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Abstract

Finite-dimensional perturbing operators are constructed using some incomplete
information about eigen-solutions of an original and/or adjoint generalized Fred-
holm operator equation (with zero index). Adding such perturbing operator to
the original one reduces the eigen-space dimension and can, particularly, lead to
an unconditionally and uniquely solvable perturbed equation. For the second kind
Fredholm operators, the perturbing operators are analysed such that the spectrum
points for an original and the perturbed operator coincide except a spectrum point
considered, which can be removed for the perturbed operator. A relation between
resolvents of original and perturbed operators is obtained. Effective procedures are
described for calculation of the undetermined constants in the right-hand side of
an operator equation for the case when these constants must be chosen to satisfy
the solvability conditions not written explicitly. Implementation of the methods is
illustrated on a boundary integral equation of elasticity.
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1. Introduction

Boundary integral equations (BIE) for boundary value problems of mathematical physics
are often not unconditionally and uniquely solvable. As a consequence, the linear algebraic
equation system, which is a discrete analogue of the corresponding boundary integral equa-
tion, is ill-conditioned. To avoid this difficulty, it is possible to add a finite-dimensional
operator to an original boundary integral equation and to obtain an unconditionally and
uniquely solvable perturbed BIE. This equation provides a solution of the original BIE
if its right-hand side satisfies the original solvability condition. As heuristic, this ap-
proach was used by D.I.Sherman (see [1]) for some integral equations of two-dimensional
elasticity.
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Let us consider a direct BIE of three-dimensional isotropic homogeneous elasticity
for illustration. We suppose summation in repeating indices from 1 to 3 unless another
range is explicitly given. It is well known (see, e.g., [2]) that the boundary value problem
of elasticity in a domain D with prescribed tractions t; at the boundary S and volume
forces f; in the domain D can be reduced by the direct approach to the following BIE
(for A = —1)

ui(§) — )‘[wijuj](f) = ®;(¢), [wijuj](f) = 2/Sﬂj(§7n)uj(n)d5(n) (1)

@,(6) =2 [ U(&mt,(dS(n) +2 [ Uy(&mfy(ndD()

The kernel U;;(€,n) is the Kelvin fundamental solution, 7;;(&,n) is its traction vector, and
—%Eu is the elastic double layer potential. It is known (see, e.g., [3, 4, 5]) that, for a
bounded domain D there are no singular points of the resolvent of W in the closed circle
|A] <1 except the point A = —1 being a simple pole of the resolvent, dim ker(/ + W )=6,
the eigen-solutions of homogeneous BIE (1) at A = —1 are given by the six rigid body

motions o) (34m)

ui (5) = 6im7 ui (6) = Eijm€j7 7;7‘77 m = 17 ceey 3a (2)
where €;j,, is the Levi-Civita permutation tensor. Inhomogeneous BIE (1) is solvable only
if its right hand side satisfies solvability conditions

/S<I>,;(§):%;*(m)(§)d5 —0, m=1,..6, 3)

where the functions :%j o (&) are generally not known.

For mechanically meaningful problems with zero total force and moments applied to
the domain D and its boundary, conditions (3) are always fulfilled. However these condi-
tions may be violated in numerical solving because of discretization and round-off errors.
To avoid this difficulty, it is usual in the numerical practice to fix displacements at several
points, that is, to replace the given problem with prescribed tractions by a mixed prob-
lem. This means that the non-zero total force and moment, arising due to discretization
errors, are transferred to these points and may cause an increased error there. Moreover,
such replacement changes the BIE (1) spectral properties and can prevent application of
iterative methods for its solution. Another possibility to eliminate the instability from
discretization and round-off errors and improve the BIE spectral properties, is to perturb
(1) by a finite-dimensional operator and to solve the perturbed equation. The second
possibility will be described at the end of the paper.

For operator equations of the first kind in Banach spaces, the general principle of the
choice of finite-dimensional perturbing operators can be based on the generalized Schmidt
lemma, which was proved for a particular case in [6] (see also [7]). If a second-kind equation
is considered, there is a sense to chose a perturbing operator so that spectrum points after
the perturbation are not changed excepting one spectrum point at which the equation is
to be solved. The perturbed operator spectrum is determined by the original operator
spectrum and the Weinstein-Aronszajn determinant (see [8]). This determinant can not
be always calculated. In [9], §3, such perturbed operators was studied for operators in



Banach spaces using the knowledge of all eigen-solutions of the original or of the adjoint
equation.

