
Expanding an Extended Finite State Machine to aid Testability

R. M. Hierons
Brunel University,

Uxbridge, Middlesex
UB8 3PH, UK

rob.hierons@brunel.ac.uk

T.-H. Kim
University of Ottawa

Ottawa, Ontario
K1N 6N5, Canada

taehyong@site.uottawa.ca

H. Ural
University of Ottawa

Ottawa, Ontario
K1N 6N5, Canada

ural@site.uottawa.ca

Abstract

The problem of testing from an extended finite state ma-
chine (EFSM) is complicated by the presence of infeasible
paths. This paper considers the problem of expanding an
EFSM in order to bypass the infeasible path problem. The
approach is developed for the specification language SDL
but, in order to aid generality, the rewriting process is bro-
ken down into two phases: producing a normal form EFSM
(NF-EFSM) from an SDL specification and then expanding
this NF-EFSM.
keywords: extended finite state machine, testability, infea-
sible paths.

1 Introduction

Testing is a vital but expensive part of the software veri-
fication process. While automation may reduce the cost of
testing, automation must be based on some source of in-
formation. One source of information is a formal or semi-
formal specification.

Many systems have some internal state that affects and is
affected by the system’s operations. Such state-based sys-
tems are often modeled or specified using a state-based lan-
guage such as SDL [6] or Statecharts [3]. A specification
in one of these forms may act as the basis for automating
or semi-automating testing[2, 7]. Such a specification is
rewritten to form an extended finite state machine (EFSM)
and tests generated from this EFSM.

The process of generating tests from an EFSM may be
split into two steps: first find a set of paths that, between
them, satisfy the test criterion and then produce test se-
quences for each of these path. Thus test generation may be
complicated by the presence of infeasible paths. This paper
introduces a new approach that expands an EFSM in order
to bypass the infeasible path problem. The approach is de-
veloped for SDL. However, potentially it might be extended

to any model-based language such as Z or state-based spec-
ification language such as Statecharts. This paper extends
the work of [5] on the refinement of an EFSM for the gen-
eration of executable tests.

This paper is organized as follows. Section 2 explains
how SDL specifications may be represented as EFSMs.
Section 3 then defines a normal form EFSM (NF-EFSM).
The expansion procedure, which forms the core of this pa-
per, is proposed in Section 4. The procedure is composed
of two phases: building an NF-EFSM and expanding this
to improve testability. The use of an NF-EFSM aids gen-
erality: once a specification has been rewritten to this form
the expansion procedure may be applied. Section 5 applies
the procedure to an example. Section 6 considers the prob-
lem of generating tests from the expanded EFSM. Finally,
in Section 7, conclusions are drawn.

2 Formal Methods and EFSMs

Formal methods are mathematical techniques for speci-
fying complex systems. Most formal methods focus on the
sequential or concurrent behaviour of the system and such
specifications can be seen as a single EFSM or multiple EF-
SMs communicating with each other.

SDL is a specification and description language stan-
dardized by ITU. An SDL specification is graphical and
symbol-based and can be seen as a set of EFSMs communi-
cating with each other.

While the sequential behaviour of most formal specifica-
tions can be considered as an EFSM, a transition may con-
tain conditional statements. The conditions control which
behaviour is applied. Normally each of these behaviours
should be tested. Such a transition may be replicated to
give one transition for each behaviour, in order to ensure
that each behaviour is tested. In order to obtain executable
transitions, some states may have to be split and some tran-
sitions may have to be replicated. The process of expanding
an EFSM to eliminate infeasible paths is the main topic of
this paper.

1

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 08:45 from IEEE Xplore. Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/335984?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A number of test criteria have been considered for test-
ing against an EFSM. These criteria typically fall into one
of two categories: control flow and data flow criteria. Con-
trol flow criteria test the structure of the implementation.
These criteria are typically based on finite state machine
techniques. In contrast data flow criteria test ways in which
data may be transferred.

