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Gaussian approximation potentials for body-centered-cubic transition metals
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We develop a set of machine-learning interatomic potentials for elemental V, Nb, Mo, Ta, and W using the
Gaussian approximation potential framework. The potentials show good accuracy and transferability for elastic,
thermal, liquid, defect, and surface properties. All potentials are augmented with accurate repulsive potentials,
making them applicable to radiation damage simulations involving high-energy collisions. We study melting and
liquid properties in detail and use the potentials to provide melting curves up to 400 GPa for all five elements.
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I. INTRODUCTION

The use of machine-learning approaches to construct in-
teratomic potentials has rapidly gained popularity in the last
decade. Different classes of machine-learning potentials have
been developed with different underlying machine-learning
architectures and descriptors for representing the local envi-
ronments of atoms [1,2]. Well-established frameworks exist
for interatomic potentials using artificial neural networks
[3–6], Gaussian process regression and other kernel methods
[7–9], and linear regression [10,11]. Although the field is still
relatively new, it has already reached a level of maturity that
high-quality machine-learning potentials are now routinely
trained for a variety of materials and molecules [12–16].

Metals and metal alloys are typically modeled using em-
bedded atom method (EAM) potentials in classical molecular
dynamics (MD) simulations [17]. For the nonmagnetic body-
centered transition metals V, Nb, Mo, Ta, and W, several
parametrizations have been developed that reproduce a va-
riety of material properties with reasonable accuracy, while
also being computationally extremely efficient [18–21]. Nev-
ertheless, certain properties are often difficult to reproduce by
traditional interatomic potentials with fixed functional forms.
Examples include surface energies and the energetics and
structures of vacancy clusters, self-interstitial clusters, and
dislocations [22,23]. Developing more accurate interatomic
potentials for these elements is therefore well motivated.
Machine-learning potentials provide a useful complement
to traditional analytical potentials and expensive electronic-
structure calculations, lying somewhere between the two in
both computational cost and accuracy.

The aim of this article is to develop robust and accurate
potentials for V, Nb, Mo, Ta, and W (the W potential has
been developed previously [22], but is included also here to
allow for comprehensive comparison of the five elements).
These elements belong to the family of refractory metals,
characterized by high melting points and good resistance to

*Corresponding author: jesper.byggmastar@helsinki.fi

deformation and heat, which make them attractive for a num-
ber of applications. For example, W is the top candidate for
the parts most exposed to heat and irradiation in fusion reac-
tors [24,25] and Mo is a candidate for diagnostic mirrors in
fusion test reactors [26]. All five elements are also commonly
used in various high-strength alloys [27–30].

The rest of the article is structured as follows. In Sec. II
we describe the training details and strategy. In Sec. III we
extensively benchmark the potentials and use them to simulate
melting curves of all five elements. Finally, we discuss the
results and provide a brief outlook in Sec. IV.

II. TRAINING

We use the Gaussian approximation potential (GAP)
framework [7,31] to train the potentials. Our training strategy
closely follows the methods described in detail in our previous
work [22]. The total energy of N atoms is given by

Etot =
N∑

i, j>i

Vpair (ri j ) + δ2
2b

Npairs∑

i

M2b∑

s

αs,2bK2b(qi,2b, qs,2b)

+ δ2
mb

N∑

i

Mmb∑

s

αs,mbKmb(qi,mb, qs,mb), (1)

where Vpair is a purely repulsive pair potential in the form of a
screened Coulomb potential. We fit Vpair separately for each
atomic pair to all-electron density functional theory (DFT)
data from Ref. [32]. The last two terms make up the machine-
learning contributions. The second term carries out Gaussian
process regression with a two-body (interatomic distance)
descriptor q2b and the squared exponential kernel K2b. The
last term contains the smooth overlap of atomic positions
(SOAP) kernel [2] for many-body interactions. We use nmax =
lmax = 8 for the spherical harmonics expansion in SOAP. The
prefactors of the machine-learning terms are δ2

2b = 102 eV
and δ2

mb = 22 eV. M2b and Mmb are the (sparsified) number
of training environments (M2b = 20, Mmb = 4000). α2b and
αmb are the regression coefficients that are optimized during

2475-9953/2020/4(9)/093802(11) 093802-1 ©2020 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/335970156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-4898-6150
https://orcid.org/0000-0001-6244-1942
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.4.093802&domain=pdf&date_stamp=2020-09-28
https://doi.org/10.1103/PhysRevMaterials.4.093802


BYGGMÄSTAR, NORDLUND, AND DJURABEKOVA PHYSICAL REVIEW MATERIALS 4, 093802 (2020)

training. For more details about the GAP framework, we refer
the reader to Refs. [2,31].

