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Abstract

Functional connectivity, the realized flow of individuals between the suitable sites of a

heterogeneous landscape, is a prime determinant of the maintenance and evolution of populations

in fragmented habitats. While a large body of literature examines the evolution of dispersal

propensity, it is less known how evolution shapes functional connectivity via traits that influence

the distribution of the dispersers. Here we use a simple model to demonstrate that, in a

heterogeneous environment with clustered and solitary sites (i.e., with variable structural

connectivity), the evolutionarily stable population contains strains that are strongly differentiated in

their pattern of connectivity (local vs global dispersal), but not necessarily in the fraction of

dispersed individuals. Also during evolutionary branching, selection is disruptive predominantly on

the pattern of connectivity rather than on dispersal propensity itself. Our model predicts

diversification along a hitherto neglected axis of dispersal strategies and highlights the role of the

solitary sites – the more isolated and therefore seemingly less important patches of habitat – in

maintaining global dispersal that keeps all sites connected.
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1. Introduction

For species inhabiting fragmented landscapes, dispersal between the patches of available habitat is

of utmost importance (Ronce 2007; Clobert et al. 2012). Dispersal is determined, on the one hand,

by the physical properties of the landscape (e.g. the distances between the patches and the presence

of geographic barriers) and, on the other hand, by the mobility of the organism. The distinction

between the properties of the landscape and the realized movement of individuals is captured in the

distinction of structural vs functional connectivity (Tischendorf and Fahrig 2000).

As highlighted already by Hanski's classic incidence function model (Hanski 1994; Hanski and

Ovaskainen 2000), functional connectivity depends on the traits of the organism, and is therefore

subject to evolution. For example, winged insects can disperse more globally, whereas wingless

forms disperse only to short distances. In wing-dimorphic insects, functional connectivity depends

on the frequency of the winged form, a heritable trait (Zera and Denno 1997). In the butterfly

Melitaea cinxia, individuals who carry the Pgi-c allele are more mobile, so that different genotypes

realize different functional connectivities between the same patches (DiLeo et al. 2018). In plants,

functional connectivity may depend on the animal vectors that aid seed dispersal, but also on traits

of the plant that influence the use of these vectors (Auffret et al. 2017).

The theoretical literature examining the evolution of dispersal has put much emphasis on dispersal

propensity (the fraction of individuals who leave their patch), and less on how structural

connectivity affects the evolution of functional connectivity through the evolution of other

mobility-related traits. In addition, most models of dispersal evolution assume landscapes with

simple structural connectivity, such as dispersal via a global dispersal pool (e.g. Hamilton and May

1977; Levins and Hastings 1984; Olivieri et al. 1995; Gandon and Michalakis 1999; Mathias et al.
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2001; Gyllenberg and Metz 2001; Parvinen 2002; Kisdi 2004; Parvinen and Metz 2008; Massol et

al. 2011; Weigang and Kisdi 2015; Mullon et al. 2018; and many others) or a regular lattice of

identical (Harada 1999; Rousset and Gandon 2002) or heterogeneous patches (Bonte et al. 2010;

Cenzer and M'Gonigle 2019). In real landscapes, however, structural connectivity is much more

variable. For example, the metapopulation of the butterfly Melitaea cinxia in the Åland islands

inhabits several thousand meadows, which form 125 spatial clusters. Some of the clusters contain

well over a hundred meadows, whereas some others have just one meadow (Hanski et al. 2017, see

Supplementary Data), showing large differences in the structural connectivity of individual

meadows.

Recent models of Henriques-Silva et al. (2015) and Karisto and Kisdi (2017) studied the evolution

of dispersal propensity under variable structural connectivity, but assumed that functional

connectivity is fully determined by dispersal propensity and the structure of the physical

environment. This assumption implies that the patches have fixed relative connectivities; by

increasing dispersal propensity, every patch becomes functionally more connected, with no change

in which patches are more or less connected relative to others. However, since the traits of an

organism influence not only its dispersal propensity but also its movement over the landscape, also

relative connectivities can change during evolution, increasing or decreasing the variability of

functional connectivity in a given landscape.

In this paper, we show in a simple model that with variable structural connectivity among the

habitat patches, natural selection acting on functional connectivity cannot be captured by selection

on dispersal propensity alone; and that it is predominantly functional connectivity, not simply

dispersal propensity, that diversifies as a response to environmental heterogeneity.
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We envisage a population inhabiting clustered and solitary living sites. Dispersing individuals can

engage in global (long-range) or local (short-range) dispersal; the latter is enough to move between

the sites of the cluster but not to solitary sites. We use adaptive dynamics (Geritz et al. 1998, 2016)

to analyse the joint evolution of dispersal propensity and the pattern of functional connectivity, the

latter measured by the fraction of long-range dispersal. The evolution of short- vs long-range

dispersal means that functional connectivity evolves between the highly asymmetric pattern of only

within-cluster dispersal, which leaves the solitary sites isolated, and the symmetric pattern of all

sites being connected equally. In particular, we explore (based on Geritz et al. 2016) whether the

jointly evolving traits undergo evolutionary branching, and we characterize evolutionarily stable

dimorphisms of dispersal strategies where the coexisting strains strongly differ in whether they

disperse globally or locally. These coexisting dispersal phenotypes realize contrasting patterns of

functional connectivity on the same geographic network of sites.

2. The model

We consider a landscape with a large number of living sites. A site is defined as a habitat fragment

small enough to be well-mixed, so that the physical structure of the landscape is captured by the

size and structural connectivity of the sites. In general, the sites may vary in size, which can lead to

dispersal polymorphisms even if all sites are equally connected (Massol et al. 2011; Kisdi 2016).

Since here we want to focus on the effect of variable structural connectivity, we shall assume that

the sites have the same size and each site supports one adult individual, as common for plants and

other sessile organisms competing for space. Kin competition among the offspring selects for

dispersal (Hamilton and May 1977).
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Some of the sites may be within easy reach from each other, whereas others may be more isolated

by distance or by some barriers. We simplify this variation assuming that a fraction p of the sites

are solitary and the rest are part of a single spatial cluster. From each site, a fraction d of the

offspring disperse. A fraction q of the dispersed offspring enter a global dispersal pool from where

each site of the landscape can be reached with equal probability; the remaining fraction 1-q enter a

local dispersal pool of the cluster (Figure 1). q=0 thus implies that the solitary sites are cut off,

whereas q=1 means that every site of the landscape is equally well connected to every other site. As

traits affecting mobility evolve, the dispersal propensity d as well as the fraction of globally

dispersed offspring q evolve.

Global dispersal is more costly than local dispersal; locally dispersed offspring survive dispersal

with probability s, but for globally dispersed offspring, the survival probability is only γs (with γ <

1). For the offspring dispersed from solitary sites, local dispersal is not an option. We thus assume

that if they fail to engage in global dispersal (which happens with probability 1-q), then with

probability sb they survive and return to their natal site, otherwise they perish (Figure 1). For

completely passive dispersal, b = 0; a positive value of b means that the offspring have some

control over their movement to seek out a site. (Note that the probability of getting back to the natal

site in the cluster is negligible because the cluster comprises many nearby sites where the offspring

can settle.) We consider an annual species and assume that each parent has the same number of

offspring, B, large enough for within-site demographic stochasticity to be negligible. Table 1

summarizes the notation.

To determine whether a mutant dispersal strategy  is able to invade the resident population, we

calculate its reproductive output. Let aij be the number of solitary (i=1) and clustered (i=2) sites

secured by the offspring of a mutant parent who itself occupies a solitary (j=1) or a clustered (j=2)
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site. A mutant in a solitary site has Bd m )1( -  offspring that remain in the natal site plus

sbBqd mm )1( -  offspring who return after failing to disperse globally. These mutant offspring

compete for their natal site with immigrants of the resident strategy. In a fair lottery competition,

the probability that the winner is a mutant is given by

[ ]
[ ] BIBsbqdd

Bsbqdd

Gmmm

mmm

+-+-
-+-

)1(1
)1(1

where IGB is the number of immigrants arriving from the global dispersal pool. We factor B, i.e.,

we write IGB for the number of immigrants to keep IG finite when the number of offspring B goes to

infinity. In addition, a mutant parent in a solitary site has Bsqd mm g offspring dispersed globally,

each of whom arrives at a solitary site with probability p and wins that site with probability PS/B.

The probability that one particular offspring wins the site becomes infinitesimal as B goes to

infinity, and we write PS/B for this probability so that PS remains non-vanishing. The expected

number of solitary sites obtained by the offspring of a mutant parent in a solitary site is therefore

Smm
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-+-
=

)1(1
)1(1

11 (1a)

Denoting the number of immigrants from the local dispersal pool of the cluster with ILB

and the probability of winning competition in a clustered site with PC/B, derivations similar to the

above yield
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The quantities IG, IL, PS and PC depend on the resident population and are given by straightforward

calculations detailed in Section 1 of the Electronic Appendix.

The four numbers in equations (1a,b) are the elements of the mutant's 2x2 projection matrix. The

mutant can invade if the leading eigenvalue of its projection matrix is greater than 1 (for the ease of

analysis, we use the fitness proxy of Metz and Leimar 2011 instead of the eigenvalue). We

envisage evolution by repeated invasions of mutants, and use the techniques of multivariate

adaptive dynamics to analyse the long-term evolution of the dispersal traits d and q (Durinx et al.

2008; Leimar 2009; Geritz et al. 2016).

