
of adjacent databases or adjacent histograms.
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queries unless otherwise specified. The use of normalization is not restrictive. It

only affects the functional form of privacy and accuracy bounds via their depen-

dence on the database size ||x||1. Any bound stated in terms of the unnormalized

histograms and queries can be restated in terms of normalized histograms and

queries.

3.2 Query Release Mechanisms, Privacy and Accuracy

We model the data release mechanism as a randomized algorithm. The data cu-

rator operates an algorithm that provides answers to a sequence of k normalized

linear queries drawn from the query space F .

Definition 1 (Query Release Mechanism) Let F be a set of normalized linear queries

with domain [−1, 1]|χ| × Z∗|χ| and range R ⊆ [0, 1], and let k be the number of

queries to be answered. A query release mechanism M is a random function

M : Z∗|χ|×Fk → Rk whose inputs are a histogram x ∈ Z∗|χ| and a set of k normal-

ized linear queries f = (f1, . . . , fk) ∈ Fk. The probability of observing B ⊆ Rk is

Pr [M(x, (f1, . . . , fk) ∈ B|X = x, F = f ], where Pr [z ∈ B|X = x, F = f ] is the con-

ditional probability given X = x and F = f that the query output is in B ∈ B,

where B are the measurable subsets of Rk.

Differential Privacy

Our definitions of differential privacy and accuracy for the query release mecha-

nism follow Hardt and Rothblum (2010) and Dwork and Roth (2014).
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Definition 2 ((ε, δ)-differential privacy) A query release mechanismM satisfies (ε, δ)-

differential privacy if

sup
x,x′∈Nx

sup
B∈B

{
Pr [M(x, (f1, . . . , fk)) ∈ B]

Pr [M(x′, (f1, . . . , fk)) ∈ B] + δ

}
≤ eε,

where Nx =
{

(x, x′) s.t. x, x′ ∈ Z∗|χ| and ||x− x′||1 = 1
}

and B are the measurable

subsets of the query output space, Rk. The set Nx contains all the adjacent his-

tograms of x.

We now clarify the relationship between differential privacy and inferential

disclosure. Our argument is a simplified version of Dwork (2006) that uses our

definitions. Using Definition 2 consider the ratio that results from using the query

release mechanism on two adjacent histograms x, x′ conditional on the query se-

quence f1, . . . , fk and δ = 0

Pr [M(x, (f1, . . . , fk)) ∈ B]

Pr [M(x′, (f1, . . . , fk)) ∈ B] + δ
=

Pr [M(x, (f1, . . . , fk) ∈ B|X = x, F = f ]

Pr [M(x′, (f1, . . . , fk) ∈ B|X = x′, F = f ]
.

Without loss of generality the histograms x and x′ can be treated as N samples

from a discrete Multinomial distribution with probabilities π defined over χ, and

holding the query sequence constant atF = f . We can compute Pr [X = x |π,N, F = f ]

and Pr [X = x′ |π,N, F = f ]. A direct application of Bayes Theorem yields

Pr [M(x, (f1, . . . , fk) ∈ B|X = x, F = f ]

Pr [M(x′, (f1, . . . , fk) ∈ B|X = x′, F = f ]
=

Pr[X=x|B,π,N,F=f ]
Pr[X=x′|B,π,N,F=f ]

Pr[X=x|π,N,F=f ]
Pr[X=x′|π,N,F=f ]

, (2)
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where the numerator of the right-hand-side is the posterior odds of the confiden-

tial database being x versus x′ after B is released, and the denominator is the

prior odds, i.e., the state of knowledge about x versus x′ before B is released. As

we noted in the introduction, this is precisely the Duncan and Lambert (1986) for-

malization of Dalenius (1977), although Duncan and Lambert’s procedure is not

based directly on the posterior odds ratio.

It should now be clear why we characterize differential privacy as worst-case

privacy protection: it bounds the posterior odds ratio for inferential disclosure

by eε over all possible publication outputs, B, considering every member of the

population as potentially excluded from the database, Nx. It should also be clear

why Dalenius’ statement that “[i]f the release of the statistics S makes it possible

to determine the value of [the confidential data item] more accurately than is pos-

sible without access to S, a disclosure has taken place...” (Dalenius 1977, p. 433)

is impossible to prevent. In the language of cryptography, the trusted data cura-

tor must leak some information about the confidential data because the release of

public-use statistics that fully encrypt those data (ε = 0) would be worthless. In

the language of economics, some risk of privacy breach is the marginal social cost

of releasing any useful statistical information from the confidential database. And

in the language of statistical disclosure limitation, the R − U confidentiality map

must go through the origin–if there is no risk of privacy breach, there can also be

no utility from the public-use statistics.

22



Accuracy

We can now define our measure of accuracy. The mechanism receives a sequence

of normalized linear queries, f1, f2, . . . , fk from F , and returns, in real time, an-

swers, a1 = M (x, (f1)), a2 = M (x, (f1, f2)), . . ., ak = M (x, (f1, . . . , fk)). These

answers depend on the input database, the content of the query response, and the

randomization induced by the query release mechanism.

Definition 3 ((α, β)-accuracy) A query release mechanismM satisfies (α, β)-accuracy

for query sequence {f1, f2, . . . , fk} ∈ Fk, 0 < α ≤ 1, and 0 < β ≤ 1, if

min
1≤i≤k

{Pr [|ai − fi(x)| ≤ α]} ≥ 1− β.

This definition guarantees that the error in the answer provided by the mech-

anism is bounded above by α with probability (1 − β) for the entire sequence of

k queries. The probabilities in the definition of (α, β)-accuracy are induced by the

query release mechanism.

4 The Suboptimality of Private Provision

Using the differential privacy framework, we explicitly illustrate the potential for

suboptimal private provision of public statistical data by adapting the very inno-

vative model of Ghosh and Roth (2011). Ghosh and Roth (GR, hereafter) show that

differential privacy can be priced as a commodity using a formal auction model.

They prove the existence of a mechanism that yields the lowest-cost method for
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answering a database query with (ε, 0)-differential privacy and (α, β)-accuracy.4

Their model takes the desired query accuracy as exogenous. The producer of

the statistic purchases data-use rights from individuals whose data are already in

the population database for the purpose of calculating a single statistic–the an-

swer to one database counting query–that will then be published in a scientific

paper. Funds for the purchase of the data-use rights come from a grant held by

the scientist. GR assume that the statistical release is the private good of the pur-

chaser of the data-use rights.

In this section, we make the accuracy of the statistic computed via the GR

mechanism a public good whose demand is endogenous to our model. We show

that private provision results in a suboptimally low level of accuracy and too little

privacy loss. That is, we show that allowing the quality of the scientific research

modeled in GR to matter to the population being studied results in an external

benefit from the data publication that their model does not capture.

To model the demand for accuracy, we assume that the published statistical

data deliver utility to the consumers from whom the rights to use the confidential

inputs were purchased. The purchase of data-use rights takes the form of a pay-

ment to all consumers who agree to sell their data-use rights when the publication

mechanism delivers (ε, 0)-differential privacy. The value of the published statisti-

cal data to all consumers, whether they sell their data-use rights or not, depends

upon the accuracy of those data. Furthermore, this accuracy is the public good–it

summarizes the quality of the information that any consumer may access and use

4They prove their results for β = 1/3, but note that generalizing this is straightfoward. See
Dwork and Roth (2014, pp. 207-213) for this generalization.
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without reducing its accuracy for some other consumer (it is non-rival), and no

consumer can block another consumer’s use (it is non-excludable). In plain En-

glish, the other scientists and general readers of the papers published in the GR

world learn something too. They value what they learn. And they understand

that what they learn is more useful if it is more accurate.

Our argument for suboptimal provision rests on two observations. First, the

mechanism proposed by GR remains a minimum cost mechanism in our setting.

Second, even if privacy loss were a partially excludable non-rival public good, ac-

curacy would still be under-provided in the private market. These results follow

from considering the use of the VCG mechanism by a private competitive data

quality supplier and the Lindahl mechanism (Mas-Colell et al. 1995) for the pro-

curement of privacy protection by a profit-maximizing data curator acting as a

price-discriminating monopsonist when buying data-use rights.

Suboptimality of private provision of data accuracy is caused by the external

benefit of data accuracy to all consumers that is not captured in the GR model. We

formally model the demand for data accuracy. The demand for privacy protection,

on the other hand, is derived from the private data publisher’s cost-minimization

problem. In the competitive equilibrium for privately-provided data quality, a

supplier using the VCG mechanism buys just enough privacy-loss rights to sell

the data quality to the consumer with the highest data-quality valuation. All other

consumers use the published data for free.

The VCG mechanism implies a single price for each data-use right purchased.

In the Lindahl mechanism, a single private data provider can perfectly price dis-
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criminate when procuring data-use rights with their attendant privacy loss. As

long as property rights over privacy exposure are sufficiently clear, the Lindahl

private producer can internalize the full social cost of the required privacy reduc-

tion, but not the social benefit of increased data accuracy to the free-riding con-

sumers who did not pay. In both cases data quality is under-produced compared

to the social optimum and privacy protection is over-produced; i.e., there is too

little privacy loss.

4.1 Model Setup

Following Ghosh and Roth (2011), each of the N private individuals possesses a

single bit of information, bi, that is already stored in a database maintained by a

trusted curator.5 For example, as in our first empirical application, this informa-

tion could be the response to a single query about income of the form bi = 1 if

yi > y∗ and bi = 0 otherwise. The preferences of consumer i are given by

vi (yi, α, εi) = ln yi + pεεi − γiεi + ηi(1− α)− p(1− α). (3)

5Trusted curator can have a variety of meanings. We mean that the database is held by an en-
tity, governmental or private, whose legal authority to hold the data is not challenged and whose
physical data security is adequate to prevent privacy breaches due to theft of the confidential data
themselves. We do not model how the trusted curator got possession of the data, but we do restrict
all publications based on these data to use statistics produced by a query release mechanism that
meets the same privacy and confidentiality constraints. Therefore, no data user has privileged ac-
cess for any query. These requirements closely mirror the statutory requirements of U.S. statistical
agencies.
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Equation (3) implies that preferences are quasilinear in data quality, 1−α, privacy

loss, εi, and log income, ln yi.6 The term pεεi represents the total payment an in-

dividual receives if her bit is used in an (εi, 0)-differentially private mechanism.

pε is the common price per unit of privacy, to be determined by the model. The

individual’s marginal preferences for data accuracy (a “good”) and privacy loss

(a “bad”), (γi, ηi) > 0, are not known to the data provider, but their population

distributions are public information. Therefore, the mechanism for procuring pri-

vacy has to be individually rational and dominant-strategy truthful. Individuals

each consume one unit of the published statistic, which has information quality,

I , defined in terms of (α, β)-accuracy, I = (1 − α). The price of data quality, p, is

also determined by the model.

