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Abstract

Short tandem repeat polymorphisms on the male‐specific part of the human

Y‐chromosome (Y‐STRs) are valuable tools in many areas of human genetics. Although

their paternal inheritance and moderate mutation rate (~10−3 mutations per marker

per meiosis) allow detecting paternal relationships, they typically fail to separate male

relatives. Previously, we identified 13 Y‐STR markers with untypically high mutation

rates (>10−2), termed rapidly mutating (RM) Y‐STRs, and showed that they improved

male relative differentiation over standard Y‐STRs. By applying a newly developed in

silico search approach to the Y‐chromosome reference sequence, we identified

27 novel RM Y‐STR candidates. Genotyping them in 1,616 DNA‐confirmed father–son

pairs for mutation rate estimation empirically highlighted 12 novel RM Y‐STRs. Their
capacity to differentiate males related by 1, 2, and 3 meioses was 27%, 47%, and 61%,

respectively, while for all 25 currently known RM Y‐STRs, it was 44%, 69%, and 83%.

Of the 647 Y‐STR mutations observed in total, almost all were single repeat changes,

repeat gains, and losses were well balanced; allele length and fathers' age were

positively correlated with mutation rate. We expect these new RM Y‐STRs, together
with the previously known ones, to significantly improving male relative differentia-

tion in future human genetic applications.
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1 | INTRODUCTION

Short tandem repeat (STR) analysis has grown over the last 25 years

to become and remain the gold standard for human individual iden-

tification purposes in forensic genetics (Fregeau & Fourney, 1993;

Lygo et al., 1994), while they are also used in other human genetic

areas. Besides autosomal STRs, the human genome of male individuals

also contains hundreds of STRs located on the male‐specific portion of

the human Y‐chromosome (Y‐STRs). Such male‐specific Y‐STR markers

have become increasingly popular in various areas of human genetics

such as in forensic genetics (Kayser, 2017), genetic genealogy (Calafell

& Larmuseau, 2017), anthropological genetics, and human population

history research (Jobling & Tyler‐Smith, 2017).

In forensic genetics, Y‐STRs are especially useful for solving

sexual assault cases with DNA mixtures typically containing an ex-

cess of DNA from the female victim's epithelial cells compared with

DNA of the male perpetrator's sperm cells (Roewer, 2009). Based on

such imbalanced male–female DNA mixtures, it often is practically

impossible to identify the male contributor based on autosomal STR

profiling, even after differential lysis leading to enrichment of sperm

DNA was applied (Gill et al., 2015; Vuichard et al., 2011). In contrast,

a Y‐STR profile (haplotype) of the male contributor can typically be

obtained from such mixed material, which allows determining the

paternal lineage to which the male crime scene trace donor belongs

(Kayser, 2017). Because of the lack of recombination and the rela-

tively low mutation rate (~10−3 mutations per marker per meiosis) of

the Y‐STRs typically used in forensic Y‐chromosome analysis, a Y‐STR
haplotype highlights the male perpetrator together with many of his

paternally related male relatives. This allows particular forensic

Y‐STR applications of genetic identification such as familial searching

(Kayser, 2017), forensic genealogy (Phillips, 2018), or surname pre-

diction (Claerhout et al., 2020). In general, however, forensic DNA

analysis seeks individual identification.

Male relative differentiation using Y‐chromosome markers is

achievable by using Y‐STRs with a high mutation rate. However, for

almost two decades of Y‐STR research and applications, only Y‐STRs
with moderate mutation rates in the order of 10−3 mutations per

marker per meiosis were known. This situation changed in 2010 with

the publication of a large empirical Y‐STR mutation rate study ana-

lyzing 186 Y‐STRs in nearly 2,000 DNA‐confirmed father–son pairs,

which highlighted 13 Y‐STR markers with mutation rates > 10−2

mutations per marker per meiosis termed rapidly mutating (RM)

Y‐STRs (Ballantyne et al., 2010). Followed by the first empirical de-

monstrations of their suitability for male relative differentiation

(Ballantyne et al., 2012, 2014), many subsequent studies provided

increasing evidence on the value of RM Y‐STRs for differentiating

related, including closely related, and also unrelated men (Adnan,

Ralf, Rakha, Kousouri, & Kayser, 2016; Alghafri, Goodwin, &

Hadi, 2013; Boattini et al., 2016, 2019; Lang et al., 2017; Nieder-

stätter, Berger, Kayser, & Parson, 2016; Robino et al., 2015; Salvador

et al., 2019; Turrina, Caratti, Ferrian, & De Leo, 2016; Westen

et al., 2015; Zgonjanin, Alghafri, Antov et al., 2017). In genetic gen-

ealogy too, RM Y‐STRs are advantageous as they provide improved

differentiation of unrelated individuals (Ballantyne et al., 2014) and

they allow distinguishing closely related from more distantly related

males by taking the number of observed mutations into account

(Larmuseau et al., 2019).

However, the relatively small number of 13 previously identified

RM Y‐STRs provides limitations for male relative differentiation,

particularly regarding closely related men, which limits applications

in forensic genetics and genetic genealogy (Roewer, 2019). Empirical

studies based on hundreds of male relative pairs showed that these

13 RM Y‐STRs allow separation of males related by one, two, three,

and four meioses with 27%, 46%, 54%, and 62%, respectively (Adnan

et al., 2016), which demonstrates room for improvement. This

shortcoming in the male relative differentiation rates of the pre-

viously identified RM Y‐STRs motivated our search for additional RM

Y‐STRs, which—if identifiable—are expected to further improve male

relative differentiation, particularly of closely related men.

There are different approaches to estimate mutation rates of

Y‐STRs serving as prerequisite for classifying Y‐STRs as RM Y‐STRs (i.e.,
µ > 10−2 mutations per marker per meiosis). One approach is the use of

DNA‐confirmed father–son pairs (Ballantyne et al., 2010; Goedbloed

et al., 2009); however, for revealing reliable mutation rate estimates

with this approach, the number of analyzed father–son pairs needs to

be large. Alternatively, a high‐resolution Y‐SNP based phylogeny in a

population‐based approach (Willems et al., 2016), or deep‐rooted male

pedigrees (Boattini et al., 2019; Claerhout et al., 2018) could be used to

estimate mutation rates of Y‐STRs. The latter two approaches require

less individuals to be genotyped to cover the same number of genera-

tions compared with a father–son based approach. This is especially

beneficial for estimating the mutation rate of Y‐STRs with moderate to

low mutation rates (i.e., µ~10−3 and less; Willems et al., 2016). For such

Y‐STR markers the father–son based approach requires thousands, or

even tens of thousands of pairs to obtain reliable mutation rate esti-

mates. However, for RM Y‐STRs with mutation rates > 10−2, the number

of father–son pairs required to achieve reliable mutation rate can be

lower, that is, analyzing 1,000 father–son pairs expects to find at least

10 RM Y‐STR mutations. Moreover, population‐based approaches and

to some extent deep‐rooted pedigree analysis, rely on assumptions

regarding the number of generations from the tested individuals to the

most recent common ancestor, which can lead to inaccurate estimations

of the mutation rates (Larmuseau et al., 2013; Willems et al., 2016).

Another disadvantage of both of these approaches is the potential

presence of parallel mutations, hidden mutations and multistep muta-

tions, which all could lead to increased error in the mutation rate es-

timates obtained (Claerhout, Van der Haegen, Vangeel, Larmuseau, &

Decorte, 2019). Therefore, particularly for RM Y‐STRs, direct observa-
tion in father–son pairs, provided a sufficiently large number of pairs

being available for analysis, represents the preferred approach for es-

tablishing mutation rates. Moreover, only this approach allows char-

acterizing the direction of the repeat mutations (repeat gain vs. repeat

loss) and quantifying the step‐wise nature of the repeat mutations

(single step vs. multistep) unambiguously.