A development of the study of finite-dimensional perturbed operators is presented
here. Using these results, one can remove a spectrum point of an operator equation and,
if it is necessary, construct a choice procedure for unknown constants in the right-hand
side of the equation. By this procedure, it is possible to make the original equation
solvable.

Let By and By be Banach spaces, Bf and Bj be adjoined (dual) spaces of bounded
linear functionals defined on By and Bs respectively. Let A be a linear bounded operator
acting from By to By, A: By — Bs.

Consider an operator equation

Ar =y, (4)

where = € By, y € By. An adjoined equation to (4) is an equation
At =y, (5)

where A* : B — B}, 2* € B}, y* € Bf. Equations (4) of the form
(L—Adp)x =y (6)

(second-kind operator equations) are also studied in this paper. Here A, : B — B; [ is
the identity operator; z,y € B; X is a complex parameter. The equation

(L = MAG)z* =y (7)

is an adjoint equation to (6), where Aj: B* — B*; z*,y* € B*.
If elements z; € E'(i = 1,...,n) are a basis of an n-dimensional manifold F, we write
E = span{z;} ;.

Hypothesis 1 Suppose hereafter, that A is defined in the whole space By and its range
R(A) belongs to By and is closed. Suppose also that A : By — By is a Fredholm (with zero

index) operator, that is, dimker A = dimker A* = n < co, where ker A = span{x;}"_,
C By, ker A" = span{:cl)cgk ", C Bj are eigen-spaces (for the eigen-value zero).

It is well known (see, e.g., [7, 8]) that under Hypothesis 1, equation (4) is solvable for
an element y € By iff

o

zi(y) =0 (1=1,..,n) (8)

for the functionals 2* : ker A* = span{z*}7_,.

2. Finite-dimensional perturbations for Fredholm
operator equations of the first kind

Consider equation (4) and the equation perturbed by a finite-dimensional operator

(A—A))zr =y, Ay = Z%%(@a (9)
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where v; belong to B, and functionals ¢; belong to B}. The equation
k
(A" =AD" =y", Al =) 2 (i) (10)
i=1

is an adjoint equation to (9).
The following generalized Schmidt lemma holds.

Lemma 2 Let Hypothesis 1 be satisfied, k = n, and p;, ¥; (i = 1,...,n) be elements of
B} and By respectively such that

det[pi(7,)] 0, det[z;()] #0 (6,5 =1,...,n). (11)

Then:

(1) the operator A — A, is a Fredholm operator with zero index and equation (9) is
uniquely and unconditionally solvable in By for any y € By,

(2) if y € By satisfies solvability conditions (8) of equation (4), then a solution x of
equation (9) is a solution of (4) such that

wi(x) =0 (i=1,..k). (12)

Inversely, if x is a solution of (9) such that conditions (12) are satisfied, then conditions
(8) are satisfied for the right-hand side y of equation (9) and x is a solution of equation
(4) with the same right-hand side y.

The proof of this lemma coincides, in fact, with the proof, which is given in [6, §21],
(see also [7, section 21.4]) for the particular case: @;(z;) = (v;) = 0y (here d;; is
the Kronecker symbol). A statement close to Lemma 2 includes also Lemma 4.8.23 in
[10]. The lemma enables us to remove the spectrum point of equation (4) when some
information about solutions of homogeneous equations (4) and (5) is available sufficient
only for checking conditions (11).

Corollary 3 Under conditions of Lemma 2, equations
(A—A)z; =, (A" — ANzl =g, i=1,..,n (13)

are unconditionally and umquely solvable and their solutions are such that span{z;}?_,
=ker A, ;(2;) = —6;;; span{z}}7?_ =ker A", 27 (¢;) = —0yj.

Really, let Z; be a solution of first equation (13). By Lemma 2 this equation is
unconditionally and uniquely solvable. Let us act on the equation by the functionals
JE such that ker A* = span{:l: _, and obtain a linear algebraic system with respect to
gpj( ;) for each fixed i:

=D T W)ei (@) = () (p=1,.m).
7=1
By second condition (11), this system is uniquely solvable and we can obtain by direct

substituting that its solution is ¢;(#;) = —d;;. After substituting this relation back into

4



(13), we obtain that Az; = 0, that is, 2; € ker A. Finally, the linear independence of
Z; (i =1,...,n) follows from the linear independence of the right-hand sides 1; in (13).