The training database for each element consists of the same
structures as in our previous W GAP [22], but rescaled to
the correct lattice spacing. The training structures include
elastically distorted unit cells of bcc, high-temperature bcc
crystals, structures containing vacancies and self-interstitial
atoms, surfaces (both flat and disordered), and liquids. These
structures ensure machine-learning of elastic, thermal, and
defect properties, as well as surface energetics, melting, and
the structure of the liquid phase. To improve transferability
and cover a variety of crystal symmetries, we also include
several other crystal structures (fcc, hcp, simple cubic, dia-
mond, A15, and C15) as elastically distorted unit cells. The
A15 structure is the β phase of tungsten, and C15 crystals are
possible radiation-induced self-interstitial defect clusters in
bcc [33]. The training database additionally includes the dimer
curve sampled down to distances of significant repulsion,
and bcc crystals containing short interatomic bonds. These
are crucial to ensure a smooth connection to the analytical
screened Coulomb potential [22]. We also made the following
small additions. As W is considerably heavier and elastically
stiffer than all the other elements, we extended the volume
range of the elastically distorted unit cells from ±30% around
the equilibrium volume for W to about ±50% for V, Nb,
Mo, and Ta. For the same reasons, we also prepared new
high-temperature bcc crystals for each element separately,
using MD simulations with preliminary potentials trained to
all other data. Furthermore, we added structures with the
(110), (100), and (112) unstable stacking fault surfaces (γ
surfaces) to ensure some transferability to plastic deformation.
Our W GAP in Ref. [22] was not trained to γ surfaces, but
for all other properties it is virtually identical to the W GAP
presented here.

The cutoff for the interaction range is 5 Å for W and
Mo (which have almost identical lattice constants). For the
other elements, we rescale the cutoff distance according to the
lattice constants, so that the range includes the same numbers
of neighbors in bcc for all elements (5.2 Å for Ta and Nb, and
4.7 Å for V). A key detail of the GAP framework is the use of
heavy regularization in the regression fit to avoid overfitting
and to only reproduce the training data to a desired accuracy.
The regularization errors are chosen according to the assumed
uncertainty of ideal GAP predictions, i.e., the convergence
accuracy of the DFT data combined with the approximation of
a finite interaction range of the GAP. As default regularization
errors when training the GAPs, we use σ E

0 = 1 meV/atom,
σ F

0 = 0.04 eV/Å, and σ S
0 = 0.04 eV for energies, forces, and

virial stresses. Larger errors are assumed for liquid training
structures (σ = 10σ0), structures containing short interatomic
bonds (σ = 10σ0), and for the strongly distorted bcc unit cells
and γ surfaces (σ = 2σ0).

Energies, forces, and for the distorted unit cells, stresses, of
all training structures are calculated using VASP [34–37] with
the Perdew-Burke-Ernzerhof (PBE) generalized-gradient-
approximation exchange-correlation functional [38]. Hard
projector-augmented wave [39,40] potentials were used
(W_sv, Mo_sv, Ta_pv, Nb_sv, V_sv), with 14 valence elec-
trons for W and Mo, 11 for Ta, and 13 for Nb and V.
The cutoff of the plane-wave expansion was 500 eV for all

TABLE I. Energy per atom of the bcc phase, Ebcc, the cohesive
energy of bcc, Ecoh, the lattice constant, a, and the elastic constants,
Ci j . Bold values are GAP, values in plain font are DFT, and italic
values are experimental data from Ref. [47].

V Nb Mo Ta W

Ebcc (eV/atom) −8.992 −10.216 −10.937 −11.813 −12.956
−8.992 −10.216 −10.936 −11.812 −12.957

Ecoh (eV/atom) −5.384 −7.004 −6.288 −8.114 −8.39
−5.384 −7.003 −6.288 −8.113 −8.386
−5.329 −7.523 −6.821 −8.105 −8.803

a (Å) 2.997 3.308 3.163 3.321 3.185
2.997 3.307 3.163 3.319 3.185
3.024 3.300 3.147 3.303 3.165

C11 (GPa) 271 243 472 267 524
269 237 468 266 521
229 247 464 260 522

C12 (GPa) 145 137 163 161 200
146 138 155 161 195
119 135 159 154 204

C44 (GPa) 23 13 105 77 148
22 11 100 77 147
43 29 109 83 161

elements. A 0.1-eV smearing was applied using the first-
order Methfessel-Paxton method [41]. k-points were sampled
on Monkhorst-Pack grids [42] with a maximum spacing of
0.15 Å−1.