Since our previous Y‐STR mutation study (Ballantyne et al., 2010)

already included most Y‐STRs known at the time, but only identified
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13 RM Y‐STRs, in the present study aiming to find additional RM

Y‐STRs, we had to use a different approach. First, we developed an in

silico method that can identify (Y‐)STRs with increased mutation rates.

Next, we applied this in silico search method to the Y‐chromosome

reference sequence (GRCh38) to identify novel RM Y‐STR candidate

markers. Then, we genotyped the identified candidate RM Y‐STR
markers in over 1,600 DNA‐confirmed father–son pairs to establish

their mutation rates, which empirically identified RM Y‐STRs out of

the in silico highlighted candidate markers. We also provide a first

expectation on the male relative differentiation capacity these novel

RM Y‐STRs provide and compared them with the previously known

RM Y‐STRs. Lastly, by taking advantage of the large number of Y‐STR
mutations we observed among the large number of father–son pairs,

we analyzed the obtained mutation data regarding the impact of allele

length, father's age at time of conception, and repeat motif sequence

composition on Y‐STR mutation rates to gain further insights into the

mutability of Y‐STRs in general.

2 | MATERIALS AND METHODS

2.1 | Editorial policies and ethical considerations

The biological material, from which the DNA samples used in this

study were previously extracted, had been collected by the re-

spective coauthors for paternity testing purposes with the donors'

given agreement that left‐over materials can be used for genetic

research. These DNA samples were fully anonymized (i.e., the key to

link the samples, and the data produced from the samples, with the

sample donors was destroyed). The only information of the sample

donors that was kept together with the DNA sample, and used in this

study, was father–son relationship, age and place of sample collec-

tion, which does not reflect personal data (i.e., data that can be linked

to an identified or identifiable person). Also the use of these DNA

samples in this study for investigating Y‐STR mutability does not

produce any personal data under this widely accepted definition.

Because this study does not use nor produce personal data, it is

outside of the remit of national or international (such as European

Union) privacy protection laws. As far as other research ethics as-

pects beyond privacy protection are concerned, sample collection

took place at a time when no formal ethical board approval was

possible for this based on national regulations in place in the re-

spective countries at the time, and in principle cannot be obtained

retrospectively. These DNA samples had been used for the same

purpose of investigating Y‐STR mutability in two previous publica-

tions (Ballantyne et al., 2010; Goedbloed et al., 2009).

2.2 | Candidate RM Y‐STR marker ascertainment

We identified candidate RM Y‐STR markers (cRM Y‐STRs), by scanning

the entire Y‐chromosome reference sequence. In particular, we first

built a catalog containing all Y‐STRs present in the latest assembly of

the human genome (GRCh38), by using the publically available software

Tandem repeats finder (Benson, 1999). The following parameters were

set in the software: Match = 2, Mismatch = 100, Delta = 100, PM=80,

PI = 10, Minscore = 12, and MaxPeriod = 5. These settings resulted in a

catalog containing only uninterrupted (perfect) STRs with a maximum

repetitive motif size of five base pairs. For the purpose of this study,

only STRs located on the Y‐chromosome were considered. From the

resulting Y‐STR catalog we discarded all repeats with a motif size < 3, as

such markers suffer from too much stutter (Hauge & Litt, 1993). Y‐STRs
located in pseudoautosomal regions were also excluded, because such

regions do not contain male‐specific loci (Mensah et al., 2014; Por-

iswanish et al., 2018). Y‐STR markers of which the mutation rates were

comprehensively estimated in a previous study (Ballantyne et al., 2010)

were excluded too. On the resulting cleaned catalog, we used a

top–down approach where we first attempted to design primers for the

cRM Y‐STRs with the highest number of repeats. If a single unin-

terrupted repeat stretch had another (preferably long) repeat in close

proximity, that is, <200 base pairs, we attempted to design primers in

such a way that both repeat stretches would be included. We also

enriched the set for multicopy loci by favoring these loci over single‐
copy loci with the same repeat length in the reference genome when

considering Y‐STR markers for primer design.

To predict which STR locus is prone to expressing high mutability,

we developed a workflow that can assign a mutability prediction score

to any STR sequence. For calculating this score, we used—in a locus‐
specific way—four molecular features that had previously shown to

impact on (Y‐)STR mutability (Ballantyne et al., 2010; Brinkmann,

Klintschar, Neuhuber, Hühne, & Rolf, 1998; Eckert & Hile, 2009;

Ellegren, 2004; Kayser et al., 2000, 2004; Kelkar, Tyekucheva, Chiar-

omonte, & Makova, 2008; Willems et al., 2016): (a) the length (i.e.,

number of repeats) of the uninterrupted repeat stretches, (b) the

number of repeat stretches in a sequence, (c) the marker being a

single‐copy, or a multicopy marker, and (d) the size (i.e., number of

base pairs) of the repeat motif. Of these features, the length of the

uninterrupted repeat stretches was previously shown to be the most

important factor increasing (Y‐)STR mutation rates (Ballantyne

et al., 2010; Brinkmann et al., 1998; Eckert & Hile, 2009;

Ellegren, 2004; Kayser et al., 2000, 2004; Kelkar et al., 2008).

To assign the mutability prediction score to a given Y‐STR mar-

ker, first the sequence was converted to an “STR structure se-

quence,” which counts the repeats stretches with more than four

repetitive units in the following systematic way. For each repetitive

sequence belonging to the same motif sequence family, a single re-

peat nomenclature was applied. For instance, [AAAG]n, [AAGA]n,

[AGAA]n, and [GAAA]n as well as their complementary sequences

[TTTC]n, [TTCT]n, [TCTT]n, and [CTTT]n were all counted as one motif

sequence family [AAAG]n. Examples using two previously published

RM Y‐STRs are shown in Figure 1. Next, the converted STR structure

sequences were used as input for our algorithm to assign the mut-

ability prediction score. In the case of multicopy markers, the se-

quences of the different copies were concatenated into one sequence

representing all copies together. Total repeat length has previously

shown exponential correlation with Y‐STR mutability (Ballantyne
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et al., 2010; Brinkmann et al., 1998; Eckert & Hile, 2009; Kelkar

et al., 2008), therefore an exponential function was derived empiri-

cally from the Y‐STRs and mutation rates described previously

(Ballantyne et al., 2010). The score assigned to each uninterrupted

repeat stretch can be expressed as e(0.15 × number of repeat units); if

multiple uninterrupted repeats were present, the scores of the in-

dividual uninterrupted repeats were summed up. For example, the

previously identified RM Y‐STR DYS627 (Ballantyne et al., 2010)

contains two repeat stretches, one of six and one of 18 repeats in the

Y‐chromosome reference sequence (GRCh38; Figure 1); thus, the

score assigned to this RM Y‐STR is e0.9 + e2.7 = 2.46 + 14.88 = 17.34.

The other previously identified RM Y‐STR used as an example in

Figure 1, DYS526b, has three repeat stretches and received a score

of e2.1 + e1.35 + e1.95 = 19.12. Lastly, tetranucleotide repeats were

previously found to be more mutable than other motifs, that is, tri-

nucleotide, or pentanucleotide repeats, when considering similar

numbers of repeat units (Ballantyne et al., 2010; Eckert & Hile, 2009).

Therefore, if the repeat motif—predominantly—belonged to any

other motif size class, the final score was adjusted by dividing it by 2

(mononucleotide and dinucleotide repeats were not considered in

this study).