Typically data flow criteria consider definitions and uses
of variables. Given a variable v, a definition of v is some
assignment of a value to v. A use of v is an assignment or
output that references v (c-use) or a guard that references
v (p-use). A definition n1 of v may propagate onto a use
n2 of v through a definition clear path for v: a path from
n1 to n2 that contains no definitions of v between n1 and
n2. Then n1; n2 forms a du-pair for v. Data flow criteria are
typically expressed in terms of du-pairs. In particular, the
all-uses test criterion [8] is satisfied if: for every variable v,
and every du-pair n1; n2 for v, some test follows a definition
clear path for v from n1 to n2. Note that where the use n2 is
a p-use, n2 is a transition not a state.

3 Overview of the Proposed Approach

This paper focuses on the problem of producing an ex-
panded EFSM given a specification of a deterministic se-
quential system in SDL. The purpose of this expansion is to
simplify test generation. In order to provide generality, the
expansion is based on a two-phase transformation approach.

The initial normalization phase of a specification varies
according to its formal method but the expansion phase is
common for any specification. A normal form EFSM is
defined as follows.

Definition 1 A normal form extended finite state machine
(NF-EFSM) M is defined by the tuple (S; s0;V; v0;P; I;O;
T) in which: S is the set of logical states; s0 2 S is the
initial state; V is the set of internal variables; v0 gives the
initial values of the internal variables; P is the set of input
parameters; I is the set of input declarations; O is the set
of output declarations; and T is the set of transitions. The
label of transition t 2 T is the tuple (ss; g; op; sf) in which
ss is the start state of t, g is the guard and can be represented
as fL(I;V;P), where fL(�) is the logical expression, op is the
operation which is composed of only output statements and
assignment statements, and sf is the final state of t.

External events that may trigger transitions are repre-
sented as input declarations. Input parameters are the at-
tributes or parameters of those external events. V contains
all the variables that occupy memory in the system. Among
the variables in V , we call those used in guards control vari-
ables.

D denotes the domain constructed from the control vari-
ables in V and � the domain constructed from the input pa-
rameters in P which are related to control variables in V . In
addition, we will use ‘domain of a state’ as a subset of D
allowed at the state.

We assume an NF-EFSM is deterministic, strongly con-
nected, minimized, and completely specified. The moti-
vation of an NF-EFSM is as follows. First an NF-EFSM
is independent of the syntax of the specification language
used. Second, an NF-EFSM is a suitable form for test gen-
eration, because every operation of a transition in an NF-
EFSM represents a single behaviour. Finally, most of the
existing methods for test generation can be applied directly
to an NF-EFSM even if we don’t expand it.

4 The Expansion Procedure

This section describes the procedure that expands a se-
quential SDL specification to form an Expanded EFSM
(EEFSM) or a Partially Expanded EFSM (PEEFSM). This
algorithm is iterative and thus avoids the introduction of
non-determinism that may result from state splitting [5].

4.1 Phase I: Building an NF-EFSM

A process diagram in SDL is an EFSM. A transition
from one logical state to another is described in a series of
symbols. The guard of a transition is defined using input
symbols and decision symbols. In general, a transition has
one input symbol, but may have several decision symbols.
Moreover, there may be a cyclic path with a decision. To
make an NF-EFSM, the process diagram should have only
a single decision symbol for a transition. If an operation has
complex elements such as multiple decision symbols, cyclic
paths, timer operations, saves, procedure calls, etc, it can be
flattened using various techniques [9].

It may be useful to apply domain propagation[1]. Here
an operator may be partitioned so that its behaviour in a
subdomain is considered to be uniform. For example, an
operation that returns the absolute value of a variable x may
be split into two cases: one where x � 0 and one where
x < 0.

4.2 Phase II: Expansion

First, we introduce some notation and functions. We re-
strict the meanings of the precondition and the postcondi-
tion of a transition in the algorithm as follows. The guard
gi of a transition ti is split into the precondition, usually de-
noted by Pi, and the parameter condition, �i, namely gi =
Pi ^ �i. The parameter condition of a transition is the log-
ical expression composed of all the atomic predicates that
mention an input or input parameter. The precondition of a

2

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 08:45 from IEEE Xplore. Restrictions apply.

transition is the remaining part of the guard, the expression
composed of the predicates that mention only control vari-
ables. The unary dom operator generates from a logical ex-
pression the corresponding subdomain inD while the unary
cond operator generates from a subdomain of D the corre-
sponding logical expression. The postcondition function of
ti, usually denoted by Qi(�) : P(D) � P(�) ! P(D), is
the function that derives a subdomain inD, according to the
operation opi of ti, given subdomains in D and � respec-
tively. d(�) : S ! D is the domain function of a state, and
sST(�) : T ! S and sFN(�) : T ! S are the starting state
and final state functions of a transition, respectively. We
say ti is unconditional if dom Pi � d(sST(ti)); otherwise,
it is conditional, where Pi is the precondition of ti. The
algorithm assumes that all the postcondition functions and
their inverse functions can be evaluated symbolically in any
domain considered.

