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Abstract. The stress singularity in space junctions of thin linearly elastic isotropic
plate elements with zero bending rigidities is investigated. The problem for an in-
tersection of infinite wedge-shaped elements is considered first and the solution for
each element, being in the plane stress state, is represented in terms of holomorphic
functions (Kolosov-Muskhelishvili complex potentials) in some weighted Hardy type
classes. After application of the Mellin transform with respect to radius, the problem
is reduced to a system of linear algebraic equations. By use of the residue calculus
during the inverse Mellin transform, the stress asymptotics at the wedge apex is
obtained. Then the asymptotic representation is extended to intersections of finite
plate elements. Some numerical results are presented for a dependence of stress
singularity powers on the junction geometry and on membrane rigidities of plate
elements.

Keywords: elasticity, stress singularity, stress asymptotics, space junction, trans-
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1. Introduction

Three-dimensional structure junctions consisting of plane plate ele-
ments are generally used in engineering. The points, where plate inter-
section lines Γ(l) meet each other and/or free edges of plates, hereafter
being referred to as singular points, are often stress concentrators. Ex-
amples of such points for V-shaped and T-shaped junctions of plates
are presented in Figure 1.

A lot of studies are devoted to the investigation of elastic theory
solution behaviour at singular points in two-dimensional bodies and at
singular lines in three-dimensional bodies. The solution asymptotics for
general elliptic boundary value problems are studied in [1]–[3] (see also
[4]). Asymptotics in some problems of solid mechanics with singular
points are considered in [5]–[15]. In [16], Section 5, the singular be-
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Figure 1. Schemes of V– and T–shaped junctions

haviour of solutions is investigated for space junctions of plate elements
with infinite membrane rigidities and finite bending rigidities.

Another limiting case: a space junction of plate elements with
finite membrane rigidities and zero bending rigidities will be considered
in this paper. Such neglect of the bending rigidities may be done for
sufficiently thin plates and is rather popular in engineering computa-
tions. It delivers seemingly intermediate solution asymptotics valid in
large distances from the singular point in comparison with the plate
thicknesses. Under this assumption the plate elements of a junction
will be in the plane stress state and have some special transmission
conditions along the joint lines.

In Section 2 of this study, the problem statement is given for a
three–dimensional intersection of infinite wedge-form plates with zero
bending rigidities, where each plate is in the plane stress state, and cor-
responding transmission conditions are deduced. (Note that the trans-
mission conditions for intersecting Kirchhoff or Reissner-Mindlin plates
with finite rigidities is thoroughly analysed in [17].) The stress singu-
larity analysis for such problems can be executed in different function
classes. For example, in [1]–[4], [16] the solution asymptotics for some
problems are analysed in the weighted or usual Sobolev spaces. We
will work in the Hardy type weighted classes of holomorphic func-
tions (for the Kolosov-Muskhelishvili potentials) introduced in [18] and
being sufficiently convenient for an application of the integral Mellin
transform. In Section 3, after the application of the Mellin transform
to the representation of a general solution in terms of the Kolosov-
Muskhelishvili complex potentials, the problem is reduced to a system
of linear algebraic equations with a parameter. The employment of the
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residue calculus and some properties of the Hardy type functions in
the inverse Mellin transform allow us to obtain in Section 4 an asymp-
totic representation for the problem solution. By means of the cut-off
function techniques, the asymptotic representations can be extended
to intersections of arbitrary form plates. In Section 5, stress singularity
powers are numerically evaluated at singular points for some standard
junction geometries. Critical junction values (angles, rigidities), sepa-
rating the parameter zones with and without the stress singularities,
are analysed too.

2. Problem statement, boundary and transmission conditions

Let {xα}, α = 1...3, be the global Cartesian coordinates. Hereafter the
summation in repeating subscripts (excluding the subscripts ρ and θ)
is supposed from 1 to 3 unless something to the contrary is said; the
summation in superscript is not done unless it is pointed out explicitly.
Plate elements are considered below as two-dimensional plane elas-
tic objects and the term thickness H is used only to calculate plate
tractions (per unit length) Hσαβ from plate stresses σαβ .

Let us consider M plates intersecting along a joint line Γ. Let kα

be the unit tangent to Γ. For each plate W (m) (m = 1...M) adjoining
Γ, we denote by n

(m)
α the normal to Γ lying in W (m) plane and being

external to W (m). Let H(m) be the plate thickness. Then the sum of
the boundary tractions transmitted from each plate to Γ must be equal
to a prescribed load gj :

M∑

m=1

H(m)σ
(m)
jβ n

(m)
β = gj , j = 1...3. (2.1)

Moreover the displacements u
(m)
j of each plate at Γ must be equal to

one and the same unknown function Uj :

u
(m)
j = Uj , j = 1...3, m = 1...M. (2.2)

Taking into account that the plates do not resist the bending moments
and, hence, the transverse tractions, we have that only membrane
stresses are involved in (2.1). Then these equations can be rewritten in
the form:

M∑

m=1

H(m)[σ(m)
αβ kαn

(m)
β kj+σ

(m)
αβ n(m)

α n
(m)
β n

(m)
j ] = gj , j = 1...3. (2.3)

From equations (2.2) we obtain the equations for the membrane dis-
placements:

u
(m)
j kj = Ujkj , u

(m)
j n

(m)
j = Ujn

(m)
j , m = 1...M. (2.4)
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Suppose, not all plates lie in one plane (not all n
(m)
j are paral-

lel). Then (2.3) gives three independent equations with respect to 2M
boundary tractions σ

(m)
αβ kαn

(m)
β , σ

(m)
αβ n

(m)
α n

(m)
β . This can be verified by

projection of (2.3) onto the tangent kj and onto any two not coinci-
dent normals n

(m1)
j , n

(m2)
j . Excluding three auxiliary functions Uj from

2M equations (2.4), we get then from (2.3), (2.4) 2M independent
boundary conditions for 4M values: the boundary membrane tractions
σ

(m)
αβ kαn

(m)
β , σ

(m)
αβ n

(m)
α n

(m)
β and the displacements u

(m)
j kj , u

(m)
j n

(m)
j .