We do not include any interaction between the publication of statistical data

and the market for private goods. This assumption is not without consequence,

and we make it to facilitate exposition of our key point, which is that data quality

may be under-provided given its public-good properties. Violations of privacy

might affect the goods market through targeted advertising and price discrimina-

tion as noted in Section 1. Accuracy of public statistics may also spill over to the

goods market in important ways, in part by making firms more efficient, and thus

able to produce and sell goods more cheaply. We reserve these topics for future

6In this section, we keep the description of preferences for data accuracy and privacy protection
as close as possible to the original Ghosh and Roth specification. They allow for the possibility
that algorithms exist that can provide differential privacy protection that varies with i; hence εi
appears in equation (3). They subsequently prove that εi = ε for ∀i in their Theorem 3.3. Income
and accuracy are added to the Ghosh and Roth utility function because they are required for the
arguments in this section. In Section 5 we develop a more complete model of the demand for
accurate public-use statistics that includes interdependent preferences.
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work.

In what follows we present the GR results using our notation and definitions.

See Appendix A.1 for a complete summary of the translation from their notation

and definitions to ours.

4.2 Cost of Producing Data Quality

A supplier of statistical information wants to produce an (α, β)-accurate estimate

produces ŝ of the population statistic

s =
1

N

N∑
i=1

bi (4)

i.e., a normalized query estimating the proportion of individuals with the property

encoded in bi. Theorems 3.1 and 3.3 in GR prove that to produce

ŝ =
1

N

[
H∑
i=1

bi +
αN

2

]
+ Lap

(
1

ε

)
(5)

with (α, 1/3)-accuracy requires εi = ε = 1/2+ln 3
αN

for H = N − αN
1/2+ln 3

. In equation

(5), the term Lap (σ) represents a draw from the Laplace distribution with mean 0

and scale parameter σ.

GR prove that purchasing the data-use rights from the H least privacy-loving

members of the population; i.e., those with the smallest γi, is the minimum-cost,

envy-free implementation mechanism. They provide two mechanisms for imple-

menting their VCG auction. We rely on their mechanism MinCostAuction and the

28



properties they establish in Proposition 4.5. See Appendix A.1

We now derive the producer’s problem of providing the statistic for a given

level of data quality, which we denote by I = (1 − α). If pε is the payment per

unit of privacy, the total cost of production is c(I) = pεHε, where the right-hand

side terms can be defined in terms of I as follows. Using the arguments above,

the producer must purchase from H(I) consumers the right to use their data to

compute ŝ. Then,

H(I) = N − (1− I)N

1/2 + ln 3
. (6)

Under the VCG mechanism, the price of privacy loss must be pε = Q
(
H(I)
N

)
,

whereQ is the quantile function with respect to the population distribution of pri-

vacy preferences, Fγ . pε is the lowest price at which the fraction H(I)
N

of consumers

do better by selling the right to use their bit, bi, with ε (I) units of differential

privacy. H(I) is increasing in I . The total cost of producing I is

CV CG(I) = Q

(
H(I)

N

)
H(I)ε(I), (7)

where the production technology derived by GR implies

ε(I) =
1/2 + ln 3

(1− I)N
. (8)
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4.3 Private, Competitive Supply of Data Quality

Suppose a private profit-maximizing, price-taking, firm sells ŝwith accuracy (α, 1/3),

that is, with data quality I = (1− α) at price p. Then, profits P (I) are

P (I) = pI − CV CG(I).

If it sells at all, it will produce I to satisfy the first-order condition P ′
(
IV CG

)
= 0

implying

p = Q

(
H(I)

N

)
H(I)ε′(I) +

[
Q

(
H(I)

N

)
+Q′

(
H(I)

N

)(
H(I)

N

)]
H ′(I)ε(I) (9)

where the solution is evaluated at IV CG.7 The price of data quality is equal to

the marginal cost of increasing the amount of privacy protection–data-use rights–

that must be purchased. There are two terms. The first term is the increment to

marginal cost from increasing the number of people from whom data-use rights

with privacy protection ε must be purchased. The second term is the increment to

marginal cost from increasing the amount each privacy-right seller must be paid

because ε has been marginally increased thus reducing privacy protection for all.

As long as the cost function is strictly increasing and convex, the existence and

7The second order condition is P ′′
(
IV CG

)
< 0, or d2CV CG(I)

dI2 > 0. The only term in the second

derivative of CV CG (I) that is not unambiguously positive is H(I)H′(I)2ε(I)
N2 Q′′

(
H(I)
N

)
. We assume

that this term is dominated by the other, always postivie, terms in the second derivative. Sufficient
conditions are that Q () is the quantile function from the lognormal distribution (as we assume in
Section 5) or the quantile function from a finite mixture of normals, and that H(I)

N is sufficiently
large; e.g., large enough so that if Q () is the quantile function from the lnN

(
µ, σ2

)
distribution,

Q∗′′
(

H(I)
N

)
+ σ2Q∗′

(
H(I)
N

)2
≥ 0, where Q∗ () is the standard normal quantile function.
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uniqueness of a solution is guaranteed.

4.4 The Competitive Market for Data Quality When It Is a Public

Good

At market price p, consumer i’s willingness to pay for data quality will be given

by solving

max
Ii≥0

ηi (I−i − Ii)− pIi (10)

where I−i is the amount of data quality provided in the absence of any monetary

payment from i. Consumer i’s willingness to pay is non-negative if, and only if,

ηi ≥ p; that is, if the marginal utility from increasing I exceeds the price. If there

exists at least one consumer for whom ηi ≥ p, then the solution to equation (9) is

attained by IV CG > 0. We next show that there is only one such consumer.

It is a straightforward to verify that the consumers are playing a classic free-

rider game (Mas-Colell et al. 1995, pp. 361-363) across N agents. In the compet-

itive equilibrium, the only person willing to pay for the public good is the one

with the maximum value of ηi. All others will purchase zero data quality but

still consume the data quality purchased by this lone consumer. Specifically, the

equilibrium price and data quality will satisfy

p = η̄ =
dCV CG

(
IV CG

)
dI

,

where η̄ is the maximum value of ηi in the population–the taste for accuracy of

the person who desires it the most. However, the Pareto optimal consumption of
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data quality, I0, solves
N∑
i=1

ηi =
dCV CG (I0)

dI
. (11)

Marginal cost is positive dCV CG(Io)
dI

> 0. Therefore, data quality is under-provided

by a competitive supplier when data quality is a public good. More succinctly,

IV CG < I0. Therefore, privacy protection must be over-provided by equation (8).

4.5 The Price-discriminating Monopsonist Provider of Data Qual-

ity

Now consider the problem of a single private data provider who produces ŝ with

accuracy (α, 1/3) using the same technology as in equations (7) and (8). We now

allow the producer to price-discriminate in the acquisition of data-use rights–that

is, the private data-quality supplier is a price discriminating monopsonist in the

market for data-use rights. This relaxes the assumptions of the GR VCG mecha-

nism to allow for the unrealistic possibility that the data quality provider knows

the population values of γi. GR acknowledge this theoretical possibility when dis-

cussing the individual rationality and dominant-strategy truthful requirements of

their mechanism. They reject it as unrealistic, and we agree. We are consider-

ing this possibility to show that even when the private data-quality provider is

allowed to acquire data-use rights with a lower cost strategy than the VCG mech-

anism, data quality will still be under-provided.

The producer must decide how many data-use rights (and associated privacy

loss ε, the same value for all i) to purchase from each member of the database,
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or, equivalently, how much to charge members of the database to opt out of par-

ticipation in the mechanism for computing the statistic. (They cannot opt out of

the database.) Let π ∈ {0, 1}N be the participation vector. Using the Lindahl ap-

proach, let pLεi be the price that satisfies, for each consumer i,

pLεi ≤ γi,with equality if πi = 1. (12)

Equation (12) says that the Lindahl prices are those such that the choice of ε is

exactly the value that each individual would optimally choose on her own. Even

with our assumption of linear preferences, the Lindahl prices are unique for every

consumer who participates in the mechanism for computing the statistic.

Given a target data quality of I = (1 − α), the producer’s cost minimization

problem is the linear program

CL (I) = min
π

(
N∑
i=1

πip
L
εi

)
ε (13)

subject to
N∑
i=1

πi = N − (1− I)N

1/2 + ln 3
and ε =

1/2 + ln 3

(1− I)N
.

The solution is for the producer to set πi = 1 for the H members of the database

with the smallest pLεi and πi = 0, otherwise. Note that if

dCL (I)

dI
≤ dCV CG(I)

dI

for all I , which will be proven in Theorem 1, then the Lindahl purchaser of data-
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use rights will produce more data quality at any given price of data quality than

the VCG purchaser.

By construction, the Lindahl solution satisfies the Pareto optimality criterion

for data-use rights acquisition that

N∑
i=1

πip
L
εi

=
N∑
i=1

πiγi. (14)

Once again, the supplier implements the query response mechanism of equation

(5) with
(

1/2+ln 3
(1−I)N , 0

)
-differential privacy and (1−I, 1

3
)-accuracy but pays each con-

sumer differently for her data-use right. Notice that equation (14) describes the

Pareto optimal privacy loss whether or not one acknowledges that the privacy

protection afforded by ε is non-rival, only partially excludable, and, therefore,

also a public good.