3. Results

(a) Monomorphic resident populations

We first consider the case of a single resident strategy, i.e., a population where (apart from rare

mutations) all individuals have the same d and q. A combination of analytical and numerical

explorations detailed in Section 2 of the Electronic Appendix shows that two inequalities determine

the course of evolution,

(i) g->1p  and

(ii) [ ] gg ppsb /)1( --> .

The first inequality means that there are sufficiently many solitary sites. The second inequality

holds when failing global dispersal from a solitary site is not too dangerous (recall that sb is the

probability that an offspring who left a solitary site but did not succeed to get in the global dispersal
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pool finds its way back to its natal site). Note that if (i) is violated, then then the right hand side of

(ii) is negative so that (ii) always holds. There are therefore only three cases to distinguish: both

inequalities hold; (i) is violated; (i) holds but (ii) is violated.

If both inequalities hold, then there is an interior evolutionary singularity *)*,( qd , where the joint

evolution of the dispersal traits comes to a halt (Figure 2a). This singularity is nearly always

strongly convergence stable, i.e., it attracts the evolutionary dynamics of d and q irrespectively of

the covariation between the two traits (Leimar 2009; a narrow parameter region where this is not

the case is described in Section 4.1 of the Electronic Appendix). Convergence for any covariation is

important because mutations affecting the probability of leaving the natal site d likely also affect

the probability of engaging in long-range dispersal q and vice versa. To quantify the mutational

covariance of d and q, however, we would need more information about the organism's

morphological and behavioural traits that influence d and q and the genetic architecture thereof.

Depending on the parameter values, the singularity *)*,( qd  may or may not be an ESS. Unlike in

the case of a single evolving trait, in higher dimensional trait spaces a convergence stable non-ESS

singularity is not necessarily an evolutionary branching point (Geritz et al. 2016). For two evolving

traits as in our case, Geritz et al. (2016) have shown that the combination of strong convergence

stability and lack of evolutionary stability implies evolutionary branching when selection acts on

standing genetic variation (i.e., evolution is not mutation-limited). Hence we consider our strongly

convergence stable, non-ESS interior singularities to be evolutionary branching points.

Evolutionary branching at an interior singularity occurs when the fraction of solitary sites is

intermediate (p is higher than g-1  but not by too much; see Figure 3). This is straightforward to

interpret: If both solitary and clustered sites are common, the population splits into two lineages

specializing on the two types of sites. An example for evolutionary branching at an interior
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singularity is shown in Figure 4a. The evolutionary trajectories shown in this figure have been

obtained by numerically solving the canonical equation of adaptive dynamics, see Section 3 of the

Electronic Appendix for details.

If inequality (i) is violated, the fraction of solitary sites (p) is too small to maintain global dispersal

in a monomorphic population, so that q evolves towards zero and the solitary sites become

effectively isolated (Figure 2b). However, when the resident's q is sufficiently close to zero, a

mutant with somewhat higher q (and not too different d) can invade and coexist with the resident,

whereupon the two strategies experience disruptive selection in the q-direction. Mathematical tools

are lacking for this case, but, as explained in Section 4.3 of the Electronic Appendix, we expect

that, at least if the genetic correlation between d and q is not strong, evolutionary branching

happens near q = 0. Notice that branching can happen away from a singularity (Figure 4b). In some

instances, one of the two branches goes extinct soon after separation; in this case, the remaining

strategy evolves back to q = 0 and attempts branching again (see Section 4.3 of the Electronic

Appendix).

Finally, if inequality (i) holds but (ii) is violated, then q evolves to 1 (Figure 2c). This is the case

when many of the sites are solitary and global dispersal is strongly favoured because offspring

dispersed locally from solitary sites die (b is low when inequality (ii) is violated) and /or global

dispersal is safe (violation of (ii) is equivalent to (1 ) / (1 )p sbpg > - - ). At 1=q , all dispersal is

global and therefore all sites are equally connected. The evolution of dispersal propensity is then

governed by the Hamilton-May (1977) model with survival probability gs , leading to the ESS at

1/ (2 )d sg= - . We note that this endpoint is only locally evolutionarily stable; it is easy to verify

that a strategy with the same dispersal propensity but only local dispersal (q = 0) can invade and

coexist with it (Section 4.2 of the Electronic Appendix).
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As Figure 3 shows, ESSs with intermediate trait values are uncommon (see also Figure S2 in the

Electronic Appendix). Interior branching points occur more frequently, but the two most common

outcomes are the ESSs with fully global dispersal (q = 1) and disruptive selection near q = 0. Only

the latter two outcomes are possible if b = 0, i.e., if  offspring dispersed from a solitary site perish if

they fail to disperse globally.

When evolutionary branching happens, disruptive selection acts predominantly in the q-direction.

At interior singularities, the direction of strongest disruptive selection is typically within a few

degrees from vertical (black trajectory in Figure 4a; Figure S4 in the Electronic Appendix). At the

boundary q = 0, disruptive selection is always in the q-direction (Figure 4b; Section 4.3 of the

Electronic Appendix). We therefore conclude that the diversification of dispersal strategies is

mainly due to disruptive selection on the pattern of functional connectivity (determined by q), not

dispersal propensity (d) itself. Note, however, that the realized coevolutionary trajectories depend

also on the (unknown) mutational covariance of d and q. With a strong positive covariance, the line

of divergence turns towards 45 degrees (grey trajectory in Figure 4a).

(b) Dimorphic resident populations

Our numerical experiments showed that coevolution often leads to extremes in the fraction of

globally dispersed offspring, i.e., one resident with q = 0 and the other with q = 1 (as in Figure 4).

Therefore, we searched for dimorphic singularities where a strategy with only local dispersal,

)0*,( 1d , coexists with one that disperses only globally, )1*,( 2d . The values of *d1  and *d2  are

such that the selection gradient vanishes in the d-direction, whereas selection on q pushes towards

the boundary 0 and 1, respectively. For most parameter values, such a dimorphic singularity exists
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(see Figure S5 in the Electronic Appendix). For the rest, we found a dimorphic singularity where a

locally dispersing strategy )0*,( 1d  coexists with a strategy that mixes local and global dispersal,

but also here the fraction of globally dispersed offspring is high ( *)*,( 22 qd  with 5.0*2 >q ). Note

that this latter type of singularity occurs only for high values of b and s (Figure S5 in the Electronic

Appendix), which may be less common in nature. When b and s are high, offspring who leave a

solitary site but fail to engage in global dispersal likely do not perish but return to their natal site.

This means less selection for global dispersal in the solitary sites, so that 2* 1q <  can evolve, taking

the advantage of local dispersal in the clustered sites.

All the above dimorphic singularities are both strongly convergence stable and evolutionarily

stable, irrespective of whether the monomorphic population undergoes evolutionary branching or

not. Note that a dimorphic ESS often exists also if a monomorphic population evolves to a local

ESS (Geritz et al. 1999); in this case, the dimorphic ESS cannot be reached gradually via

evolutionary branching, but it can be reached via the immigration of a second strategy sufficiently

different from the monomorphic resident. In our model, a dimorphic ESS always exists, even if

almost all sites are solitary or almost all are clustered (the relative abundance of the two residents

changes accordingly).

The most prominent property of these dimorphic ESSs is that the two resident strategies have a

large difference in q. This implies contrasting patterns of functional connectivity realized in the

same landscape by the two residents.

The dispersal propensities of the two residents qualitatively behave as, and are often quantitatively

close (but not equal) to the Hamilton-May strategies corresponding to the costs of local and global

dispersal, d1=1/(2-s) and d2=1/(2-γs), respectively. In particular, the locally dispersing resident
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)0*,( 1d , which is restricted to the clustered sites, is always the one with higher dispersal propensity

( 1 2* *d d> ). Hence in this cluster-specialist strategy, there is selection for high but strictly local

dispersal. Conversely, in the globally dispersing resident, selection promotes long-range dispersal

but with a more moderate propensity. If dispersal-related traits (such as wings etc.) simultaneously

facilitate leaving the natal site and moving longer distances (analogous to the global dispersal pool

in our model), then d and q are positively correlated, and this correlation needs to be broken to

arrive at the dimorphic ESS. The evolution of multiple dispersal mechanisms (such as ballooning

for long-range dispersal vs rappelling over short distances in spiders; Bonte et al. 2008) or more

sophisticated behavioural strategies may thus be expected, which can disentangle dispersal

propensity from dispersal distance. The problem of opposite selection for dispersal propensity and

dispersal distance is most acute when 1 *d  is substantially different from 2 *d . This is the case when

local dispersal has little cost (high s) but global dispersal is costly (low γ), a situation likely in

nature.

4. Discussion

Our main result is that in a heterogeneous landscape of solitary and clustered sites, predominantly

traits that influence the pattern of functional connectivity are under disruptive selection. When the

population undergoes evolutionary branching, the two emerging lineages experience selection for

global vs local dispersal rather than for many vs few offspring dispersed. Many traits may affect

both the propensity and the pattern of dispersal, yet their effect on the pattern is more important for

diversification. We found evolutionarily stable dimorphisms with one strain dispersing only locally

in the cluster and the other dispersing globally among all sites. Due to these contrasting dispersal

patterns, the two strains realize very different connectivities among the sites of the same geographic

network.
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The coexistence of globally and locally dispersing strains is easy to understand in terms of costs

and benefits. In our model, dispersal is favoured by competition among the offspring of the same

parent (Hamilton and May 1977). For an individual in a clustered site, local dispersal is sufficient

to prevent kin competition. This maintains a strain with local dispersal, enjoying the lower dispersal

costs but being restricted to the cluster. The unused resources of the solitary sites then favour a

second, globally dispersing strain, which is at a disadvantage in the cluster due to its higher

dispersal costs, but it is the only exploiter of the solitary sites. We can thus view the locally and

globally dispersing strategies as specialists adapted to the clustered and solitary sites, respectively.