If all the plates lie in one plane with a normal ζj , i.e., n
(m)
j = ±n

(1)
j ,

m = 1...M , then we have from (2.3) only two independent conditions:

M∑

m=1

H(m)σ
(m)
αβ kαn

(m)
β = gjkj ,

M∑

m=1

H(m)σ
(m)
αβ n(1)

α n
(m)
β = gjn

(1)
j . (2.5)

The third relation, which can be obtained from (2.3), gives the solvabil-
ity condition imposed on the prescribed tractions: gjζj = 0. In this case,
2M relations (2.4) involve only two auxiliary functions Ujkj and Ujn

(1)
j ;

excluding them, we obtain from (2.5) and (2.4) again 2M independent
conditions for 4M boundary membrane tractions and displacements.

When Γ is a plate edge not contacting with other plates, we will
also call Γ a joint line for M = 1. If some tractions gj are prescribed
on it, then we have there two boundary conditions (2.5) where the sum
sign must be dropped, that is M = 1 must be substituted. If some
displacements fi are prescribed instead of tractions on this edge, then
we have two boundary conditions (2.4) but for known functions Uj = fj

and for M = 1.
Thus, if M plates contact along a joint line Γ, M ≥ 1, then

there are generally 2M independent transmission/boundary conditions
on this line for 4M boundary membrane tractions and displacements.
This means that each plate edge generates two transmission/boundary
conditions on Γ. The transmission conditions will be below also called
boundary conditions.

Let L joint lines Γ(l) (l = 1...L) of M∗ wedge-shaped plates
W (m), m = 1...M∗, intersect in the point xj = 0. It is simple to see
that 1 ≤ L ≤ 2M∗. Since each wedge-shaped plate has two edges, there
are 4M∗ boundary conditions on L joint lines Γ(l) for 8M∗ boundary
membrane tractions and displacements.

Let us introduce the local Cartesian {yj}, j = 1...2, and the polar
(ρ, θ) coordinate systems in the plane of each plate with the origin in
the corner point. Then the m−th plate is a wedge W (m) := W (0, θ(m)) :
(ρ, θ) ∈ (0,∞)× (0, θ(m)), whose plane stress state is described by the
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plane elasticity equations:

σ
(m)
jα,α = 0, σ

(m)
jα = Λ(m)

∗ u
(m)
β,β δjα + µ(m)(u(m)

j,α + u
(m)
α,j ), (j, α, β = 1, 2).

(2.6)
Here Λ∗ := 2Λµ/(Λ + 2µ); Λ and µ are the Lamé constants. The
corresponding boundary conditions are prescribed at both edges of the
wedge. For example, if some tractions gρ(ρ), gθ(ρ) are prescribed at the
edge θ = θ(m), then the boundary conditions there have the form:

σθθ(ρ, θ(m)) = gθ(ρ), σρθ(ρ, θ(m)) = gρ(ρ). (2.7)

If some displacements fρ(ρ), fθ(ρ) are prescribed there, then we have:

uθ(ρ, θ(m)) = fθ(ρ), uρ(ρ, θ(m)) = fρ(ρ). (2.8)

If, instead, mth plate contacts through this edge with other M − 1
plates, the local forms of the corresponding transmission conditions
are obtained from (2.3)–(2.5), by expressing the displacements and the
stresses there in the local polar coordinate systems.

For example, the boundary conditions for a V-junction (Figure 1)
have the form:

Γ(1) : σ
(1)
θθ (ρ, θ(1)) = g

(1)
θ (ρ), σ

(1)
ρθ (ρ, θ(1)) = g(1)

ρ (ρ);

Γ(2) : σ
(2)
θθ (ρ, θ(2)) = g

(2)
θ (ρ), σ

(2)
ρθ (ρ, θ(2)) = g(2)

ρ (ρ);

Γ(3) : σ
(1)
θθ (ρ, 0) = g

(31)
θ (ρ), σ

(2)
θθ (ρ, 0) = g

(32)
θ (ρ), (2.9)

H(1)σ
(1)
ρθ (ρ, 0) + H(2)σ

(2)
ρθ (ρ, 0) = g(3)

ρ (ρ), u(1)
ρ (ρ, 0)− u(2)

ρ (ρ, 0) = 0.

The general solution of system (2.6) can be written in terms of the
complex Kolosov-Muskhelishvili potentials [19]. Particularly, the radial
derivatives of the displacements ∂u

(m)
α /∂ρ, and the stresses σ

(m)
αβ for

mth plate in the polar coordinates have the form:

∂

∂ρ
u(m)

ρ (ρ, θ) =
1

4µ(m)

2∑

j=1

[(κ(m) − 1)Φ(m)
j (zj)− zjΦ

(m)′
j (zj)− e2iθjΨ(m)

j (zj)],

∂

∂ρ
u

(m)
θ (ρ, θ) =

i

4µ(m)