4.2.1 Algorithm

Step 0: If the guard gi of a transition ti is not in the form
Pi ^ �i, split the transition into transitions ti1 ; � � � ; tin whose
operations are the same as that of ti and whose guards are
gi1 ; � � � ; gin satisfying gi1 = Pi1 ^ �in

; � � � ; gin = Pi1 ^ �in
,

and gi = gi1 _ � � � _ gin .
Step 1: Given state ss, if the transitions t1; t2; � � � ; tn
starting from ss are conditional and have preconditions
P1;P2; � � � ;Pn respectively then partition the domain of ss

as follows. Each subdomain, P s
X , X � f1; : : : ; ng, X 6= fg

is given by
P s

X = dom ((^i2XPi) ^ (^i62X: Pi)).
The number of subdomains is at most 2n � 1 but may

be fewer because some may be empty. For example, if an
operation at a state ss is rewritten as

W
1�i�3(Pi ^ Qi), a

partition of the domain of ss is:
fP s

f1g;P
s
f2g;P

s
f3g;P

s
f1;2g;P

s
f2;3g;P

s
f1;3g;P

s
f1;2;3gg.

If the final non-empty disjoint subdomains are
P s
1; � � � ;P

s
m(m � 2n � 1), split state ss to ss1 ; � � � ; ssm

whose domains are P s
1; � � � ;P

s
m, respectively.

If this is the first iteration, repeat this step for all the
states which have conditional transitions. After the first it-
eration, the state to be split may be selected arbitrary or
purposely.
Step 2: Rearrange transitions related to the split states. If a
state si is split into n(� 2) states, si1 ; � � � ; sin , remove each
transition tj going from or to the state si. Then, for each re-
moved transition tj going from si to a state sf (6= si), make n
temporary transitions, one from each sik(1�k�n) to sf , whose
labels are the same as tj. For each removed transition tj go-
ing to si from a state ss(6= si), make n temporary transitions,
one from ss to each sik(1�k�n), whose labels are the same as
tj. For each removed transition tj going from and to si make
n2 temporary transitions, one from each sik(1�k�n) to each

sik0 (1�k0�n), whose labels are the same as that of tj.
Step 3: For each temporary transition ti, there are only
two conditions on the relationship between d(sST (ti)) and

dom Pi since sST (ti) is defined by a subdomain P sST(ti)
X for

some X: d(sST(ti)) � dom Pi or d(sST (ti)) \ dom Pi = ?.
Therefore, for each ti, make ti permanent or discard it de-
pending on the following cases:
Case A: dom Pi\d(sST(ti)) = ? or Qi(d(sST (ti)); dom �i)\
d(sFN(ti)) = ?. Discard ti.
Case B: dom Pi � d(sST(ti)) and Qi(d(sST (ti)); dom �i) �
d(sFN(ti)). Make ti unconditional with guard �i.
Case C: dom Pi � d(sST (ti)), Qi(d(sST (ti)); dom �i) *
d(sFN(ti)) and Qi(d(sST (ti)); dom �i) \ d(sFN(ti)) 6= ?:

� make ti unconditional, with guard �i ^ cond Q�1
i

(d(sFN(ti))), if dom P0i � d(sST (ti)).

� make ti conditional, with guard �i ^ cond Q�1
i

(d(sFN(ti))), if dom P0i + d(sST (ti)).