The GAPs were trained using the code QUIP [43]. LAMMPS

[44] was used for all molecular dynamics simulations. Phonon
dispersions and nudged elastic band calculations were ob-
tained using the atomic simulation environment framework
[45] and quasiharmonic approximation calculations using
PHONOPY [46].

III. VALIDATION

A. Bulk properties

Table I lists the energies, lattice constants, and elastic con-
stants of the bcc ground state for all five elements, compared
between GAP (bold values), DFT, and experimental data
(italic values). The GAPs reproduce the DFT data well. There
are, however, some noteworthy discrepancies between DFT
(and thus also GAP) and experiments, in particular the elastic
constants of V and C44 of Nb. Figure 1 shows energy-volume
relations with DFT data as data points and GAP data as solid
lines. The training data contains only randomly strained bcc
crystals covering at most volumes in the ±50% range around
the equilibrium. That the GAPs show physically reasonable
extrapolations well beyond this range is a promising indicator
of good transferability. Transferability to high pressures is
ensured by the external repulsive potential, which is further
demonstrated when we discuss the high-pressure phase dia-
gram in Sec. III E.

Phonon dispersion plots are shown in Fig. 2, compared
with DFT data and experimental measurements. DFT results
are reproduced from the literature [48–52]. Note that a direct
comparison between the GAP and the DFT data must there-
fore be made with care, as the DFT results were obtained with
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FIG. 1. Energy-volume curves for the bcc phase of the different
elements. The lines are predictions by GAP and the data points are
from DFT.

different settings and are not always directly consistent with
our training data. All elements show similar and overall good
quantitative agreement with experimental data. The consistent
training of all potentials is apparent in that the small discrep-
ancies with experiments are very similar in the GAPs. For the
three group 5 metals (V, Nb, Ta), all GAPs underestimate the
frequency at the P point slightly, while the group 6 elements
(Mo, W) fail to capture the exact trends between the H and P
points.

We used the quasiharmonic approximation (QHA) to esti-
mate thermal properties of the elements in both GAP and DFT.
Table II lists the results at 300 K: the linear thermal expan-
sion coefficient, the heat capacity, and the thermodynamical
Grüneisen parameter γ = V αV B/CV . DFT consistently over-
estimates the experimental thermal expansion and Grüneisen

TABLE II. Thermal properties at room temperature calculated
within the quasiharmonic approximation with the GAP (bold values)
and DFT (plain font values), compared with experimental data (italic
values). αL , linear thermal expansion coefficient in 10−6 K−1; Cp,
heat capacity at constant pressure in J mol−1 K−1; and γ , thermody-
namical Grüneisen parameter. GAP values in parentheses are from
MD simulations. Experimental data for thermal expansion and heat
capacities are from Ref. [47], and Grüneisen parameters are from
Ref. [57].

V Nb Mo Ta W

αL 12.1 (10.0) 8.9 (8.5) 5.6 (6.3) 7.4 (7.7) 5.1 (5.2)
10.8 8.0 5.8 8.6 4.9
8.4 7.3 4.8 6.3 4.5

Cp 23.90 24.14 23.50 24.65 23.98
23.81 24.03 23.50 24.78 23.95
24.89 24.60 24.06 25.36 24.27

γ 2.2 2.0 1.8 1.9 1.9
2.0 1.8 1.8 2.2 1.8
1.5 1.6 1.6 1.6 1.6

parameter, and the GAPs further slightly overestimates the
DFT results (except for Ta). The heat capacities at 300 K are in
good agreement between GAP, DFT, and experiments for all
elements. The thermal expansion coefficients were also sim-
ulated at 300 K in MD with the GAPs (given in parentheses
in Table II), which gives an indication of the reliability of the
QHA results. The QHA includes zero-point lattice vibrational
energies but neglects the true anharmonic effects predicted by
the potentials and is therefore accurate at low temperatures.
The MD results are roughly consistent with the QHA for the
heavier elements, but shows a 20% difference for the thermal
expansion of V.
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FIG. 2. Phonon dispersions of the elements, compared between GAP, DFT results from the literature [48–52], and experimental data
[53–56].
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TABLE III. Formation energies, Ef , relaxation volumes, �rel.

(in units of the atomic volume), and migration energies, Emig., of
single vacancies calculated with GAP (bold values) and DFT. DFT
formation energies and relaxation volumes are obtained in this work
and the migration energies are from Ref. [58]. Experimental data
(italic) are from Ref. [59].

