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by the MDWG to identify a broadly useful gene panel based on whole transcriptome
technology. A data-driven process distilled a gene list from peer-reviewed comprehen-
sive microarray studies that discovered and validated their use in kidney, liver, heart,
and lung transplant biopsies. These were supplemented by genes that define relevant

cellular pathways and cell types plus 12 reference genes used for normalization. The
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1 | INTRODUCTION

The XV Banff Conference for Allograft Pathology was held on
September 23-27, 2019, in Pittsburgh,Pennsylvania. One main topic,
continuing a theme from two previous Banff meetings, was to in-
clude applications of molecular techniques for transplant biopsies
and to articulate a roadmap for the clinical adoption of molecular
transplant diagnostics for allograft biopsies.1 This meeting report
summarizes the progress made by the Banff Molecular Diagnostics
Working Group (MDWG,) and the resulting next steps from the 2019
conference.

2 | CHALLENGES IN MOLECULAR
TRANSPLANT DIAGNOSTICS

The MDWG identified several challenges in the clinical applica-
tion of molecular diagnostics. Different assays that measure
different sets of genes validated for slightly different clinical con-
texts create a major analytical challenge. Enrolling patients into
multicenter molecular diagnostic trials becomes problematic if
local molecular diagnostic tests and risk stratification are done
by noncomparable assays. The lack of a diagnostic gold stand-
ard for clinical validation of new molecular diagnostics requires
multicenter standardization and independent validation in pro-
spective randomized trials. Clinical and pathologic indications for
molecular testing need to be defined and validated. Molecular
tests must be cost effective to increase diagnostic utility beyond
histopathology. For useful molecular diagnostics turnaround
time needs to match immediate clinical needs. The integration
of molecular tests with other diagnostic and clinical information
requires standardization to make diagnosis and risk stratification
comparable between centers. Industry partnerships are needed
to advance the field, but transparency and appropriate disclosure
of potential conflicts of interest are paramount. The MDWG be-
lieves that the present report shows a pathway that can address

many of these issues.

770 gene B-HOT panel includes the most pertinent genes related to rejection, tolerance,
viral infections, and innate and adaptive immune responses. This commercially available
panel uses the NanoString platform, which can quantitate transcripts from formalin-fixed
paraffin-embedded samples. The B-HOT panel will facilitate multicenter collaborative
clinical research using archival samples and permit the development of an open source
large database of standardized analyses, thereby expediting clinical validation studies.
The MDWG believes that a pathogenesis and pathway based molecular approach will

be valuable for investigators and promote therapeutic decision-making and clinical trials.

biomarker, biopsy, classification systems: Banff classification, clinical research/practice,
diagnostic techniques and imaging, pathology/histopathology

3 | EVOLUTION OF MOLECULAR
TRANSPLANT DIAGNOSTICS

Over the past 20 years, we estimate that more than 4000 organ
transplant biopsies have been studied by whole transcriptome mi-
croarrays.? These have been conducted independently by several
research groups, covering transplant biopsies of kidneys®” and, to
a lesser extent, other organs.2*® Different analytical approaches
addressing relevant research questions from these data have been
made available and reproduced by several research groups and trans-
plant centers, covering a broad spectrum of phenotypes and patient
demographics.* These studies led to potential diagnostic applica-
tions as well as major novel mechanistic insights with changes to the
Banff classification, for example, the adoption of C4d-negative anti-
body-mediated rejection (ABMR) and chronic-active T cell-mediated
rejection (TCMR) as new diagnostic categories.>'*!> Using transcrip-
tome arrays the molecular phenotype in renal allografts correlates
well with relevant rejection clinical entities and phenotypes.?® In
liver transplantation, microarray studies confirmed that liver biopsies
with TCMR share very similar transcriptional phenotypes with those
in renal allograft biopsies.>'3 Transcriptional similarities are also pre-
sent in heart and lung allograft biopsies.2 ! These publications show
that groups of genes within certain molecular pathways are statisti-
cally significantly associated with specific Banff histological lesions,
rejection phenotypes, and Banff diagnostic categories. Transcript
analysis also reveals potentially important underlying heterogeneities
not perceived by pathology alone within diagnostic groups.17