Here P0i is the new precondition of ti according to its new
guard, Pi and �i are the precondition and the parameter con-
dition of ti respectively, and Qi(�) is the postcondition func-
tion of ti.
Step 4: If the initial state is split, determine which of the
split states is now the initial state. Remove all states that
cannot be reached from the initial state. Then, if one of
Conditions A, B, and C is satisfied, terminate; otherwise,
return to Step 1.
Condition A (Complete expansion): There are no condi-
tional transitions.
Condition B (Sufficient expansion): There are conditional
transitions but there exists some set P of paths, that corre-
spond to tests that satisfy the test criterion, such that each
path from P contains only unconditional transitions.
Condition C (Termination due to scale): Neither of Condi-
tions A and B is satisfied but further expansion is considered
to be impractical.

Where the algorithm terminates using condition A the
resultant EFSM is an expanded EFSM (EEFSM); otherwise
it is a partial expanded EFSM (PEEFSM).

Note that the choice of state to expand may be crucial
and the ideal choice may depend upon the test criterion
used. The development of approaches that direct expansion
for particular test criteria will form a part of future work.

4.2.2 Justification

The algorithm partitions the domain of each logical state
with the preconditions of its conditional transitions. When
a state is split, several conditional transitions may be gener-
ated by the split state. So, the algorithm may have to split
states repeatedly.

3

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 08:45 from IEEE Xplore. Restrictions apply.

The algorithm tries to generate a minimized reachabil-
ity state machine by keeping states in the reachability tree,
on which the behaviour of the system is uniform, as a state
in the EEFSM. Thus the EEFSM is at most as large as the
reachability tree. Therefore, if the reachability tree is finite,
the algorithm will terminate. This is guaranteed if the do-
main constructed from the control variables is finite. This is
a sufficient, but not necessary, condition.

Sometimes it may be reasonable to terminate the process
before the test criterion is satisfied using sequences of un-
conditional transitions (Condition C). In this case feasible
paths may be added to allow the test criterion to be satis-
fied.

5 Example of expansion

We derive a (P)EEFSM from the process diagram of the
Initiator process of the Inres protocol[4] shown in Figure 1.

DR

CR

counter := 1

T

counter<4

(true)

(false)

counter :=
counter + 1

IDISind

reset(T)

disconnected

wait

wait

disconnected

wait

ICONreq

IDISind

set(now+p,T)

CC DR

disconnect

CR

reset(T)

number := 1

Set(now+p,T)

ICONconf

connect

DR

DT(number,
data)

counter := 1

connect

sending

disconnected

IDATreq
(data)

IDISind

set(now+p,T)

T

counter<4

(true)

(false)

counter :=
counter + 1

IDISind

reset(T)

sending

sending

AK(num) DR

disconnect

DT(number,
olddata)

reset(T)

number :=
succ(number)

set(now+p,T)

connect

IDATreq

num=
number

(true)

(false)

olddata := data

p Duration = 5;

Figure 1. The Initiator process

5.1 Phase I

To build the NF-EFSM of Initiator, timer operations are
flattened as follows. For a timer T, we define a variable

T for saving the remaining time to the expiry of timer T.
If there are more than two timers, we define a variable
min timer for the minimum value of all currently active
timeout periods[9]. The timer expiry input of T is changed
to the input T expired and the statement ‘undef T’. ‘Undef’
statement of a variable makes the variable considered unde-
fined and the variable is considered to be used in the state-
ment. Set of timer T to a duration is converted to the assign-
ment of the duration to variable T, and reset of timer T is
converted to the statement ‘undef T’. It is difficult to flatten
save operations in general. In this example, a save opera-
tion is used to keep the user data from being lost. Here, that
operation is removed in the NF-EFSM by assuming that the
input queue from the user is controlled to send out ‘IDA-
Treq’ signal only when Initiator is at ‘connect’ state. For
testing a save operation of an input, feasible subpaths may
be added to the NF-EFSM as new transitions which start
with the transition having the save operation and end with
transitions whose guard has the input.