Previously, information about Y‐STRs, that is, nomenclature,

genomic locations, and so forth were stored in the Human Genome

Database, which, however, is no longer available. To verify whether

the cRM Y‐STRs were already described previously, we searched for

the genomic locations of the cRM Y‐STRs in “ISOGG YBrowse”

(https://ybrowse.org). Table S1 shows the nomenclature for the

markers that were already described, although no comprehensive

mutation rate estimates were available for these markers. In addi-

tion, for the cRM Y‐STRs that were not found in the browser, or

those that only partially overlapped with known Y‐STRs, we pro-

posed new names (Table S1). We assigned DYS‐numbers to single‐
copy markers and DYF‐numbers to multicopy markers. We used

numbers larger than one thousand since such numbers had not yet

been used to describe Y‐STRs.

2.3 | Primer design, multiplex development, and
genotyping

The cRM Y‐STRs identified with the in silico approach were followed‐
up by genetic testing in father–son pairs to establish their mutation

rates empirically and thus demonstrate their RM Y‐STR status. For

this, polymerase chain reaction (PCR) primer design was performed

using Bisearch (Tusnady, Simon, Varadi, & Aranyi, 2005) to estimate

the melting temperature of the primers. Bisearch was also used to

perform in silico PCR in which only Y‐chromosome specific in silico

amplicons were allowed. Lastly, Bisearch was used to ensure that

individual primers were reasonably specific, that is, did not bind to

many hundreds, or thousands of locations across the human genome.

All primer pairs that were designed were first tested by performing

singleplex PCRs on both male and female DNA samples to ensure

male‐specific amplification. For this, the PCR products were visua-

lized on agarose gels. In cases where amplification in female samples

was observed, PCR primers were redesigned. If also redesigning the

primers did not lead to male‐specific amplification, capillary elec-

trophoresis (CE) was used to check if the unspecific amplicons

overlapped with, or were in close proximity (<20 base pairs) to, any

of the known alleles from Y‐STR loci within the same fluorescent dye

channel. If this was not the case, the marker remained in the study; if

this was the case, the marker was excluded from further analyses. Of

the 38 cRM Y‐STRs considered for primer design, 11 were excluded

due to unspecific amplification overlapping with male‐specific pro-

ducts despite our attempts.

In total, we successfully designed PCR primers for 27 cRM

Y‐STRs; those 27 markers were divided between six multiplex PCR

assays to allow more efficient (compared with singleplex PCR) gen-

otyping of the large number of DNA samples from fathers and their

sons we considered in this study. Autodimer software (Vallone &

Butler, 2004) was used to ensure the primer combinations had

minimal primer interactions. Oligonucleotides targeting the 27 cRM

Y‐STRs were purchased with 5′ labeling of the forward primer using

F IGURE 1 Examples of the conversion of full STR marker sequence to STR structure sequence for two previously identified RM Y‐STRs,
DYS627 and DYS526b, as part of the newly developed in silico approach used to find novel RM Y‐STRs, for illustrative reasons. Note that for
DYS526b the reverse complementary sequence was used to meet the “single motif requirement” (see Materials and Methods for explanation).

RM rapidly mutating; STRs, short tandem repeats
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either 6‐Fam, Joe, or TAMRA (Metabion International AG). Primer

sequences and additional information, that is, primer sequences and

mutability prediction scores, of the cRM Y‐STRs can be found in

Table S1. Table S1 also shows repeat descriptions based on the

HGVS nomenclature system (den Dunnen et al., 2016). However, in

this study we did not sequence the markers and, therefore, we lack

knowledge about the sequence variability, hence the repeat de-

scriptions are done solely based on the GRCh38 reference sequence.

Each multiplex was optimized using five high‐quality human male

DNA samples, one high‐quality female human DNA sample, and two

negative control samples. PCR reactions were performed in 10 µl

volumes, containing 5 µl of QIAGEN Multiplex PCR Master Mix

(QIAGEN N.V.), oligonucleotides at varying concentrations ranging

from 0.1 to 1 µM, and 1 µl of template DNA. While concentrations of

template DNA added with 1 µl to the PCR reaction varied, peak

height inspections in the electropherograms demonstrated that

genotype data for all samples and markers analyzed were reliably

obtainable. The PCR reactions were performed on GeneAmp PCR

System 9700 (Thermo Fisher Scientific Inc.) using both 96‐well and

384‐well dual blocks. Every multiplex reaction was amplified with the

same PCR protocol: 94°C for 10min, 10 cycles of 94°C for 30 s, 65‐
1°C every cycle for 60 s and 72°C for 60 s, followed by 25 cycles of

94°C for 30 s, 50°C for 30 s, and 72°C for 60 s with a final extension

step of 60°C for 45min. After amplification, 1 µl of the PCR product

was mixed with 9 µl of Hi‐Di formamide (Thermo Fisher Scientific)

and with 0.3 µl of ILS600 size standard (Promega Corporation). This

mixture was incubated at 95°C for 3min and rapidly cooled on ice for

5min. CE was performed on an ABI3130XL Genetic Analyzer

(Thermo Fisher Scientific) using sixteen 36 cm capillaries and POP‐7
Polymer (Thermo Fisher Scientific). The Any4Dye spectral calibration

matrix (Promega Corporation) was installed which allowed for ac-

curate separation of signal from the different fluorescent labels. The

resulting electropherograms were analyzed using GeneMapper

software version 4.0 (Thermo Fisher Scientific).

The newly developed multiplex systems to analyze the 27 cRM

Y‐STR were then used to genotype 3,232 DNA samples which were

derived from sample donors of German and Polish European descent,

representing a total of 1,616 DNA‐confirmed father–son pairs. These

samples are a subset of the father–son pairs used in our previous

comprehensive Y‐STR mutation rate study (Ballantyne et al., 2010),

excluding samples with DNA shortage, or incomplete amplification of

all markers of the father's and/or the son's DNA of a given pair. The

true biological father–son relationship was previously established by

means of autosomal DNA‐analysis; more detailed information about

the samples can be found in the initial publication (Ballantyne

et al., 2010). Data interpretation was performed independently by

two research technicians and conflicting results were resolved by a

third trained specialist. If an allelic difference had been observed

within a given father–son pair at any cRM Y‐STR tested, the result

was confirmed by independent genotyping of both father and son to

confirm the allelic difference before concluding that the allelic dif-

ference reflected a mutation. In the case of multicopy markers it was

decided that peak height ratio differences would not be interpreted

as mutations, for example, a hypothetical multicopy marker could

mutate from 15–15–16 to 15–16–16, resulting in an increased peak

height for allele 16 and a decreased peak height for allele 15 in the

son. However, there are other factors that can influence the peak

height ratios, for example, preferential amplification of one or more

alleles as a result of primer binding site mutations, or a stochastic

amplification bias as a result of a low amount of input DNA. There-

fore, we preferred a conservative approach and ignored such peak

height differences in the mutation analysis of multicopy markers that

is, call both the father and son as 15–16 in the example given above.

2.4 | Mutational data analysis

Statistical data analyses were performed using R version 3.6.2 (R

Core Team, 2013; https://www.r-project.org) in Rstudio Version

1.2.5033 (RStudio Team, 2015; https://rstudio.com). Unless stated

otherwise functions standardly imbedded in R were used.