The details of the selective forces acting on the dispersal strategy are however less straightforward

to explain heuristically (see Gandon and Michalakis 1999; Kisdi 2004; Karisto and Kisdi 2017 for

more detailed discussions). Whether somewhat more global or somewhat more local dispersal is

more profitable depends on the costs of global and local dispersal and on how many competitors a

successfully dispersed offspring will encounter in a solitary or in a clustered site. The propensity of

dispersal, i.e., how many of the offspring should be dispersed in the first place and how many

should be retained in the natal site, depends on the above and also on how many immigrants arrive

at the natal site. The latter is because the more immigrants the offspring have to compete with, the

higher is the marginal value of a non-dispersed sibling. Because the number of competitors depends

on the prevailing dispersal strategy, it is far from obvious that selection is disruptive on the pattern

of dispersal, and, for most parameter values, selection maintains a fully globally dispersing strain

and a fully locally dispersing strain in an evolutionarily stable dimorphism.

In homogeneous landscapes with identical habitat patches, dispersal propensity, when it is the only

evolving trait, usually attains a monomorphic ESS (Hamilton and May 1977; Levin et al. 1984;
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Olivieri et al. 1995; but see Ludwig and Levin 1991). Evolutionary branching can happen if

dispersal is constrained by trade-offs with other life history parameters (Fronhofer et al. 2011;

Weigang and Kisdi 2015) or co-evolves with other traits such as social behaviour (Mullon et al.

2018). In contrast to homogeneous systems, heterogeneity is expected to promote diversification.

Indeed, a number of previous studies have demonstrated evolutionary branching of dispersal

propensity in heterogeneous landscapes (Doebeli and Ruxton 1997; Mathias et al. 2001; Parvinen

2002; Parvinen and Metz 2008; Massol et al. 2011; Kisdi 2016; Karisto and Kisdi 2017; etc), but

these studies did not allow the pattern of dispersal to evolve.

In spatially explicit models, the pattern of dispersal is given by the distribution of dispersal

distance. As expected, in homogeneous landscapes there is an evolutionarily stable distribution

(Rousset and Gandon 2002; Fronhofer et al. 2015), and somewhat more surprisingly, North et al.

(2011) found only ESSs in a heterogeneous landscape. The simulation study of Bonte et al. (2010)

showed local adaptation of dispersal distance on a lattice such that individuals in large patches of

suitable habitat exhibited longer dispersal distances. On a homogeneous lattice, Harada (1999)

determined the evolutionarily stable fraction of locally (i.e., to nearest neighbour) vs globally

dispersed offspring. The recent simulation model of Cenzer and M'Gonigle (2019) assumed that

two resources are distributed with different spatial autocorrelation on a lattice, and found that the

mean dispersal kernel differs between individuals using different resources even if the resources are

fully substitutable. It is however unclear in this model whether selection is disruptive, or mutations

maintain variation in the dispersal kernel against stabilizing selection and the result is due to spatial

sorting of this variation. Evolutionary branching of dispersal distance due to temporal and spatial

heterogeneity is predicted by the model of Snyder (2006), which assumes that the offspring are

distributed according to an exponential distribution in continuous space, with the mean of the

distribution being the trait under disruptive selection. We found evolutionary branching of the
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dispersal pattern under very different ecological assumptions, which highlights the need for a more

comprehensive understanding of the selective mechanisms controlling the diversity of dispersal

patterns.

The present model shows that disruptive selection can be stronger on the pattern of dispersal than

on its propensity, but dispersal propensity can still diversify even if the pattern is fixed. Earlier, we

investigated a simpler model (Karisto and Kisdi 2017), where the fraction of global dispersal (q)

was a fixed parameter rather than an evolving trait (and we also assumed b=0). We found that

heterogeneous structural connectivity can lead to the diversification of dispersal propensity (d).

Since here we have shown that disruptive selection acts mostly on q, we conclude that the

diversification of d we found earlier is driven by residual selection on dispersal propensity that

remains after fixing the pattern of dispersal. This is reflected also in the evolutionarily stable

dimorphism: whereas in the present model selection always maintains a dimorphism, this is not the

case if only the propensity of dispersal can evolve (Karisto and Kisdi 2017).

If we assume no cost to local dispersal (s=1) and we fix dispersal propensity at d=1, then the

clustered sites behave as a large, well-mixed habitat patch. Assuming further that there is no loss

when attempting local dispersal from a solitary site (b=1) so that forcing d=1 does not harm the

offspring in solitary sites, we arrive at a model of variable patch size (one large patch and many

small sites) with global dispersal given by q. In the context of our present model, this is an extreme

and unrealistic choice of parameters, but mathematically it is identical to the model of Kisdi (2016),

who showed evolutionary branching (of q, in our present terms) due to the heterogeneity of patch

size (see also Massol et al. 2011). For a more realistic model of heterogeneous landscapes, one

should vary both the size of the habitat patches and their physical isolation, including multiple

clusters that differ in the number of patches and in the cost of dispersal, with the solitary sites as
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extremes of this variation. We expect that such a landscape would facilitate further diversification.

For example, large well-mixed patches maintain a strain without any dispersal, clustered small sites

maintain high but mostly local dispersal, and solitary sites favour global dispersal at a lower

propensity.

Our results underscore the role of solitary sites, or more generally, the role of small and remote or

otherwise separated patches of habitat. These may not appear to be significant for the population,

but in fact the presence of the solitary sites maintains global dispersal. This remains true also when

the landscape contains not one but several clusters, which are connected to the solitary sites as well

as to each other via global dispersal. In each of the clusters, global dispersal is at a disadvantage,

because it is more risky and does not provide more benefit; local dispersal within a cluster removes

kin competition, and global dispersal between clusters does not add to this. In contrast, global

dispersal is essential for individuals living in solitary sites. If the solitary sites are removed, then the

globally dispersing strain goes extinct. Next to the loss of diversity, this increases the risk of global

extinction, since in the absence of global dispersal, an extinct cluster cannot be recolonized from

the rest of the network. Global dispersal is essential to maintain connectivity between the clusters,

and global dispersal is maintained by the solitary sites.
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Table 1. Notation

Symbol Definition

d (dm) resident (mutant) dispersal probability
q (qm) resident (mutant) probability that a disperser enters the global pool
p fraction of solitary sites
s probability of survival during local dispersal
γs probability of survival during global dispersal (with γ < 1)
bs probability that an offspring who dispersed from a solitary site but failed

to enter the global dispersal pool returns to its natal site (with b < 1)
B number of offspring per parent (assumed large)
IGB number of immigrants from the global pool
ILB number of immigrants from the local pool (clustered sites only)
PS/B probability that a focal individual in a solitary site wins the site
PC/B probability that a focal individual in a clustered site wins the site
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Figure 1. Clustered and solitary sites. From clustered sites, a fraction d(1-q) of the offspring enter

the local dispersal pool, and a fraction dq enter the global dispersal pool. Solitary sites have no

local dispersal pool, but dispersed offspring who fail to enter the global pool return with probability

sb to their natal site. The probability of survival for local dispersal is s, for global dispersal is sγ.
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d
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d d
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Figure 2. Monomorphic evolutionary dynamics of dispersal propensity (d) and the fraction of long-

range dispersal (q). (a) Both inequalities (i) and (ii) hold, interior singularity (p = 0.75, γ = 0.3, s =

0.6, b = 0.9); (b) inequality (i) is violated, evolution to q = 0 (parameters as in (a) except p = 0.4);

(c) inequality (i) holds but (ii) is violated, boundary ESS (parameters as in (a) except b = 0.2).

The arrows mark the direction of selection, which changes across the d- and q-isoclines (continuous

and dashed lines, respectively). The dot marks the singularity *)*,( qd , which may be an ESS or an

evolutionary branching point (evolution does not reach a singularity in panel (b), see the main text

and Figure 4b).
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Figure 3. Monomorphic evolutionary singularities. In each panel, the horizontal axis is for s

(between 0 and 1) and the vertical axis is for b (also between 0 and 1). Grey: evolution to disruptive

selection either at an interior branching point (inequality (i) is satisfied above the dashed line) or

near q = 0 (below the dashed line); white: ESS with q = 1; black: interior ESS. The tendencies seen

in this figure continue for values of p and γ not shown here (see Figure S2 in the Electronic

Appendix).
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Figure 4. Evolutionary branching and the coevolution of two resident strategies. In (a), evolutionary

branching occurs at an interior singularity (circle). The two branches evolve away from each other

(arrows) and eventually converge to the dimorphic ESS, where one resident has q = 0 and the other

has q = 1 (black dots). The two trajectories (black and grey) differ in the mutation covariance

matrix. Black: d and q mutate with equal variance and zero correlation; grey: equal variance and

high positive correlation (r = 0.8). In (b), evolutionary branching occurs at q = 0. The two

trajectories differ only in their initial points; for both, d and q mutate with equal variance and zero

correlation. Parameters: (a) p = 0.75, γ = 0.3, s = 0.6, b = 0.9 (as in Figure 2a); (b) p = 0.4, γ = 0.3, s

= 0.6, b = 0.9 (as in Figure 2b).
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Electronic Appendix

This Electronic Appendix contains all mathematical derivations and numerical procedures used
for the analysis of the model described in the main text. Unless mentioned otherwise, we per-
formed the analyses with Mathematica (Wolfram Research) versions 10.0, 10.2, and 11.3 (the
code is available at https://doi.org/10.5061/dryad.9ghx3ffd0).