V Nb Mo Ta W

Ef (eV) 2.56 2.85 2.84 3.09 3.32
2.49 2.77 2.83 2.95 3.36
2.1–2.2 2.6–3.07 3.0–3.24 2.2–3.1 3.51–4.1

�rel. −0.45 −0.39 −0.33 −0.47 −0.31
−0.47 −0.40 −0.38 −0.44 −0.36

Emig. (eV) 0.39 0.42 1.28 0.62 1.71
0.65 0.65 1.24 0.76 1.73
0.5 0.55 1.35–1.62 0.7 1.70–2.02

B. Defects

The training database includes structures containing va-
cancies and self-interstitial atoms in various configurations.
Tables III and IV list formation energies of single vacancies
and interstitials, compared with DFT data. The vacancy for-
mation energies were calculated in systems of 3 × 3 × 3 unit
cells. The vacancy formation energies by the GAPs are consis-
tent with DFT to within a few percent. The largest discrepancy
is seen for Ta, where the GAP overestimates the vacancy for-
mation energy by 0.14 eV. Note that, for the 53-atom training
structures, this corresponds only to a 2.6 meV/atom error,
which is the level of accuracy that can be expected from the
GAPs for crystalline systems. Slightly larger discrepancies
between the GAPs and DFT and experiments are revealed for
the vacancy migration energies. In V, Nb, and Ta, the GAPs
clearly underestimate the DFT vacancy migration energies,
but actually agree better with the experimental values than
DFT. The migration energies in Mo and W are, however, well

TABLE IV. Formation energies of self-interstitial atoms in dif-
ferent configurations and relaxation volumes of the 〈111〉 intersitital
calculated with GAP (bold values) and DFT. DFT data are from
Refs. [60,61] unless otherwise indicated.

V Nb Mo Ta W

〈11ξ〉 7.47 10.32
7.40 10.25

〈111〉 2.80 4.01 7.56 4.84 10.35
2.41, 2.75a 3.95 7.48 4.77 10.29

〈110〉 3.06 4.20 7.61 5.47 10.58
2.68 4.20 7.58 5.48 10.58

〈100〉 3.30 4.63 8.99 5.99 12.23
2.83 4.50 8.89 5.89 12.20

Octa 3.37 4.76 9.00 6.06 12.33
2.90 4.62 8.92 5.95 12.27

Tetra 3.32 4.66 8.44 5.98 11.77
2.90 4.42 8.36 5.77 11.72

�rel. 1.40 1.48 1.58 1.35 1.85
1.47 1.55 1.54 1.52 1.71

aThis work.
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FIG. 3. Relative formation energies of self-interstitial atoms,
given as differences to the 〈111〉 configuration. Stars are GAP data
and solid triangles are DFT data from Ref. [60].

reproduced by the GAP. Again, it is interesting to note the
consistent accuracy and predictions of the GAPs between the
group 5 and the group 6 elements, although it remains unclear
why only the GAPs for the latter successfully reproduce the
vacancy migration energies.

Formation energies of self-interstitials in the common
high-symmetry configurations are well reproduced by the
GAPs, as seen in Table IV. The formation energies in the
GAPs are calculated in noncubic boxes of 421 atoms. The
DFT calculations in Ref. [60] used smaller boxes, but made
corrections for the elastic interactions across the periodic
boundaries, and should therefore be consistent with our GAP
results. There is a systematic 0.4-eV offset in the formation
energies in V between our GAP results and the DFT results
from Ref. [60], which are also significantly lower than other
DFT results [62]. To check that the systematic offset is not an
artifact of the GAP, we calculated the formation energy for the
〈111〉 interstitial in DFT using a noncubic box of 121 atoms.
Our DFT formation energy is 2.75 eV, which is close to the
2.80 eV predicted by the GAP.

The GAP correctly predicts the 〈11ξ 〉 to be the most stable
configuration in Mo and W [61], while the straight 〈111〉
interstitial is lowest in energy for the other three elements.
In V, we found using the GAP that the 〈110〉 interstitial easily
rotates to a dumbbell close to the 〈210〉 direction, which the
GAP predicts to be 0.05 eV lower in energy. We confirmed
that in DFT the 〈210〉 is indeed lower in energy than the 〈110〉
dumbbell, by 0.12 eV with a formation energy of 2.9 eV, and is
therefore the second-most-stable self-interstitial configuration
in V (only 0.15 eV higher in energy than 〈111〉).