In 2013 molecular diagnostics were added as an aspirational goal
to the Banff classification.'® The molecular quantification of endo-
thelial cell associated transcripts and classifier-based prediction of
donor specific antibody-mediated tissue injury were adopted as
diagnostic features/lesions equivalent to C4d for the diagnosis of
ABMR. This was noted to be a forward-looking proposal at the time,
because there was no consensus around which endothelial genes
should be quantified and no independent multi-institutional valida-
tion for any diagnostic classifier or gene set. The main impetus in

2013 to adopt a molecular diagnostic option into the classification,
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despite these limitations, was to set the future direction for the
Banff classification and to promote collaborative and multi-institu-
tional, open source efforts to advance the field by validating, stan-
dardizing, and making molecular transplant diagnostics accessible to
the broad transplant community. This is a foundational value of the
Banff consortium.®

At the 2015 meeting, the Banff MDWG recommended the cre-
ation of molecular consensus gene sets as classifiers derived from
the overlap between published and reproduced gene lists that as-
sociate with the main clinical phenotypes of TCMR and ABMR.!
Similar roadmaps and processes for clinical adoption have been re-
viewed extensively and proposed by other key opinion leaders in the
field.2?2 Collaborative multicenter studies were proposed to close
identified knowledge gaps and enable practical molecular diagnostic
incorporation into diagnostic classifications.?2 The 2017 Banff meet-
ing identified an initial validated, consensus gene list with potential
specific indications for molecular testing.?® Importantly presented at
this meeting was a new technology, Nanostring, which uses robust
multiplex transcript quantitation from formalin-fixed, paraffin-em-
bedded (FFPE) biopsies. The compelling advantage of NanoString is
that it performs transcriptional analysis on routine histological sam-
ples allowing correlation of both histologic with molecular pheno-

types on the same tissue.

4 | CURRENT STATE OF MOLECULAR
TRANSPLANT DIAGNOSTICS

Most of the published research studies for molecular testing on
biopsies has been performed using microarrays on an extra bi-
opsy core stored in RNAlater Stabilization Solution. The pioneer-
ing work by Halloran and colleagues was the basis of a commercial
test (Molecular Microscope MMDx) now offered by One Lambda
Inc.t242¢ These insightful, prospective studies showed strong as-
sociations of transcript patterns with the histological Banff lesions
and diagnosis but also identified discrepancies.17 These discrepan-
cies require further investigation to reveal the optimal integration of
histology and molecular biopsy features that are informative of out-
come and response to therapy. No prospective randomized outcome
trial using microarray assays as the end point has been conducted, in
part because of the technical challenges and the long follow-up re-
quired. Although microarray analysis is the most established method
for biopsies, alternative approaches, less invasive than a biopsy, are
attractive and under investigation, such as urine and blood transcript
analysis.

Recently, more practical technologies based on FFPE biopsy
analysis are now available, in particular the NanoString nCounter
system (NanoString Technologies, Seattle, WA). Several NanoString
publications using FFPE transplant specimens identify similar tran-
script associations with the molecular and histologic phenotypes as
those reported in microarray studies.>#13-18:2729.29-33 Among the ad-
vantages of NanoString are (1) a separate core processed at the time

of biopsy is not required; (2) transcripts are assessed in the same
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sample analyzed by light microscopy; and (3) large retrospective and
longitudinal analyses of archived samples can be readily performed
in the setting of multicenter studies, which will enable retrospec-
tive randomization with long-term survival end points available
(Table 1).2” Over 1000 publications have reported its application and
value. The NanoString system yields comparable results between
FFPE and fresh frozen samples, with a higher sensitivity than that
of microarrays and about equal to reverse transcription polymerase
chain reaction (RT-PCR).3*3¢ This technology in one assay uses col-
or-coded molecular barcodes that can hybridize directly up to 800
different targets with highly reproducibility. NanoString thereby
closes a gap between genome-wide expression (ie, microarrays and
RNA sequencing as whole transcriptome discovery platforms) and
mMRNA expression profiling of a single target (ie, RT-PCR). But unlike
quantitative RT-PCR, the NanoString system does not require en-
zymes and uses a single reaction per sample regardless of the level
of multiplexing. Thus, it is simpler for the user and requires less sam-
ple per experiment for multiplex experiments, for example, pathway
analysis, assessment of biomarker panels, or assessment of cus-
tom-made gene sets. The NanoString system is approved for clinical
diagnostics and paired with user-friendly analytical software, thus
representing a simple, relatively fast (24-hour turnaround time), au-
tomated platform that is well poised for integration into the routine
diagnostic workflows in existing pathology laboratories.%” Synthetic
DNA standard oligonucleotides, corresponding to each target probe
in the panel, allow normalization of expression results between
different reagent batches, platforms, and users, This permits stan-
dardization of diagnostic thresholds across multiple laboratories, a
maijor challenge using microarrays and RNA sequencing.?’ A major
disadvantage of the NanoString approach is the need to predefine
the gene panel and the restriction to 800 probes, making it better
for follow-up studies once the discovery phase with microarrays has
winnowed the possibilities to the most informative transcripts. The
other disadvantages, shared with microarrays and RNASeq, is the