For the second equation (13), the proof is analogous. 0
This corollary allows to find eigen-solutions of original operators by solving a uniquely

solvable perturbed equation.

Lemma 4 Let Hypothesis 1 be satisfied and p;, 1; (i = 1,....;k < n) be elements of By
and By respectively such that

det[bim] # 0, det[b},] # 0 (m,i=1,...,k), (14)

bim 1= Spi(i%m)a Vi = %Tn(l/}z) (15)

Then:
(1) the operator A — A, is a Fredholm operator with zero index,

dimker(A — A;) = dimker(A™ — A]) =n — k;

ker(A — A;) = span{Z;};_; ., C ker A,
Ker(A” — A7) = span{ 1y, © ker A"

where

k k
Ty =x; — Z T > b5y p(T), I = — ij Dbt (), (16)

(2) If an element y € By salisfies solvability conditions (8) of equation (4), then
equation (9) is also solvable for this y and any its solution x is a solution of (4) satisfying
(12). Inversely, if equation (9) is solvable for an element y € By and its solution x
satisfies (12), then conditions (8) are also satisfied for y, and x is a solution of equation
(4) with the same right-hand side y.

Proof. The operator A— A, is a Fredholm operator since A, is a finite-dimensional oper-
ator and A is a Fredholm operator. Let = be a solution of the equation
(A— A,)Z = 0. Acting on this equation by the functionals %}‘ (j = 1,...,k), we ob-
tain a linear algebraic system with respect to o;(Z;),

k
=Y B =0, j=1,..k (17)
=1

By (14) it has only a trivial solution
@i(2) =0 (18)

and, consequently, A;Z = 0 and Z is a solution of original homogeneous equation (4), that

1S
n

=30 ;. (19)

J=1
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Substituting (19) into (18) and taking into account the definition of b,,;, we obtain,
wac + Z C,pi(T;) = (i=1,..k).
j=k+1

By (14) the matrix b;; (¢, = 1,...,k) is a regular matrix. Moving the second sum into
the right-hand side, we solve the system with respect to C; (j =1,....k):

Z Z C’lgpp j=1,...k.

i=k+1

Substituting this expressions into (19), we have

where Z; are given in (16).
We shall show that (A — A;)Z; = 0. Actually, AZ; = 0, as Z; consists of %je ker A,
and

k
Az, = Z%Sﬁq{%i
q=1

Mw EM?T

Pq qub]p 9017 i) =0.

% 2 b
= Zl 1/’q90q(§z’) Z

1

q

Moreover, the elements Z; (i = k+ 1, ...,n) are linearly independent since each of them is
the sum of z; and the combination from %j (j =1,...,k). Hence, there are exactly n — k
independent solutions of the equation (A — A,)z = 0.

By the same reasoning for the equation (A" — Aj)z* = 0, we obtain second formula
(16). The first part of the lemma is proved.

Let now y satisfy (8), then it follows from (16) that
Ti(y)=0 (i=k+1,..,n) (20)

and, hence, equation (9) is solvable with this right-hand side. As above, let us act on
equation (9) by the functionals %;'f, j =1,..., k. Taking into account (8), we again obtain
system (17) with respect to ¢;(z). The system has only trivial solution (12) and, hence,
A,;x =0, that is, any solution of (9) is also solution of 4.

Conversely, if the solvability conditions of equation (9) are satisfied and its solution
satisfies (12), then A,z = 0 and, hence, x satisfies equation (4) with the same right-hand
side y. Consequently, this right-hand side y € R(A) and, hence, it satisfies (8). The
second part of Lemma 4 is proved. 0

Lemma 4 enables to reduce the eigen-space dimension of equation (4). As in Lemma
2, we are based on the rather poor information about eigen-solutions of homogeneous
equations (4) and (5). This information is to be sufficient only to check conditions (14).

We have obvious corollaries from the proved Lemma.