1 Invasion fitness proxy

The invasion fitness of the mutant strategy (dm, qm) is the leading eigenvalue of its projection
matrix

Am =

[
a11 a12
a21 a22

]
with the elements

a11 =
1− dm + dm(1− qm)sb

1− dm + dm(1− qm)sb+ IG
+ dmqmsγpPS

a12 = dmqmsγpPS

a21 = dmqmsγ(1− p)PC

a22 =
1− dm

1− dm + IG + IL
+ dm(1− qm)sPC + dmqmsγ(1− p)PC

(A.1)

as given in equations (1) of the main text. It remains to obtain IG, IL, PS , and PC , which
depend on the resident population.

Let n1i and n2i denote respectively the number of solitary and clustered sites occupied by the
ith resident dispersal strategy (di, qi), given as the fractions of all sites (i.e.,

∑
i(n1i +n2i) = 1).

If there is only one resident strategy, then n11 = p and n21 = 1 − p; for multiple residents, the
equilibrium densities must be determined numerically. The number of immigrants arriving at a
site from the global dispersal pool is given by

IG = sγ
∑
i

diqi(n1i + n2i) (A.2a)

From the local dispersal pool of clustered sites, the number of immigrants arriving at a clustered
site is

IL = s
∑
i

di(1− qi)n2i/(1− p) (A.2b)

where the division with (1− p) is because these dispersers are distributed only among the clus-
tered sites.

1



The probability of winning a site depends on its former occupant. A solitary site is occupied
by the ith resident with probability n1i/p (which is 1 if there is only a single resident). The
ith resident produces (1− di)B nondispersing and di(1− qi)sbB returning offspring, so that the
probability that a particular offspring wins the site is 1/[1 − di + di(1 − qi)sb + IG]B. Recall
from the main text that PS is defined such that PS/B is the probability of winning the site.
Summing over all resident types we obtain

PS =
∑
i

n1i
p
· 1

1− di + di(1− qi)sb+ IG
(A.3a)

and an analogous calculation yields

PC =
∑
i

n2i
1− p

· 1

1− di + IG + IL
(A.3b)

We assume d, q > 0 for all strategies and 0 < p < 1, s, γ > 0; these assumptions guarantee
that the projection matrix is irreducible (and then also primitive). Mathematically, the mutant’s
invasion fitness is not well defined if its projection matrix is not irreducible. Biologically, d = 0
or q = 0 is not realistic since some dispersal (both local and global) will occur even if only by
accident. Hence we consider (0, 1]× (0, 1] to be the trait space of dispersal strategies (d, q).

Let λ denote the leading eigenvalue of Am. The mutant can invade if λ is greater than 1;
or, equivalently for a 2 × 2 projection matrix, if one or both of the following conditions hold
(Metz and Leimar 2011):

(a) trAm > 2, (b) F = trAm − detAm > 1

where tr and det denote the trace and the determinant, respectively. For a resident strategy, the
trace of the projection matrix is always less than 2 (Metz and Leimar 2011), and, by continuity,
the same holds for mutants with trait values close to a resident. Hence, assuming all mutations
have sufficiently small effects on the dispersal strategy, condition (a) never holds. It then follows
that the mutant’s leading eigenvalue is greater than 1 if and only if condition (b) holds, i.e., if
the mutant’s fitness proxy F = trAm − detAm exceeds 1.

By repeated mutations and invasions, the traits (di, qi) of the ith resident evolve in the trait
space guided by the selection gradients. Assuming small mutations, the mutant (dm, qm) near

the ith resident can invade if g
(i)
d (dm − di) + g

(i)
q (qm − qi) is positive. We define the selection

gradients in terms of the fitness proxy,

g
(i)
d =

∂F

∂dm

∣∣∣∣
dm=di,qm=qi

, g(i)q =
∂F

∂qm

∣∣∣∣
dm=di,qm=qi

(A.4)

The elements of Am, and therefore also the fitness proxy F and the selection gradients g
(i)
d ,

g
(i)
q depend on the trait values dj , qj and equilibrium densities n1j , n2,j of all resident strategies

(j = 1, ..., k) through the variables IG, IL, PS , PC , but we suppress this in the notation.
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The derivatives in (A.4) are easy to relate to the derivatives of the invasion fitness λ (the
following derivation is simplified from Metz and Leimar (2011)). Recall that for a 2× 2 matrix,
the characteristic equation is

λ2 − trλ+ det = 0

where tr and det are respectively the trace and the determinant of Am. Differentiating implicitly
with respect to dm and evaluating at dm = di, qm = qi (which implies λ = 1 at the equilibrium
of population dynamics), we obtain[

(2− tr)
∂λ

∂dm
− ∂ tr

∂dm
+
∂ det

∂dm

]
dm=di,qm=qi

= 0

i.e.,
∂λ

∂dm

∣∣∣∣
dm=di,qm=qi

=
1

2− tr(i)
∂F

∂dm

∣∣∣∣
dm=di,qm=qi

=
1

2− tr(i)
· g(i)d (A.5a)

where tr(i) is the trace of Am evaluated at dm = di, qm = qi and population dynamic equilibrium.
Analogously for the selection gradient on q,

∂λ

∂qm

∣∣∣∣
dm=di,qm=qi

=
1

2− tr(i)
· g(i)q (A.5b)

Since tr(i) < 2 for every resident at a population dynamic equilibrium, the selection gradients

g
(i)
d and g

(i)
q are sign-equivalent to the derivatives of the invasion fitness λ.

2 Selection gradients and singularities in monomorphic resident
populations

In the monomorphic resident population of dispersal strategy (d, q), the elements of the mutant’s
projection matrix are

a11 =
1− dm + dm(1− qm)sb

1− dm + dm(1− qm)sb+ sγdq
+

dmqmsγp

1− d+ d(1− q)sb+ sγdq

a12 =
dmqmsγp

1− d+ d(1− q)sb+ sγdq

a21 =
dmqmsγ(1− p)

1− d+ sγdq + sd(1− q)

a22 =
1− dm

1− dm + sγdq + sd(1− q)
+
dm(1− qm)s+ dmqmsγ(1− p)

1− d+ sγdq + sd(1− q)

where we have substituted IG, IL, PS , PC as given in equations (A.2) and (A.3). The fitness
proxy F and the selection gradients

gd(d, q) =
∂F

∂dm

∣∣∣∣
dm=d,qm=q

, gq(d, q) =
∂F

∂qm

∣∣∣∣
dm=d,qm=q

(A.6)

are complicated expressions, but we can infer some properties of monomorphic evolution by
investigating their properties near the boundaries of the trait space. We shall refer to lines in
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the trait space where gd(d, q) = 0 (gq(d, q) = 0) as the d-isocline (q-isocline). A point (d∗, q∗)
where the d- and q-isoclines intersect, i.e., where both selection gradients are zero, is an interior
evolutionary singularity.

For the selection gradient on q on the boundaries, we obtain the following (algebraic ma-
nipulations performed with Mathematica 10, Wolfram Research):

(i) On the boundary q = 1,

gq(d, 1) = d2s2γ
[p− (1− γ)](1− d+ sγd)− psγbd

(1− d+ sγd)3

and therefore the selection gradient on q is negative for all d if p < 1− γ and positive for
all d if p > (1 − γ)/(1 − b). If 1 − γ < p < (1 − γ)/(1 − b), then gq(d, 1) is positive for
d < dcrit and negative for d > dcrit, where

dcrit =
p− (1− γ)

(p− (1− γ))(1− sγ) + psγb
(A.7)

(ii) On the boundary d = 1, the selection gradient on q vanishes at

qcrit =
b(p− (1− γ))

b(p− (1− γ) + pγ)− γ(p− (1− γ))
(A.8)

It is easy to check that 0 < dcrit, qcrit < 1 if and only if

1− γ < p < (1− γ)/(1− b) (A.9)

Care must be taken when q → 0 or d→ 0, because in the limit, the monomorphic resident
projection matrix (Am evaluated at dm = d, qm = q) becomes the identity matrix and therefore
the factor 1/(2 − tr) in (A.5) explodes to infinity, whereas gd and gq go to zero. The fitness
proxy is not valid in the limit, and we must consider the derivatives in (A.5), i.e., gd/(2 − tr)
and gq/(2− tr).

(iii) As q → 0, we have
gq

2− tr
→ sd[p− (1− γ)]

1− d+ sd(1− p(1− b))
(A.10)

which is positive for p > 1− γ and negative for p < 1− γ, independently of d.

(iv) As d → 0, gq/(2 − tr) goes to zero, whereas its derivative with respect to d goes to
s[p − (1 − γ)]. Hence for small d, the selection gradient on q is positive (negative) if
p > (1− γ) (p < (1− γ)).

From the above analysis, we conclude that there is a q-isocline in the trait space that con-
nects to the boundary at the points (dcrit, 1) and (1, qcrit) when (A.9) holds, and there exist no
other connections between an interior q-isocline and the boundary.
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For the selection gradient on d, we have two limiting cases where our model becomes equiv-
alent to the Hamilton-May (1977) model. With q = 1, each site is equally connected and
therefore selection on d leads to the Hamilton-May ESS with survival probability sγ, i.e., to
dHM (sγ) = 1/(2− sγ). With q → 0, solitary sites receive no immigrants and therefore selection
on d ceases in the solitary sites; in the cluster, selection on d leads to dHM (s) = 1/(2− s). The
latter is shown formally by showing that as q → 0,

gd
2− tr

→ (1− p)s[1− (2− s)d]

(1− d(1− s))(1− d(1− s(1− p(1− b))))

which is positive (negative) if d is smaller (greater) than 1/(2− s). Therefore we obtain that

(v) the points (dHM (s), 0) and (dHM (sγ), 1) are on the d-isocline, and the d-isocline does not
connect to the boundaries q = 0 and q = 1 at any other point than these.