loss of anatomic localization and the need for a biopsy.

5 | GENERATION OF A BANFF HUMAN
ORGAN TRANSPLANT (B-HOT) PANEL

The B-HOT panel includes the validated genes found informative
from major peer reviewed microarray and NanoString studies on
kidney, heart, lung, and liver allograft biopsies, identified by the
MDWSG through literature review. A list of the genes with corre-
sponding key publications is given in the Data S1. In detail, candi-

date genes were identified using the key words “transplantation,”

» o« n o«

“kidney, “heart, ” “lung, ” ‘liver, ” “gene expression, " “molecule, ”
and “transcripts. " Mining these publications for genes listed as sig-
nificantly associated with any study variable revealed 2521 pub-
lications indexed in PubMed concerning more than 4000 genes.
After redundant and duplicate genes were removed, the list con-
tained 1749 genes. Then the MDWG members identified overlap

between these genes and genes described in the peer-reviewed
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FFPE tissue with NanoString

Feature nCounter

Maximum number of transcript 800
targets

Off-the-shelf panels available Yes

Custom panels available Yes

Recommended RNA input 100 ng
quantity

Requires reverse transcription/ No
amplification

Approximate assay turnaround 24-40h
time®

Analysis software provided by Yes©
manufacturer

Ability to use same sample for Yes
histology and gene expression
analysis, that is, ability for
histomolecular integration

Immediate access to long-term Yes

clinical follow-up data on
archival clinical samples (FFPE)

Food and Drug Administration Yes for platform

approved Yes for specific clinical assays®
Approximate assay cost per $275
sample®

Integration with local
(decentralized) clinical workflow

Simple due to local testing
(no shipment of samples) on
regulatory approved platform
using simple open source
analytics

aAffymetrix GeneChip Human Genome U133 Plus 2.0 Array.

PDependent on multiple variables: instrument settings, RNA input quantity, technician experience,

Fresh tissue with
cDNA microarrays

>47 000?

Yes
Yes
50-500 ng

Yes

25.5-37.5h

Yes?

No

No for platform

Yes for specific clinical

assay’

$1000-3000

Complex (shipment
of sample to referral
lab, no regulatory

approval of platform,

complex analytics)

etc. Time excludes RNA extraction time and sample shipment time if applicable.

“NanoString nSolver Analysis Software.
dAffymetrix Transcriptome Analysis Console Software.
®NanoString Prosigna Breast Cancer Prognostic Gene Signature Assay.

fRoche AmpliChip CYP450 Test, a pharmacogenetics assay to determine the genotype of two

cytochrome P450 enzymes: 2D6 and 2C19.

8Including RNA isolation but excluding instrument expenses and labor for RNA extraction. Reagent

cost varies with number of transcript targets and samples. Microarrays costs vary on scale of

economy by provider.

Iiterature2,8,12,29,32,33,38-50,9,51,52,10,53-56,11,57»64,65

as being strongly
associated with relevant clinical phenotypes and identified 1050
genes to be considered for inclusion. In the next step, a list includ-
ing all genes with consensus expert opinion were selected and for
which all Hugo duplicates were then combined, leaving 670 unique
genes.