2∑

j=1

(−1)j [(κ(m) + 1)Φ(m)
j (zj) + zjΦ

(m)′
j (zj) + e2iθjΨ(m)

j (zj)],

σ(m)
ρρ (ρ, θ) =

1
2

2∑

j=1

[2Φ(m)
j (zj)− zjΦ

(m)′
j (zj)− e2iθjΨ(m)

j (zj)],

σ
(m)
θθ (ρ, θ) =

1
2

2∑

j=1

[2Φ(m)
j (zj) + zjΦ

(m)′
j (zj) + e2iθjΨ(m)

j (zj)],



6 S.E.Mikhailov, I.V.Namestnikova

σ
(m)
ρθ (ρ, θ) =

i

2

2∑

j=1

(−1)j [zjΦ
(m)′
j (zj) + e2iθjΨ(m)

j (zj)]. (2.10)

Here θ1 := −θ2 := θ; zj(ρ, θ) := ρ exp(iθj) ∈ W
(m)
j := W (θ(m)

j− , θ
(m)
j+ );

θ
(m)
1− := θ

(m)
2+ := θ

(m)
− = 0, θ

(m)
1+ := −θ

(m)
2− := θ

(m)
+ = θ(m) and the general

wedge notation W (θ−, θ+) : {(ρ, θ) ∈ (0,∞) × (θ−, θ+)} is used. In
addition, κ(m) := (3− ν(m))/(1 + ν(m)), where ν(m) := Λ(m)/[2(Λ(m) +
µ(m))] are the Poisson ratios; Φ(m)

j (zj) and Ψ(m)
j (zj) are analytical

functions of the complex arguments zj , the prime denote the derivative
with respect to zj .

Using expressions (2.10) at the boundaries θ = θ
(m)
∓ (θj = θ

(m)
j∓ ) of

the wedges W (m), we substitute them into boundary conditions (2.3)–
(2.5), (2.7)–(2.8). Thus we arrive at the boundary value problem for
analytic functions: 4M∗ holomorphic functions Φ(m)

j (zj), Ψ(m)
j (zj) (j =

1...2, m = 1...M∗) must be determined from 4M∗ boundary conditions.
Speaking below about a solution, we mean a solution of this problem
for analytic functions.

We define below some weighted Hardy type function classes (con-
sidered in details in [18]), in which the solution will be looked for.
Denote z = ρ exp(iθ). Let H2(δ0, δ∞;W (θ−, θ+)) be the class of func-
tions Φ(z) holomorphic in a wedge W (θ−, θ+) and such that
supθ−<θ<θ+

∫∞
0 |Φ(ρeiθ)|2ρ2δ−1dρ < ∞ for all δ ∈ (δ0, δ∞).

Let us consider the following linear combinations of the complex
potentials:
Ψ̃(m)

j∓ (zj) := zjΦ
(m)′
j (zj)+exp(2iθ

(m)
j∓ )Ψ(m)

j (zj). In fact, only these com-

binations and the original potentials Φ(m)
j (zj) are involved in the rep-

resentations (2.10) at the boundaries and, hence, in the boundary
conditions (2.3)–(2.5), (2.7)–(2.8) (after the differentiation of the con-
ditions for displacements with respect to ρ). We shall write that a
pair of functions Φ(m)

j ,Ψ(m)
j belongs to H̃2(δ0, δ∞; W (m)

j ) if Φ(m)
j ∈

H2(δ0, δ∞; W (m)
j ) and Ψ̃(m)

j∓ ∈ H2(δ0, δ∞; W̃ (m)
j∓ ), where W̃

(m)
j− :=

W (θ(m)
j− , θ̃), W̃

(m)
j+ := W (θ̃, θ(m)

j+ ), for any θ̃ ∈ (θ(m)
j− , θ

(m)
j+ ).

Let the prescribed boundary functions be

gj(ρ), dfj(ρ)/dρ ∈ L̂2(δg, 1), δg < 1, (2.11)

where the class L̂2(δ0, δ∞) consists of the functions g(ρ), such that∫∞
0 |g(ρ)|2ρ2δ−1 dρ < ∞, for all δ ∈ (δ0, δ∞).

We look for, as a solution, the Kolosov-Muskhelishvili potentials

Φ(m)
j , Ψ(m)

j ∈ H̃2(δ̃0, 1;W (m)
j ) (2.12)
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for some δ̃0 < 1. The choice of H̃2 to look for a solution is caused
by the following reasons. First, this class is sufficiently convenient for
the application of the Mellin transform in the complex variable and,
moreover, the boundary values of the Mellin transforms are repre-
sented in terms of the Mellin transforms of the boundary values, for
functions from this class (Lemma 1.16 in [18]). Second, the Kolosov-
Muskhelishvili potentials from this class, and consequently, the stresses
generated by them may have weak singularities at the wedge apex
(Lemma 1.10 in [18]) and are integrable with square over any finite
two-dimensional part of W (m) (including also the singular point), i.e.,
have a finite elastic energy there. In addition, if the potentials be-
long to H̃2(δ̃0, δ̃∞; W (m)

j ) ⊂ H̃2(δ̃0, 1;W (m)
j ) for δ̃0 < 1 < δ̃∞, then

the elastic energy over whole W (m) is bounded (Lemmas 1.17–1.18
in [18]). Third, the solution of the problem exists and is unique for
Φ(m)

j ,Ψ(m)
j ∈ H̃2(δ̃0, 1;W (m)

j ), as will be seen below.

3. Problem solution

We will solve the problem using the Mellin transform of the complex
potentials, which reduces the problem to an algebraic one. This idea
seams to be used first in [20]. Let S(δ0, δ∞) be the strip δ0 < <γ < δ∞
in the complex γ–plane. (Hereafter, <γ denotes the real part of γ.)
It follows from Theorem 1.15 in [18] that the Mellin transforms with
respect to complex variables exist for Φ(m)

j , Ψ(m)
j ∈ H̃2(δ̃0, 1;W (m)

j ) at
any γ ∈ S := S(δ̃0, 1):

Φ(m)∨
j (γ) :=

∫ ∞

0
Φ(m)

j (z)zγ−1dz, Ψ(m)∨
j (γ) :=

∫ ∞

0
Ψ(m)

j (z)zγ−1dz,

z ∈ W
(m)
j ; Ψ̃(m)∨

j∓ (γ) = −γΦ(m)∨
j (γ) + exp(2iθ(m)

j∓ )Ψ(m)∨
j (γ).