Further, we obtain the following properties using computer algebra:

(vi) As d→ 0, we have
gd

2− tr
→ s((1− p)(1− q) + γq)

so that near the boundary d = 0, the selection gradient on d is always positive.

(vii) The roots of gd(1, q) = 0 are the roots of a cubic polynomial of q with one root at q = 0.
Since the model reduces to the Hamilton-May model for both q → 0 and q = 1 (see above),
gd(1, q) is negative both at small and at high values of q whenever s < 1. Therefore gd(1, q)
has either no root in (0, 1] or it has two roots, q̄1 and q̄2. If there is no root, then gd(1, q)
is negative for all q; if there are two roots, then gd(1, q) is positive for q̄1 < q < q̄2 and
negative outside this interval.

(viii) For gd(1, qcrit) to be zero and hence (1, qcrit) to be singular, s = [p(1− b)− (1− γ) + b]/bγ
must hold. For p in the range 1− γ < p < (1− γ)/(1− b) (where qcrit is between 0 and 1),
the right hand side of this equation evaluates to a number between 1 and 1/γ ≥ 1. Hence
(1, qcrit) cannot be singular except in the extreme case of s = 1 (no mortality during local
dispersal).

Properties (v)-(vii) suggest that the d-isocline either connects the points (dHM (s), 0) and
(dHM (sγ), 1), or a segment of the d-isocline connects (dHM (s), 0) to (1, q̄1) and another segment
connects (1, q̄2) to (dHM (sγ), 1) (see Figure S1).

Suppose now that (A.9) holds and the q-isocline connects the points (dcrit, 1) and (1, qcrit)
(see above). If the d-isocline connects the points (dHM (s), 0) and (dHM (sγ), 1), then the q- and
d-isoclines must intersect if dcrit < dHM (sγ) = 1/(2 − sγ) (panel (a) in Figure S1). This last
inequality is equivalent to

sb >
p− (1− γ)

pγ
(A.11)

If, on the other hand, segments of the d-isocline connect (dHM (s), 0) to (1, q̄1) and (1, q̄2) to
(dHM (sγ), 1), then the q-isocline must intersect one of these segments when (A.11) holds (panel
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(b) in Figure S1). This is because for the intersection point to move off the segment and onto
the boundary d = 1, it should cross through (1, qcrit) so that (1, qcrit) would become singular;
but this is excluded by (viii) above.

Figure S1: Selection gradients and evolutionary singularities in monomorphic populations. Ar-
rows show the direction of the selection gradient on d (horizontal) and on q (vertical). Continuous
line: d-isocline (gd = 0); dashed line: q-isocline (gq = 0); dot: singular strategy. (a) p = 0.75,
γ = 0.3, s = 0.6, b = 0.9 (identical to Figure 2a of the main text); (b) p = 0.9, γ = 0.3, s = 0.95,
b = 0.9.

The inequality in (A.11) is equivalent to p < (1 − γ)/(1 − sγb), which implies p < (1 −
γ)/(1 − b), the second inequality of (A.9). Therefore we need to keep only the first inequality
of (A.9) together with (A.11), and we conclude that the isoclines intersect and the model has
an interior singularity (d∗, q∗) if

p > 1− γ and sb >
p− (1− γ)

pγ
(A.12)

as given in the main text.

The above derivation is based on the analysis of the selection gradients at the boundaries
of the trait space. This analysis cannot exclude the existence of circular isoclines that do not
connect to the boundary; hence interior singularities might exist also when the above conditions
do not hold. Further, the analysis of the boundaries cannot inform about the uniqueness of the
interior singularity, i.e., when the isoclines are shown to intersect, they might intersect more
than once.

To exclude these possibilities, we have carried out an exhaustive numerical search for inte-
rior singularities using the numerical solver vpasolve of MatLab. First, we solved the equations
defining a singularity, gd(d

∗, q∗) = 0 and gq(d
∗, q∗) = 0, in the interior of the trait space, [ε, 1−ε]2

with ε = 10−9, for all parameter combinations of s, γ, p, b = 0.04, 0.09, ..., 0.99. From these
160 000 parameter combinations, we did not find any that does not fulfil the conditions in (A.12)
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and yet yields an interior singularity; and we found an interior singularity for all 8808 parameter
combinations that do fulfil (A.12).

Next, we checked the uniqueness of the interior singularities. Note that the second condition
in (A.12) holds if s > s̄ = [p − (1 − γ)]/pγb, and s̄ < 1 if b > b̄ = [p − (1 − γ)]/pγ. For every
combination of γ, p = 0.04, 0.09, ..., 0.99 that satisfies p > 1−γ, we took 10 evenly spaced values
for b between b̄ and 1, and for each value of b, 10 evenly spaced values for s between s̄ and 1. For
every set of parameters thus obtained, we located an interior singularity (d∗, q∗) as above, and
then used vpasolve to try to find another solution for gd(d, q) = 0 and gq(d, q) = 0 in the two do-
mains [10−9, 1]× [10−9, q∗−10−4] and [10−9, 1]× [q∗+10−4, 1] (i.e., excluding the first singularity
found). In no case we found a second solution, which shows the interior singularity to be unique.

3 The canonical equation

We use the multivariate canonical equation of adaptive dynamics for structured populations
(Durinx et al. 2008) to describe the evolution of dispersal strategies as long as the number of
strategies does not change (directional evolution), i.e., before and after evolutionary branching.
In the community of k resident strategies (d1, q1), ..., (dk, qk), the ith resident trait vector evolves
according to

d

dt

(
di
qi

)
= κiC

(
g
(i)
d

g
(i)
q

)
(A.13)

where κi is a positive speed factor, C is the mutational covariance matrix, and the last vector is
the selection gradient vector. Below we describe these quantities in reverse order, applying the
definitions of Durinx et al. (2008) to our specific model. For the derivation of (A.13), we refer
to Durinx et al. (2008). Note that in this paper, we consider only monomorphic (k = 1) and
dimorphic (k = 2) resident populations.

For the selection gradient vector, we need the derivatives of the leading eigenvalue λ of the
mutant projection matrix Am. As derived in (A.5), this is given by 1

2−tr(i) times the selection

gradients g
(i)
d , g

(i)
q defined in terms of the fitness proxy F . In (A.13), we factor the coefficient

1
2−tr(i) into κi.

We assume that the mutational covariance matrix

C =

[
σ2d rσdσq

rσdσq σ2q

]
is a positive definite matrix, i.e., the variances σ2d and σ2q of the (random) change one mutation
causes respectively in d and in q are nonzero and the correlation r between the change in d
and in q is less than 1 in absolute value. Since many morphological or behavioural changes
that facilitate movement increase both d and q, it is likely that r is positive. For the numerical
examples, we assume that C is constant except when the dynamics have hit the boundary of
the trait space; for the analysis of strong convergence stability, it suffices to assume that C
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depends on the trait values smoothly (Leimar 2009). Since q cannot be negative or exceed 1,
we substitute σq with 0 for the resident that has either q = 0 with a selection gradient pointing

towards lower q (i.e., rσdσqg
(i)
d + σ2qg

(i)
q < 0) or q = 1 with a selection gradient pointing towards

higher q. The value of d is similarly constrained to evolve between 0 and 1.

Finally, the speed factor

κi =
1

2− tr(i)
· [µ(n1i + n2i)] ·

1

Vi

is the product of three quantities, each dependent on the trait values of all resident strategies,
but we suppress this in the notation. The first factor, 1

2−tr(i) , corrects for the fact that we define

the selection gradient with the fitness proxy rather than the invasion fitness (see above). The
bracketed second factor is the probability at which a new mutation appears in the ith strategy
per generation. We assume that each individual mutates with probability µ/M (where M →∞
is the total number of sites) and µ→ 0 so that in most generations there is no mutant at all in
the entire population. The total number of individuals with the ith strategy (n1i +n2i)M times
the probability of mutation µ/M gives the probability that there is one mutant individual of
the ith strategy. Note that for simplicity, we assume that an established adult (not a newborn)
turns into a mutant.

The third factor is the inverse of the variance-like quantity

Vi = u
(i)
1 Var

(
v
(i)
1 ξ

(i)
11 + v

(i)
2 ξ

(i)
21

)
+ u

(i)
2 Var

(
v
(i)
1 ξ

(i)
12 + v

(i)
2 ξ

(i)
22

)
that plays a role through demographic stochasticity in the mutant’s dynamics, present be-

cause the mutant initially exists in a single copy (see Durinx et al. 2008). Here (v
(i)
1 , v

(i)
2 ) and

(u
(i)
1 , u

(i)
2 )T are respectively the left and right leading eigenvectors of the matrix Am, with ele-

ments given in (A.1), evaluated at the ith resident, (dm, qm) = (di, qi). The eigenvectors must

be normalized such that u
(i)
1 + u

(i)
2 = 1 and v

(i)
1 u

(i)
1 + v

(i)
2 u

(i)
2 = 1. The quantities denoted with

the letter ξ are random variables, and Vi is a weighted variance of these. ξ
(i)
11 denotes the random

number of solitary sites won by the offspring born to one parent of the ith strategy who lived in

a solitary site; and analogously, ξ
(i)
12 is the random number of solitary sites won by the offspring

born in a clustered site, ξ
(i)
21 is the random number of clustered sites won by the offspring born

in a solitary site, and ξ
(i)
22 is the random number of clustered sites won by the offspring born in

a clustered site. The expected values of these random variables are the elements of the projec-
tion matrix Am evaluated at (dm, qm) = (di, qi). If the variances of offspring numbers around
the expectations are small, then extinction due to demographic stochasticity is less likely for
a mutant whose deterministic dynamics (leading eigenvalue of Am) predicts invasion. Small
variances imply low Vi and therefore high κi; evolution is faster when advantageous mutants are
less likely lost to demographic stochasticity.