To implement the Lindahl solution, the data producer must be able to exclude

the bits, bi, of specific individuals when computing the statistic, and must have

perfect knowledge of the every marginal disutility γi of increasing ε. When this

information is not available, the producer can, and will, implement the first-best

allocation by choosing a price through the VCG auction mechanism used by GR.

For readers familiar with the data privacy literature, we note that the statement

that technology is given by equations (7) and (8) means that the data custodian

allows the producer to purchase data-use rights with accompanying privacy loss

of ε = 1/2+ln 3
(1−I)N from H (I) individuals for the sole purpose of computing ŝ via

the query response mechanism in equation (5) that is
(

1/2+ln 3
(1−I)N , 0

)
-differentially
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private and achieves (1 − I, 1
3
)-accuracy, which is exactly what Ghosh and Roth

prove.

4.6 Proof of Suboptimality

Theorem 1 If preferences are given by equation (3), the query response mechanism

satisfies equation (8) for (ε, 0)-differential privacy with
(
1− I, 1

3

)
-accuracy, cost

functions satisfy (7) for the VCG mechanism and (13) for the Lindahl mechanism,

the population distribution of γ is given by Fγ (bounded, absolutely continuous,

everywhere differentiable, and with quantile function Q satisfying the conditions

noted in Section 4.3), the population distribution of η has bounded support on

[0, η̄], and the population in the database is represented as a continuum with mea-

sure function H (absolutely continuous, everywhere differentiable, and with total

measure N ) then IV CG ≤ IL ≤ I0, where I0 is the Pareto optimal level of I solving

equation (11), IL is the privately-provided level when using the Lindahl mech-

anism to procure data-use rights and IV CG is the privately-provided level when

using the VCG procurement mechanism.

Proof. By construction, Fγ(γ) is the distribution of Lindahl prices. Given a

target accuracy α, corresponding to data quality level I = (1−α), the private pro-

ducer must procure confidential data with ε(I) units of privacy protection from a

measure of H(I) individuals. Define

p`ε = Q

(
H(I)

N

)
,
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for ` = V CG,L. Note that p`ε is the disutility of privacy loss for the marginal

participant in the VCG and Lindahl mechanisms, respectively. The total cost of

producing I = (1− α) using the VCG mechanism is equation (7):

CV CG(I) = Q

(
H(I)

N

)
H(I)ε(I)

while the total cost of implementing the Lindahl mechanism is equation (13):

CL(I) =

(
N

∫ Q(H(I)
N )

0

γdFγ(γ)

)
ε(I).

Using integration by parts and the properties of the quantile function,

CL(I) =

[
Q

(
H(I)

N

)
Fγ

(
Q

(
H(I)

N

))
−
∫ Q(H(I)

N )

0

Fγ(γ)dγ

]
Nε(I)

=

[
Q

(
H(I)

N

)
H(I)−N

∫ Q(H(I)
N )

0

Fγ(γ)dγ

]
ε(I).

Differentiating with respect to I ,

dCL(I)

dI
=

[
Q

(
H(I)

N

)
H(I)−N

∫ Q(H(I)
N )

0

Fγ(γ)dγ

]
ε′(I) +Q

(
H(I)

N

)
H ′(I)ε(I).

The corresponding expression for CV CG(I) is

dCV CG(I)

dI
= Q

(
H(I)

N

)
H(I)ε′(I) +

[
Q

(
H(I)

N

)
+Q′

(
H(I)

N

)
H(I)

N

]
H ′(I)ε(I).

Comparison of the preceding marginal cost expressions establishes that 0 < dCL(I)
dI
≤
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dCV CG(I)
dI

for all I , since N
∫ Q(H(I)

N )
0 Fγ(γ)dγ > 0, H ′(I) > 0, and Q′ () > 0 The re-

sults stated in the theorem follow by using the private equilibrium equation for

the market price of I , which is p in equation (3),

p = η̄ =
dCL(IL)

dI
=
dCV CG(IV CG)

dI
.

Hence, IV CG ≤ IL ≤ I0, where the final inequality follows from equation (11),∑N
i=1 ηi > η̄, and the conditions on Q that imply d2CV CG(I)

dI2
> 0 and d2CL(I)

dI2
> 0 for

sufficiently large H(I)
N

.

5 The Optimal Provision of Accuracy and Privacy

Having shown that both data quality and privacy loss have public-good proper-

ties when modeled using private supplier markets, we now formalize the prob-

lem of choosing the optimal level of privacy loss and data quality when both are

explicitly public goods. We derive the technological frontier for publication of

statistical data provided by national statistical agencies, who are assumed to use

a confidential database for which they are the trusted custodian. Once we know

the technological frontier, the optimal publication strategy depends on the will-

ingness to pay for increased accuracy with reduced privacy protection. We use

Samuelson (1954) as explicated in Mas-Colell et al. (1995, p. 360-61) to solve for

the Pareto optimal quantities of each public good.
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5.1 Production Possibilities for Privacy Protection and Data Pub-

lication

The custodian releases public statistics derived from a confidential database using

the responses to normalized linear queries submitted by a representative analyst.

The custodian is constrained to operate a query release mechanism that is (ε, δ)-

differentially private. The data custodian releases these query answers sequen-

tially as they are submitted by the representative analyst. The analyst is therefore

able to submit additional queries for information after observing the answers to

all previous queries.8

5.1.1 The Private Multiplicative Weights Mechanism

Let the data custodian use the Private Multiplicative Weights (PMW) query re-

sponse mechanism introduced by Hardt and Rothblum (2010). Our presentation

follows the definitions in Gupta et al. (2012). The custodian chooses the total num-

ber of normalized linear queries ft ∈ F to allow (t = 1, . . . , k) generating the set

Q ⊆ Fk from which all allowable query sequences must be drawn. The custodian

also sets the privacy parameters (ε and δ) and the parameters governing query

accuracy (α and β) that define the rate of privacy loss under the mechanism.

We summarize the basic features of the PMW algorithm. A more complete

description appears in Appendix A.3, but is not necessary to understand our ap-

8The concept of a representative analyst is without loss of generality. In the context of public-
use statistics provided by government agencies, any analyst is in possession of all output from the
release mechanism. By considering a representative analyst, we model the worst-case scenario of
a fully-informed analyst who seeks to compromise privacy through targeted queries.
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plication. The PMW algorithm calculates the candidate (ε, δ)-differentially private

query response using the confidential data plus Laplace noise with scale param-

eter that depends upon α, ε, and δ at each step. Next, it produces a synthetic ap-

proximation to the confidential database using only the (ε, δ)-differentially private

responses already released. The analyst calculates answers to all queries based on

the current synthetic version of the database. If any privacy budget remains, an

additional query is posed up to the limit k, and the (ε, δ)-differentially private

response to the new query, if released, is used to update the synthetic database.

At each round of operation t, the query release mechanism holds a noisy approx-

imation x∗t−1 of the true histogram x that is based upon the previously released

(ε, δ)-differentially private responses to the queries f1, . . . , ft−1. In response to the

next query ft, the algorithm computes an (ε, δ)-differentially private response us-

ing the confidential data x as its input; then, the algorithm compares that answer

to the answer based on x∗t−1, which must be differentially private as a consequence

of the construction of x∗t−1 because (ε, δ)-differential privacy composes (for a proof

see Dwork and Roth (2014, pp. 49-51)). If the answer to query ft using the approx-

imate histogram x∗t−1 is close enough to the differentially private answer using

the true histogram, then the mechanism returns the answer using only the public

approximate histogram (the synthetic database). If not, it returns the differen-

tially private answer to ft and updates the approximation to the true histogram

to x∗t . When the algorithm stops, the (ε, δ)-differentially private responses to all k

queries can be calculated from the final synthetic database with (α, β)-accuracy.

The strengths of this approach are twofold. First, the approximation to the
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true histogram minimizes error given the queries already answered. Second, the

algorithm only adds noise when the approximate (i.e., already public) answer is

sufficiently far from the truth. This conserves on the privacy loss and controls the

total error efficiently.

5.1.2 The Feasible Trade-off between Privacy Loss and Accuracy

We show that the PMW algorithm establishes a convex and decreasing relation-

ship between privacy loss and accuracy. It can therefore provide the basis for a

well-defined production possibilities frontier that characterizes feasible trade-offs

between privacy loss and accuracy.

Theorem 2 Let D be a confidential database with rows that are elements from the

set χ with histogram x from population size ‖x‖1 = N . Let the set of all allowable

normalized linear queries beQ ⊆ F with cardinality |Q|. Given parameters ε > 0,

0 < δ < 1 and 0 < β < 1, there exist query release mechanisms M(x) including

the PMW mechanism that can interactively answer sequences of queries ft ∈ Q

for t = 1, . . . , |Q| that satisfy the following conditions:

1. Privacy: M(x) satisfies (ε, δ)-differential privacy;

2. Accuracy: M(x) satisfies (α, β)-accuracy, with

α =
K(δ, β, |χ|, |Q|, N)

εb
(15)

where b ≤ 1
2

Furthermore, K is decreasing in N , δ, and β, and increasing in

|χ| and |Q|.
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Proof. We begin with results from Gupta et al. (2012), who define two algo-

rithms that satisfy the conditions of the theorem: the Median Mechanism (MM)

and Private Multiplicative Weights (PMW) algorithms. In Gupta et al., Theorems

3 and 4 prove the privacy and accuracy claims in our theorem up to the functional

form for the accuracy bound. We now prove the functional form of the accuracy

bound for the PMW mechanism is α = K(δ,β,|χ|,|Q|,N)
εb

, with b = 1/2 and

K(δ, β, |χ|, |Q|, N) =

8
√

3(ln |χ|)1/4
√

ln
(
4
δ

)
ln
(
|Q|
β

)
N1/2

. (16)

The discussion following Gupta et al. Theorem 4 shows that any B(α) iterative

database construction (IDC) algorithm is (α, β)-accurate as long as

α =
96
√
B(α) ln(4/δ) ln(k/β)

ε
. (17)

Furthermore, PMW is a B(α) = 4 ln |χ|/α2 IDC algorithm. The result is estab-

lished by substituting 4 ln |χ|/α2 for B(α) in equation (17), solving the equation

for α, and dividing by N . The accuracy bound reported by Gupta et al. assumes

the histogram and queries are unnormalized. Division by N addresses our appli-

cation to normalized, rather than unnormalized, linear queries. Finally, consistent

with Gupta et al., we set k = |Q|, the cardinality of the set of allowable queries.