The function ’succ’ toggles between 0 and 1 for the value
of a binary variable. The task number := succ(number) is
flattened to give two behaviours: the result is 1 if number =
0 and the result is 0 if number = 1. As will be seen in
Section 6, this flattening simplifies test generation. The NF-
EFSM of Initiator process is shown in Figure 2.

disconnect

wait

connect

sending

(?DR, !IDISind)

(?ICONreq,
counter:=0; !CR; T:=p)

t
0 (, p:=5)

t
1

t
2

t
3

t
4

t
5

t
62

t
61

t
7

t
9

t
8

t
10

t
11

t
12

t
13

t
14

(?CC, undef T;
number:=1;!ICONconf)

(?T_expired
^ counter < 4, undef T;
!CR; counter:=counter+1;
T:=p)

(?T_expired ^
counter >= 4,
undef T; !IDISind)

(?DR, undef T;
IDISind)

(?DR, !IDISind)

(?AK(num) ^
num=number ^
number=1,
undef T;
number:=0)

(?IDATreq(data),
counter:=0; olddata:=data;
!DT(number,data); T:=p)

(?AK(num) ^
num=number ^
number=0,
undef T;
number:=1)

(?AK(num) ^
num<>number ^
counter<4, undef T;
counter:=counter+1;
DT(number,olddata);
T:=p)

(?DR, undef T;
IDISind)

(?T_expired ^
counter < 4,
undef T;
counter:=counter+1;
DT(number,olddata);
T:=p)(?AK(num) ^

num<>number ^
counter>=4,
undef T; !IDISind)

(?T_expired ^
counter >= 4,
undef T; !IDISind)

Figure 2. The NF-EFSM of Initiator

5.2 Phase II

At Step.0, all guards are in the required form. At Step.1,
the domain of state wait is partitioned according to the con-
ditions (counter < 4) and (counter >= 4). So, wait is split
as follows: wait1, defined by (counter < 4); and wait2,
defined by (counter � 4).

Since this is the first iteration, the domain of state
sending is also partitioned according to the conditions,
(counter < 4), (counter � 4), (number = 0), and
(number = 1) from transitions t61; t62; t7; t8; t9; and t10.
The state sending is split to four states as follows: sending1

4

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 08:45 from IEEE Xplore. Restrictions apply.

(counter < 4 ^ number = 0); sending2 (counter <

4 ^ number = 1); sending3 (counter � 4 ^ number = 0);
and sending4 (counter � 4 ^ number = 1).

At Step.3, 18 temporary transitions become uncondi-
tional (Case B), 12 become conditional (Case C), and the
others are discarded (Case A). At the end of this step, the
PEEFSM is that shown in Figure 3. Here, each copy of a
transition multiplied by states splitting is given a distinct
label in order to aid explanation.

disconnect

wait
1

counter<4

connect

t
0

t
1

t
2a

t
3a

t
4

t
5a

t
61a

t
7

t
9

t
8a

t
11

t
12a

t
13

t
14a

wait
2

counter>=4

t
3b

t
12b

t
2b

sending
3

counter>=4

number=0

sending
4

counter>=4

number=1

sending
1

counter<4

number=0

sending
2

counter<4

number=1

t
5b

t
62a

t
61b

t
62b

t
7b,

t
9b

t
7a,

t
9a

t
7c,

t
9c

t
7d,

t
9d t

14b

t
14c

t
14d

t
8b t

10a
t
10b

Figure 3. After the first iteration

At Step.4, Conditions A and B are not satisfied and we
still have 12 conditional transitions.

At Step.1, on the second iteration, the state connect is
split as follows: connect1 (number = 1); and connect2
(number = 0). At Step.3, 10 temporary transitions become
unconditional (Case B) and the others are discarded (Case
A). As a consequence of state splitting the transitions t5a

and t5b became unconditional. At the end of this step, a
PEEFSM is generated as shown in Figure 4.

disconnect

wait
1

counter<4

connect
1

number=1

t
0

t
1

t
2a

t
3a

t
4

t
5a

t
61a

t
7

t
9

t
8a

t
11

t
12a

t
13b

t
14a

wait
2

counter>=4

t
3b

t
12b

t
2b

sending
3

counter>=4

number=0

sending
4

counter>=4

number=1

sending
1

counter<4

number=0

sending
2

counter<4

number=1

t
5b

t
62a

t
61b

t
62b

t
7b,

t
9b

t
7a,

t
9a

t
7c,

t
9c

t
7d,

t
9d t

14b

t
14c

t
14d

t
8b t

10a
t
10b

connect
2

number=0

t
13a

Figure 4. After the second iteration

While it is clear that the expansion process, if allowed,
would terminate with an EEFSM, the process will now be
stopped here under Condition C. This will allow us to illus-
trate some of the issues involved in testing from a PEEFSM.