Corollary 5 Let the conditions of Lemma 4 be satisfied, then ¢, (Z;) = 0, Zi(1,) =
0 (p=1,. .k, it =k+1,...n). If gop(%i) =0(p=1,..,k;i =k+1,..,n), then
7 = (1t =k+1,..,n). Similarly, if %j(wp) =0(p=1.,ki=k+1,..,n), then
Fr=ar (i=k41,..,n)

Corollary 6 Let the conditions of Lemma 4 be satisfied. If by, = —0im (i, m = 1,...,k),

then
k

B =2+ T () (i=k+1,..,n) (21)
7=1

Similarly, if b%,, = —0im (i, m =1,...,k), then
k
Fp=ap 4y ;) i=k+1,..n (22)

An analogue of Corollary 3 is

Corollary 7 Let the conditions of Lemma 4 be satisfied. Then solutions x; of the equa-
tions
(A=A =1, i=1,..k (23)
are such that o;(&;) = —0;; and ker A = span{{@;}F_,, {Z:}1pi1}, where {Z;}1, , are
solutions of homogeneous equation (9).
Similarly, solutions z} of the equations

(A" —ADzr =, i=1,...,k
are such that }(1;) = —0;; and ker A* = span{{Z;}F_,, {Z;}' i1 }}, where {Z}7, ., are

solutions of the homogeneous equation (10).

Proof. Actually, let us consider, for example, equations (23). It follows from (16) that
To(Yi) = Zif () Zb* 'T5(1p) =

k
= — 2% B =0 (i=1,..k q=k+1,..n)

and hence equations (23) are solvable. It is taken into account here that %;‘ (i) = bj;.

Let Z; be a solution of equation (23). Let us act on (23) by the functionals %; (p=
1,...,k) and obtain a linear algebraic equation system with respect to ¢;(%;) for every
fixed i,

k
3T W)ei(E) = T5)  (p=1,.k).
7=1

Because of second condition (14), this system is uniquely solvable and the direct
substitution shows that ¢;(z;) = —d;; (4,7 = 1, ..., k). Substituting this relation into (23),
we obtain that Az; = 0, that is, Z; € ker A. It follows from second condition (14) that 1;
are linearly independent. Then, by (23), there is no linear combination of &; belonging
to ker(A — A,). Hence, all elements of the set {z;}¥ , U {Z;},,, are linear independent
and each of this elements belongs to ker A. Corollary 7 is proved for z;. The proof for z}
is similar. ]



3. Finite-dimensional perturbations for operator equa-
tions of the second kind

Let an operator A : B — B be written in the form of a second-kind operator A = I —\A,.
Equation (4) is transformed for this case into (6). We write its perturbed counterpart in
the form

L= MAy+Ap)lr =y, Apz:= Z:wisoi(x), (24)

where 1;, ¢; are elements of B and B* accordingly. Denote by R()), R, (\) resolvents of
the operators A, and (4y + Ay, ), respectively, that is

R —24y) =1, (I = Ay)R(A) = I, (25)
R (N[ = M4+ 4g)] =1, L= AMAg+An) R, (V) =1 (26)

at the A—plane points, where these resolvents exist. To express R, through R, let us act
by the operator R()\) on first equation (26) from the right and on the second equation
from the left, and we get

R, —R=A Z(E+¢j)(ﬁ*¢j)a R, —R=A Z(E%)(Ei%‘)- (27)

Acting now by the functionals ¢; on second equation (27) we obtain a linear algebraic
equation system to find R* ¢;:

k
Z[ — Api(BYy)| Rip; = R (28)

7j=1

Let
W(A) = det[d;; — Api(Ri;)] (29)

be the number matrix determinant of this system (Weinstein-Aronszajn determinant) and
d;; be its algebraic complements. Solving (28) and substituting the expression for R’ ¢;

n (27), we obtain
ko k

R,(\) = [1 FRpAR Zl Zl dijtojpiR) . (30)
? J
Hence the singular points set of the resolvent operator to A, + A, belongs to the
union of the singular points of the resolvent operator to A, and of the determinant W (\)
Zeros.
Using Lemma 2 or directly analysing representation (30) taking into account the re-
solvent operator expansion in the neighborhood of the pole [11], we get

Lemma 8 The singular point set of the resolvent operator R, belongs to the union of
the resolvent operator R singular points and of determinant (29) zeros. Suppose X = g
is a finite order pole of the resolvent R(\), k = n = dimker(I — M\Ay), span{w;}", =
ker(I — Mody), span{z:}"_, = ker(I — NoA%), and conditions (11) are satisfied. Then A
is a regular point of the resolvent R, (N).



The following statement has been also proved (see [8], Theorem 1V.6.2).