41



5.1.3 The Production Possibilities Frontier

The production possibilities frontier (PPF) relating information quality I = (1−α)

and differential privacy loss ε is defined by a transformation function

G (ε, I) ≡ I −
[
1− K(δ, β, |χ|, |Q|, N)

εb

]
(18)

where Theorem 2 gives the functional form. All feasible pairs (ε, I) are contained

in the transformation set

Y = {(ε, I) |ε > 0, 0 < I < 1 s.t. G(ε, I) ≤ 0} . (19)

The PPF is the boundary of the transformation function defined as

PPF (ε, I) = {(ε, I) |ε > 0, 0 < I < 1 s.t. G(ε, I) = 0} . (20)

Equation (20) specifies the maximum data quality that can be published for a

given value of privacy loss.

Using the result of Theorem 2, and solving for I as a function of ε, the data

publication problem using the PMW query release mechanism produces the pro-

duction possibilities frontier

I (ε; δ, β, |χ|, |Q|, N) =

[
1− K(δ, β, |χ|, |Q|, N)

εb

]
. (21)

The PPF described by equation (21) can be graphed with ε on the horizontal axis
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and I on the vertical axis. Figure 1 shows the PPF. Notice that it is always in the

positive quadrant; however, because ε is a bad rather than a good, the PPF has

properties similar to the efficient risk-return frontier used in financial economics.

The PPF separates feasible (ε, I) pairs, which are on and below the PPF, from

infeasible pairs, which are above the PPF. The PPF is concave from below: a chord

connecting any two points on the PPF is entirely in the set defined by equation

(19). The PPF asymptotically approaches the origin. The marginal social cost of

increasing data accuracy I in terms of foregone privacy protection ε–the marginal

rate of transformation–is

MRT (ε, I) ≡ ∂G/∂ε

∂G/∂I
=
bK(δ, β, |χ|, |Q|, N)

εb+1
=
dI

dε
, (22)

where the marginal rate of transformation is the slope of the PPF, and not minus

the slope, because privacy loss is a public bad.

We take the parameters (δ, β, |χ|, |Q|, N) that determine K to be outside the

scope of the choice problem for this paper. Doing so is not without consequence,

as these parameters also affect the PPF. We note that the data provider can, in

principle, change the set of allowable queriesQ to modify the PPF. We are treating

the resource costs associated with (δ, β, |χ|, |Q|, N) as fixed, therefore, in order to

focus on the trade-off between privacy loss and data accuracy as summarized byε

and I . Note, however, that the population size N is fixed.

Before we continue, we interpret equation (21) using the concepts from dif-

ferential privacy and statistical disclosure limitation. Equation (21) is a proper

production possibilities frontier because it is based on the best available algo-
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rithmic bound on the accuracy parameters (α, β), and hence on I , that delivers

(ε, δ)-differential privacy. When we implement this PPF using the PMW algo-

rithm, we achieve this bound. Hence, according to the definition in equation (20),

our PPF delivers the privacy loss, data accuracy pairs that are on the boundary of

the transformation function as described by the best available technology that can

deliver at least (ε, δ)-differential privacy. If a newer algorithm achieves a better

accuracy bound for the same privacy loss, then equation (21) can be modified to

reflect that newer technology. In terms of statistical disclosure limitation, equation

(21) is the R − U confidentiality map. Any data publication protected using ε as

the disclosure risk measure that does not deliver data quality on the boundary of

the transformation set, i.e., on equation (21) is inefficient. Any data publication

strategy that claims to produce an accuracy, privacy loss pair above the PPF is

infeasible–it must involve some violation of the assumptions of Theorem 2 or a

computational error.

5.2 Preferences

Define the indirect utility function, vi, for each individual as

vi
(
yi, ε, I, y

˜i, p
)

= max
q
ui
(
q, ε, I, y˜i

)
s.t. qTp ≤ yi (23)

where q is the bundle of L private goods chosen by individual i at prices p, which

are common to all individuals in the population. The direct utility function ui
(
q, I, ε, y˜i

)
,

also depends upon the privacy-loss public bad, ε, the data-accuracy public good,
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I , and on the vector of all other incomes in the population y˜i, which we discuss

in more detail below.

5.3 The Social Planner’s Problem

We adopt the linear aggregation form of the social welfare function

SWF (ε, I, v, y, p) =
N∑
i=1

vi
(
yi, ε, I, y

˜i, p
)

(24)

where v and y are vectors of N indirect utilities and incomes, respectively. The

social planner’s problem is

max
ε,I

SWF (ε, I, v, y, p) (25)

subject to equation (21). The PPF is clearly differentiable. Assuming the indirect

utility functions are differentiable, the optimality conditions are

∂G(ε0,I0)
∂ε

∂G(ε0,I0)
∂I

=
∂
∂ε

∑N
i=1 vi

(
yi, ε

0, I0, y˜i, p
)

∂
∂I

∑N
i=1 vi (yi, ε

0, I0, y˜i, p)
(26)

and PPF (ε0, I0). The left-hand side of equation (26) is the marginal rate of trans-

formation from the production possibilities frontier while the right-hand side is

the marginal rate of substitution from the social welfare function.
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5.3.1 Solving the Planner’s Problem

We now specialize the indirect utility function to reflect individual preferences for

privacy loss and data accuracy. We seed a functional form that directly motivates

the consumer’s demand for data accuracy. Consequently, we focus on indirect

utility functions in which each individual cares about her place in the income

distribution, a fact that she cannot know without statistical data on that distribu-

tion. The accuracy of these statistical data increases utility. The privacy loss from

these statistical data reduces utility. If accurate data could be acquired at no pri-

vacy cost, individual utility would be an increasing function of relative income. It

is worth noting that other models of interdependent preferences, such as Pollak

(1976) and Alessie and Kapteyn (1991), also produce functional forms that require

population statistics, which they are implicitly assuming can be acquired with full

accuracy and no privacy loss.

We also want the consumers to display heterogeneity in their marginal tastes

for privacy loss and data accuracy so that we can make direct comparisons to the

problem we addressed in Section 4. An indirect utility function that captures the

required features is

v
(
yi, ε, I, y

˜i, p
)

= −
L∑
`=1

ξ` ln p` + ln yi (27)

−γi (1 + ln yi − E [ln yi]) ε

+ηi (1 + ln yi − E [ln yi]) I

where (γi, ηi) > 0 for all i = 1, . . . , N , ξ` > 0 for all ` = 1, . . . , L and
∑L

`=1 ξ` = 1. In
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equation (27) and what follows, expectation, variance, and covariance operators

are with respect to the joint distribution of ln yi, γi and ηi in the population of N

individuals. The term (ln yi − E [ln yi]) represents the deviation of an individual’s

log income from the population mean. The indirect utility function defined by

equation (27) thus directly reflects the assumption that individuals get utility from

their relative position in the income distribution, as well as directly from their own

income.

It is easy to see the antecedents of equation (27) in the specification used by

Akerlof (1997), who assumed that utility depended on the levels of individual

and average income instead of logarithms, and the subsequent work on the pro-

vision of public goods with interdependent preferences that his models sparked

(see Aronsson and Johansson-Stenman (2008) and the references therein). We also

note that these authors implicitly assume that the public statistics that enter their

utility functions are measured with perfect accuracy and without privacy loss. We

avoid the Manski (1993) reflection problem by using explicit empirical analogues

of γi and ηi, and thus different covariations with income, in our empirical Section

6.

In Appendix A.2, we verify that the vector v of indirect utility functions is

homogeneous of degree zero in (p, y), strictly increasing in y, non-increasing in p,

quasiconvex in (p, y), and continuous in (p, y). Therefore, v
(
yi, I, ε, y

˜i, p
)

is a well-

specified indirect utility function in this economy with relative income entering

every utility function with the same functional form provided equation (27) is

quasiconcave in (ε, I), which is trivially true for equation (27), as long as (γi, ηi) >
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0 for all i, since it is linear in (ε, I). Hence, equation (24) is a well-specified social

welfare function, quasiconcave in (ε, I), and the social planner’s problem is well-

specified since equation (21) is quasiconcave in (ε, I).

Substitution of equation (27) into equation (26) yields

∂G(ε0,I0)
∂ε

∂G(ε0,I0)
∂I

=
∂
∂ε

∑N
i=1 vi

(
yi, ε

0, I0, y˜i, p
)

∂
∂I

∑N
i=1 vi (yi, ε

0, I0, y˜i, p)
(28)

bK(δ, β, |χ|, |Q|, N)

(ε0)b+1
=

∑N
i=1 γi (1 + ln yi − E [ln yi])∑N
i=1 ηi (1 + ln yi − E [ln yi])

=
E [γi] + Cov [γi, ln yi]

E [ηi] + Cov [ηi, ln yi]

The full solution is

I0 (.) = 1−
{

1

b
K(δ, β, |χ|, |Q|, N)1/b

E [γi] + Cov [γi, ln yi]

E [ηi] + Cov [ηi, ln yi]

}b/(b+1)

(29)

and

ε0 (.) =

{
bK(δ, β, |χ|, |Q|, N)

E [ηi] + Cov [ηi, ln yi]

E [γi] + Cov [γi, ln yi]

}1/(b+1)

. (30)

Figure 1 illustrates the solution to the social planner’s problem when the sta-

tistical agency operates the PMW algorithm, as operationalized by Gupta et al.

