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Abstract

One approach to reverse engineering is to par-
tially automate sub component extraction, improve-
ment and subsequent recombination. Two previously
proposed automated techniques for supp orting this
activity are slicing and concept assignment. How-
ever, neither is directly applicable in isolation; slicing
criteria (sets of program variables) are simply too low
level in many cases, while conc eptassignment typi-
cally fails to produc e exe cutable subcomponents.

This paper intr oduc esa uni�cation of slicing and
concept assignment which exploits their combined ad-
vantages, while over coming their individual we ak-
nesses. Our `conc ept slices' are extracted using
high level criteria, while producing executable sub-
programs. The paper intr oduc esthree ways of com-
bining slicing and conc ept assignment and algorithms
for each. The applic ationof the conc eptslicing al-
gorithms is illustrated with a case study from a large
�nancial organisation.

1 Introduction

For program comprehension and reverse engineer-
ing it is important to ha veautomated techniques
for extracting executable subcomponents according
to high level extraction criteria. These components
need to be semantically related to the original (so
that they can be executed in isolation), while the
criteria for selection may need to identify disparate
sections of diverse code which will have to be mar-
ried together. Therefore, the problem is to be able to
automatically produce programs which answer ques-
tions of the form: Given an original program, con-
struct the simplest program that, for example per-
forms the same master �le update operation or which
closes down the reactor under the same conditions.
Program slicing and concept assignment are auto-

mated source code extraction techniques that take a

criterion and program source code as input and yield
parts of the program's source code as output. There-
fore, they suggest themselves as natural candidate
solutions to this problem. Slicing has the advantage
that the extracted code it produces can be executed
as a program in its own right, but the disadvantage
that the criterion must be expressed at the low level
of program variables. Concept assignment has the
advantage that the extraction criterion is expressed
at just the right level (in terms of concepts such as
`master �le', `error reco very' and̀ log update'), but
the disadvantage that the code fragments it extracts
cannot be compiled and executed as a separate pro-
gram. Thus, each technique overcomes the diÆculty
associated with the other.
This paper shows how slicing and concept assign-

ment can be combined to produce better results than
either is capable of individually. The contributions
of this paper can be summarised as follows.

� A framework for combining Slicing and Concept
Assignment is introduced

� Algorithms are introduced for

{ Executable Concept Slicing

{ Key Statement Analysis

{ Concept Dependency Analysis

� The application of the concept slicing approach
to reverse engineering is illustrated with a case
study

The rest of the paper is organised as follows. Sec-
tion 2 briey reviews slicing and concept assignment
to make the paper self-con tained. It can safely be
skipped by a reader familiar with both techniques.
Section 3 presents a framework for unifying slic-
ing and concept assignment, suggesting three new
techniques which combine slicing with concept as-
signment. Algorithms for these three techniques:
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Executable Concept Slicing (ECS), Key Statement
Analysis (KSA) and Concept Dependency Analysis
(CDA) are introduced in sections 4, 5 and 6 respec-
tively. Section 7 presents a case study involvinga
�nancial payment system, which illustrates the use
of the concept slicing algorithms introduced in sec-
tions 4, 5 and 6. Section 8 concludes and Section 9
giv es directions for future work.

2 Background

This section pro vides some background, de�nitions
and notation for slicing and concept assignment
which are used in the remainder of the paper.

2.1 Slicing

Program slicing [31] is de�ned with respect to a `slic-
ing criterion'. Slicing uses dependence analysis to
isolate those parts of a program that potentially af-
fect the slicing criterion.
T raditionally `parts of the program to be isolated'

have been restricted to statements and predicates
and the slicing criterion has been de�ned in terms
of a set of variables and a point at which their val-
ues are of interest. More recent work has extended
traditional slicing by considering novel slicing crite-
ria in volving conditions and test adequacy properties
[5, 15]. The techniques for isolation of statements
have also broadened from statement deletion to al-
low for more general transformation [4, 12 , 30].
This paper will be concerned solely with syntax-

preserving static slicing, which will be used both to
re�ne and to extend the results of concept assign-
ment. In all cases, slices will be constructed for a set
of nodes of a program's Control Flow Graph (CFG).
This means that the slicing criterion will simply be
a set of n statements fs1; : : : ; sng.

De�nition 1 (Slice)
A slice of a program p for the slicing criterion
fs1; : : : ; sng is an executable subprogram, s, con-
structed from p by statement deletion, suc h that
s behaves iden tically to p with respect to the se-
quence of values computed at each of the statements
in fs1; : : : ; sng. The slice of a program p w.r.t a set
of statements S will be denoted Slice(p; S).