Lemma 9 The function W (X) from (29) is meromorphic in any domain of the A—plane
consisting of reqular points of the resolvent R and of isolated eigen-values of the operator
Ay. For every Ny in such domain, the eigen-value algebraic multiplicity (the dimension of
the subspace of eigen- and associated elements) of the operator Ay+ Ay, is equal to the sum
of the operator A, eigen-value algebraic multiplicity and of multiplicity of the determinant
W zero at the point \g. The multiplicity of W(\) zero at a pole point of W () is taken
as equal to its pole multiplicity with the minus sign.

Thus, if one can calculate or estimate zeros and poles of the determinant W, then
one can analyse the singular points of the resolvent operator R, (\). Consider some cases
when the determinant W can be calculated explicitly.

Let us try to choose the elements ¢;, ¢; so that the operator R, is regular at the point
A = )Xo, where the operator R has a pole and on the other hand R, does not acquire
additional (in comparison with R) singular points in a finite part of the A—plane.

Theorem 10 Let an operator A : B — B, Ao be a simple pole of the resolvent R(\)
for equation (6); dimker(I — X\gAy) = n; span{x;}"_, = ker(I — NA,), span{z:}r, =
ker(I — \Ag) and

Yi = 57:, %f(%’) = _51']'/)\0 (4,5 =1,....k) (31)

or
Vi =Ti,  0i(T5) = =i/ N (5,5 =1,...k) (32)

and let k =n.

Then

(1). Singular points of the resolvent R (X) for equation (24) coincide with singular
points of the resolvent R(X\) for equation (6) and have the same algebraic multiplicities if
these points are poles, excluding the point X\ = o, where the resolvent R (\) is regular.

(2). If conditions (8) are satisfied, then a solution x of equation (24) at X = Xg is a
solution of equation (6) and satisfies (12). Inversely, if x is a solution of equation (24) at
A = X\ such that conditions (12) are satisfied, then conditions (8) are true for the right-
hand side y of equation (24) and x is a solution of equation (6) with the same right-hand
side .

(3). Under condition (31),

RN =B (M = Mo(do =N Ag,  Bi(A) = RO + Ay]. (33)
Under condition (32),
ROA) = [I = Mo(Xo = N An] B (V). By (V) = [1 + Mg |B(N). (34)

Proof. Suppose, for example, p; = zf. Then W(\) = det[d;; — Az} (Ry);)]. Let af :=
Z*R(\) = R*(\)zr. By the definition of the resolvent, (I — AA%)az? = 2 and if \ is a
resolvent regular point, then the solution of this equation is unique. Let us seek it in the



form z} = C’s%;" . Taking into account that Aa%j = %:‘ /Ao, since :%:‘ is an eigen-solution of
(7) at X = Ao, we obtain that C' = A\g/(Ag — A). Hence,
TR = Moo — A1 (35)

)

and
W(A) = det[d;; — Mo(Ao — N) 7125 (1))

If 7%(¢);) = —d;;/ Ao according to (31), then W(A) = A(Xo — A)~™ and hence W()) has
no zeros in a finite part of the A-plane. Since )q is a simple pole of R(\), then (6) and,
hence, (24) are Fredholm equations at A = A\ (see, for example, [8]). Let us prove that
det[g;(7;)] = det[z%(7;)] # 0. Actually, otherwise there exist constants C; (i = 1,...,n)
such that 9%}*(%) =0 for := 3", C; x; for j = 1,...,n, that is, v€ R(I — \gA,), and then
there exists an associated element 7 : (I — M\gAy)Z —2. This contradicts the fact that X
is a resolvent simple pole [8].

Using Lemma 2, we obtain parts (1) and (2) under conditions (31).

Taking into account that R*p; = Ao(Ao — A) ', owing to (35), we get first relation
(33) from first relation (27). Let find 4f = R*a}. According to the resolvent definition,
(I — MA; — MA%)@* = 2*. Using (31) one can directly verify that &* = =¥ is the unique
solution of this equation at any regular point A of the resolvent R, . That is R’ (A)¢; = ¢;.
Substituting this relation in second equation (27), we obtain second relation (33). This
completes the proof of part (3) of the theorem under condition (31).