In the remainder of this section, we derive the distributions of the ξ’s and calculate Vi. We
start with introducing the Bernoulli-distributed random variable

ζ(α) =

{
1 with probability α
0 with probability 1− α
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and the Poisson-distributed random variable η(β),

Prob(η(β) = k) =
βk

k!
e−β

Consider first the random variable ξ
(i)
11 . The nondispersing offspring born in a solitary site

win either one solitary site (the natal site) or none; hence the number of solitary sites won by

the nondispersing offspring is given by a Bernoulli-distributed random variable ζ(α
(i)
1 ). The

expectation of this Bernoulli-variable is the probability that one of the nondispersing offspring
wins the natal site,

α
(i)
1 =

1− di + di(1− qi)sb
1− di + di(1− qi)sb+ IG

(cf. the first term of a11 in (A.1)). The large number of offspring who disperse from a solitary
site have each an infinitesimal chance to win a site (since each competes against a large number
of offspring), and therefore the number of solitary sites won by them is the Poisson distributed

random variable η(β
(i)
1 ) with parameter

β
(i)
1 = diqisγpPS

The total number of solitary sites won by offspring born in one solitary site is

ξ
(i)
11 = ζ(α

(i)
1 ) + η(β

(i)
1 )

Notice that the expectation of ξ
(i)
11 is a11 as defined in (A.1) with dm = di. Note also that ζ(α

(i)
1 )

and η(β
(i)
1 ) are independent; the fact that the nondispersed offspring won or did not win the

natal site does not influence the fate of the dispersed offspring and vice versa.

For the other three random variables, by similar arguments we obtain

ξ
(i)
12 = η(β

(i)
1 )

ξ
(i)
21 = η(β

(i)
2 )

ξ
(i)
22 = ζ(α

(i)
2 ) + η(β

(i)
2 ) + η(β

(i)
3 )

with expectations

α
(i)
2 =

1− di
1− di + IG + IL

, β
(i)
2 = diqisγ(1− p)PC , β

(i)
3 = di(1− qi)sPC

Recall that the variance of a Bernoulli random variable is Var(ζ(α)) = α(1 − α) and the
variance of the Poisson random variable η(β) is its parameter β. Hence

Var(ξ
(i)
11 ) = α

(i)
1

(
1− α(i)

1

)
+ β

(i)
1

Var(ξ
(i)
12 ) = β

(i)
1

Var(ξ
(i)
21 ) = β

(i)
2

Var(ξ
(i)
22 ) = α

(i)
2

(
1− α(i)

2

)
+ β

(i)
2 + β

(i)
3
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Since the ξ’s are independent of each other, we have

Vi = u
(i)
1 Var

(
v
(i)
1 ξ

(i)
11 + v

(i)
2 ξ

(i)
21

)
+ u

(i)
2 Var

(
v
(i)
1 ξ

(i)
12 + v

(i)
2 ξ

(i)
22

)
=

= u
(i)
1

(
v
(i)
1

)2
Var(ξ

(i)
11 ) + u

(i)
1

(
v
(i)
2

)2
Var(ξ

(i)
21 ) + u

(i)
2

(
v
(i)
1

)2
Var(ξ

(i)
12 ) + u

(i)
2

(
v
(i)
2

)2
Var(ξ

(i)
22 )

Substituting the variances of the ξ’s and the eigenvector elements, we arrive at Vi expressed in
terms of the model parameters and of the trait values. Note that Vi depends on the trait values
of all resident strategies, not only on (di, qi), via the feedback variables IG, IL, PS , PL.

To obtain the evolutionary trajectories in Figure 4 of the main text, we numerically integrate
the canonical equation in (A.13). For the initial point of coevolution in dimorphic populations
when evolutionary branching happens at an interior singularity, we take two strategies near
the singularity on either side in the direction of strongest disruptive selection (Figure 4a). For
evolutionary branching near q = 0, we take two strategies with the same d-coordinate as where
the monomorphic dynamics have hit the boundary q = 0, and with q1 = 0.001, q2 = 0.005
(Figure 4b).

4 Convergence stability, evolutionary stability, and evolution-
ary branching

4.1 Interior singularities

Singular strategies are fixed points of the canonical equation. A monomorphic interior singu-
larity (d∗, q∗) is strongly convergence stable if it is a locally asymptotically stable fixed point
of the monomorphic canonical equation (equation (A.13) with k = 1) for every positive defi-
nite covariance matrix C. This is the case if the symmetric part of the Jacobian of the vector
field of the selection gradient (gd, gq)

T is negative definite (Leimar 2009), or, equivalently, if the
(symmetric) matrix Γ00 − Γ11 is negative definite, where

Γ00 =

 ∂2F
∂d2m

∂2F
∂dm∂qm

∂2F
∂dm∂qm

∂2F
∂q2m


dm=d=d∗

qm=q=q∗

, Γ11 =

 ∂2F
∂d2

∂2F
∂d∂q

∂2F
∂d∂q

∂2F
∂q2


dm=d=d∗

qm=q=q∗

(Geritz et al. 2016). A monomorphic interior singularity is evolutionarily stable if the Hessian
matrix Γ00 is negative definite. Since we have only two traits evolving, any strongly conver-
gence stable interior monomorphic singularity that is not evolutionarily stable is an evolutionary
branching point sensu Geritz et al. (2016). Note that Geritz et al. (2016) assume that evolution
is not mutation-limited, and therefore the speed of evolution is independent of population size,
whereas the canonical equation, which we use to demonstrate evolutionary branching in Figure
4 of the main text, assumes mutation limitation. The latter approach is more justified when
the traits are under directional selection, which depletes the standing genetic variation; this
happens after the initial phase of evolutionary branching and during evolutionary branching at
the boundary q = 0 (see below). Genetic variability accumulates more readily when directional
selection ceases, i.e., near interior evolutionary singularities.
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To obtain the bifurcation diagrams of the monomorphic evolutionary singularities, we de-
termined the position of the interior singularity (d∗, q∗) by solving gd(d, q) = 0, gq(d, q) = 0
numerically, and evaluated Γ00 and Γ11 accordingly. Figure S2 shows the results for the entire
range of p and γ, whereas Figure 3 of the main text shows a richer part at a higher resolution
of p and γ. For each combination of p and γ shown in these figures, we varied s and b between
0.02 and 1 with stepsize 0.02 to obtain the individual panels.

Figure S2: Bifurcation diagrams of the monomorphic evolutionary singularity. In each small
panel, s runs from 0 to 1 on the horizontal axis and b from 0 to 1 on the vertical axis. p and
γ as shown next to the panels. Grey: disruptive selection / evolutionary branching (including
branching near q = 0); white: boundary ESS; black: interior ESS. Figure 3 of the main text
shows a part of this figure at higher resolution of p and γ.

Each interior singularity found on the grid used for the figures is strongly convergence sta-
ble. However, for a narrow range of p between 1 − γ and 1 − γ + δp, the interior singularity is
not strongly convergence stable for high s and intermediate b (data not shown). This narrow
range falls between the panels of Figures S2 and 3; for γ = 0.4, δp is less than 0.02, whereas for
both γ = 0.1 and γ = 0.8, it is less than 0.01. In this range, the singularity as a fixed point of
the canonical equation can undergo a Hopf bifurcation when the parameters in the covariance
matrix C are varied, resulting in sustained cycles of the trait values (Red Queen evolution;
note that this may need negative correlation between the traits, which is biologically unlikely in
our model). Because of the parameter range that yields these not strongly convergence stable
interior singularities is narrow, we do not investigate this case further.
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4.2 Boundary singularities

As explained in section 2 of this Electronic Appendix, no interior singularity exists if the in-
equalities in (A.12) do not hold. If p < 1− γ, i.e., the first inequality in (A.12) is violated, then
the boundary q = 0 attracts every orbit of the canonical equation (cf. section 2; the lack of a
fixed point excludes a periodic orbit by the Poincaré-Bendixson theorem). We consider this case
separately below, and conclude that q is under disruptive selection near the attracting boundary
q = 0. This corresponds to the all-grey panels in Figure S2 and in Figure 3 of the main text.

The first inequality in (A.12) holds but the second, which is the same as (A.11), is violated
in the white areas of Figure S2 and of Figure 3 of the main text. In this case, the bound-
ary singularity (dHM (sγ), 1) is an attracting ESS. At the boundary singularity (dHM (sγ), 1),
the selection gradient gq(dHM (sγ), 1) generically does not vanish (cf. section 2), and evolution
near this singularity is dominated by the nonvanishing selection gradient. If (A.11) holds, then
gq(dHM (sγ), 1) is negative so that the boundary q = 1 is locally repelling. If the opposite of
(A.11) holds so that the boundary q = 1 is locally attracting, then every site becomes equally
connected and evolution on the boundary will lead to the Hamilton-May ESS, dHM (sγ). In this
case, (dHM (sγ), 1) is both strongly convergence stable and locally evolutionarily stable.