In addition, Φ(m)∨
j ,Ψ(m)∨

j ∈ H̃∨
2 (θ(m)

j− , θ
(m)
j+ ;S), that is Φ(m)∨

j ∈
H∨

2 (θ(m)
j− , θ

(m)
j+ ; S) and Ψ̃(m)∨

j− ∈ H∨
2 (θ(m)

j− , θ̃; S), Ψ̃(m)∨
j+ ∈ H∨

2 (θ̃, θ(m)
j+ ;S)

for any θ̃ ∈ (θ(m)
j− , θ

(m)
j+ ).

Here H∨
2 (θ−, θ+; S(δ0, δ∞)) is the class of functions Φ∨(γ) holo-

morphic in S(δ0, δ∞) and such that the norm supθ−<θ<θ+
[
∫∞
−∞ |Φ∨(δ +

iξ)eξθ|2dξ]1/2 is uniformly bounded with respect to δ on any segment
[δ′0, δ′∞] ⊂ (δ0, δ∞).

Let us denote by

< g > (γ) :=
∫ ∞

0
g(ρ)ργ−1dρ

the Mellin transform with respect to a real variable. For a function Φ(z)
from H2(δ0, δ∞;W (θ−, θ+)) there is the following property connecting



8 S.E.Mikhailov, I.V.Namestnikova

the Mellin transforms with respect to the real variable ρ (over a line
θ = const) and to the complex variable z = ρeiθ (Lemma 1.16 in [18]):

< Φ > (γ, θ) = e−iγθΦ∨(γ), γ ∈ S(δ0, δ∞), θ ∈ [θ−, θ+].

Consequently, under condition (2.12) this property holds for Φ(m)
j (z)

in the segments θ
(m)
j− ≤ θ ≤ θ

(m)
j+ ; for the combination Ψ̃(m)

j− (zj) it

holds only in the half interval θ
(m)
j− ≤ θ < θ

(m)
j+ and for Ψ̃(m)

j+ (zj) in

θ
(m)
j− < θ ≤ θ

(m)
j+ .

Taking this in mind, we apply the Mellin transform with respect
to ρ to the relations (2.10) and obtain the representations, coupling
the Mellin transforms of the displacement derivatives and stresses with
the Mellin transform of the complex potentials, which hold also on the
boundaries θ = θ

(m)
1∓ (θj = θ

(m)
j∓ ):

<
∂u

(m)
ρ

∂ρ
> (γ, θ) =

1
4µ(m)

2∑

j=1

[(κ(m) − 1 + γ)e−iγθjΦ(m)∨
j (γ)

−ei(2−γ)θjΨ(m)∨
j (γ)],

<
∂u

(m)
θ

∂ρ
> (γ, θ) =

i

4µ(m)

2∑

j=1

(−1)j [(κ(m) + 1− γ)e−iγθjΦ(m)∨
j (γ)

+ei(2−γ)θjΨ(m)∨
j (γ)],

< σ(m)
ρρ > (γ, θ) =

1
2

2∑

j=1

[(2 + γ)e−iγθjΦ(m)∨
j (γ)− ei(2−γ)θjΨ(m)∨

j (γ)],

< σ
(m)
θθ > (γ, θ) =

1
2

2∑

j=1

[(2− γ)e−iγθjΦ(m)∨
j (γ) + ei(2−γ)θjΨ(m)∨

j (γ)],

< σ
(m)
ρθ > (γ, θ) =

i

2

2∑

j=1

(−1)j [−γe−iγθjΦ(m)∨
j (γ) + ei(2−γ)θjΨ(m)∨

j (γ)].

(3.1)

Applying the Mellin transform with respect to ρ to boundary
conditions (2.3)–(2.5), (2.7)–(2.8) (differentiating preliminary in ρ the
conditions for displacements u) and using (3.1), we get a system of
4M∗ linear algebraic equations to determine 4M∗ Mellin transforms
Φ(m)∨

j (γ), Φ(m)∨
j (γ):

4M∗∑

β=1

Bαβ(γ)Fβ(γ) = Gα, α = 1...4M∗, (3.2)
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{Fβ(γ)} := {Φ(m)∨
1 (γ),Φ(m)∨

2 (γ), Ψ(m)∨
1 (γ), Ψ(m)∨

2 (γ)} m = 1...M∗,

{Gα(γ)} := {< ĝj > (γ), < df̂j/dρ > (γ)},
where ĝj , f̂j are obtained from the corresponding functions g

(l)
j , f

(l)
j

prescribed on the boundary.
For the V-junction (see boundary conditions (2.9)), for example,

M∗ = 2, the matrix Bαβ has the form:

(2− γ)e−iγθ(1)
(2− γ)eiγθ(1)

ei(2−γ)θ(1)
e−i(2−γ)θ(1)

0 0 0 0

−γe−iγθ(1)
γeiγθ(1)

ei(2−γ)θ(1)−e−i(2−γ)θ(1)
0 0 0 0

0 0 0 0 (2− γ)e−iγθ(2)
(2− γ)eiγθ(2)

ei(2−γ)θ(2)
e−i(2−γ)θ(2)

0 0 0 0 −γe−iγθ(2)
γeiγθ(2)

ei(2−γ)θ(2)−e−i(2−γ)θ(2)

