
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/335972443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://onlinelibrary.wiley.com/action/showCampaignLink?uri=uri%3A193eea78-7523-4086-b51f-3d3eefc7c9b2&url=+https%3A%2F%2Fasts.org%2Fldp&viewOrigin=offlinePdf


Am J Transplant. 2020;20:2305–2317.     |  2305amjtransplant.com

 

Received: 10 March 2020  |  Revised: 19 April 2020  |  Accepted: 27 April 2020

DOI: 10.1111/ajt.16059  

M E E T I N G  R E P O R T

Banff 2019 Meeting Report: Molecular diagnostics in solid 
organ transplantation–Consensus for the Banff Human Organ 
Transplant (B-HOT) gene panel and open source multicenter 
validation

Michael Mengel1  |   Alexandre Loupy2  |   Mark Haas3 |   Candice Roufosse4  |   
Maarten Naesens5,6 |   Enver Akalin7 |   Marian C. Clahsen-van Groningen8  |   
Jessy Dagobert2 |   Anthony J. Demetris9  |   Jean-Paul Duong van Huyen2 |   
Juliette Gueguen2 |   Fadi Issa10 |   Blaise Robin2 |   Ivy Rosales11  |    
Jan H. Von der Thüsen8 |   Alberto Sanchez-Fueyo12  |   Rex N. Smith11 |   
Kathryn Wood10 |   Benjamin Adam1  |   Robert B. Colvin11

1Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
2Paris Translational Research Center for Organ Transplantation, INSERM U970 and Necker Hospital, University of Paris, Paris, France
3Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
4Department of Immunology and Inflammation, Imperial College London and North West London Pathology, London, UK
5Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
6Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
7Montefiore-Einstein Center for Transplantation, Montefiore Medical Center, Bronx, New York
8Department of Pathology, Erasmus MC, Rotterdam, the Netherlands
9Department of Pathology, University of Pittsburgh Medical Center, Montefiore, Pittsburgh, Pennsylvania
10Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
11Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
12King’s College London, London, UK

M. Mengel, A. Loupy, B. Adam, and R.B. Colvin contributed equally to this report.  

Abbreviations: ABMR, antibody-mediated rejection; B-HOT, Banff Human Organ Transplant; CLIA, Clinical Laboratory Improvement Amendments; DIP, data integration platform; DSA, 
donor specific antibody; FFPE, formalin fixed, paraffin embedded; MDWG, Molecular Diagnostics Working Group; TCMR, T cell–mediated rejection.

Correspondence
Michael Mengel
Email: mmengel@ualberta.ca

Alexandre Loupy
Email: alexandre.loupy@inserm.fr

This meeting report from the XV Banff conference describes the creation of a multior-
gan transplant gene panel by the Banff Molecular Diagnostics Working Group (MDWG). 
This Banff Human Organ Transplant (B-HOT) panel is the culmination of previous work 
by the MDWG to identify a broadly useful gene panel based on whole transcriptome 
technology. A data-driven process distilled a gene list from peer-reviewed comprehen-
sive microarray studies that discovered and validated their use in kidney, liver, heart, 
and lung transplant biopsies. These were supplemented by genes that define relevant 
cellular pathways and cell types plus 12 reference genes used for normalization. The 
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1  | INTRODUC TION

The XV Banff Conference for Allograft Pathology was held on 
September 23-27, 2019, in Pittsburgh,Pennsylvania. One main topic, 
continuing a theme from two previous Banff meetings, was to in-
clude applications of molecular techniques for transplant biopsies 
and to articulate a roadmap for the clinical adoption of molecular 
transplant diagnostics for allograft biopsies.1 This meeting report 
summarizes the progress made by the Banff Molecular Diagnostics 
Working Group (MDWG) and the resulting next steps from the 2019 
conference.