2.4.1 | Validation of mutability prediction score

To validate whether the mutability prediction score was a suitable

predictor for Y‐STR mutation rate, a linear regression analysis was

performed to show the correlation between the mutation rates and

the mutability prediction score of 185 Y‐STRs from our previous

mutation rate study (Ballantyne et al., 2010). In addition, these

185 Y‐STRs were grouped according to their mutation rates, as fol-

lows: slowly mutating Y‐STRs (SM Y‐STRs): n = 82, with mutation

rates < 10−3 mutations per marker per meiosis (in the following used

without the unit of measure); moderately mutating Y‐STRs: n = 70

with mutation rates ≥ 10−3 and <5.0 × 10−3 (MM Y‐STRs); fastly mu-

tating: n = 19 mutation rates ≥ 5.0 × 10−3 and <10−2 (FM Y‐STRs); and
RM Y‐STRs: n = 14 mutation rates ≥ 10−2 (RM Y‐STRs). Note that the

A and B parts of the multicopy RM Y‐STR marker DYF403S1 were

considered separately in these analyses, DYF403S1b has a size range

that is clearly distinguishable from the allele range of DYF403S1a.

Therefore, these a and b parts were analyzed separately and for both

parts the mutation rates were estimated separately. The statistical

significance of the differences in the mean mutability prediction

scores between these four groups were tested using pairwise

Wilcoxon rank sum test and with Bonferroni p‐value adjustments for

multiple testing in RStudio.

2.4.2 | Mutation rate estimation

Mutation rates were calculated in a locus‐specific manner using the

frequentist approach that is, dividing the total number of observed

mutations for a Y‐STR marker by the total number of father–son

pairs tested for a Y‐STR marker; the mutation rate is, therefore,

expresses as the number of mutations per marker per meiosis. Esti-

mating the mutation rates of individual repeat stretches within
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complex STR loci, or estimating the mutation rates of individual co-

pies in multicopy loci was not possible with genotyping methodology

that was used. The 95% confidence intervals of the mutation rates

were calculated with the Clopper–Pearson (exact) method using a

binomial distribution in RStudio, using the “exactci” package

(Fay, 2010).

2.4.3 | Differentiation capacity estimation

To provide a first expectation to what degree the identified novel RM

Y‐STRs will improve differentiating male relatives, the theoretical

differentiation capacities (rd) were calculated for different Y‐STR
marker sets (from i = 1 to n; with n being equal to the number of Y‐
STR markers in each set) based on estimated mutation rates (rm) for

different numbers of separating meioses (m) using the formula:

∐= − ( − )
=

r r1 1 .d
i

n

m
m

1

2.4.4 | Testing mutation effects of allele length

To test the effect of fathers' allele lengths on Y‐STR mutation rate

and the direction of mutations, a categorical approach was used.

Categories were defined within each marker using the tertiles, where

the low range was defined as alleles with the length equal to, or

lower than the first tertile allele, the medium range consisted of the

alleles greater than the first tertile and smaller then, or equal to the

second tertile, the high range was defined as all alleles greater than

the second tertile. The number of alleles and the mutations within

these three categories were summed up across all markers. To sta-

tistically test if allele length had a significant impact on the mut-

ability, the allelic mutation rates, that is, the number of mutations per

allele per meiosis, between the three categories were compared

using pairwise comparison of proportions, combined with Bonferroni

p‐value adjustments in RStudio. To statistically test if the allele length

has a significant impact on the direction of the mutations, the pro-

portions of expansions and contractions within the three categories

were calculated using exact binomial testing in RStudio.

2.4.5 | Testing mutation effect of father's age at the
time of son's conception

To test if there was a significant effect of the father's age at the time

of conception on the Y‐STR mutability, all fathers of which age in-

formation was available (N = 1,500) were grouped in four age cate-

gories by using the quartiles. Group 1 consisted of 432 fathers with

ages < 24 at the time of conception; Group 2 ranged from age 24 to

29 and contained 378 individuals; Group 3 ranged from age 30 to 36

with 324 individuals; and Group 4 contained fathers that had reached

age 37 and beyond at the time of conception and contained 366

individuals. To test if there were statistically significant differences

between these age groups in the number of mutations that occurred,

we used pairwise comparisons of the mean number of mutations per

individual in each age groups using the Wilcoxon rank sum test and

with Bonferroni p‐value adjustments in RStudio.

2.4.6 | Testing mutation effect of repeat motif
sequence

To test for the influence of the repeat motif sequence on Y‐STR
mutation rates, eight commonly found motif sequences families,

specifically: AAG, AGG, AAT, AAC, AAAG, AAGG, AGAT, and AAAT,

were compared between RM Y‐STRs and non‐RM Y‐STRs. The non‐
RM Y‐STRs were ascertained from a previous study (Ballantyne

et al., 2010), while for the RM Y‐STRs, the 13 markers identified in

the same previous study were combined with the novel RM Y‐STRs
identified in the present study. Two‐tailed Fisher's exact test, in

RStudio, was used to test for significant differences in motif sequence

composition between the RM and non‐RM Y‐STRs.

3 | RESULTS AND DISCUSSION

3.1 | Candidate RM Y‐STR marker ascertainment

Estimating to what degree the developed and applied mutability

prediction scores actually correlate with mutability, we first per-

formed a linear regression analysis of the mutability prediction

scores with the empirically derived mutation rate estimates for

185 Y‐STR markers from our previous mutation study including the

13 known RM Y‐STRs (Ballantyne et al., 2010). A statistically

significant positive correlation was observed with an R2 of .

53 (p < 2.2 × 10−16). However, a limitation of the used data set is that

it contains many markers (51% of total Y‐STRs analyzed) with either

just a single, or no mutation observed in the nearly 2,000 father–son

pairs analyzed in the previous study. This makes the mutation rates

estimated for such markers less reliable (Willems et al., 2016) with an

expected impact on our correlation analysis. To gain more insights

into the effect of mutation rate uncertainty on our mutability score

correlation analysis, we additionally applied a categorical approach

on the same data set to visualize the differences in mutability pre-

diction scores between Y‐STR markers using four marker groups

defined by their mutation rates: SM Y‐STRs, MM Y‐STRs, FM Y‐STRs,
and RM Y‐STRs (for mutation rate definitions of these groups see

method Section 2.4). SM Y‐STRs showed significant p‐values (Wil-

coxon rank sum test) compared with all other three groups MM Y‐
STRs, FM Y‐STRs, and RM Y‐STRs (p‐values of 1.7 × 10−7, 3.6 × 10−7,

and 1.7 × 10−8, respectively). MM Y‐STRs showed significant p‐values
compared with FM Y‐STRs and RM Y‐STRs (p‐values of .0092 and

7.2 × 10−8, respectively). Comparing FM Y‐STRs with RM Y‐STRs
resulted in a significant p‐value of .0076. As evident from Figure 2, a

mutability prediction score of > 15 provides reasonably good indica-

tion for RM Y‐STRs, although finding some markers with slightly

RALF ET AL. | 1685



lower mutating rates can also be expected when using such mut-

ability score threshold. Importantly, for the 27 cRM Y‐STRs high-

lighted in our in silico analysis and included in the multiplex

genotyping, the mean mutability score was 33, ranging from 7 to 123

across markers (Table S1). Moreover, based solely on the length of

the longest repeat stretch, 7 of the 13 previously described RM

Y‐STRs (Ballantyne et al., 2010) were found among the top candi-

dates (before taking multiple repeat stretches and multicopy status

into account), which demonstrates the suitability of our in silico ap-

proach, including the use of our mutability score, to find RM Y‐STR
markers, and provides promises that we can find new RM Y‐STRs
with our in silico approach.