(2− γ) (2− γ) 1 1 0 0 0 0

0 0 0 0 (2− γ) (2− γ) 1 1

−H(1)γ H(1)γ H(1) −H(1) −H(2)γ H(2)γ H(2) −H(2)

κ(1) − 1 + γ
µ(1)

κ(1) − 1 + γ
µ(1)

−1
µ(1)

−1
µ(1) −κ(2) − 1 + γ

µ(2) −κ(2) − 1 + γ
µ(2)

1
µ(2)

1
µ(2)

(3.3)

{Fβ(γ)} = {Φ(1)∨
1 , Φ(1)∨

2 ,Ψ(1)∨
1 , Ψ(1)∨

2 , Φ(2)∨
1 ,Φ(2)∨

2 , Ψ(2)∨
1 , Ψ(2)∨

2 },
{Gα(γ)} = 2{< g

(1)
θ >, i < g(1)

ρ >,< g
(2)
θ >, i < g(2)

ρ >,

< g
(31)
θ >,< g

(32)
θ >, i < g(3)

ρ >, 0}.
The solution of system (3.2) has the form:

Fα(γ) =
4M∗∑

β=1

B−1
αβ (γ)Gβ(γ), B−1

αβ (γ) = Aαβ(γ)/∆(γ), (3.4)

where ∆(γ) is the determinant of the matrix Bαβ(γ), Aαβ(γ) is the
transposed matrix of its algebraic complements, B−1

αβ (γ) is the inverse
matrix to Bαβ(γ).

Expressions (3.4) can be rewritten in terms of Φ(m)∨
j (γ), Ψ(m)∨

j (γ),

Ψ̃(m)∨
j∓ (γ):

Φ(m)∨
j =

4M∗∑

β=1

B−1
4m−4+j,βGβ, Ψ(m)∨

j =
4M∗∑

β=1

B−1
4m−2+j,βGβ,
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Ψ̃(m)∨
j∓ =

4M∗∑

β=1

D̃
(m)
jβ∓Gβ, (3.5)

D̃
(m)
jβ∓(γ) := −γB−1

4m−4+j,β(γ) + exp(2iθ(m)
j∓ )B−1

4m−2+j,β(γ).

One can see from (2.3)–(2.5), (2.7)–(2.8), (3.1) that Bαβ(γ) and
consequently Aαβ(γ) and ∆(γ) are entire functions. Suppose, in addi-
tion, that ∆(γ) is not equal to zero identically (in the opposite case
it would lead to the linearly dependent boundary conditions, what
seems not to happen in correctly stated elasticity problems). Hence
(see e.g. [21], Chapter V, Section 1) ∆(γ) may have only isolated
zeros γk of finite multiplicities N◦

k in any finite part of γ–plane. By
(3.4), consequently, B−1

αβ (γ) is a meromorphic function with poles of
finite multiplicities in γk. Moreover, according to [22], Theorem 7.1,
the matrix B−1

αβ (γ) has the form

B−1
αβ (γ) =

Nk∑

n=1

Pkn∑

q=1

(γ − γk)−q
Pkn−q∑

p=0

φ
(np)
αk χ

(n,Pkn−q−p)
βk + Dαβ(γ) (3.6)

in the neighborhood of γk. Here Nk is the dimension of the eigenspace
of the matrix Bαβ(γk), φ

(np)
αk and χ

(np)
βk (n = 1...Nk, p = 0...Pkn − 1)

are some canonical systems of eigenvectors and associated vectors of
the matrix Bαβ(γ) corresponding to γk and, respectively, of the conju-
gate matrix Bβα(γk) corresponding to γk, Dαβ(γ) is a matrix function
holomorphic at γk. From point 3 of Section 1 in [22], it follows also
that

∑Nk
n=1 Pkn = N◦

k , in other words, the algebraic multiplicity of
the eigenvalue γk for the matrix Bαβ(γ) at γ = γk is equal to the
multiplicity of the zero γk for the function ∆(γ).

For a strip S′ in the γ–plane, let S′r denote a perforated strip
obtained from S′ after deleting all circular r−neighborhoods of the
zeros γk ∈ S′. If S′ does not include γk, then S′r = S′. Suppose there is
a constant M∨ for any S′r and any θ̃

(m)
j ∈ (θ(m)

j− θ
(m)
j+ ) such that

|B−1
4m−4+j,β(γ)| < M∨|eiγθ| ∀ (γ, θ) ∈ S′r × [θ(m)

j− , θ
(m)
j+ ], (3.7)

|D̃(m)
jβ−(γ)| < M∨|eiγθ| ∀ (γ, θ) ∈ S′r × [θ(m)

j− , θ̃
(m)
j ], (3.8)

|D̃(m)
jβ+(γ)| < M∨|eiγθ| ∀ (γ, θ) ∈ S′r × [θ̃(m)

j , θ
(m)
j+ ]. (3.9)

If a strip S does not contain γk, then (3.7)–(3.9) hold in S′r = S′ for any
closed strip S′ ⊂ S. Particularly, it takes place for any S′ ⊂ S(δ+, 1),
where δ+ := max<γk<1(<γk).
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For the V–junction, properties (3.7)–(3.9) can be obtained by a
direct analysis of the matrix (3.3), for other junctions that were con-
sidered, it holds too.

Let the class H◦
2 (S(δ0, δ∞)) consist of functions Φ◦(γ) holomorphic

in a strip S(δ0, δ∞) and such that the norm [
∫∞
−∞ |Φ◦(δ + iξ)|2dξ]1/2 is

uniformly bounded with respect to δ on any segment [δ′0, δ′∞] ⊂ (δ0, δ∞).
Let us denote δg+ := max(δg, δ+). Owing to (2.11), we get from

Theorem 1.7 in [18] that Gα belong to H◦
2 (S(δg, 1)). Hence, taking into

account properties (3.7)–(3.9), we have from Lemma 1.14 in [18] that
the functions Φ(m)∨

j ,Ψ(m)∨
j given by (3.5) belong to H̃∨

2 (θ(m)
j− , θ

(m)
j+ ; S(δg+, 1)).