We initiated discussions with NanoString and learned they would
be willing to make our panel widely available. However, their com-
mercial panels typically have 770 genes, so they provided sugges-
tions for addition genes to delineate relevant cellular pathways and
cell types that have been used in other panels. Using an independent

data-driven process, NanoString Technologies Inc recommended

TABLE 1 Technical comparison of gene
expression analysis using formalin-fixed
paraffin-embedded (FFPE) tissue with
NanoString nCounter vs fresh tissue with
DNA microarrays

additional genes within relevant molecular pathways related to the

670 genes that were most informative by their Ingenuity Pathways.
The final B-HOT panel included 758 genes covering the most perti-
nent genes from the core pathways and processes related to host re-
sponses to rejection of transplanted tissue, tolerance, drug-induced
toxicity, transplantation-associated viral infections (BK polyomavi-
rus, cytomegalovirus, Epstein-Barr virus) plus 12 internal reference
genes for quality control and normalization (Figures 1 and 2, Table 2).
Through that approach the B-HOT gene panel was defined, further
engineered, and made commercially available (https://www.Nano$S
tring.com/products/gene-expression-panels/gene-expression

-panels-overview/human-organ-transplant-panel). The pathways


https://www.NanoString.com/products/gene-expression-panels/gene-expression-panels-overview/human-organ-transplant-panel
https://www.NanoString.com/products/gene-expression-panels/gene-expression-panels-overview/human-organ-transplant-panel
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MeSH terms Ei @g
-« Transplantation » 0o
- «Kidney »
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=)

Banff consortium

Relevantand non
overlapping transcripts
(n=1050)

)

429

Consensus votes for
mostrelevantgenes

Banff " S |
Human Organ Transplant
("7 Panel

X\ (n=770 genes) ’/

FIGURE 1 Banff Human Organ Transplant (B-HOT) panel design process and main pathways investigated by this panel. Banff Human
Organ Transplant (B-HOT) panel design process involved 12 transplant expertsfrom 5 universities (Harvard University, Université de Paris,
University of Alberta, Imperial College of London, and Erasmus MC Rotterdam). Banff consortium was composed of B. Colvin, R.N. Smith, I.
Rosales, M. Mengel, B. Adam, C. Roufosse, M.C. Clahsen-van Groningen, J.H. von der Thisen, B. Robin, J. Dagobert, J.-P. Duong-van-Huyen,
and A. Loupy. The Banff Human Organ Transplant Panel logo in Figure 1 has been reproduced with permission from NanoString

added to the list are given in Figure 2 and in more detail in the Table
S1.

The panel probes were also designed to cover different organ
types for transplantation and for sequence homology with non-
human primates to facilitate preclinical research applications. The
panel's broad coverage of inflammatory, adaptive, and innate im-
mune systems; signaling; and endothelial transcripts will likely be
largely applicable across organ types but with some expected organ
specific variation. Furthermore, parenchymal transcripts will often
be organ specific and many have been included (see Table S1). We
anticipate that continued discovery of other informative transcripts
not included in the B-HOT panel will occur. To provide flexibility,
up to 30 custom genes can be added to the B-HOT panel by an
investigator. Although the panel has been commercialized for the
nCounter platform, the gene list is not proprietary and probes
based on the gene list can be designed to run on any transcript an-

alytical platform.

6 | NEXT STEPS: MULTICENTER
ANALYTICAL AND CLINICAL VALIDATION

The Banff MDWG formed a voluntary, growing, and open interna-
tional consortium, independent of commercial sponsorship, to de-
velop future steps for validation, analyses, and database sharing. The
focus of the next 2 years will be validation of the panel and discov-
ery of the optimal algorithms and gene sets. This will be enabled
by (1) the B-HOT panel and its comprehensive probe standards for

comparison between laboratories, batches, and runs; (2) a shared

database containing clinical, laboratory, pathological and transcript
data; and (3) access to comprehensive sophisticated bioinformatics.
The next steps will be to document the analytical validity across lab-
oratories and then determine the clinical validity. The clinical validity
will be assessed by analyzing B-HOT transcripts in 1000 or more
clinical biopsies (as of this report the consortium has run the B-HOT
panel on over 600 samples). These results along with standardized
clinical and pathologic information will be entered in a shared data-
base, which will be interrogated to discover the most useful algo-
rithms for clinical applications.