To better highlight the relative energies of self-interstitials
and differences between the elements, Fig. 3 shows the dif-
ferences in energy to the 〈111〉 configuration. The difference
in energy between the 〈111〉 and the 〈110〉 interstitial is con-
sistently slightly underestimated by the GAPs. This is further
evident in Fig. 4, which shows the energy landscape for rota-
tion from 〈110〉 to 〈111〉, obtained from nudged elastic band
calculations and compared with DFT data from Ref. [61].
Figure 4 also illustrates the global minimum at 〈11ξ 〉 in Mo
and W, while Nb (along with V and Ta) shows no minimum
in the 〈110〉 → 〈111〉 rotation path.
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FIG. 4. Nudged elastic band calculations of a self-interstitial
atom rotating from the 〈110〉 dumbbell to 〈111〉. DFT data are from
Ref. [61]. GAPs reproduce the global minimum 〈11ξ〉 configuration
in Mo and W. Nb (along with V and Ta) shows no minimum along
the path.

The balance between the relaxation volumes of vacancies
and interstitial atoms determines the macroscopic swelling
of a material during irradiation. Therefore, Tables III and
IV also list the relaxation volumes of single vacancies and
the 〈111〉 self-interstitial configuration. Overall, the GAPs
are consistent with DFT. Irradiation further results in clus-
ters of defects. To ensure that the GAPs are applicable to
radiation damage studies, it is crucial to test properties be-
yond single vacancies and interstitials. Figure 5 shows the
binding energies of divacancies at different nearest-neighbor
(NN) separations compared between GAP and DFT [Fig. 5(a)]
and EAM and DFT [Fig. 5(b)]. The divacancy interaction
is strikingly different between the group 5 and the group 6
elements. Divacancies show only weak interactions in W and
Mo, with the 2NN divacancy even being strongly repulsive. In
contrast, 2NN divacancies in V, Nb, and Ta are the most favor-
able configuration with binding energies close to 0.5 eV. The
GAPs successfully capture this group-specific trend, which is
a noteworthy improvement over traditional EAM potentials
that predict strong and almost equal binding for 1NN and
2NN divacancies in all elements, as is clear from Fig. 5(b)
(see also the Supplemental Material [63] for results from other
interatomic potentials).

Previously [22], we found that the W GAP shows good
transferability to larger self-interstitial clusters, despite being
trained to only single and di-interstitial configurations. With
the same training structures, it is reasonable to assume that
the remaining GAPs show similar transferability. Neverthe-
less, we tested this assumption. DFT data for self-interstitial
clusters in V are available from Ref. [68]. Figure 6 shows
formation energies of interstitial-type 1/2〈111〉 and 〈100〉
dislocation loops and the C15 Laves phase clusters [33] in
V. DFT data for 〈100〉 loops are not available, and Fig. 6
only shows GAP data for symmetric 〈100〉 loops (asymmet-
ric loops collapse during relaxation). The formation energies
for 1/2〈111〉 loops and C15 clusters obtained by the GAP
closely match the DFT energies in the available size range and
show reasonable extrapolation to cluster sizes beyond the DFT
range. Hence, we conclude that the GAPs are well-suited for
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FIG. 5. Binding energies of divacancies at different nearest-
neighbor (NN) separations in the different elements. (a) Comparison
between GAP and DFT. (b) Comparison between the EAM potentials
from Ref. [18] and DFT.

simulations of radiation damage with point defects and defect
clusters of arbitrary sizes.

C. Surfaces

Surface energies for the ten lowest-index surfaces are
shown in Fig. 7(a), compared between GAP and our DFT
results. The training database includes only the (100), (110),
(111), and (211) surfaces, but GAP shows good transferability
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son between GAP (stars) and our DFT results (solid triangles). The
first four surfaces were included in the training data. (b) Comparison
between the EAM potentials from Ref. [18] and DFT.

to other surfaces too. The largest discrepancies between GAP
and DFT are seen for the (210) and (310) surfaces, although
the errors are only about 5 meV/Å2 (translating to around
10 meV/atom).

Reproducing surface energies is often difficult for analyti-
cal potentials. Figure 7(b) shows results using EAM potentials
[18]. In all elements, the EAM potential strongly underes-
timates the surface energies and always predicts the (100)
surface to be lower in energy than the (111) surface, which
is true for the group 5 elements but not true for Mo and W.
In the Supplemental Material [63], we show results obtained
using a number of other interatomic potentials. These results
show that, although some traditional potentials do reproduce a
reasonable average surface energy, the order of stability of dif-
ferent surfaces is only reproduced by machine-learning-based
potentials.