This de�nition of a slice is essen tially the exe-
cutable version of the de�nition adopted by the Sys-
tem Dependence Graph approach of Horwitz et al.
[16]. T ypically, w ork on the System Dependence
Graph (SDG) de�nes it to contain a set of `�nal use'
vertices for each variable. The SDG is so-constructed
to guarantee the existence of such a vertex for each
variable. This allows slices to be constructed for a
variable in terms of its �nal use vertex.

De�nition 2 (Final Use Vertex)
FinalUse(p; v) is the �nal use vertex of variable v in
program p.

The dependence graph itself can be useful in
analysing the distance betw een a slice node and some
other node in the slice.

De�nition 3 (SDG Distance)
Given statements s and s0 of a program p, the dis-
tance, Dist(p; s; s0) is the length of the shortest path
betw eens and s0 in the SDG of p. If there is no path
from s and s0 in the SDG of p, then Dist(p; s; s0) is
unde�ned.

2.2 Concept Assignment

The concept assignment1 problem is de�ned as \a
process of recognising concepts within a computer
program and building up an `understanding' of the
program by relating recognised concepts to portions
of the program, its operational context and to one an-
other [3]." It can be undertaken by intelligen t agents
(tools), with three distinct approaches being adopted
[3]:

1. Highly domain speci�c, model driv en, rule-
based question answering systems that depend
on a manually populated database describing
the softw are system. This approach is typi�ed
by the Lassie system [7].

2. Plan driven, algorithmic program understanders
or recognisers. Two examples of this type
are the Programmer's Apprentice [28], and
GRASPR [32].

3. Model driven, plausible reasoning systems. Ex-
amples of this type include DM-TAO [3], IRENE
[17], and HB-CA [9, 10].

Biggersta� et al. claim that systems using ap-
proaches 1 and 2 are good at completely deriv-
ing concepts within small-scale programs but cannot
deal with large-scale programs due to overwhelming
computational growth. Approach 3 systems can eas-
ily handle large-scale programs since their compu-
tational gro wth appears to be linear in the length
of the program under analysis but they su�er from
approximate and imprecise results [3].
We are concerned with plausible reasoning systems

(category 3 above) and all references to concept as-
signment in this paper should betak en as referring
to this kind of system. Plausible reasoning systems
are of particular interest because they are scalable

1Note: concept assignment is a wholly di�erent technology
from formal concept analysis (FCA) (sometimes just called
`concept analysis').
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and are theoretically capable of assigning higher-
lev el concepts than some of the other approaches.
The assignment is based on the evidence available in
the code being analysed from which a `best guess' is
taken; reasoning is thus based on plausibility rather
than deduction. In addition to the common applica-
tion of concept assignment in helping maintainers to
comprehend programs, Cimitile et al. [6] ha ve sug-
gested it as a w ayof validating the adequacy of a
candidate criterion when iden tifyingsuitable mod-
ules for reuse.
Hypothesis-Based Concept Assignment (HB-CA)

[9, 11] is one of the most recen t examples of a
plausible-reasoning concept assignment approach. It
deals with the part of the concept assignment prob-
lem that involves relating recognised concepts to por-
tions of a program. HB-CA uses a simple knowledge
base to encode the relationships betw eenconcepts
and potential evidence for them in source code. It is
this approach that we propose to combine with pro-
gram slicing. The following de�nition introduces the
notation we will use to denote concept assignment.

De�nition 4 (Concept)
A concept c, named n, of a program p is constructed
with respect to a domain model D. The concept con-
sists of a tagged contiguous sequence of code from p,
for which there is evidence (according to D) that the
sequence implements the concept named n. F or a
concept c, Tag(c) refers to the name of the concept
c, while Statements(c) refers to its statements. For
a program p and domain model D, Concepts(p;D)
refers to the set of all concepts assigned to p accord-
ing to D.

Figure 1 shows a fragment of a domain model
(which will be used in the case study in Section 7). In
a domain model, concepts are classi�ed into actions
and objects and may be composed or specialised.
Each concept has a number of indicators which rep-
resen t the potential source code evidence for the con-
cept. For every piece of source code evidence that is
found, a hypothesis is generated for the appropriate
concept. Segments (contiguous groups of hypothe-
ses de�ning a contiguous region of source code) are
formed from the resulting list of hypotheses using
conceptual density and program syntax to de�ne the
boundaries. The dominant concept (i.e. the one for
which there is most evidence) in each segment is as-
signed to the appropriate region of source code.

3 A Framework for Unifying Slic-

ing and Concept Assignment

This section presents a framework of notation and
requirements for developing a combined slicing and

concepts approach. The term `concept slice' will be
used to refer to the result of any combination of slic-
ing and concept assignment. Figure 2 depicts, in
overview, the three types of concept slice considered
in this paper.