2  | CHALLENGES IN MOLECUL AR 
TR ANSPL ANT DIAGNOSTIC S

The MDWG identified several challenges in the clinical applica-
tion of molecular diagnostics. Different assays that measure 
different sets of genes validated for slightly different clinical con-
texts create a major analytical challenge. Enrolling patients into 
multicenter molecular diagnostic trials becomes problematic if 
local molecular diagnostic tests and risk stratification are done 
by noncomparable assays. The lack of a diagnostic gold stand-
ard for clinical validation of new molecular diagnostics requires 
multicenter standardization and independent validation in pro-
spective randomized trials. Clinical and pathologic indications for 
molecular testing need to be defined and validated. Molecular 
tests must be cost effective to increase diagnostic utility beyond 
histopathology. For useful molecular diagnostics turnaround 
time needs to match immediate clinical needs. The integration 
of molecular tests with other diagnostic and clinical information 
requires standardization to make diagnosis and risk stratification 
comparable between centers. Industry partnerships are needed 
to advance the field, but transparency and appropriate disclosure 
of potential conflicts of interest are paramount. The MDWG be-
lieves that the present report shows a pathway that can address 
many of these issues.

3  | E VOLUTION OF MOLECUL AR 
TR ANSPL ANT DIAGNOSTIC S

Over the past 20 years, we estimate that more than 4000 organ 
transplant biopsies have been studied by whole transcriptome mi-
croarrays.2 These have been conducted independently by several 
research groups, covering transplant biopsies of kidneys3-7 and, to 
a lesser extent, other organs.8-13 Different analytical approaches 
addressing relevant research questions from these data have been 
made available and reproduced by several research groups and trans-
plant centers, covering a broad spectrum of phenotypes and patient 
demographics.14 These studies led to potential diagnostic applica-
tions as well as major novel mechanistic insights with changes to the 
Banff classification, for example, the adoption of C4d-negative anti-
body-mediated rejection (ABMR) and chronic-active T cell–mediated 
rejection (TCMR) as new diagnostic categories.3,14,15 Using transcrip-
tome arrays the molecular phenotype in renal allografts correlates 
well with relevant rejection clinical entities and phenotypes.2,16 In 
liver transplantation, microarray studies confirmed that liver biopsies 
with TCMR share very similar transcriptional phenotypes with those 
in renal allograft biopsies.12,13 Transcriptional similarities are also pre-
sent in heart and lung allograft biopsies.8-11 These publications show 
that groups of genes within certain molecular pathways are statisti-
cally significantly associated with specific Banff histological lesions, 
rejection phenotypes, and Banff diagnostic categories. Transcript 
analysis also reveals potentially important underlying heterogeneities 
not perceived by pathology alone within diagnostic groups.17

In 2013 molecular diagnostics were added as an aspirational goal 
to the Banff classification.15 The molecular quantification of endo-
thelial cell associated transcripts and classifier-based prediction of 
donor specific antibody-mediated tissue injury were adopted as 
diagnostic features/lesions equivalent to C4d for the diagnosis of 
ABMR. This was noted to be a forward-looking proposal at the time, 
because there was no consensus around which endothelial genes 
should be quantified and no independent multi-institutional valida-
tion for any diagnostic classifier or gene set. The main impetus in 
2013 to adopt a molecular diagnostic option into the classification, 

770 gene B-HOT panel includes the most pertinent genes related to rejection, tolerance, 
viral infections, and innate and adaptive immune responses. This commercially available 
panel uses the NanoString platform, which can quantitate transcripts from formalin-fixed 
paraffin-embedded samples. The B-HOT panel will facilitate multicenter collaborative 
clinical research using archival samples and permit the development of an open source 
large database of standardized analyses, thereby expediting clinical validation studies. 
The MDWG believes that a pathogenesis and pathway based molecular approach will 
be valuable for investigators and promote therapeutic decision-making and clinical trials.

K E Y W O R D S

biomarker, biopsy, classification systems: Banff classification, clinical research/practice, 
diagnostic techniques and imaging, pathology/histopathology
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despite these limitations, was to set the future direction for the 
Banff classification and to promote collaborative and multi-institu-
tional, open source efforts to advance the field by validating, stan-
dardizing, and making molecular transplant diagnostics accessible to 
the broad transplant community. This is a foundational value of the 
Banff consortium.18