Note, however, that (dHM (sγ), 1) is not a global ESS, because its monomorphic population
can be invaded by (dm, qm) = (dHM (sγ), 0), a mutant that disperses only locally; and these two
strategies coexist by mutual invasibility. To see this, we first evaluate the projection matrix of
the mutant (d, 0) in the resident population of (d, 1) to arrive at

Am =

[
1−d+sbd

1−d+sbd+sγd 0

0 1−d+sd
1−d+sγd

]
The leading eigenvalue of this matrix is its a22 element, which exceeds 1 whenever γ < 1, and
hence the mutant strategy (d, 0) invades the resident (d, 1) for any d (including d = dHM (sγ)).
The reverse case, i.e., that the mutant (d, 1) invades the resident (d, 0), is intuitively obvious
because the resident cannot disperse to the solitary sites. For the formal proof, now the mutant
projection matrix simplifies to

Am =

 1 + dsγp
1−d+dsb

dsγp
1−d+dsb

dsγ(1−p)
1−d+sd

1−d+dsγ(1−p)
1−d+sd


which gives

F = trAm − detAm = 1 +
dsγp

1− d+ dsb
· sd

1− d+ sd
> 1

i.e., the mutant invades.

For p = 1 − γ, (A.11) is violated only for sb = 0, i.e., on the horizontal and vertical axes
in the small panels of Figure S2. With increasing p or γ, an area with a boundary ESS (white)
opens up from the axes of the small panels and the area of evolutionary branching (grey) shrinks.
At the boundary of the white areas in Figure S2, where (A.11) holds with equality, an interior
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singularity appears through a transcritical bifurcation of the boundary singularity (dHM (sγ), 1).
At this bifurcation point, the Hessian matrix simplifies to

Γ00 = 2s2
[

−γ2(2− sγ)2 −γ(p− (1− γ))(2− sγ)
−γ(p− (1− γ))(2− sγ) (1− γ2)− p

]
The determinant of this Hessian is positive when

γ2(2− sγ)2
[
p− (1− γ2)− (p− (1− γ))2

]
> 0

which is equivalent to p > 2(1 − γ). We thus conclude that the Hessian is negative definite
when p > 2(1− γ) and indefinite otherwise. Therefore the interior singularity, when it appears
through the transcritical bifurcation, is an evolutionary branching point if

1− γ < p < 2(1− γ) (A.14)

holds (recall that for p < 1−γ there is no interior singularity). The interior singularity can turn
into an ESS for higher values of s and b as seen in panels of Figure 3 in the main text, where a
grey band of evolutionary branching points separates white areas with no interior singularity and
black areas with interior ESSs. The interior singularity appears as an ESS, and our numerical
results in Figure S2 and Figure 3 of the main text show that evolutionary branching does not
occur if p > 2(1 − γ). A similar derivation shows that near the transcritical bifurcation of the
interior singularity, it is always strongly convergence stable.

4.3 Evolutionary branching near q = 0

For p < 1− γ, the boundary q = 0 is attracting at every d. The orbits of the canonical equation
hit the boundary at a point that depends on the initial condition (see Figure 4b in the main
text) and at a nonvanishing speed (cf. (A.10) in section 2). Recall that at q = 0, the selection
gradient based on the fitness proxy F is invalid (section 2). Moreover, the limit q → 0 does not
commute with the derivatives taken for the selection gradients; and at q = 0, the eigenvalues
cross so that the leading eigenvalue λ is not differentiable with respect to dm at dm = d and with
respect to qm at qm = 0 (see Figure S3b below). Since, by assumption, strategies with q = 0 are
not admitted, henceforth we assume q > 0 even though we let q evolve arbitrarily close to 0.

To explore evolution near the boundary q = 0, we first show that two strategies with small
but nonzero q can coexist. Since F is continuous in q, the limit

lim
q→0

F (d, qm, d, q) = 1 +
q2md

2ps2γ

(1− d(1− s))(1− d(1− sb))
> 1

shows that also for small but nonzero q, there are mutants qm = q + δq with small positive δq
that can invade; more precisely, for every δq > 0 there exists a q > 0 such that the mutant
(dm, qm) = (d, q + δq) can invade the resident (d, q). Hence the pairwise invasibility plot of q
(with dm = d fixed) has a “+” area above the diagonal qm = q, which comes arbitrarily close to
the diagonal near q = 0 (Figure S3a).
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Figure S3: (a) Pairwise invasibility plot (PIP) for q when the boundary q = 0 is attracting. “+”
areas: F > 1, the mutant can invade; “-” area: F < 1, the mutant dies out. (b) The leading
eigenvalue of the mutant projection matrix as a function of qm for q = 0 (black), q = 0.01 (grey)
and q = 0.05 (dashed). Negative values of qm are included for clarity. Parameters as in Figure
2b of the main text (p = 0.4, γ = 0.3, s = 0.6, b = 0.9) and dm = d = 0.4.

Mutants with dm = d, qm < q can always invade when the resident has a small positive q.
To see this, first recall that since we have p < 1− γ, (A.10) shows that gq is negative for small
q; i.e., immediately below the diagonal there is a “+” area in the pairwise invasibility plot (see
Figure S3a). On the other hand, the limit

lim
qm→0

F (d, qm, d, q) = 1 +
q2d2s2γ(1− γ)

(1− d+ ds(b+ qγ))(1− d+ ds(1− q + qγ))
> 1

shows that there is a “+” area also near the horizontal axis of the pairwise invasibility plot.
Therefore to have a “-” area below the diagonal, F − 1, as a function of qm, should have two
zeros below q. However, it is readily shown that the roots of F − 1 are the roots of a cubic
polynomial. Since qm = q is one root and the boundary of the “+” area above the diagonal is
a second root, there cannot be two more roots below the diagonal. It follows that the config-
uration of the pairwise invasibility plot near its origin is always as shown in Figure S3a. Two
strategies (d, q) and (d, qm) with d, q, qm > 0 and (q, qm) in the “+” area above the diagonal
can coexist (Geritz et al. 1998), and this coexistence set can be reached by a small mutation δq
when the resident q is near zero. By continuity, coexistence is also possible if the two strategies
have somewhat different d, i.e., there is an open set of mutants that can form a dimorphism
with the former resident. Once the population is in the neighbourhood of the boundary q = 0,
it will stay there as long as it is monomorphic, and it will almost surely become dimorphic.

Consider now a dimorphic population where both strategies still have small q. As long as the
two strategies are similar to each other, the invasion fitness proxy, as a function of the mutant
strategy, is qualitatively similar to what it was in a monomorphic population. It follows from
the configuration of the pairwise invasibility plot (Figure S3a) near q = 0 that F (d, qm, d, q), as
a function of qm, has a minimum; with increasing qm, it is first greater than 1 (“+” area below
the diagonal), then less than 1 (“-” area), then greater than 1 again (“+” area above the diag-
onal). Numerical examples are shown in Figure S3b. A minimum of the invasion fitness proxy
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implies that there is disruptive selection on q; the two resident strategies will evolve increasingly
different values of q as long as d is fixed, i.e., q will undergo evolutionary branching (Geritz
et al. 1998). Since there are no mutants with nonpositive q, the branch with the lower value
of q remains near q = 0, but the other branch quickly evolves higher values of q, resulting in
asymmetric divergence (see Figure 4b in the main text). Note that the model of Kisdi (2016) is a
special case of our model with only q evolving, d = 1 fixed, and s = 1, b = 1. Accordingly, Kisdi
(2016) found the same nondifferentiability and asymmetric branching at q = 0, but without the
confounding effect of evolving d.

Concomitantly with evolutionary branching in q, d is under directional selection unless
branching happens near (dHM (s), 0). Directional selection on d would prevent branching if
the selection gradient on q were vanishing (cf. evolutionary branching generically happens at
a singularity, not at any point of an isocline). At q = 0, however, the invasion fitness λ is
nondifferentiable, so that there is a very sharp turn at its minimum also for small positive q
(Figure S3b). This results in strong selection on q (comparable to that on d) already at a small
separation between the branches, which makes branching possible also away from (dHM (s), 0)
(Figure 4b of the main text).

With multiple traits evolving jointly, there is no guarantee that the two branches will remain
in the coexistence set even for the initial stage of branching (Geritz et al. 2016; although for
2-dimensional trait spaces coexistence during initial separation is ensured at regular branching
points such as the interior branching points of our model, this does not apply to branching near
q = 0). Indeed, our numerical experiments showed examples where, after initial separation in q,
one branch lagged behind with evolving its dispersal propensity d and went extinct (one such
example, with initial values d1 = d2 = 0.38, q1 = 0.001 and q2 = 0.005 and with parameters
p = 0.4, γ = 0.3, s = 0.6, b = 0.9 and C the identity matrix, is included in the Mathemat-
ica notebook of the canonical equation available at https://doi.org/10.5061/dryad.9ghx3ffd0).
Should one of the branches go extinct, the remaining monomorphic population would evolve
back to the boundary q = 0, and would attempt branching again; the population thus may
alternate between monomorphic and dimorphic states. If d evolves to dHM (s) in the meanwhile,
then directional selection on d vanishes and branching in the q-direction succeeds.

It is however difficult to ascertain that repeated bouts of failed evolutionary branching would
bring the population closer to (dHM (s), 0), for two reasons. First, if d and q are correlated, then
the branch that evolves higher q during asymmetric branching may also evolve d away from
dHM (s) as a correlated response (with a positive correlation between d and q, this happens if
the population reaches near q = 0 with d > dHM (s)). If subsequently the other branch goes
extinct, the remaining monomorphic population has d further away from dHM (s) than it was
before branching; but it reverts towards dHM (s) as the monomorphic population evolves back
to the vicinity of q = 0.