3.1 Executable Concept Slicing (ECS)

Executable Concept Slicing (ECS) is the basic start-
ing point for the approach we advocate. An ECS is
formed using slicing to augment the results of con-
cept assignment to make the concept an executable
sub-program.

More formally, an algorithm for ECS is a function
which takes a program, p, and a domain model, D,
and produces a set of executable sub-components,
one per concept in the program p according to D.
Each returned concept must be executable and, when
executed, the computation captures the computation
on the associated concept of p w.r.t. D. In forming
an ECS, the set of statements tagged with the con-
cept name may no longer be contiguous.

The end of the segment identi�ed in concept as-
signment will be treated as an end of program ver-
tex. F or example, in the case of COBOL, this can be
achiev edby inserting a STOP RUN statement at the
end of the segment of code assigned to the concept.

The ECS will be further re�ned using key state-
ment analysis, as described in the next section.

3.2 Key Statement Analysis (KSA)

Given a concept (and/or concept slice), some state-
ments will be more important than others; they will
contribute more to the computation embodied by
the concept. The more important statements are
regarded as the `key' statements of the concept. Key
Statement Analysis (KSA) is an analysis step which
aims to determine the key statements in a concept.
The approach can be applied to both concepts and
to concept slices.

More formally, an algorithm for KSA is a function
which takes a program and a concept assigned within
it, and returns a function which describes the rela-
tive weight of each statement in the concept. The
weight is represented as a function, form statements,
Statement, to real numbers, IR. If the function
returned is f then f(s), denotes the weight of state-
ment s

A simple approach identi�es a subset of the state-
ments as being key. A more elaborate approach, as-
signs weights to each statement, indicating relative
keyness. These weightings will be real numbers in
the range 0 to 1 and so the simple case is merely a
special case in which the only tw ooutcomes are 0
and 1.
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Figure 1: A Fragment of a Domain Model

3.3 Concept Dependency Analysis (CDA)

T operform concept assignment, an initial domain
model is created by the softw areengineer (based
on their experience). This model ought to be im-
pro ved as the method is used.Unfortunately, using
traditional concept assignment, there is no guidance
to indicate which concepts occur together frequently
nor to elucidate the inter-concept relationships which
ev olv eas the analysis process iterates. Therefore,
the model is improved only by serendipity and in a
poorly de�ned ad-hoc manner. A clearly de�ned and
tool-assisted feedback approach is required to sup-
port the disciplined and systematic evolution of the
model, facilitating process improvement over succes-
sive analyses.
More formally, an algorithm for Concept Depen-

dency Analysis (CDA) takes a program and a domain
model and produces a concept dependence graph.
A concept dependence graph is a directed graph,
in which the nodes are concepts and the edges are
w eigh ted.Thus, formally, the concept dependency
graph is a set of triples, such that triple (c; c0; w) is
in the graph i� there is an edge from concept c to c0

with weight w. The concept graph is thus a weighted
relation on the set of concepts.

3.4 Principal Variables

In order to form concept slices for KSA and CDA it
will be necessary to determine the principal variables
of an arbitrary set of statements. The principal vari-
ables are those which might be considered to be the
result of the set of statements.

As Bieman and Ott point out in their w orkon
slice-based cohesion measurement [18, 25], the deci-
sion as to what variables are `principal' is somewhat
arbitrary; changing it can, of course, alter the results
of the algorithms upon which it is based. Therefore,
the de�nition of what constitutes a principal variable
should be treated as a parameter of the concept slic-
ing approach advocated here. The de�nition below
will be used as a working de�nition for the case study
in Section 7, and is derived from Bieman and Ott.

De�nition 5 (Principal Variable)
A variable v in a set of statements S is a principal
variable i� it is either

� global and assigned in S

� call-b y-reference and assigned inS

� the parameter to an output statement of S

Given a setof statemen ts S, PV (S) will be used
to denote the set of principal variables of S.

4 ECS Algorithm

The ECS algorithm is presented in Figure 3. The
algorithm is straightforward. The statements of the
concept form the set of statements for the slicing
criterion. Slicing on these statements adds to the
concept, all statements of the original program re-
quired to ensure that the concept statements faith-
fully mimic (in the concept slice) their behaviour in
the original program.
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Name Purpose T ype Potential Applications
Executable Concept Slic-
ing (ECS)

T o form an executable
sub-component

Inter-Concept Analysis Reuse and re-engineering

Key Statement Analysis
(KSA)

T o re�ne a concept Intra-Concept Analysis Comprehension and re-
verse engineering

Concept Dependency
Analysis (CDA)