(2012). Substituting the expressions in Theorem 2 and simplifying equation (21)

yields the implemented form of the PPF

I = 1−
8
√

3 (ln |χ|)1/4
√

ln
(
4
δ

)
ln
(
|Q|
β

)
(Nε)1/2

. (31)
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Figure 1: An Illustrative Solution to the Social Planner’s Problem

The social welfare function is based on the indirect utility function in equation

(27). The solid line represents the production possibilities frontier, equation (31).

The dashed lines are contour plots of the social welfare function (24) at represen-

tative non-optimal (SWF0) and optimal (SWF1) attainable levels of social welfare.

The expansion path is the straight line from minimal accuracy, I = 0, to a point on

the privacy loss axis between ε = 0.6 and ε = 0.8.

The optimum shown in Figure 1 is the solution to equation (28). It shows the

Pareto optimal bundles of (ε, I) associated with model parameters (δ, β, |χ|, |Q|, N).

For purposes of exposition, we have chosen parameter values that yield a quanti-

tatively intuitive and useful solution.

49



The PPF in Figure 1 is displayed for a database that measures an arbitrary

histogram over a publicly-labeled collection of non-overlapping bins that span

the range of a discrete variable measured on a cardinal scale (income in one of our

applications). We allow normalized linear queries, ft(x) = 1
N
mT
t x of the form

mT
t =

(
1 . . . 1 1 0 . . . 0

)

where mt is (|χ| × 1) , and there can be an arbitrary number of initial ones fol-

lowed by the complementary number of zeros. The query with mT set to all ones

is redundant, so we will remove it fromQ. The mt are a set of basis queries for es-

timating the cumulative distribution of a discrete variable measured on a cardinal

scale. They can be interpreted as allowing the user to ask a sequence of questions

of the form “What proportion of the population has values less than or equal to the

upper bound of a particular bin?” A finite sequence of such queries is sufficient to

estimate the histogram or cumulative distribution function of the underlying dis-

crete variable to arbitrary accuracy in the absence of the privacy-protecting query

release mechanism.

The remaining assumptions are

• the population in the database is the 2010 population of the United States

ages 18 to 64: N = 194,000,000;

• the size of the sample space is the number of bins into which the cardinal

discrete variable is tabulated: |χ| = 1,000;

• the size of the query set is the number of permissible queries of the allowable
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form: |Q| = |χ| − 1 = 999;

• the probability that a query cannot be answered accurately is β = 0.01;

• the differential privacy failure bound is δ = 0.9/N .9

Using estimates of Cov [γi, ln yi] and Cov [ηi, ln yi] based on our analysis of Gen-

eral Social Survey data in Section 6, we obtain optimal accuracy of I0 = 0.904 and

privacy loss of ε0 = 0.067, which is the social optimum plotted in Figure 1.

6 Applications

To investigate the normative content of our model, we use data from the Gen-

eral Social Survey (GSS) and the Cornell National Social Survey (CNSS) to em-

pirically quantify the distribution of the indirect utility function parameters.10

These surveys ask a representative sample of American adults questions about

their income, health status, and attitudes towards data accuracy and privacy pro-

tection. We equate the answers provided to the latent marginal utilities in our

model. Under these assumptions, we can use the survey responses to measure

the marginal rate of substitution in the social welfare function. Equating this rate

to the marginal rate of transformation from our PPF allows us to characterize the

socially optimal data accuracy and privacy protection implied by the survey re-

sponses.
9Dwork and Roth (2014, p. 18) argue that values of δ > 1/N are dangerous since they, in

principle, allow publication of at least one exact record in the database.
10For the GSS (Smith and Kim 2011), see http://www3.norc.org/gss+website/. For the

CNSS (Cornell Institute for Social and Economic Research and Survey Research Institute n.d.), see
https://www.sri.cornell.edu/sri/cnss.cfm. See also Appendix A.4.
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Our goal is to provide some empirical guidance about the optimal rate at

which a public data provider should trade off privacy loss for statistical accuracy.

We present results for two applications where privacy loss and accuracy of sta-

tistical information are both highly salient: (1) publication of income distribution

statistics and (2) publication of relative health status statistics.

Our results provide guidance to data providers in choosing how to manage

data privacy. We note, however, that the data from these surveys are not ideally

suited to our applications. Obtaining our results using the available data requires

a number of ancillary assumptions. We make careful note of these assumptions,

and why they are needed. Progress in measuring the optimal trade-off between

privacy loss and data accuracy will require more and better information on in-

dividual preferences, including carefully designed controlled experiments that

identify the components of utility, such as relative income, that can only be as-

sessed with statistical data on the relevant comparison population. Such experi-

ments have already informed the role of relative income in the study of subjective

well-being (Luttmer 2005; Clark et al. 2008) and the acquisition of private data for

commercial use (Acquisti et al. 2013).

6.1 Publication of Income Distribution Statistics

We began the normative analysis with our specification of the indirect utility func-

tion in Section 5.2. The solution to the planner’s problem in equation (28) depends

upon properties of individual preferences that are amenable to estimation from

survey data. Any survey or experimental mechanism that elicits preferences to-
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wards privacy loss, γi, relative income, ηi and income itself, ln yi can in principle

be used to quantify the optimal accuracy and differential privacy settings from the

social planner’s problem. To this end, we use three variables from the 2006 GSS:

• Family income, reported in quartiles.

• DATABANK, which records responses on a four-category Likert scale to the

following question: “The federal government has a lot of different pieces of

information about people which computers can bring together very quickly.

Is this a very serious threat to individual privacy, a fairly serious threat, not

a serious threat, or not a threat at all to individual privacy?”

• SCIIMP3, which records responses on a four-category Likert scale to the

following question: “How important [is] the following in making something

scientific? The conclusions are based on solid evidence.”

We use DATABANK as a proxy measure of the latent preference for privacy γi

and SCIIMP3 as a proxy measure of the latent preference for privacy ηi. We com-

pute the polychoric correlations between each preference measure and income:

• Corr [γi, ln yi] = −0.144 (±0.031)

• Corr [ηi, ln yi] = 0.189 (±0.037)

Interestingly, marginal preferences for privacy are negatively correlated with in-

come, while marginal preferences for evidence-based science, interpreted here as

a proxy for accuracy, are positively correlated with income. We do not consider
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distributional effects in our analysis, but note in passing that these statistics sug-

gest increasing accuracy at the expense of privacy might favor citizens with higher

incomes. This results depends on the context, as our analysis of health statistics

in the next section shows.

Taken together, we can equate the marginal rate of transformation between

data accuracy and privacy loss to the marginal rate of substitution, as in equation

(28).

MRT
(
ε0, I0

)
=

E [γi] + Cov [γi, ln yi]

E [ηi] + Cov [ηi, ln yi]
= 0.720. (32)

At the social optimum, a one-unit increment in data accuracy requires a 0.720 unit

incremental privacy loss. In making this calculation, we assume that the loga-

rithms of (y, γ, η) are normally distributed about
(
µln y, 0, 0

)
with unit variances,

so that E [γi] = E [ηi] = 1. The same assumption is made in computing the poly-

choric correlations, as the location of the Likert scale is arbitrary with respect to

the underlying latent variables governing preferences.

Optimal accuracy depends on the shape and position of the PPF through the

constants K(δ, β, |χ|, |Q|, N) and b according to equation (29). If data are provided

through the PMW mechanism, and using the same parameters that generate Fig-

ure 1, the optimal accuracy and privacy are I0 = 0.904 and ε0 = 0.067. This is a

reasonably tight optimal privacy parameter and a relatively tight accuracy value.

Economically, this social optimum implies that individuals prefer to have their

place in the income distribution well-protected in the published data and are pre-

pared to accept income distribution estimates that are accurate to, approximately,

the decile of the distribution.
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We now use the estimated social optimum derived from the GSS data to eval-

uate the welfare cost of choosing suboptimally low privacy loss at the expense

of data accuracy. Choosing a point along the PPF that represents a 3 percent de-

crease in I , that is the point I = 0.880, which is equivalent to a 25 percent increase

in α, and the corresponding value of privacy loss on the PPF, ε = 0.043, results

in an expected change in utility of −0.008 per person. Given the role of income

in the indirect utility function, an income transfer of 0.008 log points (approxi-

mately 0.8 percent) to each person would offset the aggregate welfare loss. The

estimated parameters imply that a decrease in the accuracy with which income

data are published corresponding to approximately one-half decile of accuracy

while maintaining the privacy protection level at the original optimum results in

an aggregate utility loss of approximately one percent. There will be variation in

the actual welfare loss for any person because of the heterogeneity in privacy and

accuracy preferences.

6.2 Publication of Health Status Statistics

6.2.1 Restating and Solving the Planner’s Problem

We adopt a similar approach to the publication of relative health status statistics,

using an alternative specification for the indirect utility function assumes that rel-

ative health status lnhi interacts with income, data accuracy and privacy loss in a

manner that makes the individual better off with more accurate knowledge of her

relative health status but worse off for the privacy loss that entails. An equation
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similar to equation (27) has the desired properties:

v (yi, ε, I, hi, p) =

−
∑L

`=1 ξ` ln p` + ln yi − E(γ)ε− (γi − E(γ))(1− lnhi)ε

+ E(η)I + (ηi − E(η)) ln yiI,

(33)

where the notation is as in equation (27), and hi is an ordinal measure of the

relative health status of individual i. We again assume that the logarithms of

(y, h, γ, η) follow a joint normal distribution with zero means (except for ln y) and

unit variances in the population. Equation (33) reflects the assumption that the

marginal disutility of decreased privacy in health statistics is higher when relative

health status is poor. That is, sick individuals value privacy of health information

statistics more than healthy individuals. We also assume that individuals with

higher incomes place a higher value on the accuracy of health status statistics,

reflecting the intuition that their stock of health capital has higher long-run value.