The close-packed (110) surface is the most stable surface
in all elements except V, where DFT interestingly shows that
the (100) surface is slightly lower in energy at 0 K. There is
evidence and some controversy whether the V (100) surface
is ferromagnetic [69]. However, investigating surface mag-
netism and its effects on surface stability is both beyond the
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FIG. 8. Repulsive parts of the dimer curves compared between
GAP, data from all-electron DFT using DMol [32], VASP, and the
universal ZBL potential [70].

scope of this work and beyond the capabilities of the GAP and
is not considered here.

D. Repulsive potential

All GAPs are augmented with screened Coulomb poten-
tials fitted to the all-electron DFT DMol data [32], with a
smooth machine-learned connection to the near-equilibrium
energies. A smooth connection is ensured by including struc-
tures with short interatomic distances in the training database
and then only machine-learning the difference between the
screened Coulomb potential and the VASP training data [22].
These structures include simple dimers and bcc crystals with
randomly placed interstitial atoms that are close, but not too
close, to the nearest atom. The closest allowed distance in
the training structures is chosen by comparing VASP data
with the all-electron DMol data to see where VASP becomes
unreliable (due to frozen core electrons) and starts diverging
from DMol. Figure 8 shows the repulsive part of the dimer
curves in GAP, DFT-DMol, DFT-VASP, and the commonly
used universal ZBL screened Coulomb potential [70]. For all
elements except V, there is good agreement between VASP and
DMol in the 1–1.4 Å range. Consequently, GAP also closely
overlaps with both and follows DMol at <1 Å when VASP

becomes unreliable, and vice versa at >1.4 Å. In V, there is
some difference between VASP and DMol, and consequently
there is a similar difference between GAP and DMol as GAP
is trained to VASP data for distances above 1.1 Å.

We test the accuracy of repulsion inside a crystal by dis-
placing an atom along the 〈110〉 direction and tracking the
change in energy as well as the total force on the displaced
atom. The results are shown in Fig. 9, with GAP data shown
as lines and DFT data shown as points. All GAPs closely
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FIG. 9. Energy difference (top) and force (bottom) for an atom
statically displaced from its lattice position along the 〈110〉 direction
in bcc. Lines are GAP data and points are DFT data.

follow the DFT data and show only small discrepancies in the
forces. The 〈110〉 direction is chosen as it involves many-body
interactions with the nearest neighbors along the displacement
path (producing local maxima and minima in Fig. 9), before
colliding head-on with the 〈110〉 neighbor.

To dynamically test the repulsive parts of the GAPs and
the creation of defects, we simulate the minimum thresh-
old displacement energies (TDEs) according to the methods
described in Ref. [71]. We use a 2-eV increment in the trial ki-
netic energies, yielding an uncertainty of ±1 eV in the TDEs.
The lowest TDE is known to be in the 〈100〉 direction in
bcc metals, which the W GAP reproduces [22]. Experimental
data are available for all five elements from low-temperature
(typically 4 K) electron irradiation experiments [72–77]. Pre-
viously we found that simulations of the TDEs at 0 and 40 K
yielded within the statistical uncertainties identical results in
W [22]. We therefore use 0 K in the simulations, which is then
directly comparable to the experiments. However, at 0 K the
TDE in exactly the 〈100〉 direction is sometimes significantly
higher than for a few degrees away from 〈100〉. Additionally,
in the experimental data there is always a significant uncer-
tainty in the direction due to spreading of the electron beam.
We therefore simulate six different directions within 10◦ from
〈100〉 and report the minimum TDEs. Figure 10 shows the
results compared with the experimental measurements. The
predictions by the GAPs are in excellent agreement with
experiments, with only a small overestimation of the single
experimental point in W. This indicates the GAPs can be
used to obtain accurate threshold displacement energies also

V Nb Mo Ta W
20

30

40

50

〈1
00

〉T
D
E
(e
V
) GAP

Exp.

FIG. 10. Threshold displacement energies in the 〈100〉 direction
obtained with GAP compared to experimental data: V [72,73], Nb
[73], Mo [73–75], Ta [76], and W [77]. The uncertainty of the GAP
values is ±1 eV.

for other directions that are unattainable from experimental
measurements.