T o identify in ter-concept
relationships

Inter-Concept Analysis Domain model
improvement

Figure 2: Overview of the Concept Slicing Framework

function ECS(Program p, DomainModel D)
returns: set of Program

let fc1; : : : ; cng = Concepts(p;D)
for each ci 2 fc1; : : : ; cng
let ECSi = Slice(p; Statements(ci))
let Tag(ECSi) = Tag(ci)

endfor
return fECS1; : : : ; ECSng

Figure 3: The Executable Concept Slicing Algorithm

5 KSA Algorithm

A simple KSA algorithm is presented in Figure 4.
The function KSABO tak es a program and a con-
cept assigned within it and returns a function which
describes the relative weigh t of eac h statement in the
concept. In this case, the returned result is either 0
or 1, with 1 signifying that the statement is a key
statement and 0 signifying that it is not.
The idea is to use the set of principal variables in

the concept to form a set of slices. The intersection of
these slices contains the statements which contribute
to the computation of ev ery principal variable; in
other words, the key statements of the concept.
We call this the `BiemanOtt-style' algorithm, be-

cause it is inspired by Bieman and Ott's work on
measuring cohesion using slicing [2, 18, 25 , 26 , 27].
Speci�cally, the intersection of slices on principal
variables is the set used to compute the `Tightness'
metric introduced by Ott and Thuss [26]. Tightness
was later developed into a theory of cohesion mea-
surement based on slicing [2, 25].
An alternative KSA algorithm is presented in Fig-

ure 5. In this approach, the returned value associ-
ated with a statement is a real number, rather than
simply a value in f0; 1g. The value assigned to a
statement represents the directness of dependence
between it and the principal variables of the con-
cept. The weigh t for statement s is computed as the
length of the shortest path from s to a �nal use ver-
tex of a principal variable, normalized with respect

function KSABO(Program p, ConceptSlice c)
returns: function from St atementto f0; 1g

for each variable vi in PV (c)
let si = Slice(p; fFinalUse(Statements(c); vi)g)

endfor
let Tight =

T
i si

let KS = Statements(c) \ T ight

return �x: if x 2 KS then 1 else 0

Figure 4: Key Statement Analysis `BiemanOtt' Style

to the length of the longest acyclic path in the pro-
gram's SDG2, such that statements with KSA values
closer to 1 are morè key' and those with KSA val-
ues closer to 0 are `less key'. This gives a real value
weighting between 0 and 1 for each statement in the
concept. The algorithm builds up the function F to
be returned,adding a maplet for eac h statement si
which maps si to its weight.

Observe that, because Dist(s; s0; p) is unde�ned if
there is no path from s to s0 in the SDG of p, the
weight of a statement is also unde�ned when there is
no path from it to the �nal use vertex of any principal
variable. For any such an `unconnected'statemen t,
the unde�nedness of the weight will alert the engi-
neering to a possible anomaly; why is suc h a state-
ment in a concept if it has no e�ect on any principal
variable? We call this algorithm the `BallEick' algo-
rithm because it is inspired by Ball and Eick's work
on the SeeSlice project[1].

6 CDA Algorithm

An algorithm for producing a weighted Concept De-
pendency Graph is presented in Figure 6. Weightings
will be allocated according to the amount of compu-

2In the algorithm, the SDG is used, but there may be analy-
ses for data-in tensive programs, for which it would be edifying
to consider the replacement of the SDG with the Data Depen-
dence Graph (DDG) and (for control sensitive concepts) to
use the Control Dependence Graph (CGD).
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function KSABE(Program p, ConceptSlice c)
returns: function from Statement to IR

let F = fg
let N be the longest acyclic path in the SDG of p
for each si in Statements(c)
for eac hvj in PV (c)
let dij = Dist(p; si; F inalUse(Statements(c); vj))

endfor
let Di = minj dij
let F = F [ fsi 7!

N�Di

N
g

endfor
return F

Figure 5: Key Statement Analysis `BallEick' St yle

tation (normalized by concept size) which one con-
cept contributes to the computation of another. T o
compute this we use an approach based on the slice-
based coupling metric of Harman et al. [14]. This
approach is a coupling metric, similar to the cohesion
metrics of Bieman and Ott [25].
The metric is computed using the principal vari-

ables of a concept. The union of slices (restricted
to concept c0) is then formed. This is the part of
c0 which contributes to the computation of the prin-
cipal variables of c. The w eigh tof the edge from
c0 to c is considered to be the relative amount of c0

(normalized by the size of c0) which lies in the union
of slices. This normalized `amount of computation'
forms a crude way of determining the amount of c0

which contributes to the computation denoted by c.
The algorithm starts with an empty graph (G) and

goes through eac h concept (the i loop) adding in
w eigh tingsfrom each of the other concepts (the j

loop) in the graph. F or eac h pair of concepts, the
union of slices on principal variables, Comp, is com-
puted and this is used to determine the contribution,
Cont, that one concept makes to the other. This con-
tribution is reformulated into a metric value betw een
0 and 1, by calculating its size relative to the size of
the whole contributing concept.