At the 2015 meeting, the Banff MDWG recommended the cre-
ation of molecular consensus gene sets as classifiers derived from 
the overlap between published and reproduced gene lists that as-
sociate with the main clinical phenotypes of TCMR and ABMR.1 
Similar roadmaps and processes for clinical adoption have been re-
viewed extensively and proposed by other key opinion leaders in the 
field.19-22 Collaborative multicenter studies were proposed to close 
identified knowledge gaps and enable practical molecular diagnostic 
incorporation into diagnostic classifications.22 The 2017 Banff meet-
ing identified an initial validated, consensus gene list with potential 
specific indications for molecular testing.23 Importantly presented at 
this meeting was a new technology, Nanostring, which uses robust 
multiplex transcript quantitation from formalin-fixed, paraffin-em-
bedded (FFPE) biopsies. The compelling advantage of NanoString is 
that it performs transcriptional analysis on routine histological sam-
ples allowing correlation of both histologic with molecular pheno-
types on the same tissue.1

4  | CURRENT STATE OF MOLECUL AR 
TR ANSPL ANT DIAGNOSTIC S

Most of the published research studies for molecular testing on 
biopsies has been performed using microarrays on an extra bi-
opsy core stored in RNAlater Stabilization Solution. The pioneer-
ing work by Halloran and colleagues was the basis of a commercial 
test (Molecular Microscope MMDx) now offered by One Lambda 
Inc.17,24-26 These insightful, prospective studies showed strong as-
sociations of transcript patterns with the histological Banff lesions 
and diagnosis but also identified discrepancies.17 These discrepan-
cies require further investigation to reveal the optimal integration of 
histology and molecular biopsy features that are informative of out-
come and response to therapy. No prospective randomized outcome 
trial using microarray assays as the end point has been conducted, in 
part because of the technical challenges and the long follow-up re-
quired. Although microarray analysis is the most established method 
for biopsies, alternative approaches, less invasive than a biopsy, are 
attractive and under investigation, such as urine and blood transcript 
analysis.

Recently, more practical technologies based on FFPE biopsy 
analysis are now available, in particular the NanoString nCounter 
system (NanoString Technologies, Seattle, WA). Several NanoString 
publications using FFPE transplant specimens identify similar tran-
script associations with the molecular and histologic phenotypes as 
those reported in microarray studies.3,4,13-18,27-29,29-33 Among the ad-
vantages of NanoString are (1) a separate core processed at the time 
of biopsy is not required; (2) transcripts are assessed in the same 

sample analyzed by light microscopy; and (3) large retrospective and 
longitudinal analyses of archived samples can be readily performed 
in the setting of multicenter studies, which will enable retrospec-
tive randomization with long-term survival end points available 
(Table 1).27 Over 1000 publications have reported its application and 
value. The NanoString system yields comparable results between 
FFPE and fresh frozen samples, with a higher sensitivity than that 
of microarrays and about equal to reverse transcription polymerase 
chain reaction (RT-PCR).34-36 This technology in one assay uses col-
or-coded molecular barcodes that can hybridize directly up to 800 
different targets with highly reproducibility. NanoString thereby 
closes a gap between genome-wide expression (ie, microarrays and 
RNA sequencing as whole transcriptome discovery platforms) and 
mRNA expression profiling of a single target (ie, RT-PCR). But unlike 
quantitative RT-PCR, the NanoString system does not require en-
zymes and uses a single reaction per sample regardless of the level 
of multiplexing. Thus, it is simpler for the user and requires less sam-
ple per experiment for multiplex experiments, for example, pathway 
analysis, assessment of biomarker panels, or assessment of cus-
tom-made gene sets. The NanoString system is approved for clinical 
diagnostics and paired with user-friendly analytical software, thus 
representing a simple, relatively fast (24-hour turnaround time), au-
tomated platform that is well poised for integration into the routine 
diagnostic workflows in existing pathology laboratories.37 Synthetic 
DNA standard oligonucleotides, corresponding to each target probe 
in the panel, allow normalization of expression results between 
different reagent batches, platforms, and users, This permits stan-
dardization of diagnostic thresholds across multiple laboratories, a 
major challenge using microarrays and RNA sequencing.27 A major 
disadvantage of the NanoString approach is the need to predefine 
the gene panel and the restriction to 800 probes, making it better 
for follow-up studies once the discovery phase with microarrays has 
winnowed the possibilities to the most informative transcripts. The 
other disadvantages, shared with microarrays and RNASeq, is the 
loss of anatomic localization and the need for a biopsy.