Substitution of equation (33) into equation (26) yields

MRT
(
ε0, I0

)
=

E [γi]− Cov [γi, lnhi]

E [ηi] + Cov [ηi, ln yi]
. (34)

6.2.2 Statistical Results

We use data from the Cornell National Social Survey (CNSS) from 2011, 2012, and

2013. The CNSS is a nationally representative cross-sectional telephone survey

of 1,000 adults each year. The survey collects basic household and individual

information, including income. In 2011, 2012, and 2013, the CNSS also includes
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questions that elicit an assessment of subjective health status along with attitudes

toward the privacy of personal health information and the value of accurate health

statistics.

We use the following questions from the CNSS:

• Income, measured in nine bins;

• JAq6, “In general, how would you rate your overall health?” measured as a

Likert scale with five categories;

• “If medical information could be shared electronically between the places

where a patient receives medical care, how do you think that would:”

1. JAq4@b, “. . . affect the privacy and security of medical information?”

measured as a Likert scale with five categories (proxy for privacy pref-

erences, γ).

2. JAq4@a, “. . . affect the quality of medical care?” measured as a Likert

scale with five categories (proxy for accuracy preferences, η).

Once again, we compute the polychoric correlations of the ordinal variables to

estimate:

• Corr [γi, lnhi] = 0.015 (±0.021)

• Corr [γi, ln yi] = 0.009 (±0.020)

• Corr [ηi, ln yi] = 0.176 (±0.020)
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It is of some interest that the correlation between accuracy preferences (η) and

income (ln y) is almost identical in the CNSS and GSS samples. On the other hand,

the correlation between the privacy preferences (γ) and income has the opposite

sign in the two samples implying that the correlation of privacy preferences with

income is sensitive to the context in which the data quality question is posed.

Concern about the privacy of health status is negligibly correlated with health

status and with income. Concern for the quality of medical information, is pos-

itively correlated with income. Making the relevant substitutions into equation

(34), and, as before, imposing the model restriction E(γ) = E(η) = 1 yields

MRT
(
ε0, I0

)
= 0.837,

which implies that a one-unit increment in the accuracy of health data requires a

0.837 increase in privacy loss. The estimated shadow price of increased health sta-

tus accuracy, therefore, exceeds the estimated shadow price of increased income

distribution accuracy at the social optimum.

To characterize the social optimum, we continue to assume that the data are

provided through the PMW mechanism, and use the following parameters:

• the population in the database is unchanged: N = 194,000,000;

• the size of the sample space is the number of bins into which the discrete

variable on health status crossed with a single binary characteristic is tabu-

lated: |χ| = 10;

• the size of the query set is the number of permissible queries of the allowable
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form: |Q| = |χ| − 1 = 9;

• the probability that a query cannot be answered accurately is unchanged:

β = 0.01;

• the differential privacy failure bound is unchanged: δ = 0.9/N .

The data publication assumptions are based on allowing any arbitrary linear query

about the contents of up to nine cells in the full cross-tabulation. Once again, these

assumptions are sufficient to allow fully accurate publication of the underlying

5× 2 cross-tabulation in the absence of privacy constraints.
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Figure 2: The Social Planner’s Problem: Health Statistics
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The optimal accuracy is I0 = 0.927 and optimal privacy is ε0 = 0.044. First,

note that because health status is interacted with only a single binary variable in

the publication tables allowed by our query space, this problem exhibits a PPF that

allows both less privacy loss and more data accuracy for the same other resources,

K(δ, β, |χ|, |Q|, N) and b. Since the slope of the PPF at the optimum is greater for

the health status publication problem, 0.837, than for the income statistics pub-

lication problem, 0.720, the relative price of privacy loss, measured in accuracy

per unit of foregone privacy, is greater for health status than for income. This

equilibrium is displayed in Figure 2.

Once again, we consider the effect on social welfare of increasing privacy at

the expense of accuracy. Increasing α by 25 percent to α = 0.091, or, equivalently,

a 2 percent decrease in I to 0.909, is accompanied by an increase along the PPF in ε

to 0.028. The change in average welfare associated with this movement is −0.006

log points. Therefore, the social cost of choosing this suboptimally high level of

privacy protection is equivalent to a 0.006 log point (approximately 0.6 percent)

decrease in average income.

The simple tabulation of health status in this example complicates direct com-

parisons with the income distribution publication problem. However, there is no

reason to limit the cross-tabulations of health status as we have done. We now

consider a more complex publication strategy that exactly replicates the PPF as-

sumptions used for the income distribution problem. This is simple mathemat-

ically but requires some subtlety in interpreting those parameters. Setting the

sample space to |χ| = 1,000 implies that we are allowing cross-tabulations of the
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five-category health status by 200 dimensions of other characteristics so that the

data histogram represents a 5× 200 contingency table. Setting the query space to

|Q| = |χ| − 1 = 999 implies that any single linear query takes the form of asking

about the contents of exactly one of the cells. In this case, the optimal accuracy is

I0 = 0.895 and optimal privacy is ε0 = 0.063. The magnitudes of these estimates

are now directly comparable to the values we found for the income distribution

publication problem (I0 = 0.904 and ε0 = 0.067). When the resource commit-

ments, K(δ, β, |χ|, |Q|, N) and b, are identical, the difference in the estimated so-

cial preferences between the specification in equation (27) and the one in equation

(33) implies that published tables of health statistics should be five percent more

private and one percent more accurate than published tables of income statistics.

For the more complex health status publication problem, we also compute the

loss in total social welfare from decreasing the accuracy of the publication by 3

percent to I = 0.869, forcing the privacy parameter to ε = 0.040 along the PPF. The

resulting loss of social welfare is −0.008 log points, or approximately 0.8 percent

loss in total welfare.

The similarity of these health status results, based on the CNSS, to those of the

income distribution problem, based on GSS data, is somewhat coincidental. The

estimated correlations of income, health, and preferences for privacy and accu-

racy lead to a very similar measure of the average willingness to pay for privacy

in foregone accuracy. We use the same calibration for the data production tech-

nology, so we find a very similar solution to the social planner’s problem.
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6.3 The Provision of Both Income Distribution and Health Status

Statistics

It seems reasonable to suppose that a straightforward combination of the indirect

utility functions that generated demand for income distribution and health statis-

tics should lead to a model in which the statistical agency provides both types of

data to the population. Indeed, it is a rare government whose statistical agencies

publish only one characteristic of the population. We will not develop that model

here.

Instead, to illustrate a problematic consequence of this technology, we use re-

sults on the composability of (ε, δ)-differential privacy to reason about expand-

ing the set of published queries. Intuitively, differential privacy loss is additively

composable across independent data releases. The details of composability are

covered thoroughly in Theorems 3.14 and 3.20 of Dwork and Roth. These details

are relatively complicated, and we defer a full discussion to future work.11 We can

however use the more straightforward composability results for (ε, 0)-differential

privacy to make our point.

If the statistical agency wished to publish both the income distribution data

with accuracy I0y = 0.904 and the health status statistics with accuracy I0h = 0.927,

which are the two optimal values derived above, then the level of privacy pro-

tection would be the sum of ε0y = 0.067 (income distribution) and ε0h = 0.043

(health statistics). We have added the subscripts y and h to distinguish the solu-

11To address composability formally we would need to define the concept of k−fold adaptive
composition, with appropriate parameterization to illustrate the consequences of composability
for (ε, δ)-differential privacy.
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tions to the two problems. By the composability of (ε, 0)-differential privacy, the

actual privacy protection afforded by this publication strategy is εyh = 0.11. There

is no proof in our work (or anywhere else that we know) that the combination

I0y = 0.904 and I0h = 0.927 with εyh = 0.110 is optimal in any sense. All of the pro-

posed publications must be considered simultaneously in order to get the correct

optimum. This is feasible for the technology we have adopted, which can handle

the economies of scope implied by the composability of differential privacy, but

we have not done these calculations.

7 Conclusion

This paper provides the first comprehensive synthesis of the economics of pri-

vacy with the statistical disclosure limitation and privacy-preserving data analy-

sis literatures. We develop a complete model of the technology associated with

data publication constrained by privacy protection. Both the quality of the pub-

lished data and the level of the formal privacy protection are public goods. We

solve the full social planning problem with interdependent preferences, which

are necessary in order to generate demand for the output of government statistical

agencies. The PPF is directly derived from the most recent technology for (ε, δ)-

differential privacy with (α, β)-accuracy. The statistical agency publishes using a

Private Multiplicative Weights query release mechanism.

Consumers demand the statistics supplied by the government agency because

of their interdependent preferences. They want to know where they fit in the in-
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come distribution and the distribution of relative health status. Thus, they are

better off when they have more accurate estimates of those distributions, which

can only be provided by inducing citizens to allow their data to be used in statis-

tical tabulations. All consumers/citizens are provided (ε, δ)-differential privacy

with the same values of the parameters due to worst-case protection afforded by

this publication technology. All consumers/citizens use the same (α, β)-accurate

statistical tabulations to assess their utility.

The solution to the social planning problem that optimally provides both pub-

lic goods–data accuracy and privacy protection–delivers more data accuracy, but

less privacy protection, than either the VCG or Lindahl mechanisms for private-

provision of data. The reason is that the VCG mechanism mechanism for procur-

ing data-use rights ignores the public good nature of the statistics that are pub-

lished after a citizen sells the right to use her private data in those publications.

The Lindahl mechanism for procuring data-use rights has a lower marginal cost

of acquisition than VCG but also ignores the public-good aspect of the data ac-

curacy. Neither mechanism accounts for the public good provided by the differ-

ential privacy protection, which is extended to the entire population even if only

some citizens would have sold their data-use rights to the agency. The full so-

cial planner’s problem compels all consumers to allow their data to be used in

the published tabulations but guarantees privacy protect by restricting all pub-

lications to be based on the output of an efficient query release mechanism–one

that produces maximally accurate statistics with the socially optimal differential

privacy protection.
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We compute the welfare loss associated with suboptimally providing too much

privacy protection and too little accuracy. For the income distribution statistics,

which are demanded when individuals care about their income relative to the

population distribution, decreasing accuracy by three log points (3 percent) rel-

ative to the social optimum and commensurately increasing privacy protection

decreases total utility by 0.008 log points. For the relative health statistics, the

welfare loss from the same experiment is comparable. Both calculations show

that overprovision of privacy protection is harmful to the citizens when the de-

mand for the statistical products of the agencies is derived from interdependent

preferences.