7 A Case Study

This sectionpresen ts a case study which illustrates
the application of the four algorithms introduced in
the paper. The program concerned (see Figure 8) is
based on one drawn from a large �nancial services or-
ganisation and, among other things, calculates mort-
gage repa yments. In the example, w eha veused a
library of 25 concepts and their associated evidence
to generate concept bindings and segments.
Suppose that the mortgage products of the organi-

function CDA(Program p, DomainModel D)
returns: ConceptGraph

let G = fg
for eac hci 2 Concepts(p;D)
for each cj 2 Concepts(p;D) (j 6= i)
for each variable vk in PV (cj)
let sk = Slice(p; fFinalUse(cj; vk)g)

endfor
let Comp =

S
k sk

let Cont = Comp \ Statements(ci)

let M = jContj
jcij

let G = G [ f(ci; cj ;M)g
endfor

endfor
return G

Figure 6: The Concept Dependency Analysis Algo-
rithm

sation are to be overhauled. The legacy system which
computes mortgage payments is to be reverse and
re-engineered. Speci�cally, consider the scenario in
which an engineer is looking to locate the code which
calculates mortgage payments to re-use it (possibly
in an amended form) in the re-engineered system.
Thus, the rev erse engineer is seeking, initially, to

retain the code for calculating mortgage interest,
while discarding the remainder of the program. A
natural step would be to identify the code which
implements mortgage calculations. Unfortunately
pure slicing cannot help unless the engineer kno ws
which variables are important for this computation.
The engineer may be only partially familiar with the
code and, therefore, unable to select a suitable vari-
able or set of variables. Concept assignment can
be used to produce a set of con tiguousstatements
for which there is evidence that the code performs
actions relating to mortgage interest, but the en-
gineer cannot simply extract and reuse this code,
since the code sequence is not an executable sub-
program. How ever, by forming the ECS for the
Calculate:Mortgage In teres tconcept the rev erse
engineer can extract the code of interest as a exe-
cutable sub-program.
Selecting the `calculate mortgage interest' concept

produces the concept highlighted by light shading in
the left-hand column of Figure 8. Figure 1 depicts
the fragment of the domain model used to locate this
concept. Using the algorithm in Figure 3 the ECS
for calculate mortgage interest additionally identi�es
the boxed lines shown in the �gure. Notice that the
line of code

MOVE '010' TO APS-RECORD-IN.
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is not in theECS, ev en though it assigns a value
to one of the variables (APS-RECORD-IN) referenced
by the concept. This is because the value assigned is
immediately overwritten by the PERFORM of the code
for C00-READ-APS.
The reverse engineer might also analyse the con-

cept using Key Statement Analysis. The principal
variables of the concept are:

W-RED-INT-4

W-RED-INT

Using the BiemanOtt style KSA algorithm (Fig-
ure 4), the intersection of slices for these tw o
variables consists of the code which computes
W-RED-INT-4, since this code is a subset of the code
which computes W-RED-INT. We might think of this
analysis as revealing a sub-concept (the unrounded
result) within the calculate mortgage concept.
Now, suppose instead of applying KSA to the con-

cept, the reverse engineer, instead, chooses to apply
it to the ECS. The principal variables of the ECS
are:

W-RED-INT-4

OUT-OUTSTANDING

W-RED-INT

APS-RECORD-IN

For these four variables, the intersection of the cor-
responding slices (Tight) is empty, indicating that no
statements are key in the ECS according to the Bie-
manOtt style algorithm. This information is useful,
because it indicates that there is no code in the ECS
which is germane to all of the computation. This sug-
gests that there may be more than one concept im-
plemented within the boundaries identi�ed by ECS.
In this case, the ECS happens to con tain a large
part of the Read:APSRecord concept and this should
probably be separated out. (The possibility of mul-
tiple concept binding is discussed briey as an issue
for future work.)
A tthis point, the reverse engineer might choose

to try KSA with a slightly di�erent set of prin-
cipal variables, based upon the observation that
APS-RECORD-IN is an ob vious `odd one out'; it is
clearly an input variable (even though it is both
global and assigned and, therefore, a `principal vari-
able' according to De�nition 5). For the remain-
ing three variables, the KSA highlights precisely
the computation on OUT-OUTSTANDING. That is, the
key statements iden ti�ed are the three boxed state-
ments of the section S10-HOLIDAY-CHECK. This sig-
ni�es that the ag APS-HOL-MONTH is crucial. Hav-
ing observed this, the reverse engineer might check
to see what the ag APS-HOL-MONTH denotes. A lit-
tle (human) analysis will reveal that this feature of
the system implements `pa yment holidays'. This is

a product feature aimed at increasing tak e up and
making the product more attractive. It allo ws the
clien t to skip a payment for one month, by extend-
ing the period of payments by one month.
Of course, in the post-overhaul set of products,

the payment holiday feature may not be included
(or it may be included but behave di�erently). The
iden ti�cationof the mortgage holiday computation
as a setof k ey statements of the concept alerts the
rev erse engineer to the importance of this code in
determining the mortgage payments and identi�es
the section of code which needs to be considered.
In Section 5 an alternative, and more �ne-grained,