Then it follows from Theorem 1.15 in [18] that after the inverse Mellin
transform we get the solution

Φ(m)
j (zj) :=

∫ δ+i∞

δ−i∞
Φ(m)∨

j (γ)z−γ
j dγ,

Ψ(m)
j (zj) :=

∫ δ+i∞

δ−i∞
Ψ(m)∨

j (γ)z−γ
j dγ, δ ∈ (δg+, 1) (3.10)

that meet the a priori condition (2.12) for δ̃0 = δg+. Thus the solution
looked for is obtained and it is unique.

4. Stress asymptotics

Let us investigate now the stress asymptotics as ρ → 0. Let δ− :=
min<γk>δg(<γk). It follows from the membership Gα ∈ H◦

2 (S(δg, 1)) to-
gether with Lemma 1.6 and Remark 1.5 in [18], that Gα(γ) is uniformly
bounded in any closed strip S′ ⊂ S(δg, 1). Then, taking into account es-
timates (3.7)–(3.9), we may shift, as usual (see e.g. [1]), the integration
path in (3.10) to the left into the strip S(δg, δ−), calculating the residues
of the integrands at zeros γk of the function ∆(γ) in the strip S(δ−, δ+).
Thus, using representations (3.6) for the residue calculations, we get
the asymptotics for the Kolosov-Muskhelishvili potentials:

Φ(m)
j (zj) =

∑

δg<<γk<1

z−γk
j

Nk∑

n=1

Pkn−1∑

p=0

Kknp

p∑

q=0

1
q!

lnq(
1
zj

)φ(n,p−q)
4m−4+j,k

+ Φ(m)
∗j (zj), (4.1)

Ψ(m)
j (zj) =

∑

δg<<γk<1

z−γk
j

Nk∑

n=1

Pkn−1∑

p=0

Kknp

p∑

q=0

1
q!

lnq(
1
zj

)φ(n,p−q)
4m−2+j,k

+ Ψ(m)
∗j (zj), (4.2)
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Kknp =
Pkn−p−1∑

v=0

4M∗∑

β=1

χ
(n,Pkn−v−p−1)
βk G(v)

βk , G(v)
βk :=

1
v!

dv

dγv
Gβ(γ)

∣∣∣∣
γ=γk

.

(4.3)
The remainder terms Φ(m)

∗j (zj), Ψ(m)
∗j (zj) have form (3.10) for δ ∈

(δg, δ−) and belong to H2(δg, δ−; W (m)
j ) (see Theorem 1.15 in [18]).

Hence by Lemma 1.10 in [18], for any W ′
j ⊂ W

(m)
j and any [δ′0, δ′∞] ⊂

(δg, δ−) there is a parameter M̃(θ̃(m)
j− , θ̃

(m)
j+ ; δ′0, δ′∞) < ∞ such that

|Φ(m)
∗j (zj)|, |Ψ(m)

∗j (zj)| ≤ M̃ |zj |−δ, {zj , δ} ∈ W ′
j × [δ′0, δ

′
∞]. (4.4)

Substituting then (4.1)–(4.4) in (2.10), we obtain the stress asymp-
totics:

σ
(m)
αβ (ρ, θ) =

∑

δg<<γk<1

ρ−γk

Nk∑

n=1

Pkn−1∑

p=0

Kknp

p∑

q=0

lnq(
1
ρ
)F (m)

αβkn,p−q(θ)

+ σ
(m)
∗αβ(ρ, θ), |σ(m)

∗αβ(ρ, θ)| < M∗ρ−δg−ε, (4.5)

∀ ε ∈ (0, δ− − δg), {ρ, θ} ∈ W ′ ⊂ W (m), M∗(ε; W ′) < ∞.

The parameters Nk and Pkn in (4.1)–(4.5) were presented above. The
stress intensity factors Kknp depend on the right-hand sides of the
boundary conditions, and they are explicitly expressed by (4.3) for
a junction of infinite wedge-shaped plates (for more arbitrary plate
geometry such dependence is more complicated and usually is obtained
by solving the complete boundary value problem). For each γk, the
number of stress intensity factors Kknp is equal to

∑Nk
n=1 Pkn = N◦

k , i.e.,
to the multiplicity of the zero of the determinant ∆(γ). The functions
F

(m)
αβkn,p−q(θ) are infinitely smooth and can be written explicitly. For

example,

F
(m)
ρρkn,p−q(θ) :=

1
2

2∑

j=1

e−iγkθj

p−q∑

w=0

1
(p− q − w)!

(−iθj)p−q−w

×
[
(2 + γk)φ

(nw)
4m−4+j,k + (1− δ0w)φ(n,w−1)

4m−4+j,k − e2iθjφ
(nw)
4m−2+j,k

]

for σ
(m)
ρρ , where δ0w is the Kronecker delta and the functions φ

(nw)
αk were

described above.
One can see from (4.5) that if δg < 0, particularly, if gi(ρ), dfi(ρ)/dρ

= O(ρε), ε > 0, as ρ → 0, then the stress singularities are determined
by the zeros γk of the determinant ∆(γ) of the matrix Bαβ(γ) in the
strip 0 ≤ <γ < 1. When there are no zeros there, stresses and strains
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are bounded (in any wedge internal to W (m)), and they may be singular
in the opposite case.