Analytical validation for regulatory approval must document
accuracy, precision, analytical sensitivity (reproducibility, coef-
ficient of variance), reportable ranges, reference interval values,
and analytical specificity. Calibration and control procedures must
be determined, and the laboratory must be enrolled in external
proficiency testing programs. Clinical validation is the next step.
Even an assay with perfect analytical validity does not automat-
ically imply association between the test result and a relevant
clinical outcome or action. This requires access to relevant patient
populations’ material of adequately powered sample size to evalu-
ate assay performance in a real-world clinical setting. Accordingly,
clinical utility of an assay needs to be established by providing ev-
idence of improved, measurable clinical outcome or benefit that is
directly related to the use of the test, that is, proof that the test
adds significant value to patient care. This also needs to take into
consideration how the assay is interpreted, reported, and applied
in the context of clinical patient management. Ideally, proper eval-
uation of an assay's clinical utility requires prospective random-

ized control trials.%®
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FIGURE 2 Examples of cells, pathways, and genes studied by the B-HOT panel. Three main pathways can be identified: tissue damage,
organ rejection, and immune response. The B-HOT panel profiles a total of 758 genes across 37 pathways. Green double-stranded DNA
represents gene expression, blue single-stranded RNA represents RNA expressed by cells or tissue. Cartoons of organs, cells, and other
illustrations used in Figure 2 have been retrieved from http://smart.servier.com/, a free medical images bank of Servier

The B-HOT panel will undergo all of these validation steps. In
the next 2 years retrospective, well-annotated cohorts will be an-
alyzed for analytical and clinical validation. The MDWG is aligning
joint efforts using available NanoString systems at participating
centers for studying a broad spectrum of archived and well-anno-
tated transplant biopsies. To centralize the resulting multicenter
molecular data from archived transplant biopsies together with
the related clinical and outcome data, algorithms, and tools for
analysis (including explorative analytics, machine learning-based
diagnostic approaches/classifiers, and risk prediction tools) with
remote access by users across the world, a data integration plat-
form (DIP) will be built®” (Figure 3). Participating centers will be
able to upload routinely collected transplant-related patient data
in an anonymized and uniform fashion. A participating investigator
will then be able to use all data in the DIP. Currently underway is
the development of a consensus data template representing the
variables and units to be included in the DIP. The NanoString data
files also include important analytical parameters (quality control
measures, background subtractions, normalization values) in ad-
dition to the individual gene expression values, which will also be
part of the DIP to allow for standardization across laboratories and
thus multicenter analytical validation of any diagnostic assays. The
output of this effort is expected to be a robust well-characterized
gene set (presumably a subset of the B-HOT panel or additional

genes) and analytic methodology for interpretation, which will

be presented at a subsequent Banff meeting and published. We
expect to see correlations with histologic diagnosis (including in-
terpretations not revealed by routine pathology analysis), ongoing
immunosuppressive therapy, prediction of outcome, and response
to treatment. We (and others, we hope) will follow this by prospec-
tive, controlled clinical trials to fully define clinical utility.

As a first evaluation, after the Banff meeting, a member of the
MDWG, Neal Smith, performed an in silico assessment of the B-HOT
panel genes using the archived Genomic Spatial Event databases
from Halloran's group®*¢® that contains 764 kidney biopsy sam-
ples with microarray data and diagnostic classification as TCMR,
chronic-active ABMR, mixed, acute kidney injury, no rejection, and
normal. Briefly, 3 bioinformatics methods were used to see if they
could identify the 6 diagnostic groups from the transcripts: (1) su-
pervised, using diagnostic and pathogenesis based transcripts sets
of Halloran;* (2) semisupervised, using Nanostring pathways (Data
S1) plus CIBERSORT cells types; and (3) unsupervised principal com-
ponent analysis. Results confirmed the correlation of expected gene
sets in each analysis with the 6 diagnostic categories (Smith, man-
uscript in preparation). A description of the initial B-HOT results in
kidney transplants to be presented at the 2020 American Transplant
Conference reveals both expected and novel correlations with
pathologic categories.®’

The B-HOT panel will be commercially available for research

use only. Whether B-HOT leads to a clinically indicated laboratory
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(DIP) design. Three elements are
identified: (1) data production (histology,
molecular, and clinical) by participating
hospital; (2) DIP (web interface, cloud
computing) to centralize, check, and
validate all data; and (3) results production
by any participating physician/scientist
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developed test remains to be seen. If it does, it will probably be refinement over the last 28 years as new knowledge emerged,
a simplified panel. In the future, the international, open source, any molecular “consensus” will also need to undergo constant
multicenter Banff DIP can serve as a reference point for gener- refinement and, no doubt further, technological innovation. Only
ating a molecular diagnostic “gold-standard” in transplantation, through integration with clinical decision-making and end points
similar to the Banff histology lesions and diagnoses agreed upon in clinical trials can the true clinical utility of molecular diagnostics

in 1991.7° As the Banff consensus rules for histology underwent be demonstrated.®’
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