KSA algorithm was in troduced. This approach uses
distance (in the SDG) from the �nal use vertices of
principal variables to determine a weight for a state-
ment, giving a relativ emeasure of keyness. T osee
how this works, consider the concept for mortgage
payment. The code segment for the concept is cut
out and depicted in Figure 7, along with its CFG and
the corresponding SDG for the tw oprincipal vari-
ables.
Dependence is traced backward from the �nal use

vertices for the tw o principal variables W-RED-INT-4
and W-RED-INT. The longest acyclic path in the SDG
is 6 nodes long (from the �nal use of W-RED-INT, to 7,
6, 2, 5, 4). Nodes 7 and 6 are only a single edge aw ay
from a �nal use and so the shortest path is length 2.
Therefore both nodes receive a KSA value of 4

6 . The
shortest path from nodes 5, 2 and 1 is 3 nodes long
and so they receive a KSA value of 36 . Node 4 is next,
with a shortest path of length 4 and a KSA value of
2
6 and �nally node 3 has a KSA value of 1

6 .
The values in themselves are largely immaterial;

w e can, at best, be measuring on an ordinal scale of
`directness of dependence' [29]. What is important
is the order they introduce on nodes. The most key
statements are those which de�ne the values of in-
terest (nodes 6 and 7). The next most key are those
which directly control the nodes which de�ne the val-
ues of interest and those which feed data directly to
them. As w emove further aw ay from the�nal use
vertices, we reach statements which have a progres-
sively less direct impact upon the computation of the
�nal value of the principal variables. It is this obser-
vation which motivates the determination of `relative
keyness' using the `BallEick' style approach.
Finally, suppose that the reverse engineer has ex-

tracted several concepts3. One of the other concepts
which is identi�ed is the Write:APSRecord concept
shown in the darker shading in the top righ t-hand
column of Figure 8.
The reverse engineer may be interested in the re-

lationship betw een this concept and the calculate

3Applying HB-CA to this example actually reveals 10 con-
cepts, but there is insuÆcient space here to discuss them all
in detail.
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1 PERFORM S10-HOLIDAY-CHECK.
A00-010.
* READ APS RECORD
2 PERFORM C00-READ-APS.
3 IF APS-EOF = END-OF-FILE

GO TO A00-090.
* CHECK FOR HORIS
4 IF APS-HORIS NOT = 'AH'

GO TO A00-080.
* CHECK FOR MORTGAGE INTEREST
5 IF APS-M-INT = ZEROES

GO TO A00-080.
A00-020.
* CALCULATE NEW REDUCED MORTGAGE INTEREST
6 COMPUTE W-RED-INT-4 =
OUT-OUTSTANDING - (W-TAX-RATE * OUT-OUTSTANDING).
7 COMPUTE W-RED-INT ROUNDED = W-RED-INT-4 + 0.
STOP RUN.

1

stop

start

2

3

4

5

6

7 W−RED−INT−4
Final Use Final Use

W−RED−INT

4 5

3

21

6

7

Control Dependence

Data Dependence

Concept for Calculate Mortgage Paymen t Con trol Flow Graph (CFG) System Dependence Graph (SDG)

Figure 7: Executable Concept Slice for Calculate:MortgageInter est

mortgage interest concept. Such a relationship is
useful in re�ning the domain model, which contains
inter-concept relationships. It also provides a crude
form of assessment of the impact of changes to one
concept upon another and the level of `feature inter-
action' betw een concepts.The principal variables of
the `write APS record' concept are:

APS-RECORD-OUT

CHECKING-SLIP

Using the CDA algorithm of Figure 6, the slice
on these two variables contains only one line of the
calculate mortgage interest concept:

PERFORM C00-READ-APS

In computing the relative weigh t of the edge from
the calculate mortgage interest concept to the `write
APS record' concept, w eface the familiar issue of
how to `count' lines of code [8, 29]. We have chosen to
adopt the (relatively) uncontroversial step of count-
ing Non Comment Source Lines (NCSL). However,
as with the determination of principal variables, this
choice is a parameter to our approach and is adopted
here merely for illustration. There are nine NCSLs
in the calculate mortgage interest concept and so the
w eigh tof the edge from the calculate mortgage in-
terest concept to the `write APS record' concept is
1
9 .
We have already computed the slice for the princi-

pal v ariables of the calculate mortgage interest con-
cept. The slice was used to form the ECS earlier and
consists of the additional boxed lines in Figure 8.
We can see that three of these boxed lines are in the
`write APS record' concept. How ev er,only one of
them is a NCSL, while there are eight NCSLs in to-
tal in the `write APS record' concept. This gives the

weighting of the relationship from the `write APS
record' concept to the calculate mortgage in terest
concept as 1

8 .