E. Melting and liquid properties

Calculating various properties of the liquid phase provides
a stringent test of how well the GAPs describe arbitrary
low-symmetry local atomic geometries. The melting point at
zero pressure, the density of the liquid phase at the melting
temperature, and the heat of fusion (latent heat) for all five
elements are listed in Table V. The data predicted by the GAPs
are compared with experimental data [47,78]. The melting
temperatures are simulated using the liquid-crystalline inter-
face method with systems of 1372 atoms. The heat of fusion
is calculated as the average energy difference between com-
pletely molten and completely crystalline systems simulated
at the melting temperature.

The GAPs provide melting temperatures in close agree-
ment with experimental measurements, although they are
consistently underestimated by 2–9%. It is likely that this sys-
tematic underestimation is inherited from the underlying DFT
training data, given that similar observations have been made
previously using DFT and attributed to the PBE functional
[79]. The experimental liquid densities and heats of fusion are
quantitatively well reproduced by the GAPs.

There has been a considerable interest in studying the high-
pressure phase diagram of transition metals. This has partly

TABLE V. Liquid properties compared between GAP and exper-
iments: melting temperature (Tmelt), density of the liquid phase at the
melting temperature (ρl), and enthalpy of fusion (
Hf ). Experimen-
tal data are from Ref. [47] unless otherwise indicated.

V Nb Mo Ta W

Tmelt (K) 2130 2550 2750 3010 3540
2183 2750 2895 3290 3687

Tmelt error −2.4% −7.3% −5.0% −8.5% −4.0%
ρl (g/cm3) 5.68 7.62 8.92 14.62 16.49

5.5 7.62a 9.33 15, 14.4a 17.6, 16.2a


Hf (eV/atom) 0.24 0.29 0.38 0.30 0.50
0.22 0.31 0.39 0.38 0.54

aReference [78].
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FIG. 11. Melting curves of Mo and Ta compared between GAP,
DFT results [51,80,85,86], and experimental measurements [87–91].

been motivated by extreme discrepancies between experimen-
tal diamond anvil cell (DAC) measurements, shock-melting
measurements, and theoretical estimates using DFT [51,80–
82]. Obtaining reliable melting temperatures in DFT is non-
trivial due to limitations in system size and simulation time.
Nevertheless, successful methods have been developed to
overcome this, for example, by calculating free-energy contri-
butions from DFT to correct results from classical potentials
[80,83] or by exploiting conditions of superheating in the
so-called Z method [84]. Using the GAPs we can use system
sizes and timescales beyond the reach of DFT and directly
simulate the melting temperatures at a desired pressure in
MD simulations. We use the same liquid-solid system (1372
atoms) as in the zero-pressure melting simulations and de-
termine the melting temperatures in NPT simulations for
pressures in the range 0–400 GPa at intervals of 50 GPa.

Among the five elements, Mo and Ta have
received the most attention, and high-pressure melt-
ing curves have been calculated in a number of
DFT studies and compared with experimental data
[51,80,85–91]. As a validation of our GAPs, we therefore first
focus on the melting curves of Mo and Ta. Figure 11 shows
the results, compared with DFT results and experimental data.
In both Mo and Ta, the GAP curves fall between the two DFT
curves and agree well with the experimental shock-melting
data points at high pressures. This is encouraging for two
reasons. First, the liquid structures in the GAP training
databases only cover pressures up to around 100 GPa, yet
the GAP shows good transferability up to at least 400 GPa.
This can partly be attributed to the accurate repulsive part of
our GAPs, which becomes increasingly important at extreme
pressures. Second, the GAP results can be seen as further
validation of the abovementioned DFT methods for obtaining
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FIG. 12. Melting curves simulated with the GAPs. The parame-
ters of the fitted curves are listed in Table VI.

melting curves, given that the GAPs are trained to tightly
converged DFT data and the melting curves are obtained in
systems of relatively large size. Figure 11 shows two DFT
curves each for Mo and Ta, where one is obtained using
the Z method (Belonoshko et al. [85] and Burakovsky et al.
[86]) and the other by the thermodynamic correction of a
reference classical potential (Cazorla et al. [80] and Taioli
et al. [51]). The GAP curves are close to both, although it
can be noted that they are in somewhat closer agreement
with the latter DFT method. Compared to experiments, the
GAP and DFT are consistent with the shock-melting points at
300–400 GPa, but overestimate the DAC data at lower
pressure, especially in Mo.