5  | GENER ATION OF A BANFF HUMAN 
ORGAN TR ANSPL ANT (B-HOT ) PANEL

The B-HOT panel includes the validated genes found informative 
from major peer reviewed microarray and NanoString studies on 
kidney, heart, lung, and liver allograft biopsies, identified by the 
MDWG through literature review. A list of the genes with corre-
sponding key publications is given in the Data S1. In detail, candi-
date genes were identified using the key words “transplantation,” 
“kidney, “heart, ” “lung, ” ‘liver, ” “gene expression, ” “molecule, ” 
and “transcripts. ” Mining these publications for genes listed as sig-
nificantly associated with any study variable revealed 2521 pub-
lications indexed in PubMed concerning more than 4000 genes. 
After redundant and duplicate genes were removed, the list con-
tained 1749 genes. Then the MDWG members identified overlap 
between these genes and genes described in the peer-reviewed 
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literature2,8,12,29,32,33,38-50,9,51,52,10,53-56,11,57-64,65 as being strongly 
associated with relevant clinical phenotypes and identified 1050 
genes to be considered for inclusion. In the next step, a list includ-
ing all genes with consensus expert opinion were selected and for 
which all Hugo duplicates were then combined, leaving 670 unique 
genes.

We initiated discussions with NanoString and learned they would 
be willing to make our panel widely available. However, their com-
mercial panels typically have 770 genes, so they provided sugges-
tions for addition genes to delineate relevant cellular pathways and 
cell types that have been used in other panels. Using an independent 
data-driven process, NanoString Technologies Inc recommended 

additional genes within relevant molecular pathways related to the 
670 genes that were most informative by their Ingenuity Pathways. 
The final B-HOT panel included 758 genes covering the most perti-
nent genes from the core pathways and processes related to host re-
sponses to rejection of transplanted tissue, tolerance, drug-induced 
toxicity, transplantation-associated viral infections (BK polyomavi-
rus, cytomegalovirus, Epstein-Barr virus) plus 12 internal reference 
genes for quality control and normalization (Figures 1 and 2, Table 2).
Through that approach the B-HOT gene panel was defined, further 
engineered, and made commercially available (https://www.NanoS 
tring.com/produ cts/gene-expre ssion -panel s/gene-expre ssion 
-panel s-overv iew/human -organ -trans plant -panel). The pathways 

Feature
FFPE tissue with NanoString 
nCounter

Fresh tissue with 
cDNA microarrays

Maximum number of transcript 
targets

800 >47 000a 

Off-the-shelf panels available Yes Yes

Custom panels available Yes Yes

Recommended RNA input 
quantity

100 ng 50-500 ng

Requires reverse transcription/
amplification

No Yes

Approximate assay turnaround 
timeb 

24-40 h 25.5-37.5 h

Analysis software provided by 
manufacturer

Yesc  Yesd 

Ability to use same sample for 
histology and gene expression 
analysis, that is, ability for 
histomolecular integration

Yes No

Immediate access to long-term 
clinical follow-up data on 
archival clinical samples (FFPE)

Yes No

Food and Drug Administration 
approved

Yes for platform
Yes for specific clinical assayse 

No for platform
Yes for specific clinical 

assayf 

Approximate assay cost per 
sampleg 

$275 $1000-3000

Integration with local 
(decentralized) clinical workflow

Simple due to local testing 
(no shipment of samples) on 
regulatory approved platform 
using simple open source 
analytics

Complex (shipment 
of sample to referral 
lab, no regulatory 
approval of platform, 
complex analytics)

aAffymetrix GeneChip Human Genome U133 Plus 2.0 Array. 
bDependent on multiple variables: instrument settings, RNA input quantity, technician experience, 
etc. Time excludes RNA extraction time and sample shipment time if applicable. 
cNanoString nSolver Analysis Software. 
dAffymetrix Transcriptome Analysis Console Software. 
eNanoString Prosigna Breast Cancer Prognostic Gene Signature Assay. 
fRoche AmpliChip CYP450 Test, a pharmacogenetics assay to determine the genotype of two 
cytochrome P450 enzymes: 2D6 and 2C19. 
gIncluding RNA isolation but excluding instrument expenses and labor for RNA extraction. Reagent 
cost varies with number of transcript targets and samples. Microarrays costs vary on scale of 
economy by provider. 