In themselves these �gures are relatively meaning-
less. How ev er, b y computing similar weights for all
the concepts in the system we obtain a weighted con-
cept dependence graph which can be used to re�ne
our understanding of the domain model and could,
for example, form the input to a clustering tool such
as Bunch [19, 21, 23].

8 Conclusion

This paper has shown how concept assignment and
slicing can be combined to perform uni�ed source
code extraction, which extracts code identi�ed by a
concept assignment criterion.

The approach has the advantage (over pure con-
cept assignment) that the code extracted is exe-
cutable, because of the use of slicing to augment the
results of concept assignment. It also has the advan-
tage over slicing that the criterion for extraction is
expressed at a high level in terms of domain speci�c
and `meaningful' concepts suc h as `master �le' and
`update record'. By contrast, pure slicing can only
extract subprograms based upon low level criteria |
sets of variables.

The paper introduced an algorithm for Executable
Concept Slicing (ECS), tw o algorithms for Key
Statement Analysis (KSA) and an algorithm for
Concept Dependence Analysis (CDA). The applica-
tion of these algorithms to rev erse engineering was
demonstrated using a case study based on a Cobol
mortgage calculation program taken from a large �-
nancial services company.
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9 Future Work

This paper has introduced no velde�nitions, nota-
tion and ideas for unifying concept assignment and
slicing. It has presented algorithms and illustrated
their application, but there remains muc h w orkto
be done in order to unlock the full potential of the
uni�ed approach.

9.1 Multiple Concept Binding

Currently, HB-CA assumes that there is only a single
concept represented in an y section of code. This is
unrealistic, but it makes the problem more tractable.
KSA provides a possible vehicle to analyse the struc-
ture of a concept to identify potential split points so
that the possible layering of multiple concepts within
a rejoin of code can be considered.

9.2 Extending Concept Boundaries

The plausible reasoning approach to concept assign-
ment has been shown to produce good results [9],
but, by its very nature, cannot be guaranteed to iden-
tify the correct concept extent in the code. We have
used backward slicing to �nd the code necessary to
make the concept executable. How ever, if HB-CA
has missed some subsequent statements, which only
get executed after the iden ti�edcode has been ex-
ecuted, then these statements will form neither a
part of the concept nor of the executable concept
slice. This does not mean that the ECS will be
wrong; it simply means that it will capture only a
sub-component of the computation of the concept.
T o capture the full computation, it may be possible
to augment the results of backward slicing with some
form of forward slicing [16].

9.3 Concept Clustering Analysis

Concept Dependency Analysis produces a weighted
graph of concepts, with the aim of identifying inter-
concept relationships. How ev er, a question remains:
how can w euse the concept dependence graph to
determine which concepts are related? This prob-
lem is very similar to the softw are modularization or
clustering problem [13 , 19, 20]. A tool like Bunch
[19 ] uses hill-climbing to search for good clusterings
of soft w are modules based upon a `�tness' function.
The �tness function is essen tially a metric which
measures cohesion and coupling betw een modules in
a cluster. The metric has been successfully applied
to a number of real-world applications [22, 24]. In all
existing applications the module dependence graph
used was not w eigh ted,but the metric used does
cater for weigh ted graphs and so there is no reason

not to use Bunch to produce a clustering of concept
slices.
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.

.

.
PROCEDURE DIVISION.
A00-CONTROL SECTION.
* INITIAL PROCESSING
A00-000.

PERFORM S10-HOLIDAY-CHECK.

MOVE '01' TO DL-INPUT-FORMAT.
CALL 'DATEPRES' USING DATE-LINKAGE-PARMS.
MOVE DL-OUT-DD-MM-CCYY TO H1-DATE.
MOVE SPA CES TO CHECKING-SLIP.
MOVE '011' TO APS-RECORD-OUT.
CALL 'GBAAZ0X' USING APS-RECORD-OUT.
CALL 'GBABB0X' USING CHECKING-SLIP.
MOVE '010' TO APS-RECORD-IN.

A00-010.

* READ APS RECORD
PERFORM C00-READ-APS.
IF APS-EOF = END-OF-FILE

GO TO A00-090.
* CHECK FOR HORIS

IF APS-HORIS NOT = 'AH'
GO TO A00-080.