Having validated the accuracy of the GAP for high-
pressure melting, we simulate the melting curves for all five
elements. The results are shown in Fig. 12. The data points
are fitted to the commonly used Simon-Glatzel equation [92]
Tmelt (P) = T0(1 + P/η)ζ , where T0 is the melting temperature
at zero pressure and η and ζ are fitting parameters. The fit-
ting parameters are listed in Table VI. The melting curves
at nonzero pressures follow the order of the zero-pressure
melting points, with only Nb and Mo showing a crossover. V
shows a peculiar trend in the 100–250 GPa range. It is unclear
whether this is an artifact of the GAP. Melting curves for V
have also been obtained in very recent studies [82,93]. Erran-
donea et al. [82] presented both DFT and experimental results
and obtained good agreement between the two. However, the
melting curve obtained in the DFT study of Zhang et al. [93]
is significantly lower. The GAP curve agrees well with the
latter and hence underestimates the experimental data from
Ref. [82].

TABLE VI. Fitting parameters of the Tmelt (P) = T0(1 + P/η)ζ

melting curves in Fig. 12.

V Nb Mo Ta W

η (GPa) 56.89 47.81 31.62 40.88 32.48
ζ 0.52 0.58 0.44 0.53 0.47
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We note that the phase diagram of some of the ele-
ments may contain crystalline phases other than bcc. At least
V has been seen to stabilize a rhombohedral phase in a
certain pressure-temperature region [82]. Solid-solid phase
transitions have also been suggested to occur in Mo and Ta
[85,86,94], although further theoretical investigations refute
this [95,96] and some experimental studies report no evidence
of phases other than bcc [89,90]. Although the GAPs are
trained to some crystal structures other than bcc, it is diffi-
cult to assess their reliability in describing arbitrary crystal
symmetries at high pressures. Hence, we make no attempt to
investigate possible solid-solid phase transitions in the high-
pressure phase diagram.

IV. DISCUSSION AND OUTLOOK

We have developed machine-learning interatomic poten-
tials for five nonmagnetic bcc metals and demonstrated their
performance for a wide range of properties. The potentials
show good accuracy for the targeted properties, which include
basic elastic and thermal properties, energetics of defects and
surfaces, and properties of the liquid phase. They also show
good transferability to properties that are not directly covered
by the structures in the training database. Examples include
formation energies of self-interstitial clusters and melting at
extreme pressures. Both are crucial properties in simulations
of radiation damage. During the heat spike of an energetic
radiation-induced collision cascade, the cascade core is an
extremely hot liquidlike region with large pressure gradients.
The extent and the morphology of the defects surviving the
cascade are affected by the efficiency of atomic mixing and
recrystallization of the hot cascade core and the energetics of
defect clusters [97,98], which based on our results should be
well described by our GAPs.

We attribute the transferability of our GAPs to a diverse
DFT training database that in many ways puts physical con-
straints on the machine-learning predictions. The analytical
screened Coulomb potential for the short-range repulsion
combined with short-range structures in the training database
ensure that the GAPs produce physically reasonable pre-
dictions for systems containing short interatomic distances.
Furthermore, our training database includes liquidlike struc-
tures at various densities. Fitting the forces of liquid structures
has long been a successful strategy for developing robust
and transferable analytical potentials, in particular embedded
atom method potentials [99,100]. A key difference between
fitting machine-learning potentials and analytical potentials
is, however, that for the latter one can rely on the physical

constraints and transferability provided by the analytical func-
tions. In a machine-learning potential, physical constraints
must be imposed by the training database. When training
liquids, we found that only including physically relevant liq-
uid densities is not enough. This sometimes resulted in a
potential that predicted clearly artificial low-density structures
to be even lower in energy than the ground state bcc phase.
Our liquid structures in the training database therefore cover
a wide range of densities, from relatively dense liquids to
unphysically low densities. Both extremes are significantly
higher in energy than the zero-pressure equilibrium liquid (by
up to several eV/atom) and therefore effectively constrain the
predictions by the GAP.

In the community of machine-learning potentials, major
efforts are focused on strategies for automating the training
process [9,101–103]. This is motivated by the hope of by-
passing the need for the time-consuming expert human input
required to fit and benchmark a robust interatomic potential.
Our strategy is very much based on informed human deci-
sions when constructing the training database. Nevertheless,
our work also demonstrates a natural and alternative way of
minimizing the time invested on fitting potentials. In this arti-
cle, we almost completely rely on our previously developed
database of structures for W [22] to train a set of similar
potentials for a family of similar metals, with little human
effort.

The training structures and potential files are freely avail-
able as Supplemental Material [63] and from Ref. [104]. We
anticipate that the training structures may be valuable for
training potentials using other machine-learning frameworks
with little effort, for which our results can serve as a useful
benchmark for the performance of the GAP framework. Our
set of training structures and potentials also serve as starting
points for the development of potentials for bcc alloys.
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