The relatively new concept of differential privacy allows a natural interpre-

tation of privacy protection as a commodity over which individuals might have

preferences. In many important contexts, privacy protection and data accuracy

are not purely private commodities. When this is true, the market allocations

might not be optimal. We show that it is feasible, at least in principle, to deter-

mine the optimal trade-off between privacy protection and data accuracy when

the public-good aspects are important. We also use another feature of differential

privacy, composability, to show that even though relatively accurate statistics can

be released for a single population characteristic such as income distribution or

relative health status, each statistic requires its own budget. If an agency is re-

leasing data on many detailed characteristics of the population, a small privacy

budget will not allow any of the statistics to be released with accuracy compara-

ble to the accuracy shown in our applications. This is an important warning for
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the Information Age.
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APPENDIX

A.1 Translation of the Ghosh-Roth Model in Section 4 to Our
Notation

In this appendix we show that the results in our Section 4, based on the definitions
in the text using database histograms and normalized queries, are equivalent to
the results in Ghosh and Roth (2011). In what follows, definitions and theorems
tagged GR refer to the original Ghosh and Roth (GR, hereafter) paper. Untagged
definitions and theorems refer to our results in the text.

GR model a databaseD ∈ {0, 1}n where there is a single bit, bi, taking values in
{0, 1} for a population of individuals i = 1, . . . , n. In GR-Definition 2.1, they define
a query release mechanismA (D), a randomized algorithm that maps {0, 1}n → R,
as εi-differentially private if for all measurable subsets S of R and for any pair of
databases D and D(i) such that H

(
D,D(i)

)
= 1

Pr [A (D) ∈ S]

Pr [A (D(i)) ∈ S]
≤ eεi

where H
(
D,D(i)

)
is the Hamming distance between D and D(i).

Notice that this is not the standard definition of ε-differential privacy, which
they take from Dwork et al. (2006), because a “worst-case” extremum is not in-
cluded. The parameter εi is specific to individual i. The amount of privacy loss
algorithm A permits for individual i, whose bit bi is the one that is toggled in D(i),
is potentially different from the privacy loss allowed for individual j 6= i, whose
privacy loss may be εj > εi from the same algorithm. In this case individual j
could also achieve εj-differentially privacy if the parameter εi were substituted
for εj . To refine this definition so that it also corresponds to an extremum with
respect to each individual, GR-Definition 2.1 adds the condition that algorithm A
is εi-minimally differentially private with respect to individual i if

εi = arg inf
ε

{
Pr [A (D) ∈ S]

Pr [A (D(i)) ∈ S]
≤ eε

}
,

which means that for individual i, the level of differential privacy afforded by
the algorithm A (D) is the smallest value of ε for which algorithm A achieves ε-
differential privacy for individual i. In GR εi-differentially private always means
εi-minimally differentially private.

GR-Fact 1 (stated without proof, but see Dwork and Roth (2014, p. 42-43 ) for
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a proof) says that εi-minimal differential privacy composes. That is, if algorithm
A (D) is εi-minimally differentially private, T ⊂ {1, . . . , n} , and D,D(T ) ∈ {0, 1}n
with H

(
D,D(T )

)
= |T |, then

Pr [A (D) ∈ S]

Pr [A (D(T )) ∈ S]
≤ e

{∑
i∈T εi

}
,

where D(T ) differs from D only on the indices in T .
In the population, the statistic of interest is an unnormalized query

s =
n∑
i=1

bi.

The εi-minimally differentially private algorithm A (D) delivers an output ŝ that
is a noisy estimate of s, where the noise is induced by randomness in the query re-
lease mechanism embedded inA. Each individual in the population when offered
a payment pi > 0 in exchange for the privacy loss εi > 0 computes an individual
privacy cost equal to υiεi, where υi > 0, where p ≡ (p1, . . . , pn) ∈ Rn

+ and υ ≡
(υ1, . . . , υn) ∈ Rn

+.
GR define a mechanism M as a function that maps Rn

+ × {0, 1}
n → R × Rn

+

using an algorithm A (D) that is εi (υ)-minimally differentially private to deliver
a query response ŝ ∈ R and a vector of payments p (υ) ∈ Rn

+. GR-Definition 2.4
defines individually rational mechanisms. GR-Definition 2.5 defines dominant-
strategy truthful mechanisms. An individually rational, dominant-strategy truth-
ful mechanism M provides individual i with utility pi (υ) − υiεi (υ) ≥ 0 and
pi (υ) − υiεi (υ) ≥ pi

(
υ˜i, υ′i

)
− υiεi

(
υ˜i, υ′i

)
for all υ′i ∈ Rn

+, where υ˜i is the vector
υ with element υi removed.

GR define
(
k, 1

3

)
-accuracy in GR-Definition 2.6 using the deviation |ŝ− s| from

the output ŝ produced by algorithm A (D) using mechanism M as

Pr [|ŝ− s| ≤ k] ≥
(

1− 1

3

)
where we have reversed the direction of the inequalities and taken the comple-
mentary probability to show that this is the unnormalized version of our Defi-
nition 3 for a query sequence of length 1. GR also define the normalized query
accuracy level as α, which is identical to our usage in Definition 3.

GR-Theorem 3.1 uses the GR definitions of εi-minimal differential privacy,(
k, 1

3

)
-accuracy, and GR-Fact 1 composition to establish that any differentially pri-
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vate mechanism M that is
(
αn
4
, 1
3

)
-accurate must purchase privacy loss of at least

εi ≥ 1
αn

from at leastH ≥ (1− α)n individuals in the population. GR-Theorem 3.3
establishes the existence of a differentially private mechanism that is

(
1
2

+ ln 3
)
αn-

accurate and selects a set of individuals H ⊂ {1, . . . , n} with εi = 1
αn

for all i ∈ H
and |H| = (1− α)n.

In order to understand the implications of GR-Theorems 3.1 and 3.3 and our ar-
guments about the public-good properties of differential privacy, consider the ap-
plication of GR-Definition 2.3 (Lap (σ) noise addition) to construct an ε-differentially
private response to the counting query based on GR-Theorem 3.3 with |H| =
(1− α)n and the indices ordered such that H = {1, . . . , |H|}. Assume, as we do
in Theorem 1 and as GR do in their proof of GR-Theorem 3.3, that n is sufficiently
large that we can ignore the difference between (1− α)n and ceil ((1− α)n). The
resulting answer from the query response mechanism is

ŝ =
1

N

[
H∑
i=1

bi +
αN

2

]
+ Lap

(
1

ε

)
,

which is equation (5) in the text. Because of GR-Theorem 3.3, we can use a com-
mon ε = 1

αn
in equation (5).

If this were not true, then we would have to consider query release mecha-
nisms that had different values of ε for each individual in the population and
therefore the value that enters equation (5) would be much more complicated. To
ensure that each individual in H received εi-minimally differential privacy, the
algorithm would have to use the smallest εi that the algorithm produced. In ad-
dition, the FairQuery and MinCostAuction algorithms described next would not
work because they depend upon being able to order the cost functions υiεi by υi,
which is not possible unless εi is a constant or υi and εi are perfectly positively cor-
related. Effectively, GR-Theorem 3.3 proves that achieving (α, β)-accuracy with ε-
differential privacy requires a mechanism in which everyone who sells a data-use
right gets the best protection (minimum εi over all i ∈ H) offered to anyone in the
analysis sample. If a modification of the algorithm results in a lower minimum εi,
everyone who opts into the new algorithm receives this improvement. In addi-
tion, we argue in the text that when such mechanisms are used by a government
agency they are also non-excludable because exclusion from the database violates
equal protection provisions of the laws that govern these agencies.

Next, GR analyze algorithms that achieve O (an)-accuracy by purchasing ex-
actly 1

αn
units of privacy loss from exactly (1− α)n individuals. Their algorithms

FairQuery and MinCostAuction have the same basic structure:
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• Sort the individuals in increasing order of their privacy cost, υ1 ≤ υ2 ≤ . . . ≤
υn.

• Find the cut-off value υk that either exhausts a budget constraint (FairQuery)
or meets an accuracy constraint (MinCostAuction).

• Assign the set H = {1, . . . , k} .

• Calculate the statistic ŝ using a differentially private algorithm that adds
Laplace noise with just enough dispersion to achieve the required differen-
tial privacy for the privacy loss purchased from the members of H .

• Pay all members of H the same amount, a function of υk+1; pay all others
nothing.

To complete the summary of GR, we note that GR-Theorem 4.1 establishes that
FairQuery is dominant-strategy truthful and individually rational. GR-Proposition
4.4 establishes that FairQuery maximizes accuracy for a given total privacy pur-
chase budget in the class of all dominant-strategy truthful, individually rational,
envy-free, fixed-purchase mechanisms. GR-Proposition 4.5 proves that their al-
gorithm MinCostAuction is a VCG mechanism that is dominant-strategy truth-
ful, individually rational and O (αn)-accurate. GR-Theorem 4.6 provides a lower
bound on the total cost of purchasing k units of privacy of kυk+1 GR-Theorem 5.1
establishes that for υ ∈ Rn

+, no individually rational mechanism can protect the
privacy of valuations υ with

(
k, 1

3

)
-accuracy for k < n

2
.

In our application of GR, we use N as the total population. Our γi is identi-
cal to the GR υi. We define the query as a normalized query, which means that
query accuracy is defined in terms of α instead of k; hence, our implementation of
the VCG mechanism achieves

(
α, 1

3

)
-accuracy rather than

(
αN, 1

3

)
-accuracy. We

define the individual amount of privacy loss in the same manner as GR.