6 Test Generation

This section will consider the problem of generating
tests, that satisfies all-uses, from an EEFSM or PEEFSM.
A (P)EEFSM can be expanded further to test a specific part
of the system [5]. Domain propagation may be used to split
some transitions. The expanding algorithm may then be ex-
ecuted to make an equivalent (P)EEFSM.

If expansion terminates under either Condition A or Con-
dition B, test generation is relatively simple: a set of feasi-
ble paths is generated and a test sequence produced for each
of these. In order to produce a test sequence for a feasible
path it is sufficient to determine the path condition and then
produce test input that satisfies this path condition.

Now consider the problem of generating test cases sat-
isfying all-uses for the PEEFSM shown in Figure 4. The
PEEFSM has 10 conditional transitions which will be re-
placed by feasible paths that cover the required du-pairs. In
this case the problem is simplified by the fact that the states
wait1, sending1, and sending2 are only reached by transi-
tions that set counter to zero.

The transitions t3a and t3b from wait1 are transformed to
a path (t3a; t3b; t3c; t3d) because it is sufficient to have feasi-
ble paths that contain the du-pairs (dc

t1 ; u
c
t3), (d

c
t3 ; u

c
t3), and

(dc
t3 ; u

c
t4), where c means variable counter and (dx

i ; u
x
j) is a

du-pair composed of a definition of variable x in transition i
and a use of x in transition j.

For the transitions t7b; t9b; t7d, and t9d going from
sending2, we construct the minimal number of feasi-
ble paths satisfying those requirements as follows. Be-
tween them, t7b and t9b must be executed three times
to satisfy the preconditions of t7d and t9d respectively.
Thus the paths added are composed of the concatena-
tion of four of these transitions. The final EEFSM must
have feasible paths that contain all the following du-
pairs: (dn

t2 ; u
n
t7), (dn

t2 ; u
n
t9), (dn

t2 ; u
n
t8), (dc

t7 ; u
c
t7), (dc

t7 ; u
c
t8),

(dc
t7 ; u

c
t9), (dc

t7 ; u
c
t10), (dc

t9 ; u
c
t7), (dc

t9 ; u
c
t8), (dc

t9 ; u
c
t9), and

(dc
t9 ; u

c
t10), where n denotes variable number. We construct

unconditional paths (t9a; t9b; t7a; t7b) and (t7c; t9c; t7d; t9d)
for those du-pairs. For the transitions t7a; t9a; t7c, and
t9c, we construct unconditional paths (t9e; t9f ; t7e; t7f) and
(t7g; t9g; t7h; t9h). The final transformed EEFSM of Initiator
process is shown in Figure 5.

Feasible definition-clear paths for all the DU-pairs of the
NF-EFSM may now be derived. A set of feasible complete
paths satisfying all-uses criterion is shown in Figure 6.

7 Conclusions

This paper has introduced an approach for improving the
testability of a state-based specification. The approach has
two phases. In the first phase the specification is rewritten

5

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 08:45 from IEEE Xplore. Restrictions apply.

disconnect

wait
1

counter<4

connect
1

number=1

t
0

t1

t2a

t4

t5a

t61a

t7

t9

t8a

t11

t12a

t13b

t14a

wait
2

counter>=4

(t3a,t3b,t3c,t3d)

t12b

t2b

sending
3

counter>=4

number=0

sending
4

counter>=4

number=1

sending
1

counter<4

number=0

sending
2

counter<4

number=1

t5b

t
62a

t61b

t
62b

t
14b

t
14c

t
14d

t8b t
10a

t
10b

connect
2

number=0

(t7c,t9c,
t7d,t9d)

(t9a,t9b,
t7a,t7b)

(t9e,t9f,
t7e,t7f)

(t7g,t9g,
t7h,t9h)

t13a

Figure 5. The transformed EEFSM of Initiator
process for test generation satisfying all-uses
criterion

P1 t0, t1, t12a

P2 t0, t1, t3a, t3b, t3c, t3d, t4
P3 t0, t1, t3a, t3b, t3c, t3d, t2b, t13
P4 t0, t1, t3a, t3b, t3c, t3d, t12b