The theorem statements for the case (32) are proved similarly. d

This theorem enables to remove a spectrum point possessing the information only
about the eigen-solutions of the original equation or its conjugate equation. (Note that
the classical Schmidt lemma requires us to know both of these eigen-sets for such spectral
properties improvement.) Moreover, if a singular resolvent point A is removed by using
this theorem and it is necessary to solve the equation at a regular point A, then, according
to the third part of the theorem, one can express a solution of the original equation for
this value A in terms of the perturbed equation solution.

Note that statements similar to parts (1) and (2) of Theorem 10 for Hilbert spaces
were presented in [12] and for Banach spaces in [9, §3].

Consider now an analogue of Lemma 4 for a second-kind equation, that is, a general-
ization of Theorem 10 for the case when the perturbing operator dimension is less then
the eigen-subspace dimension for the operator A, at A = .

Theorem 11 Let all hypotheses of Theorem 10 be fulfilled excluding the condition k = n,
which is replaced by the condition k < n. Then

(1). Singular points of the resolvent R_(\) for equation (24) coincide with singular
points of the resolvent R(\) for equation (6). The singular points have there the same
algebraic multiplicities if these points are poles, excluding the point X = )Xo, where the
resolvent R, (\) has a simple pole and

dimker[I — X\g(Ay + Ag1)] = dimker[] — \g(A5 + A5)] =n — k,
ker[I — Xo(Ag + An)] = span{z;}i_, ;1 C ker(I — XoAy),
ketll = Mo(A3 + Afy)] = span{F Feysy © er(l — ho).
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For the case (31), Z* are given by (22) and there exist k elements z;€ ker(I — Mo A,) (i =
1,....,k) such that det(byy,) # 0, by = )\O%f(soﬁm) (i,m =1,....k), and &; are given by the
first formula of (16). For the case (32), &; are given by (21) and there exist k elements
zr € ker(I — NAy) (i = 1,..., k) such that det(b%,) # 0, b, = NTH(Tp) (i,m =1, ..., k)
and &} are given by the second formula of (16).

(2) If solvability conditions (8) of equation (6) are satisfied, then equation (24) is
solvable at A = \g and any its solution x is a solution of (6) and satisfies (12). Inversely,
if equation (24) at X = Xg is solvable and its solution = satisfies (12), then conditions (8)
are satisfied for the right-hand side y of equation (24) and x is a solution of equation (6)
with this right-hand side y.

(3) Relationships (33) hold under condition (31) and relationships (34) hold under
condition (32).

Proof. Repeating the same reasoning as by proving Theorem 10, we obtain that
W) = AN — A7k

Moreover, in case (31), there exist k linearly independent elements ;€ ker( —
MoAy), i = 1,...,k, such that det[:%f(aosm)] # 0 (i,m = 1,...,k). Really, suppose this
is not the case and consider the determinant det[ain];,—1, Gim = %;"(%m) Then for
any k columns of the matrix there exists one column with a number m; such that
Uiy = Z];:z Clim,, © = 1,..., k. Subtracting the linear combination Z’;Z2 Chlim,, © =
1,...,n, from mq-th column, we arrive at the same value of determinant but for a ma-
trix that has zero elements at the mi-th column, a, = 0, i = 1,...,k. Repeating

ma
the process for another k columns not including the m;—th column, we arrive even-

tually at the determinant det|a;,|7,,—; = *det]ay,]},,—; of a matrix aj, such that
Wy = 0, @ = 1.k, p = 1,..,n =k + 1. Then (see, eg., [13, Section 1.6-5])

..........

column in the first determinant of the right hand side equals to zero. This means, there
exists a nonzero element Z:= > z;, such that 9%;(%) =0, 7 = 1,...,n, that is,
z€ R(I — XoAy), and then there exists an associated element 7 : (I — M\gA,)# ==. This
contradicts the fact that )¢ is a resolvent simple pole [8].

One can prove similarly that in the case (32), there exist elements ¥, € ker(I —
XoA%), m = 1,...,k such that det[z¥(z,,)] # 0 (i,m = 1,...,k). Thus we get that the
conditions of Lemma 4 are satisfied. Using Lemmas 2 — 4 and Corollary 6 we obtain parts
(1) and (2) of the theorem. Part (3) is proved in the same way as in Theorem 10. O

Using Corollary 5, we obtained from Theorem 11 the obvious

Corollary 12 Let the hypotheses of Theorem 11 be satisfied.