A.2 Properties of the Indirect Utility Function in Section 5

We specify the indirect utility function for a given consumer as

vi
(
yi, ε, I, y

˜i, p
)

= −
L∑
`=1

ξ` ln p`+ln yi−γi (1 + ln yi − E [ln yi]) ε+ηi (1 + ln yi − E [ln yi]) I

where (γi, ηi) > 0, ξ` > 0,
∑L

`=1 ξ` = 1 and E [ln yi] = 1
N

∑N
i=1 yi. To establish that

this is an indirect utility function for a rational preference relation, we prove that
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the vector v is homogeneous of degree zero in (p, y), nonincreasing in p, strictly
increasing in y, quasiconvex in (p, y), and continuous in (p, y).

To prove that vi (yi, I, φ, y, p) is homogeneous of degree zero in (p, y), note that
for all λ > 0

vi
(
λyi, ε, I, λy

˜i, λp
)

= −
L∑
`=1

ξ` ln (λp`) + ln (λyi)− γi (1 + ln (λyi)− E [lnλyi]) ε

+ηi (1 + ln (λyi)− E [lnλyi]) I

= −
L∑
`=1

ξ` lnλ−
L∑
`=1

ξ` ln p` + lnλ+ ln yi

−γi (1 + lnλ+ ln yi − E [lnλ]− E [ln yi]) ε

+ηi (1 + lnλ+ ln yi − E [lnλ]− E [ln yi]) I

= −
L∑
`=1

ξ` ln p` + ln yi − γi (1 + ln yi − E [ln yi]) ε

+ηi (1 + ln yi − E [ln yi]) I

= vi
(
yi, ε, I, y

˜i, p
)

(35)

since
∑
ξ` = 1 and lnλ = E [lnλ] . Since homogeneity of degree zero holds for

every vi, it holds for v.
For all λ > 1

vi
(
yi, ε, I, y

˜i, λp
)

= − lnλ−
L∑
`=1

ξ` ln p` + ln yi − γi (1 + ln yi − E [ln yi]) ε

+ηi (1 + ln yi − E [ln yi]) I

< −
L∑
`=1

ξ` ln p` + ln yi − γi (1 + ln yi − E [ln yi]) ε

+ηi (1 + ln yi − E [ln yi]) I

= vi
(
yi, ε, I, y

˜i, p
)

since λ > 1, ξ` > 0 for all ` and
∑
ξ` = 1. Therefore, v is nondecreasing in p.
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For all λ > 1

vi
(
λyi, ε, I, λy

˜i, p
)

= −
L∑
`=1

ξ` ln p` + ln (λyi)− γi (1 + ln (λyi)− E [lnλyi]) ε

+ηi (1 + ln (λyi)− E [lnλyi]) I

= −
L∑
`=1

ξ` ln p` + lnλ+ ln yi

−γi (lnλ+ ln yi − E [lnλ]− E [ln yi]) ε

+ηi (lnλ+ ln yi − E [lnλ]− E [ln yi]) I

> vi
(
yi, ε, I, y

˜i, p
)

since λ > 1 and lnλ = E [lnλ] . Therefore, v is strictly increasing in y.
To prove quasiconvexity in (p, y), consider (p, y) and (p′, y′) such that vi

(
yi, ε, I, y

˜i, p
)
≤

v̄ and vi
(
y′i, ε, I, y

˜i′, p′
)
≤ v̄ for all i. For any λ ∈ [0, 1] let (p′′, y′′) = λ (p, y) +

(1− λ) (p′, y′) . Then,

vi
(
y′′i , ε, I, y

˜i′′, p′′
)

= −
L∑
`=1

ξ` ln (λp` + (1− λ) p′`) + ln (λyi + (1− λ) y′i)

−γi (1 + ln (λyi + (1− λ) y′i)− E [ln (λyi + (1− λ) y′i)]) ε

+ηi (1 + ln (λyi + (1− λ) y′i)− E [ln (λyi + (1− λ) y′i)]) I

≤ v̄

by the concavity of ln (x).
Continuity in (p, y) follows from the continuity of ln (x). Therefore, v is a vector

of proper indirect utility functions.

A.3 The Private Multiplicative Weights Algorithm

We provide a complete description of the PMW mechanism based on the presenta-
tion in Gupta et al. (2012). The algorithm was introduced in Hardt and Rothblum
(2010). Gupta et al. compose their Algorithm 1 (Online Query Release Mecha-
nism) and their Algorithm 4 (Multiplicative Weights Iterative Database Construc-
tion) to get the complete algorithm that Hardt and Rothblum call Private Multi-
plicative Weights.

To maintain consistency with the presentation in Sections 3 and 5, we present
the PMW algorithm using an unnormalized histogram to represent both the con-
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fidential and synthetic databases, and normalized linear queries operating on
both the confidential and synthetic databases. Hardt and Rothblum (2010) and
Gupta et al. (2012) present the algorithm using a normalized histogram to rep-
resent the synthetic database (which is then rescaled to the population size) and
unnormalized queries operating on the original unnormalized histogram. With
linear queries, the choice of where to normalize is arbitrary. All symbols in the
Algorithm Private Multiplicative Weights have the same meaning as in the text.

Algorithm Private Multiplicative Weights
Input: An unnormalized histogram, x, from a database whose elements have car-

dinality |χ|; number of record in the original database, ||x||1 = N ; differential
privacy parameters ε > 0 and 0 < δ < 1; accuracy parameter, 0 < α < 1;
accuracy failure probability 0 < β < 1; a number, k, of normalized linear
queries to answer adaptively from Q ⊆ F with cardinality |Q|. Each normal-
ized linear query, ft(x) ≡ 1

N
mT
t x where mt ∈ [−1, 1]N , which may be specified

interactively.
1. Set the Laplace scale parameter σ = φσ(B (α;χ) , ε, δ).
2. Set query threshold T = φT (k, β, σ) .
3. Set weight parameter µ = φµ(α).
4. Set stopping threshold B = B(α, |χ|).
5. Initialize the synthetic database: x̃0 = N

|χ|u|χ|, where u|χ| is the unit vector of
length |χ|.

6. for t← 1 to k
7. Get query ft.
8. Sample At from Lap(σ).
9. Compute the noisy answer to ft using the original database, ât ←

ft(x) + At.
10. Compute the answer to ft using the synthetic database, ãt ← ft(x̃[t−1]).
11. Compute the difference between the noisy and synthetic answers: dt ←

ât − ãt.
12. if |dt| ≤ T then set wt ← 0 and output ãt (no privacy budget expendi-

ture because the synthetic data answer was close enough).
13. if |dt| > T then do
14. wt ← 1 (update mechanism: expend some of the privacy bud-

get to update the synthetic data).
15. output ât
16. for i← 1 to |χ|
17. if dt > 0 define rt[i]← mt[i]
18. else dt ≤ 0 define rt[i]← (1−mt[i]).
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19. Update: yt[i]← 1
N
x̃t−1[i]× exp(−µrt[i]).

20. Normalize: x̃t[i]← N × yt[i]∑
i yt[i]

.
21. end for
22. end if
23. Update the count of the number of update loops z ←

∑t
τ=1wτ .

24. if z < B then continue.
25. else terminate.
26. end for

In our notation

φσ(B (α;χ) , ε, δ) ≡
1000

√
B(α, |χ|) ln (4/δ)

ε

and
φT (k, β, σ) = 4φσ(B (α;χ) , ε, δ) ln (2k/β) .

The reader is referred to Gupta et al. (2012) for the functional forms of the original
definition of the algorithm. Here we want to highlight the key ideas as they relate
directly to the notation we use in our analysis. Gupta et al. (2012) derive a closed-
form solution for the stopping threshold B = B(α∗;N, |χ|) = 4N2 ln |χ|/ (α∗)2,
using their definition of the accuracy parameter, which for clarity we call α∗ here–
the accuracy of an unnormalized query. Converting to normalized queries gives
B(α, |χ|) = 4 ln |χ|/α2 since our accuracy parameter, α, equals α∗/N . The limit B
puts an upper bound on the number of updates to the synthetic database that can
be answered with the differentially private query answer ât in order to achieve the
accuracy α for all queries in the set Q within the (ε, δ)-differential privacy budget
(their Theorem 8). Via their Definition 4 and the proof of their Theorem 8 (see
Gupta et al. (2011) for the proofs), they establish that after B(α, |χ|) invocations
of the update mechanism PMW provides (α, β)-accurate answers to all k queries
with (ε, δ)-differential privacy.

Following Gupta et al., we set k = |Q|. These answers can either be released as
{ât∗} or as ft∗ (x̃B), where t∗ are the indices of t at which the algorithm set wt = 1,
ft∗ is the associated query from Q, and x̃B is the terminal value of the synthetic
database. Note that |{ât∗}| = B(α, |χ|). Their proof uses a potential function
approach to show that the synthetic database will answer queries with sufficient
accuracy such that after B update steps it will always be the case that |dt| ≤ T ,
so that the privacy budget is exactly exhausted. With this threshold in hand, the
application to our Theorem 2 of their general privacy and accuracy results follows
directly. We omit the parallel argument that the accuracy bound for the Median
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Mechanism (MM) is

α ∝ (ln |χ|)1/4(ln |Q|)3/4

(Nε)1/2
(36)

since we do not use this mechanism in our applications.

A.4 Data Sources

The raw data are from the General Social Survey (GSS) and the Cornell National
Social Survey(CNSS). The input data files sources are:

• General Social Survey: obtained from the NORC GSS download site: http:
//publicdata.norc.org/GSS/DOCUMENTS/OTHR/GSS_stata.zip. We
used the 2012 R2 release. Our analysis is restricted to variables collected only
in 2006.

• Cornell National Social Survey: obtained from the CNSS integrated data ap-
plication http://www.ciser.cornell.edu/beta/cnss/ by selecting
all variables for all years. The original variable names include the “@” sym-
bol, which is not recognized in Stata. The analysis is conducted on an edited
version of the file also available in the public archive of this paper.

A complete archive of the data and programs used to produce the empirical
results in this paper is available in the Digital Commons space of the Cornell Labor
Dynamics Institute http://digitalcommons.ilr.cornell.edu/ldi/22/.
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