P5 t0, t1, t2a, t5b, t14b

P6 t0, t1, t2a, t5b, t9a, t9b, t7a, t7b, t8b

P7 t0, t1, t2a, t5b, t9a, t9b, t7a, t7b, t10b

P8 t0, t1, t2a, t5b, t9a, t9b, t7a, t7b, t14d

P9 t0, t1, t2a, t5b, t9a, t9b, t7a, t7b, t62b, t13b

P10 t0, t1, t2a, t5b, t7c, t9c, t7d, t9d, t8b

P11 t0, t1, t2a, t5b, t7c, t9c, t7d, t9d, t10b

P12 t0, t1, t2a, t5b, t7c, t9c, t7d, t9d, t62b, t13b

P13 t0, t1, t2a, t5b, t62a, t5a, t7g, t9g, t7h, t9h, t8a

P14 t0, t1, t2a, t5b, t62a, t5a, t7g, t9g, t7h, t9h, t61b, t13a

P15 t0, t1, t2a, t5b, t62a, t5a, t9e, t9f , t7e, t7f , t61b, t13a

P16 t0, t1, t2a, t5b, t62a, t5a, t61a, t5b, t62a, t5a, t14
P17 t0, t1, t2a, t5b, t62a, t5a, t61a, t5b, t7c, t9c, t7d, t9d, t8b

P18 t0, t1, t2a, t5b, t62a, t5a, t61a, t5b, t9e, t9f , t7e, t7f , t10b

Figure 6. A complete set of paths

to form a normal form extended finite state machine (NF-
EFSM). This phase has been described for SDL. The NF-
EFSM is then refined to form an Expanded EFSM (EEFSM)
that has properties that simplify test generation. Splitting
the process into these phases aids generality: in order to
extend the approach to another specification language it is
sufficient to define a mapping from that language to NF-
EFSMs.

When the output of the second phase is an EEFSM, all
paths in this EEFSM are feasible. In some cases it is not
necessary to expand to the EEFSM; the test criterion may
be satisfied using feasible paths drawn from a Partially Ex-
panded EFSM (PEEFSM). In each of these cases test gen-
eration is based around choosing an appropriate set of paths
and then finding test data to exercise these paths. In some

cases, due to issues of scale, the expansion may terminate
with a PEEFSM before either of these conditions is satis-
fied. Here, feasible paths may be added to the PEEFSM
so that this PEEFSM contains a set of feasible paths that,
between them, satisfy the test criterion used.

References

[1] J. Dick and A. Faive, Automating the generation and
sequencing of test cases from model-based specifica-
tions. FME’93, First International Symposium on For-
mal Methods in Europe., Odense, Denmark, April 19–
23, 1993, pp.268–284.

[2] A. Ek, J. Grabowski, D. Hogrefe, R. Jerome, B. Koch,
and M. Schmitt, Towards the industrial use of valida-
tion techniques and automatic test generation methods
for SDL specifications. in proceedings of the 8th SDL
Forum, Evry, France, 1997.

[3] D. Harel, Statechart: A visual formalism for complex
systems. Science of computer programming, (8):231–
274, 1987.

[4] D. Hogrefe, OSI formal specification case study: the
Inres protocol and service. Technical Report IAM-91-
012, University of Bern, 1991. 5.

[5] R.M. Hierons, S. Sadeghipour, and H. Singh, Testing a
system specified using Statecharts and Z. Information
and Software Technology., 43 (2001) 137–149.

[6] ITU, ITU-T Recommendation Z.100: Specifica-
tion and Description Language (SDL). Interna-
tional Telecommunications Union, Geneva, Switzer-
land, 1999.

[7] C. Meudec, Automatic Generation of Software Test
Cases From Formal Specifications. PhD thesis, The
Queen’s University of Belfast, 1998.

[8] S. Rapps and E. J. Weyuker, Selecting software test
data using data flow information. IEEE Trans. on Soft-
ware Engineering, SE-11(4):367–375, April 1985.

[9] H. Ural, K. Saleh, and A. Williams, Test generation
based on control and data dependencies within system
specifications in SDL. Computer Communications.,
23 (2000) 609–627.

6

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 08:45 from IEEE Xplore. Restrictions apply.