(1) Suppose for the case (31), Tp€ ker(I—XoAy) (m = k+1,....n) are linearly indepen-
dent elements such that %j(%m) = 0@G = 1,.,.kb, m = k + 1,.,n); then
ker[I — Ao(Ap + Agy)] = Span{%m}?@:k+l‘

(2) Suppose for the case (32), T*, € ker(I — NA%) (m =k+1,...,n) are linearly inde-
pendent elements such that :%f(%m) =0\ = 1,.,k,m = k+ 1,..,n); then
ker[I — Xo(Ag + Ajy)] = span{},} oy i1

Using Corollary 7 we obtain its analogue for second-kind equations.

11



Corollary 13 Let the hypotheses of Theorem 11 be satisfied. Then solutions Z; of the
equations

[ —Xo(Ag+ Ag)]Ti =i, 1=1,..k, (36)
are such that ¢;(2;) = —d;;/Xo and ker(I — XoAy) = span{{@;}t_,, {&;}7 .1}, where
{@:}7_ 111 are solutions of homogeneous equation (36). Similarly, solutions &} of the equa-
tions

[]_)‘O(AS_I_ASI)]:%: =i, =1k, (37)
are such that @(v;) = —0;/Ao and ker(I — NAy) = span{{z;}1_,, {Z;}{_ps1}, where
{@; 71 are solutions of homogeneous equation (37).

Consider now the case when the operator A,; contains the terms satisfying (31) as
well as the terms satisfying (32).

Theorem 14 Suppose the operator Ay : B — B, Xy be a simple pole of the resolvent
R(\) for equation (6), dimker(I — NAy) =n; ¢, € B, v, € B,i=1,..n, k=n, 0 <
t<mn,

o =1 (i=1,.,1), Y=, (j=t+1,..,n) (38)

(ﬂi(d]]‘) = _61']'//\0 (27] =1, ""n)’ (39)

¥ and T, are linear independent elements of ker(I — M\ A%) and ker(I — X A,) respectively.
Then statements (1) and (2) of Theorem 10 hold true and

R(\) = [I=Mo(ho = A Ag B (M = Mo(ho — A) 7 Agy
Bi(A) = [+ Ao RO + AAgy] (40)

where
n

t
A(hﬁ = ijxjv AO@ = Z TjPj, AOl = Aow +A0¢-
=1

j=t+1

o

Proof. First let us note that, because of (38)-(39), zi(z;) =0 fori =1,...t, j =

t+1,...,n, and the elements %j (1 =1,...,t) as well as the elements i’j (j=t+1,...,n) are
linearly independent. Consider the equation [I — Xg(4q + Agy )]z = y for which Theorem
11 with condition (31) and part 1 of Corollary 12 hold true. Hence, ker(I — A\A4,)) =
span{%j}?:k 41 for the operator Ay = Ay + Ay, Applying Theorem 10 to the equation
[I — NoAp)x =y, we conclude the proof. O

Using Corollary 3 we get its analogue for a second-kind operator.

Corollary 15 Let the hypotheses of Theorem 10 or 14 be satisfied, then the equations
[I - >‘0<AO +AOI)]‘%1 - wlﬁ [] - )‘O(AS + Agl)]i‘: =, 1=1,..,n (41)
are unconditionally and uniquely solvable and their solutions are such that

span{Z;}1_; = ker(I — AoAy), ©0i(Z;) = —6;5/Xo, and
span{aj }iy = ker(I — Ao Ap), &7 (¥5) = =035/ do-

12



4. On calculation of undetermined constants in the
equation right-hand side

Consider now Fredholm equation (4), where A : By — By, dimker A = dimker A" = n
and y = yo + X7_; Cy;, y; € Ba (j = 0,...,n). One should choose the constants C; such
that solvability conditions (8) of equation (4), will be satisfied, that is,

T (yo + > Ciy;) =0, i=1,..n, span{z:}™ = ker A, (42)

Jj=1

and also find one of solutions to equation (4).
It is obvious that this problem is solvable in the general case only if

det(ziy;) #0  (i,j=1,...,n). (43)

Suppose this holds true.

If the functionals 2 are known, then one can find C; from (42) and then, using
Lemma 2 (or Theorems 10, 14 if A : B — B is a second-kind operator), one can perturb
the equation and obtain the solution by solving corresponding unconditional and uniquely
solvable equation (9).

If the functionals 9%;-‘ are unknown, then there are at least two ways forward. Firstly,
one can find 9032‘ by Corollary 3 from the second group of perturbed equations (13) (or by
Corollary 15 from the second group of equations (41) if A is the second-kind operator)
and then do as above.