3.2 | Mutation analysis

Genotyping the 27 cRM Y‐STR markers in 1,616 DNA‐confirmed

father–son pairs revealed a total of 647 repeat mutations across all

markers and pairs. The mean number of mutations per marker was

24, ranging from 2 to 84 across markers. A positive correlation of the

empirically derived marker specific mutation rate with the mutability

prediction score was observed (R2 of .66, p = 3.8 × 10−7). Of the

647 mutations, 318 (49%) were repeat expansions and 322 (50%)

were contractions, demonstrating a nearly equal ratio. This finding

differs slightly from that of our previous study based on 186 Y‐STRs
selected independent of mutation rate expectation, where of the 787

mutations observed in total, slightly more repeat contraction (423;

54%) than repeat expansions (364; 46%) were found (Ballantyne

et al., 2010). For seven mutations in our present study, the direction

could not be unambiguously assigned due to the multicopy status of

the involved markers, explaining the missing percent. For instance,

observing within a father–son pair the genotype combinations

15–16–17 and 15–17 could mean a mutational repeat loss from 16

to 15 or a repeat gain from 16 to 17, or alternatively a deletion of the

locus copy with allele 16. Although the repeat gains versus losses

were equal across all cRM Y‐STR markers, four markers showed large

differences in the directionality of the mutations. In DYS1003 and

DYS1013 repeat contractions were dominant with 76% and 75%,

respectively (p‐values of .012 and .077, respectively), while in

DYS1006 and DYS1017 it were predominantly repeat expansions

with 78% and 77%, respectively (p‐values .180 and .092, respec-

tively). However, these differences only led to a significant p‐value in

one single marker (i.e., DYS1003), which may be explained by the

lower number of observed mutations in the remaining three markers.

Future research will have to show if these observations can be

confirmed with additional mutations found by analyzing additional

father–son pairs.

For the analysis of the step‐wise nature of the mutations, two

markers, namely DYF1000 and DYS1010, were excluded from this

analysis, since the sequences contain both trinucleotide repeats

combined with a hexanucleotide repeat, and tetranucleotide repeats

combined with a dinucleotide repeat, respectively. Hence, in the case

of DYF1000, finding a mutation with a six base pair difference could

be explained as either a single‐step mutation of the hexanucleotide

repeat, or as a two‐step mutation of the trinucleotide repeat (or even

as two single‐step mutation at different trinucleotide repeat stret-

ches). Similarly, in DYS1010, a four base pairs difference in a

father–son pair could be explained as either a single‐step tetra-

nucleotide mutation, or a two‐step dinucleotide mutation. The vast

majority of the 563 mutations observed in the remaining 25 cRM

Y‐STRs were single‐step repeat mutations (544, 97%, Table 1), which

agrees well with the results from our previous study with 96% single‐
step mutations (Ballantyne et al., 2010). In the present study, only 3%

of the observed mutations were two‐step mutations and <1% were

three‐step mutations (Table 1). Notably, our present data set con-

tained two individuals (both were sons) that appear to carry a large

deletion in their Y‐chromosomes, resulting in a large number of null‐
alleles at the 27 cRM Y‐STRs tested; these individuals and their fa-

thers were excluded from all analyses. The mutation characteristics

of each of the 27 cRM Y‐STR marker are summarized in Table 1.

Following the mutation rate criteria described in method

Section 2.4, 12 (44%) out of the 27 cRM Y‐STRs tested were classi-

fied as RM Y‐STRs with mutation rate > 10−2, representing eight

F IGURE 2 Boxplots showing the distributions of the newly
developed mutability prediction scores among four groups of Y‐STR
markers as defined by mutation rate: (a) slowly mutating (SM) Y‐STRs
(mutation rate < 10−3), (b) moderately mutating (MM) Y‐STRs (mutation
rate≥10−3 and <5×10‐3), (c) fast mutating (FM) Y‐STRs (mutation
rate≥5×10−3 and <10−2), and (d) rapidly mutating (RM)

Y‐STRs (mutation rate≥10−2) based on Y‐STRs and their mutation rate
estimates from Ballantyne et al. (2010). STRs, short tandem repeats
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novel Y‐STRs not previously described at all, and four Y‐STRs pre-

viously described in population studies. The previously discovered Y‐
STRs were: DYS713 (Leat, Ehrenreich, Benjeddou, Cloete, & Davison,

2007), later also described as DYS685 (Maybruck, Hanson, Ballan-

tyne, Budowle, & Fuerst, 2009); DYS711 (Leat et al., 2007), later also

described as DYS688 (Maybruck et al., 2009); DYS712 (Leat

et al., 2007); and CDY (included in commercial products of Family-

TreeDNA), later also described as DYS724 (Jacobs et al., 2009).

Three of those markers had only population data and no mutation

data previously reported: DYS711 (Leat et al., 2007; Maybruck

et al., 2009; Zhang, Yang, Niu, & Guo, 2012); DYS712; DYS713 (Leat

et al., 2007; Liu et al., 2019; Maybruck et al., 2009; Zhang

et al., 2012). For one of the previously discovered Y‐STR markers,

DYS724, mutation data were previously inferred from population

data (Chandler, 2006) and later from deep‐rooted pedigrees (Boattini

et al., 2019; Claerhout et al., 2018), while mutation data from com-

prehensive father–son pair analysis as in the present study were not

previously reported. Although not being described in scientific lit-

erature, another one of the newly classified RM Y‐STRs is part of a

test kit sold by a direct‐to‐consumer DNA testing company (i.e.,

FamilyTreeDNA) under the name DYR88.

Next to the identified 12 RM Y‐STRs, the mutation rate data

allowed classifying 10 of the 27 cRM Y‐STR markers (37%) as FM

Y‐STRs with mutation rates between 5 × 10−3 and 1 × 10−2, re-

presenting nine novel Y‐STRs markers not previously described at all.

One Y‐STR markers was previously discovered (Leat et al., 2007), and

population data were published: DYS714 (Leat et al., 2007; Liu

et al., 2019; Zhang et al., 2012). One of the nine novel FM Y‐STRs is
also used by FamilyTreeDNA under the name: DYR33, but no marker

information was found in scientific publications.

The remaining five cRM Y‐STR markers (19%) were classified

based on the mutation rate data as MM Y‐STRs with mutation rates

between 1 × 10−3 and 5 × 10−3, representing three novel Y‐STR
markers not previously described at all, and two previously described

Y‐STR markers: DYS524 and DYS563 (Hanson & Ballantyne, 2006),

which both lack population data and mutation rate data in the sci-

entific literature. SM Y‐STRs with mutation rates < 10−3 were not

observed among the 27 cRM Y‐STR markers tested, demonstrating

the power of our in silico search strategy to find Y‐STR markers with

increased mutation rate. Notably, this is in contrast to our previous

unbiased empirical screening study (Ballantyne et al., 2010) that re-

vealed 82 (44%) of 186 Y‐STRs with mutation rates < 10−3.

Thus, overall, more than 80% of the cRM Y‐STR markers high-

lighted via our in silico analysis designed to find Y‐STRs with increased

mutation rate were indeed empirically verified as Y‐STRs with in-

creased mutation rates, either RM Y‐STRs or FM Y‐STRs. This again

contrasts markedly to the only 16% such markers, that is, 7% RM Y‐
STRs and 9% FM Y‐STRs identified in our previous unbiased screening

study, including 186 Y‐STRs (Ballantyne et al., 2010). These results

clearly demonstrate the advantage of applying our in silico approach,

including the mutability prediction score, for identifying Y‐STRs with

increased mutation rates compared with the unbiased, massive

screening approach applied previously (Ballantyne et al., 2010). In theT
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present study, we applied our in silico approach only to the

Y‐chromosome reference sequence to identify Y‐STRs with increased

mutation rates. In the future, our in silico approach may also be ap-

plied to the autosomal reference sequence to identify autosomal STRs

with increased mutation rates for suitable human genetic research and

application purposes.