TA B L E  1   Technical comparison of gene 
expression analysis using formalin-fixed 
paraffin-embedded (FFPE) tissue with 
NanoString nCounter vs fresh tissue with 
DNA microarrays

https://www.NanoString.com/products/gene-expression-panels/gene-expression-panels-overview/human-organ-transplant-panel
https://www.NanoString.com/products/gene-expression-panels/gene-expression-panels-overview/human-organ-transplant-panel
https://www.NanoString.com/products/gene-expression-panels/gene-expression-panels-overview/human-organ-transplant-panel
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added to the list are given in Figure 2 and in more detail in the Table 
S1.

The panel probes were also designed to cover different organ 
types for transplantation and for sequence homology with non-
human primates to facilitate preclinical research applications. The 
panel's broad coverage of inflammatory, adaptive, and innate im-
mune systems; signaling; and endothelial transcripts will likely be 
largely applicable across organ types but with some expected organ 
specific variation. Furthermore, parenchymal transcripts will often 
be organ specific and many have been included (see Table S1). We 
anticipate that continued discovery of other informative transcripts 
not included in the B-HOT panel will occur. To provide flexibility, 
up to 30 custom genes can be added to the B-HOT panel by an 
investigator. Although the panel has been commercialized for the 
nCounter platform, the gene list is not proprietary and probes 
based on the gene list can be designed to run on any transcript an-
alytical platform.

6  | NE X T STEPS:  MULTICENTER 
ANALY TIC AL AND CLINIC AL VALIDATION

The Banff MDWG formed a voluntary, growing, and open interna-
tional consortium, independent of commercial sponsorship, to de-
velop future steps for validation, analyses, and database sharing. The 
focus of the next 2 years will be validation of the panel and discov-
ery of the optimal algorithms and gene sets. This will be enabled 
by (1) the B-HOT panel and its comprehensive probe standards for 
comparison between laboratories, batches, and runs; (2) a shared 

database containing clinical, laboratory, pathological and transcript 
data; and (3) access to comprehensive sophisticated bioinformatics. 
The next steps will be to document the analytical validity across lab-
oratories and then determine the clinical validity. The clinical validity 
will be assessed by analyzing B-HOT transcripts in 1000 or more 
clinical biopsies (as of this report the consortium has run the B-HOT 
panel on over 600 samples). These results along with standardized 
clinical and pathologic information will be entered in a shared data-
base, which will be interrogated to discover the most useful algo-
rithms for clinical applications.

Analytical validation for regulatory approval must document 
accuracy, precision, analytical sensitivity (reproducibility, coef-
ficient of variance), reportable ranges, reference interval values, 
and analytical specificity. Calibration and control procedures must 
be determined, and the laboratory must be enrolled in external 
proficiency testing programs. Clinical validation is the next step. 
Even an assay with perfect analytical validity does not automat-
ically imply association between the test result and a relevant 
clinical outcome or action. This requires access to relevant patient 
populations’ material of adequately powered sample size to evalu-
ate assay performance in a real-world clinical setting. Accordingly, 
clinical utility of an assay needs to be established by providing ev-
idence of improved, measurable clinical outcome or benefit that is 
directly related to the use of the test, that is, proof that the test 
adds significant value to patient care. This also needs to take into 
consideration how the assay is interpreted, reported, and applied 
in the context of clinical patient management. Ideally, proper eval-
uation of an assay's clinical utility requires prospective random-
ized control trials.66