Secondly, one can perturb equation (4) by Lemma 2 (or by Theorems 10, 14 if A is a
second-kind operator) and find its solutions x; with the right-hand sidesy; (j =0,...,n)
respectively. Then one can demand that the solution

x:xo—i-Zijj

Jj=1

satisfies condition (12) according to the second part of Lemma 2 (Theorems 10, 14). This
leads to a linear algebraic equation system with respect to Cj :

Zn:cj%(xj) = —pi(zg) (1 =1,...,n).

=1

Let us show that det]p;(x;)] # 0 under condition (43). Really, otherwise non-zero
constants C’jo can be found such that

QOl(ZCJO.T]):O, Z:L,n
j=1

According to the second part of Lemma 2 (Theorems 10, 14), this means that

but it is in contradiction to (43).
Thus one can solve the problem also by this second way.

13



5. Applications to boundary integral equations

We shall illustrate now on a BIE of elasticity how one can apply the above results. We
consider BIE (1) from the introduction. If S € C1*, then (see [3, 4, 5]) the operator

I + W satisfies Hypothesis 1 for n = 6, ker( + W) = spcm{u "y 6 _, (the eigen-solutions

o(m)

u; are given in (2)), By = By = C%’(S), 0 < 3 < a. For a nonsmooth surface 9,
the Hypothesis will be satisfied in some weighted Holder spaces B; = By with the same
ker(I + W), see [5].

Let us denote by |S| the area, by n° the center of inertia, and by J the central moment

if inertia (the first invariant of the inertia tensor) for the surface S, that is,

1
S::/dS, ?::7/ S, J::/ . — 1) (s — 16)dS(n).
S| : LA 5(77 5 ) (i — n7)dS(n)

Suppose firstly, the coordinate axes n; are parallel to the principal axes of the inertia
tensor for the surface S, that is,

[ =)y =S () = 0, i # 5

We write the perturbed equation corresponding to (1) in the form

ui(€) = MW, + K5V u}(€) = @4(6), (44)
K€ = 30 (5" €~ [0 = ustas (o
s €= [0 - nas)|

The functions ¢§m) in (44) are chosen in the form

m 1 o(m Oy m o iom&p
00O = 57 15 (O = TH o = 358 (O = B2 w1

Then it is easy to check, that the perturbing operator & (31) satisfies Theorem 10 (with
condition (32)) for k =n =6, \g = —

o

*%m,i (5) = 5im7 CCm+3,i (5) Ewm(g 77])

eulw) = 157 [ AS). ) = 55 [ il ~ s )AS(0). m =15

Consequently, BIE (44) is uniquely and unconditionally solvable at A\g = —1. Its solution
u; coincides with one of the solutions of BIE (1) such that

/Sui(n)dS =0, /SGz'ijz‘(n)(Uj —n;)dS =0, i,jm=1,.,3
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if the total force and the moment of the applied tractions equal zero (what implies the
solvability conditions (3) for BIE (1) are satisfied). Moreover, the resolvent of the per-
turbed operator has the same singular points as the resolvent of the original operator
excluding the point A = —1. It means that the resolvent is now regular in the closed cir-
cle |[A] < 1. Hence, perturbed equation (44) can be solved at A = —1, e.g., by the method
of simple iterations, that is, by expansion of the resolvent in the convergent Neumann
series.

After using the property €;ix€mix = 0imdji — 00jm, We can represent the perturbing
operator in a simpler form

1 1

KGPul@) = [ (gt + 5516 = m)m — 5wt

—(& — 1) (i — 15 )i ()] S (). (45)

One can remark that the presentation (45) is true also in arbitrary cartesian coordinate
system (not only associated with the principal axes of the inertia tensor), since the right-
hand side of (45) is a linear combination of vectors, which coefficients are scalar products
of vectors.

This perturbation technique can be used also for other BIEs. For example, an applica-
tion of perturbation operators to BIE of harmonic functions is presented in [9, 14], and to
BIE of plane elastic problems in [15]. An implementation to BIE, obtained by the indirect
approach for elastic plate reinforced by boundary curvilinear elastic bars, was described
in [16]. Determination of unknown constants in the BIE right-hand side by methods of
Section 4. was used in [15, 16].

Several results of this paper were announced in [17].
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