So far, we considered the problem for an infinite wedge-shaped
plate junction. By means of the cut-off function technique, one can
prove analogous to [1]– [4], that the asymptotic representation (4.5)
holds also for junctions of arbitrary shape plates, having the same
wedge-shaped local geometry near the singular point. The only differ-
ence in comparison with the infinite wedge-shaped plates case is that
the stress intensity factors Kknp can not be calculated explicitly by
formula (4.3) and depends on loads in a more complicated manner. Let
us give a sketch of the proof.

Let a solution to the problem for an arbitrary junction exist such
that the displacements u

(m)
i belong to the Sobolev space W2

1 in any
finite domain, i.e., the solution possesses a finite elastic energy there.
Let us choose a sufficiently small radius R > 0 near the singular point
such that the plate edges are straight and the boundary loads gj(ρ),
dfj(ρ)/dρ belong to L̂2(δg, 1), δg < 1, on the interval 0 < ρ < R.
Let η(ρ) ∈ C∞ be a cut-off function such that η(ρ) = {1, 0 ≤ ρ ≤
R/2; 0, ρ > R}. Then the functions ηu

(m)
i present a solution of the

auxiliary problem for the Lamé system in the corresponding infinite
junction: with mass forces f

(m)
i being non-zero only at R/2 ≤ ρ ≤ R;

with right–hand sides of the boundary conditions being non-zero at
0 < ρ ≤ R, differing from the initial ones only at R/2 ≤ ρ ≤ R,
and belonging to L̂2(δg,∞). This solution belongs to W2

1 in the whole
wedges W (m).

We look for a solution of the same problem for the infinite junction
in the form v

(m)
i = ṽ

(m)
i + V

(m)
i . Here V

(m)
i is the volume poten-

tial (for f
(m)
i ), whose kernel is the Green function of the problem for

the half plane that boundary is directed along one of the edges of
W (m) with the zero displacements at this boundary. Then ṽ

(m)
i , m =

1...M∗, satisfy the homogeneous Lamé system and the boundary condi-
tions with right-hand sides g̃j(ρ), df̃j(ρ)/dρ ∈ L̂2(δg0, 2), where δg0 :=
max(δg, 0). Solving the problem for ṽ

(m)
i as described in the previous

sections we obtain the solution with asymptotics (4.5) and such that
its complex potentials belong not only to H̃2(δg0+, 1;W (m)

j ) but also to

H̃2(δg0+, δ1+; W (m)
j ) ⊂ H̃2(δg0+, 1;W (m)

j ), where δg0+ := max(δg+, 0),
δ1+ := min<γk>1(<γk). The last membership holds since either the
point γ = 1 is not the zero of ∆(γ) or it is the zero but K1np = 0 for
γ1 = 1 (what follows from satisfying the solvability conditions for both
the original problem for u

(m)
i and the auxiliary problem for ṽ

(m)
i ). It
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follows from that membership (see Lemmas 1.17, 1.18 in [18]) that ṽ
(m)
i

belong to the Sobolev spaceW2
1 in the whole infinite wedges W (m). The

volume potential and, consequently, v
(m)
i have the same property.

Since the uniqueness (in stresses) takes place in this space, the
solutions ηu

(m)
i (which also belong to W2

1 ) and v
(m)
i may differ only by

a rigid body displacement. Thus the stress asymptotics for an arbitrary
and the corresponding infinite junctions coincide at least on the singular
interval 0 < γk < 1. Considering more carefully the asymptotics of
the volume potential V

(m)
i and of its boundary traces as ρ → 0, it is

possible to show that the asymptotics coincides for the whole interval
δg < γk < 1.

Taking into account of the plate bending rigidity will change, gen-
erally speaking, the stress asymptotics, but this change will seemingly
concern only a small vicinity of the singular point having a dimension
of the order of the plate thickness. At a distance great with respect to
the thickness, the membrane asymptotics presented here holds.

By use of the methods of [11]–[12], the investigation techniques
given in this paper can be extended to the study of the stress singu-
larities in thin intersecting anisotropic plates. Applying the methods
of [14]–[15] one can investigate the stress singularities also in thin
hereditarily-elastic (visco-elastic) plate junctions.

5. Numerical examples

The singularity powers γk, that is, the zeros of the determinant ∆(γ),
were evaluated in the strip S(0, 1) for different plate junctions using the
Müller (complex parabola) method, which calculates real and complex
roots of a complex function. The numerical results for the V- and
T-shaped junctions are given in Figure 2-9, representing the depen-
dence of γk on the angle θ(2) at some fixed angles θ(1) at different
values of the rigidity parameter G = G(21) = (H(2)µ(2))/(H(1)µ(1)) for
ν(1) = ν(2) = 0·3. (The case θ(3) = θ(2), H(3)µ(3) = H(2)µ(2), ν(3) = ν(2)

is presented for the T-junction).
There exist only real roots γk in the strip 0 < <γ < 1 for the anal-

ysed V-shaped junctions. For the T-shaped junctions, complex roots
occur for some considered parameters; the real parts of these roots are
presented for such cases by dotted lines on the figures.
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The case G = 0·001 coincides with the limiting case G → 0 almost
at all points. The singularity powers for this limiting case correspond to
the union of the singularity powers for two separate problems. For the
V-shaped junction, the first is the problem for the W (1) plate with some
tractions prescribed on both boundaries Γ(1) and Γ(3) (it generates no
singularities for the parameters considered), the second is the problem
for the W (2) plate with some tractions prescribed on the boundary
Γ(2) and some normal traction and tangent displacement prescribed on
the boundary Γ(3) (the singularity powers are independent of θ(1)). For
the T-shaped junction, the first is also the problem for the W (1) plate
with some tractions prescribed on both boundaries Γ(1) and Γ(4) (it
generates no singularities for the parameters considered), the second
is the problem for the joined W (2) ∪ W (3) plate with some tractions
prescribed on both boundaries Γ(2) and Γ(3) and, in addition, with some
tangent displacement and with the continuity conditions for the normal
traction and normal displacement prescribed on the line Γ(4), i.e. with
the conditions of thin inextensible fiber on this line, (the singularity
powers are independent of θ(1)).