F I G U R E  1   Banff Human Organ Transplant (B-HOT) panel design process and main pathways investigated by this panel. Banff Human 
Organ Transplant (B-HOT) panel design process involved 12 transplant expertsfrom 5 universities (Harvard University, Université de Paris, 
University of Alberta, Imperial College of London, and Erasmus MC Rotterdam). Banff consortium was composed of B. Colvin, R.N. Smith, I. 
Rosales, M. Mengel, B. Adam, C. Roufosse, M.C. Clahsen-van Groningen, J.H. von der Thüsen, B. Robin, J. Dagobert, J.-P. Duong-van-Huyen, 
and A. Loupy. The Banff Human Organ Transplant Panel logo in Figure 1 has been reproduced with permission from NanoString
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The B-HOT panel will undergo all of these validation steps. In 
the next 2 years retrospective, well-annotated cohorts will be an-
alyzed for analytical and clinical validation. The MDWG is aligning 
joint efforts using available NanoString systems at participating 
centers for studying a broad spectrum of archived and well-anno-
tated transplant biopsies. To centralize the resulting multicenter 
molecular data from archived transplant biopsies together with 
the related clinical and outcome data, algorithms, and tools for 
analysis (including explorative analytics, machine learning-based 
diagnostic approaches/classifiers, and risk prediction tools) with 
remote access by users across the world, a data integration plat-
form (DIP) will be built67 (Figure 3). Participating centers will be 
able to upload routinely collected transplant-related patient data 
in an anonymized and uniform fashion. A participating investigator 
will then be able to use all data in the DIP. Currently underway is 
the development of a consensus data template representing the 
variables and units to be included in the DIP. The NanoString data 
files also include important analytical parameters (quality control 
measures, background subtractions, normalization values) in ad-
dition to the individual gene expression values, which will also be 
part of the DIP to allow for standardization across laboratories and 
thus multicenter analytical validation of any diagnostic assays. The 
output of this effort is expected to be a robust well-characterized 
gene set (presumably a subset of the B-HOT panel or additional 
genes) and analytic methodology for interpretation, which will 

be presented at a subsequent Banff meeting and published. We 
expect to see correlations with histologic diagnosis (including in-
terpretations not revealed by routine pathology analysis), ongoing 
immunosuppressive therapy, prediction of outcome, and response 
to treatment. We (and others, we hope) will follow this by prospec-
tive, controlled clinical trials to fully define clinical utility.

As a first evaluation, after the Banff meeting, a member of the 
MDWG, Neal Smith, performed an in silico assessment of the B-HOT 
panel genes using the archived Genomic Spatial Event databases 
from Halloran's group5,46,68 that contains 764 kidney biopsy sam-
ples with microarray data and diagnostic classification as TCMR, 
chronic-active ABMR, mixed, acute kidney injury, no rejection, and 
normal. Briefly, 3 bioinformatics methods were used to see if they 
could identify the 6 diagnostic groups from the transcripts: (1) su-
pervised, using diagnostic and pathogenesis based transcripts sets 
of Halloran;16 (2) semisupervised, using Nanostring pathways (Data 
S1) plus CIBERSORT cells types; and (3) unsupervised principal com-
ponent analysis. Results confirmed the correlation of expected gene 
sets in each analysis with the 6 diagnostic categories (Smith, man-
uscript in preparation). A description of the initial B-HOT results in 
kidney transplants to be presented at the 2020 American Transplant 
Conference reveals both expected and novel correlations with 
pathologic categories.69

The B-HOT panel will be commercially available for research 
use only. Whether B-HOT leads to a clinically indicated laboratory 

F I G U R E  2   Examples of cells, pathways, and genes studied by the B-HOT panel. Three main pathways can be identified: tissue damage, 
organ rejection, and immune response. The B-HOT panel profiles a total of 758 genes across 37 pathways. Green double-stranded DNA 
represents gene expression, blue single-stranded RNA represents RNA expressed by cells or tissue. Cartoons of organs, cells, and other 
illustrations used in Figure 2 have been retrieved from http://smart.servi er.com/, a free medical images bank of Servier

http://smart.servier.com/
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developed test remains to be seen. If it does, it will probably be 
a simplified panel. In the future, the international, open source, 
multicenter Banff DIP can serve as a reference point for gener-
ating a molecular diagnostic “gold-standard” in transplantation, 
similar to the Banff histology lesions and diagnoses agreed upon 
in 1991.70 As the Banff consensus rules for histology underwent 

refinement over the last 28 years as new knowledge emerged, 
any molecular “consensus” will also need to undergo constant 
refinement and, no doubt further, technological innovation. Only 
through integration with clinical decision-making and end points 
in clinical trials can the true clinical utility of molecular diagnostics 
be demonstrated.67

F I G U R E  3   Data integration platform 
(DIP) design. Three elements are 
identified: (1) data production (histology, 
molecular, and clinical) by participating 
hospital; (2) DIP (web interface, cloud 
computing) to centralize, check, and 
validate all data; and (3) results production 
by any participating physician/scientist 
using built in analytical tools
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