The set of newly identified 12 RM Y‐STRs has a mean mutation

rate of 2.6 × 10−2, which is higher compared with that of the set of

previously identified 13 RM Y‐STRs with 1.6 × 10−2 (Adnan

et al., 2016). However, the most mutable of all currently known RM

Y‐STR markers remains one from the previously published set,

namely DYF399S1, which has an estimated mutation rate of

6.9 × 10−2 (Adnan et al., 2016). In comparison, the most mutable

novel RM Y‐STR identified in the present study, DYF1001, has a

slightly lower estimated mutation rate of 5.2 × 10−2. When combining

the 12 novel with the 13 previous RM Y‐STRs and ranking them

according to their empirically derived mutation rate estimates with

Rank 1 going to the marker with the highest mutation rate, Rank 2–6

go to 5 of the 12 newly identified RM Y‐STRs, once again demon-

strating the power of our combined in silico and empirical approach.

The newly identified RM Y‐STR marker set contains slightly more

multicopy markers (five) compared with the previously published RM

Y‐STR set (four). It was not possible to separate the individual copies

of such markers with our approach; therefore, it remains unknown if

the different copies contributed equally to the increased mutability

of these markers. A total of 10 out of the 27 cRM Y‐STRs were

multicopy markers. Of these 10, only half were confirmed to be RM

Y‐STRs. Therefore, we can conclude that the increased mutability

that stems from having multiple copies alone is not sufficient to ex-

plain the high mutability that can be found in some of these Y‐STRs.
Both RM Y‐STR sets predominantly consist of tetranucleotide repeat

loci; the previously published set contained only one trinucleotide

repeat locus, while the newly identified set contains two trinucleo-

tide loci (of which one also contains a hexanucleotide repeat). Note

that homopolymers and dinucleotide repeats were not considered a

priori in both the current and the previous study (Ballantyne

et al., 2010).

Besides the success of our in silico approach to identify novel RM

Y‐STRs, about half (56%) of the cRM Y‐STRs highlighted in silico

showed empirical mutation rates < 10−2 in the father–son pair test-

ing, and thus were not empirically confirmed as RM Y‐STR. This can

be explained by various factors. One is the use of a strict mutation

rate boundary of 10−2 for classifying RM Y‐STRs, which means that a

marker with a slightly lower mutation rate of, for example, 9.9 × 10−3

is not classified as RM Y‐STR such as DYS1013 in the present study

(Table 1). A second factor is the impact of stochastic effects that are

inherently associated to STR mutability studies and that becomes

more pronounced the lower the mutation rate is given sample size

constrains, for example, all 10 FM Y‐STRs found in this study have

the RM Y‐STR mutation rate boundary of 10−2 within their 95%

confidence interval (Table 1). A third factor is the sole use of the

human genome reference sequence to find cRM Y‐STRs, which pro-

vides a hybrid Y‐chromosome sequence of a small number of

individuals only, which can never reflect Y‐STR diversity in any hu-

man population. Thus, any population effect is ignored when using a

single sequence in the candidate marker ascertainment as done here.

For example, purely by chance, the reference genome may display a

very long STR allele, while the majority of the individuals in a po-

pulation carry shorter alleles. In such case, using father–son pair

samples from such population for mutation rate estimation would

thus reveal lower mutation rates than expected from the in silico

analysis, given the known impact of Y‐STR allele length on Y‐STR
mutation rates (see also below). Furthermore, mutability may be af-

fected by other sequence structure based differences between the

reference genome and the study population, that were not covered

by our in silico approach. An ideal STR mutability prediction model

would use multiple reference sequences from individuals of multiple

populations, or alternatively, use the median allele size obtained from

genotyping of one or several populations. However, such an approach

would require large (whole genome) sequencing data sets. Although

such data sets are publically available, the vast majority of currently

available sequencing data is produced by short read sequencing,

which is not suitable for finding RM Y‐STRs that contain relatively

long and complex repetitive sequences (Willems et al., 2016). In the

future, accurate third generation sequencing technologies like Pac-

bio's single molecule, real‐time sequencing may help to overcome

these limitations. The future analysis of high‐quality, high‐coverage,
and long read whole genome sequences (Vollger et al., 2019) may

result in additional novel cRM Y‐STR markers that should be tested

in large numbers of father–son pairs to empirically establish their RM

Y‐STR status.

3.3 | Male relative differentiation capacity

Using the full set of 27 cRM Y‐STRs genotyped, a total of 518 (32%)

of the 1,616 father–son pairs analyzed were differentiated by at least

one Y‐STR mutations. When only considering the 12 RM Y‐STRs, a
total of 424 (26%) father–son pairs were separated; of these, 352

(83%) pairs were differentiated by a single mutation, 66 (15%) by two

mutations, 5 (1%) by three mutations, and a single pair (<1%) was

separated by four mutations. It is not expected that the 32%

father–son differentiation rate based on the total number of 27 cRM

Y‐STRs is biased, because these father–son pairs have not been used

for marker discovery (which was solely based on the in silico ap-

proach). However, the 26% father–son differentiation rate for the 12

RM Y‐STRs may reflect an overestimation, because the same

father–son pair data were used for highlighting the 12 RM Y‐STRs
out of the 27 cRM Y‐STRs. At this moment it is difficult to know how

serious this overestimation is until empirical data from independent

father–son pairs and other male relatives become available with fu-

ture studies.

However, to get a first impression and to provide a theoretical

expectation on how well these 12 novel RM Y‐STRs differentiate

paternally related men, we estimated male differentiation capacity by

using the empirically derived mutation rate estimates from the
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current study for male relatives separated by 1–10 meioses, and

compared it with the estimates calculated in the same way for the

13 previously identified RM Y‐STRs (Ballantyne et al., 2010). As

evident from Figure 3, the set of 12 new RM Y‐STRs provides

somewhat higher male relative differentiation capacity within all

groups of male relative when compared with the 13 previously

known RM Y‐STRs. Moreover, when combining all 25 RM Y‐STRs,
male relative differentiation capacity for all pairs of relatives were

drastically increased with 44% of the father–son pairs (one meiosis),

69% of the brothers and grandfather–grandson pairs (two meioses),

83% of the uncle–nephews (three meioses), and 90% of the cousins

(four meioses) being differentiated by at least one mutation, re-

spectively. For paternal relatives separated by eight meioses and

above, over 99% were differentiated with this set of 25 RM Y‐STR
markers. If future relative differentiation rates derived from em-

pirical testing of independent samples can confirm these estimates,

this will provide a significant boost in the practical application of RM

Y‐STRs for male relative differentiation, as highly relevant in forensic

case work (Kayser, 2017) and other fields such as genetic genealogy

(Calafell & Larmuseau, 2017).

It is encouraging to note that for the 13 previously established

RM Y‐STRs, the mutation rate derived differentiation capacity esti-

mates agreed well with the male relative differentiation rates em-

pirically obtained from independent male relative data (Adnan

et al., 2016). In particular, for pairs of men related by one to four

meiosis, the differentiation capacity for the previous 13 RM Y‐STRs
were estimated to be 23%, 41%, 55%, and 66%, respectively, while

the empirically observed differentiation rates based on hundreds of

relative pairs tested, were very similar at 24%, 44%, 55%, and 61%,

respectively (Adnan et al., 2016). Therefore it can be expected that

provided enough male relative pairs being analyzed in future em-

pirical studies, the empirically derived relative differentiation rates

for the set of 12 novel RM Y‐STRs and for the combined set of all

25 currently known RM Y‐STRs shall be similar to the differentiation

capacities presented here.