The case G = 1000 coincides with the limiting case G →∞ almost
at all points. The singularity powers for this limiting case correspond to
the union of the singularity powers for two separate problems. For the
V-shaped junction, the first is the problem for the W (1) plate with some
tractions prescribed on the boundary Γ(1) and some normal traction
and tangent displacement prescribed on the boundary Γ(3) (the singu-
larity powers are independent of θ(2)), the second is the problem for the
W (2) plate with some tractions prescribed on both boundaries Γ(2) and
Γ(3) (it generates no singularities for the parameters considered). For
the T-shaped junction, the first is also the problem for the W (1) plate
with some tractions prescribed on the boundary Γ(1) and some normal
traction and tangent displacement prescribed on the boundary Γ(4) (the
singularity powers are independent of θ(2)), the second is the problem
for the joined W (2) ∪ W (3) plate with some tractions prescribed on
both boundaries Γ(2) and Γ(3) (the singularity powers are independent
of θ(1)).

There is also a curve for the T-shaped junction that is independent
of the rigidity parameter G and the angle θ(1). It corresponds to the
singularity powers generated by the antisymmetric deformation mode
for the joined W (2)∪W (3) plate under the action of some antisymmetric
tractions prescribed on both boundaries Γ(2) and Γ(3).

One can see from these pictures that there are critical values θ(2)?

of the angle θ(2) that are boundaries between the parametric zones with
and without the singularities γk > 0. It is possible to determine the
dependence of θ(2)? on G. These dependencies are presented in Figure
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Figure 10. Dependence of θ(2)? on G for different θ(1) in the V-shaped junction

10 and 11 for the V- and T-junctions at some fixed angles θ(1). To
show the half-infinite interval 0 < G < ∞ in the figures, the mapping
G̃ = 2G/(1 + G) was used, and the G-axis is linear with respect to G̃.

If a point {G, θ(2)} lies above the corresponding critical curve for
an angle θ(1), then a singularity γk > 0 arise at these parameters. If
this point lies below the curve, the stress singularity is absent.

Note that for the V-junction, θ(2)? → θ?
V 0 as G → 0 for all θ(1). The

angle θ?
V 0 ≈ 128·7◦ is the solution of the equation 2θ = tan(2θ) and is

the corresponding critical value for the plate W (2) with some tractions
prescribed on the boundary Γ(2) and some normal traction and tangent
displacement prescribed on the boundary Γ(3). For θ(1) > θ?

V 0, the
critical angle θ(2)? increases monotonically with growing G, reaching
180◦ at G = ∞. For θ(1) < θ?

V 0, the critical angle θ(2)? decreases
monotonically with growing G, reaching zero at G = ∞.

For the T-junction, θ(2)? → θ?
T0 as G → 0 for all θ(1). The angle

θ?
T0 = arcsin(

√
(1 + κ)/4) ≈ 61·3◦ is the corresponding critical value

for the joined plate W (2)∪W (3) with some tractions prescribed on both
boundaries Γ(2) and Γ(3) and with the conditions of thin inextensible
fiber prescribed on the line Γ(4). For θ(1) > θ?

V 0, the critical angle θ(2)?

increases monotonically with growing G reaching 90◦ at G = ∞. For
θ(1) < θ?

V 0, the critical angle θ(2)? decreases monotonically with growing
G, reaching zero at G = ∞.



Stress singularity analysis in space junctions of thin plates 21

0

15

30

45

60

75

90

0 1
16

1
8

1
4

1
2 1 2 4 8 16 ∞

θ(2)

G

θ(1)=0◦

θ(1)=30◦

θ(1)=60◦

61.3

θ(1)=90◦
θ(1)=120◦

θ(1)=128.7◦
θ(1)=135◦

θ(1)=150◦

θ(1)=165◦

θ(1)=180◦

w
-

]

^

o Y

o

=
=

Á

~

Figure 11. Dependence of θ(2)? = θ(3)? on G for different θ(1) in the T-shaped

junction

Thus, analysing these curves, one can give some recommendations
concerning plate junction optimization to avoid the stress singularities
in singular points.

6. Conclusion

The presented analysis shows:

1. The problem for a space junction of thin elastic wage-shaped plates
can be reduced to a boundary value problem for a system of partial
differential equations of the plane elasticity with non-traditional
transmission conditions. A general solution of this system can be ex-
pressed in terms of the Kolosov-Muskhelishvili complex potentials.
This reduces the problem to a boundary value/transmission prob-
lem for holomorphic functions belonging to corresponding weighted
Hardy type classes.

2. Application of the Mellin transforms and the classes properties
allows to obtain singular stress asymptotics near the joint apex.
The stress singularity powers (exponents) are zeros of an explicitly
written determinant, whose order equals to the doubled number of
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plates involved in the junction. It is pointed out that the analysis
results hold also for more arbitrary junctions.

3. The numerical examples of the stress singularity powers dependence
on elastic parameters and geometry for the V- and T-junctions
are given. They show the feasibility of the analysis and allow to
calculate the stress singularity powers to use them in general nu-
merical methods, e.g., by introducing special singular elements in
the Finite Element or the Boundary Element Method. Another
possible application of the results is a special choice of the junction
elastic and/or geometrical parameters to avoid the stress singularity
in the junction model and the stress concentration in a real plate
junction.
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