* CHECK FOR MORTGAGE INTEREST
IF APS-M-INT = ZEROES

GO TO A00-080.

A00-020.
* CALCULATE NEW REDUCED MORTGAGE INTEREST

COMPUTE W-RED-INT-4 =
OUT-OUTSTANDING - (W-TAX-RATE * OUT-OUTSTANDING).

COMPUTE W-RED-INT ROUNDED = W-RED-INT-4 + 0.

IF GBAIA110 = 'M'
MOVE 12 TO W-FREQ
MOVE 0.12 TO W-FREQ-P.

IF GBAIA110 = 'Q'
MOVE 4 TO W-FREQ
MOVE 0.03 TO W-FREQ-P.

COMPUTE W-RED-INT-2 = W-RED-INT / W-FREQ.
SUBTRACT 0.0005 FROM W-RED-INT-2.
COMPUTE W-RED-INT-3 ROUNDED = W-RED-INT-2 + 0.

A00-030.
MULTIPL Y W-FREQ BY W-RED-INT-3.
MOVE W-RED-INT-3 TO GBAO A191.
EJECT
IF GBAIA190 = SPA CES

GO TO A00-040.
IF GBAIA191 = ZEROES

GO TO A00-040.
DIVIDE GBAO A191 BY GBAIA191 GIVING W-PERCENTAGE.
IF W-PERCENTAGE GREATER THAN 1.03

GO TO A00-040.
IF W-PERCENTAGE LESS THAN 0.97

GO TO A00-040.
GO TO A00-070.

A00-040.
PERFORM C20-PRINT.

A00-070.
MOVE SPA CES TO CHECKING-SLIP.
MOVE GBAIA010 TO CS-POLICY.
MOVE '2' TO CS-TYPE.
MOVE GBAIA019 TO CS-STANDARD (1).
MOVE GBAO A019 TO CS-STANDARD (2).
CALL 'GBABB0X' USING CHECKING-SLIP.

Key:

Dark Shaded :Write:APSRecord concept

Ligh t Shaded: Calculate:MortgageInterest concept

Boxed : Extra code in ECS for Calculate:MortgageInterest

A00-080.

PERFORM C10-WRITE-APS.

GO TO A00-010.

A00-090.

MOVE '3' TO W-GBCM0133-2.

* END OF JOB PROCESSING

CALL 'GBCM0133' USING APS-RECORD-IN

W-GBCM0133-2

W-GBCM0133-3.

MOVE END-OF-FILE TO APS-RECORD-OUT.

CALL 'GBAAZ0X' USING APS-RECORD-OUT.

MOVE END-OF-FILE TO CHECKING-SLIP.

CALL 'GBABB0X' USING CHECKING-SLIP.

A00-999.

STOP RUN.

EJECT

C00-READ-APS SECTION.

C00-000.
* READ APS MASTER FILE

CALL 'GBAAY0X' USING APS-RECORD-IN.

IF APS-EOF = END-OF-FILE

MOVE HIGH-VALUES TO APS-RECORD-IN.

C00-999.

EXIT.

SKIP3
C10-WRITE-APS SECTION.
* WRITE APS MASTER FILE

MOVE '2' TO W-GBCM0133-2.
CALL 'GBCM0133'
USING APS-RECORD-OUT W-GBCM0133-2.
CALL 'GBAAZ0X' USING APS-RECORD-OUT.

C10-999.
EXIT.
SKIP3

C20-PRINT SECTION.
C20-000.

IF A-LINENO LESS THAN 25
GO TO C20-010.

ADD 1 TO A-PAGENO.
MOVE A-PAGENO TO H1-PA GE.
MOVE C-1 TO P-CC.
MOVE H1-HEADLINE TO P-LL.
PERFORM S00-PRINT.
MOVE WS-2 TO P-CC.
MOVE H1-HEADLINE TO P-LL.
PERFORM S00-PRINT.
MOVE 0 TO A-LINENO.

C20-010.
MOVE WS-2 TO P-CC.
MOVE GBAIA010 TO P1-KEY.
MOVE P1-DATALINE TO P-LL.
PERFORM S00-PRINT.
MOVE SPACES TO P-LL.
ADD 2 TO A-LINENO.

C20-999.
EXIT.
EJECT

S00-PRINT SECTION.
S00-000.
* PRINTS A LINE

CALL 'PRINT' USING P-PRINTLINE.
S00-999.

EXIT.

S10-HOLIDAY-CHECK SECTION.

* CHECK FOR PAYMENT HOLIDAY

IF APS-HOL-MONTH = DL-MONTH

MOVE 'Y' TO OUT-PAYMENT-HOL

MOVE ZEROES TO OUT-OUTSTANDING.

S10-999.

EXIT.

Figure 8: Cobol Mortgage Payment Calculation Program
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