3.4 | Internal and external factors influencing
mutability

3.4.1 | Impact of the length of the father's allele on
Y‐STR mutability

It is generally accepted that the length of an STR repeat, that is, the

number of repeats, is the most predominant driving factor of STR

including Y‐STR mutability (Ballantyne et al., 2010; Brinkmann

et al., 1998; Eckert & Hile, 2009; Ellegren, 2004; Kayser et al., 2000;

Kelkar et al., 2008; Willems et al., 2016). Therefore it would be ex-

pected that fathers that possess long (Y‐)STR alleles have an in-

creased chance for a mutation to occur at these loci compared with

fathers that possess short (Y‐)STR alleles. Due to the relatively large

number of 647 Y‐STR mutations we observed at the 27 cRM Y‐STRs
among the > 1,600 father–son pairs, we had the possibility to test

this hypothesis for Y‐STRs in particular. To this end, alleles observed

in the fathers for each of the 27 cRM Y‐STRs were classified as low,

medium, or high length range alleles using the tertiles. The allelic

mutation rates in each of the three categories were then calculated

by dividing the total number of observed mutations by the total

number of alleles and, therefore, represent the number of mutations

per allele per meiosis. As shown in Figure 4, indeed the high range

alleles with the longest repeats mutated more frequently than the

low and the medium range alleles. There was a more than two‐fold
difference in allelic mutation frequency between the low and the high

allele ranges. Pairwise comparison of proportions with conservative

Bonferroni correction for multiple testing resulted in statistically

significant p‐values between all groups. The smallest difference was

F IGURE 3 Male relative differentiation capacities calculated from the respective locus‐specific mutation rate estimates for (a) the 13
previously established RM Y‐STRs (Ballantyne et al., 2010), DYF403S1a and DYF403S1b were considered making a total of 14 loci. (b) The 12

novel RM Y‐STRs identified in the present study, and (c) the combined set of 25 currently known RM Y‐STRs, for male relative pairs separated
by 1–10 meioses, respectively. RM, rapidly mutating; STRs, short tandem repeats
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found between the low and medium allele ranges, with an adjusted

p‐value of .014, the adjusted p‐value between the medium and high

allele ranges was 1.1 × 10−9, and between the low and high allele

ranges the adjusted p‐value was below 2 × 10−16.

It has also been previously suggested that some Y‐STR markers

may exhibit mutation rate differences between populations explained

by different underlying Y‐SNP haplogroups (Claerhout et al., 2018).

Theoretically, this could be caused, for instance under strong popu-

lation bottleneck scenarios involving a limited number of male

founders, followed by (Y‐chromosome) genetic isolation, when the

male founders carry a predominant Y haplogroup associated with

very short or very long Y‐STR alleles instead of the more complete

allele range the Y‐STR would allow. In our study, Y haplogroup in-

formation was not available; but even if it were, it would be unlikely

that this played a role in our study, given the German and Polish

European descent of the father–son pairs used and their known Y

haplogroup diversity (Kayser et al., 2005). However, it is encouraging

that for most of the previously established set of 13 RM Y‐STRs, the
elevated mutation rates could be demonstrated in father–son pairs

from different populations (Adnan et al., 2016; Ballantyne

et al., 2014; Boattini et al., 2016; Lang et al., 2017; Zgonjanin, Al-

ghafri, Almheiri et al., 2017). This suggests that the population and

thus Y haplogroup background has a limited impact on the increased

mutation rates of RM Y‐STRs in most populations.

3.4.2 | The directionality of mutations

Of the total of 647 observed mutations, the repeat expansion and

contractions were nearly equally distributed with 318 expansions

(49%) and 322 contractions (50%). To test if the direction of the

Y‐STR repeat mutations was influenced by the allele length, we used

the tertile based allele range grouping as described before. As seen in

Figure 5, there appears to be a pattern where shorter alleles tend to

expand more and the longer alleles contract more. Exact binomial

testing showed a statistically significant difference in expansions and

contractions in the low allele range, with more expansions than

contraction (p‐value .012), and a low, yet nonsignificant difference in

the high allele range, with more contractions than expansions

(p‐value .061). In the medium allele range, however, the expansions

and contractions appeared to be more balanced, as is also reflected in

a nonsignificant p‐value of .718. These results are in agreement with

our previous study that found a similar effect of allele length on the

direction of mutations across 186 Y‐STRs (Ballantyne et al., 2010).

The results are also in line with a study analyzing 236 mutations

across 122 autosomal STRs, which demonstrated an exponential in-

crease in the number of contractions with increasing allele size and

predominantly expansion mutations in the lower allele size ranges

(Xu, Peng, Fang, & Xu, 2000).

3.4.3 | Impact of the father's age on Y‐STR
mutability

Several previous studies showed that the father's age at time of

siring his son affects STR including Y‐STR mutability with a positive

correlation; the older the father, the more mutations (Ballantyne

et al., 2010; Claerhout et al., 2018; Gusmao et al., 2005; Kong

et al., 2012; Sun et al., 2012). However, other studies reported no

such, or only a small effect (Dupuy, Stenersen, Egeland, & Olaisen,

2004; Forster et al., 2015), which may be explained by limited sample

size effect or intrinsic differences (e.g., complexity or sequence mo-

tifs) between the studied STRs. Taking advantage of the relatively

large number of mutations we observed, we tested for the effect of

father's age on the Y‐STR mutability in our 27 cRM Y‐STR markers.

To this end, all fathers of which the age at the time of conception

was available (N = 1,500) were divided in four groups defined by fa-

thers' age at time of siring their sons according to the quartiles. We

tested for outliers in the different age groups (individuals with age

that fell outside of the range Q1−1.5 * IQR to Q3 + 1.5 * IQR), only

two individuals (out of the 366) in the oldest age group could be

considered outliers. As shown in Figure 6, indeed father's age had an

F IGURE 4 Y‐STR allelic mutation rates (the number of mutations

per allele per meiosis) of the genotyped 1,616 fathers according to
the (a) low, (b) medium, and (c) high range allele groups (tertiles) as
defined by the father's allelic fragment length based on the 27 cRM

Y‐STRs highlighted by our in silico approach. cRM, candidate rapidly
mutating; STRs, short tandem repeats

F IGURE 5 Y‐STR repeat mutation expansion and contraction
proportions according to the (a) low, (b) medium, and (c) high range

allele groups as defined by the father's allelic fragment length, the
groups were defined as the tertiles, based on 27 cRM Y‐STRs
highlighted by our in silico approach. The bars represent the binomial

95% confidentiality interval. cRM, candidate rapidly mutating; STRs,
short tandem repeats
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impact on the number of observed mutations in our study. In the

oldest age group there was a more than a two‐fold increase in

the mean number of Y‐STR mutations observed compared with the

youngest age group. A pairwise comparisons using the Wilcoxon rank

sum test and applying Bonferroni p‐value adjustment showed sig-

nificant differences between the group with the largest number of

Y‐STR mutations: Group 4 (oldest fathers) and all other age groups

(p‐values of 1.8 × 10−11, 1.2 × 10−5, and .0018 compared with Group

1, 2, and 3, respectively). In addition, the second oldest age Group 3

showed significantly more Y‐STR mutations than the youngest age

Group 1 (p‐value of .013), although the difference was much smaller

than seen between Group 4 and all other age groups. These results

are in line with earlier observations of us and others that increased

father's age increases (Y‐)STR mutability (Ballantyne et al., 2010;

Brinkmann et al., 1998; Claerhout et al., 2018; Gusmao et al., 2005;

Sun et al., 2012). Moreover, this finding highlights that when using

father–son pairs to study (Y‐)STR mutability, the age distribution of

the fathers at the time of siring is a factor to consider when inter-

preting the mutation outcomes. Notably, although the average age

that men become fathers has generally increased over the past

decades for various reasons (Khandwala, Zhang, Lu, & Eisen-

berg, 2017), there also are strong differences between populations

based on various reasons including cultural and economic factors

(Young Jr, 2011) that shall be considered for the data interpretation

in future studies.

3.4.4 | Impact of the repeat sequence motif on
mutability

Based on previously published studies, it remains unclear if the DNA

sequence of the repeat motif has a direct impact on the (Y‐)STR
mutability. Some studies described such effect (Eckert & Hile, 2009;

Kelkar et al., 2008), while others did not see such (Ballantyne

et al., 2010). Often it is difficult to study this effect, because STRs

with different repeat motifs are typically not available in similarly

large numbers, which may have to do with uneven distributions in the

human genome and/or marker ascertainment due to study design.

Our in silico approach did not consider repeat motifs in the marker

ascertainment. However, in case the repeat motif positively impacts

on mutability, our in silico approach could reflect this, and thus would

be biased, since we successfully (see above) enriched for markers

with increased mutation rates. Testing for the effect of repeat motif

sequence on Y‐STR mutability using the 12 novel RM Y‐STRs to-

gether with the 13 previously established RM Y‐STRs, we observed a

rather striking pattern when comparing them with 173 Y‐STRs
characterized by lower mutation rates (i.e., < 10−2). For this analysis,

we considered repeat motif families, for example, AAAT, AATA,

ATAA, TAAA, TTTA, TTAT, TATT, and ATTT were all called as AAAT

repeats family. For the 25 RM Y‐STR markers we found that among

the total of 34 tetranucleotide repeats (the different copies from

multicopy markers were considered as separate repeats here), 33

(97%) contained a repeat stretch belonging to the AAAG sequence

motif family, and 12 (35%) contained a repeat stretch belonging to

the AAGG sequence motif family (Tables 2 and S2). There was only

one (3%) of the 34 tetranucleotide repeat RM Y‐STR markers that did

not contain either of those two motifs (DYS712), but instead con-

sisted of a long AGAT and a short ACAG repetitive stretch. Similarly

when focusing on the six trinucleotide repeats (derived from three

RM Y‐STR markers) among the 25 RM Y‐STRs, all markers contained

a repeat stretch belonging to the AAG sequence motif family and

additionally half also contained an AGG sequence motif.

In contrast, however, when assessing the motifs sequence fa-

milies found in the 173 non‐RM Y‐STR markers from the Ballantyne

et al. (2010) study, among the 117 tetranucleotide repeats the AAAG

and AAGG motif families were only found in 16% and 19%, of the

F IGURE 6 Mean number of observed Y‐STR mutations according
to four categories defined by the father's age at time of conception
of his son, the age groups were defined as the quartiles. Group 1:

15–23 years old, Group 2: 24–29 years old, Group 3: 30–36 years
old, and Group 4: 37–66 years old, based on 27 cRM Y‐STRs
highlighted by our in silico approach. cRM, candidate rapidly

mutating; STRs, short tandem repeats

TABLE 2 Differences in observed STR sequence motifs between
RM Y‐STRs and non‐RM Y‐STRs

Motif RM Y‐STRsa Non‐RM Y‐STRsb p‐value

[AAAG] 33 in 34 19 in 117 <.0001

[AAGG] 12 in 34 22 in 117 .0606

[AGAT] 1 in 34 37 in 117 .0003

[AAAT] 1 in 34 37 in 117 .0003

[AAG] 6 in 6 8 in 60 <.0001

[AGG] 3 in 6 3 in 60 .0078

[AAT] 0 in 6 34 in 60 .0100

[AAC] 0 in 6 15 in 60 .3234

Note: Significant p‐values (Fisher's exact test) are shown in bold.

Abbreviations: RM, rapidly mutating; STRs, short tandem repeats.
aThese represent a combinations of the 13 previously published RM

Y‐STRs (Ballantyne et al., 2010), and the 12 novel RM Y‐STRs described in

the present study.
bThese represent non‐RM Y‐STRs (mutation rate < 10−2 mutations per

marker per meiosis) from a previous study (Ballantyne et al., 2010).
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repeats respectively (Table S2), which is considerably lower than we

found for the RM Y‐STRs (p < .0001 and .0606, respectively, Table 2).

The most frequently observed tetranucleotide motif sequences in

these non‐RM Y‐STR loci belonged to the AAAT and AGAT repeat

sequence families, both found in 32% of these non‐RM STRs

(Tables 2 and S2). In contrast, both the AAAT and the AGAT se-

quence motif families were found only once among the 34 tetra-

nucleotide RM Y‐STR loci (p‐value .0003 in both cases). Similarly,

among the 60 trinucleotide non‐RM Y‐STR loci from Ballantyne et al.

(2010), the AAG and AGG sequence motif families were found only in

13% and 5%, respectively (p < .0001 and .0078, respectively, Tables 2

and S2), while their most frequently observed motifs were AAT and

AAC at 57% and 25%, respectively (Tables 2 and S2), which were

completely absent in the six trinucleotide RM Y‐STR loci (p‐values
.0100 and .3234, respectively).

Although the total number of RM Y‐STRs available for this

analysis is relatively small, and consequently the number of tetra-

nucleotide and trinucleotide RM Y‐STRs, our findings suggest that

there are statistically significant differences in sequence motif de-

pending on the mutation rate of the Y‐STRs, that is, between RM

Y‐STRs and non‐RM Y‐STRs (Table 2). In turn, these results would

allow concluding an impact of repeat sequence motif on (Y‐)STR
mutability in line with some previous studies (Eckert & Hile, 2009;

Kelkar et al., 2008). One explanation may be the formation of sec-

ondary structures, in particular triplex DNA, which can by formed by

homopurine repeat motifs (e.g., AAG, AGG, AAAG, and AAGG; Eckert

& Hile, 2009; Slebos, Oh, Umbach, & Taylor, 2002; Zhao, Bacolla,

Wang, & Vasquez, 2010). Whether, this would affect the mutability

directly, or rather impacts on the direction of mutations (Shah, Hile,

& Eckert, 2010), leading to longer repeat stretches and thus a higher

mutability, remains to be understood in future more dedicated stu-

dies. The STR structure sequences of all RM Y‐STRs and non‐RM
Y‐STRs used in this analysis can be found in the supplementary

materials (Table S2).

4 | CONCLUSIONS

We developed and herewith provide a novel in silico method to find

STRs with increased mutation rates from searching sequencing data,

which in the future can be applied for all types of research questions

for which highly mutable STRs are required. The application of this in

silico method to the human reference sequence by focusing on the Y‐
chromosome allowed us to highlight 27 candidate RM Y‐STR mar-

kers, for which subsequent empirical testing in 1,616 DNA‐confirmed

father–son pairs identified 12 novel RM Y‐STRs (mutation rate >

10−2) and 11 novel FM Y‐STRs (mutation rate 5 × 10−3–10−2). We

showed that the 12 novel RM Y‐STRs outperform the 13 previously

identified RM Y‐STRs in male relative differentiation capacity, and

that the combined set of 25 RM Y‐STRs provides strongly increased

male relative differentiation capacity compared with both separate

sets, which will need to be confirmed in future studies to establish

empirical male relative differentiation rates. The large number of 647

Y‐STR mutations we observed allowed us to establish internal and

external factors such as the length of the allele and the age of the

father at the time of conception to impact on Y‐STR mutability.

Overall, we expect that the 12 novel RM Y‐STRs identified in the

present study, in combination with the 13 RM Y‐STRs we identified

previously, will allow significantly improving the differentiation abil-

ity of paternally related men, close as well as distant ones, in future

human genetic applications such as in forensic case work and gen-

ealogical studies.
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