Second, during the time the population is dimorphic, the selection gradients on d are com-
plicated by spatial sorting of the two residents between the solitary and clustered sites. Below
we argue that, by continuity, the selection gradient on d in dimorphic populations is similar to
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that of in monomorphic populations and therefore points towards dHM (s), as long as both q1
and q2 are near zero and d1 and d2 are close to each other but not yet close to dHM (s). (Note
that two strategies with significantly different d cannot coexist unless they are separated also in
q, i.e., unless evolutionary branching has succeeded; this follows from the fact that there is no
coexistence in the Hamilton-May model, see Appendix E of Kisdi 2016.)

Suppose qm, q1 and q2 are of order ε� 1. The mutant projection matrix is then of the form

Am =

[
1 +O(ε) O(ε)
O(ε) φ(dm, d1, d2) +O(ε)

]
with

φ(dm, d1, d2) =
1− dm

1− dm + IL
+ dmsPC , IL = s

2∑
i=1

n2i
1− p

di, PC =
2∑
i=1

n2i
1− p

· 1

1− di + IL

(cf. equations (A.1)-(A.3)). With ε = 0, the leading eigenvalue of Am is max(1, φ(dm, d1, d2)),
and the two eigenvalues coincide when φ = 1. With ε > 0, Am is primitive and therefore, by
the Perron-Frobenius theorem, its eigenvalues never coincide; further, the leading eigenvalue
depends smoothly on dm. The leading eigenvalue is therefore φ(dm, d1, d2) + O(ε). If d1 and
d2 are close to each other such that both can be written as d + O(ε), then IL = sd + O(ε) and
PC = 1

1−d+sd +O(ε), so that for the leading eigenvalue

1− dm
1− dm + sd

+
dms

1− d+ sd
+O(ε)

we recover the invasion fitness of the Hamilton-May (1977) model when ε → 0. It follows that
mutants with dispersal propensity closer to dHM (s) are at an advantage.

4.4 Direction of evolutionary branching

The direction of strongest disruptive selection at interior branching points is given by the eigen-
vector of the Hessian matrix Γ00 that belongs to the greatest positive eigenvalue. Note that Γ00

is the Hessian of the invasion fitness proxy F , not directly of the invasion fitness given by the
leading eigenvalue λ of the mutant projection matrix. A straightforward derivation analogous to
the one in section 1, presented in a generalized form by Metz and Leimar (2011), shows that the
two Hessians differ in only the positive factor 1/(2− tr∗), where tr∗ is the trace of the projection
matrix Am evaluated at dm = d = d∗, qm = q = q∗ and it is always less than 2 as mentioned in
section 1. Hence the eigenvectors of the two Hessians coincide, and we can use the Hessian of
the invasion fitness proxy F .

To sample the parameter space, we varied p, γ, s and b between 0.05 and 0.95 with incre-
ments of 0.05, and took all combinations of these values where p and γ obey (A.14) (otherwise
no interior branching point exists). These combinations of parameter values yield 4852 inte-
rior evolutionary branching points, each with one positive and one negative eigenvalue of the
Hessian. Figure S4 shows that the eigenvectors corresponding to the positive eigenvalues are
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typically just a few degrees from the q-direction (i.e., vertical in Figure S1 and Figures 2 and 4
of the main text). Hence disruptive selection acts predominantly on q, the trait which quantifies
the pattern of connectivity in our model.

Figure S4: The distribution of the angle between the q-direction (vertical) and the direction of
the leading eigenvector of the Hessian matrix Γ00 over a systematic sample of 4852 evolutionary
branching points.

When evolutionary branching occurs near the boundary q = 0, then generically the two
branches evolve d in the same direction while they separate in the q-direction (Figure 4b in
the main text). Thus branching does not happen along a straight line in trait space, i.e., it
does not have a “direction”. Divergence is however exclusively due to disruptive selection in the
q-direction.

The direction where the nascent branches diverge from each other depends also on the co-
variation between the evolving traits d and q (cf. (A.13)). Although disruptive selection acts
nearly or entirely in the q-direction, evolutionary branching can happen much closer to a 45◦

line in the trait space when the two traits have strong positive correlation (grey trajectory in
Figure 4a of the main text).

5 Dimorphic singularities

In order to investigate possible final outcomes of evolution once the population has become
dimorphic, we first search for dimorphic singularities of the form ((d∗1, 0), (d∗2, 1)), i.e., boundary
singularities such that one resident strategy never disperses globally (q1 = 0) whereas the other
disperses only globally (q2 = 1). Note that in dimorphic populations, tr(1) < 2 even if q1 = 0,
and therefore the invasion fitness proxy can be used. Let F (dm, qm; d1, q1, d2, q2) denote the
fitness proxy of a mutant (dm, qm) in the dimorphic resident population of (d1, q2) and (d2, q2),

and let g
(i)
d and g

(i)
q be respectively the selection gradients on d and on q of the ith resident as

given in (A.4). For a given set of parameters (p, γ, s, b), we determine the singular trait values
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by numerically solving the equations

F (d∗2, 1, d
∗
1, 0, d

∗
2, 1) = 1, g

(1)
d = 0, g

(2)
d = 0

for the unknowns n21, d
∗
1 and d∗2. The first of these equations is the condition for population

dynamical equilibrium. Even though suppressed in the notation, the mutant projection matrix
and therefore F depend on the equilibrium densities n11 and n21 (see equations (A.1)-(A.3);
in monomorphic populations the equilibrium densities are trivial, a fraction p of the resident
occupies solitary sites and the remainder is in the clustered sites). With q1 = 0, the first resident
is fully outcompeted from the solitary sites and thus n11 = 0; recall also that n12 = p− n11 and
n22 = 1 − p − n21, which leaves only n21 as unknown. The second and third equations are the

conditions for a singular dimorphism, where the selection gradients g
(i)
d depend on the resident

trait values as well as on the equilibrium densities.

Once we have located a boundary singularity ((d∗1, 0), (d∗2, 1)), we verify that the boundaries

are attracting, i.e., check whether g
(1)
q < 0 and g

(2)
q > 0 hold at the singularity (recall that at a

boundary singularity, the selection gradients perpendicular to the boundaries are nonvanishing).
If this is so, then the singularity is evolutionarily stable if [∂2F/∂d2m] is negative at both residents,
dm = d∗1, qm = 0 and dm = d∗2, qm = 1. Since the nonvanishing selection gradients push the
dynamics onto the boundary q1 = 0, q2 = 1, convergence stability can be evaluated from the
two-dimensional dynamics

d

dt
d1 = κ1σ

2
d g

(1)
d

d

dt
d2 = κ2σ

2
d g

(2)
d

(cf. (A.13)). The fixed point ((d∗1, 0), (d∗2, 1)) of this system is asymptotically stable for any pos-

itive speed factors κ1, κ2 and positive variance σ2d if and only if [∂g
(i)
d /∂di] < 0 for i = 1, 2 and

[∂g
(1)
d /∂d1][∂g

(2)
d /∂d2] > [∂g

(1)
d /∂d2][∂g

(2)
d /∂d1] at the singularity (note that the partial deriva-

tive is taken such that the equilibrium density is substituted into the selection gradients as a
function of resident trait values before differentiation).

We found that a boundary dimorphic singularity ((d∗1, 0), (d∗2, 1)) exists for most parameter
combinations (white areas in Figure S5). All singularities of this form that we have located were
both strongly convergence stable and evolutionarily stable. For high s, b, γ and low p, how-

ever, the selection gradient g
(2)
q switches to be negative, whereby a singularity ((d∗1, 0), (d∗2, q

∗
2))

(with q∗2 < 1) appears through a transcritical bifurcation. To check the evolutionary stability
of this singularity, we need to replace the condition [∂2F/∂d2m < 0] with the 2× 2 Hessian ma-
trix of the second resident being negative definite. For strong convergence stability, we verified

that the symmetric part of the Jacobian of the three-dimensional vector field g
(1)
d (d1, d2, q2),

g
(2)
d (d1, d2, q2), g

(2)
q (d1, d2, q2) is negative definite (see section 4). This condition is sufficient

though not necessary, because it allows for arbitrary correlations between mutational changes in
the trait values, but mutations affecting d1 are in fact independent from those affecting (d2, q2).
All singularities we found of the form ((d∗1, 0), (d∗2, q

∗
2)) were evolutionarily stable and satisfied

the sufficient condition for strong convergence stability (black areas in Figure S5).
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Figure S5: Dimorphic evolutionary singularities. There is a strongly convergence stable as well
as evolutionarily stable dimorphic singularity of the type ((d∗1, 0), (d∗2, 1)) in the white areas and
of the type ((d∗1, 0), (d∗2, q

∗
2)) with q∗2 < 1 in the black areas. The results are based on evaluating

the singularities on a grid of s and b varying between 0.04 and 0.99 by steps of 0.05, and

drawing the boundary between the white and black areas as the zero contour line of g
(2)
q using

the ListContourPlot procedure of Mathematica.

The value of parameter b, which determines the probability of returning to the natal site for
a disperser from a solitary site who fails to engage in global dispersal, is irrelevant for strategies
with q = 0 (because they are never present in a solitary site at equilibrium) and also for strate-
gies with q = 1 (because they never fail to disperse globally). Accordingly, for the boundary
singularities ((d∗1, 0), (d∗2, 1)), the ESS dispersal propensities d∗1 and d∗2 are independent of b. For
the singularities ((d∗1, 0), (d∗2, 1)), also p has very little effect on d∗1 and d∗2, so that the dispersal
propensities of these boundary ESSs are mostly determined by s and γ. Figure S6 shows the
effect of the latter two parameters for p = 0.5, the results are similar for other values of p as well.
As expected, both d∗1 and d∗2 increases with s, and d∗2, the dispersal propensity of the resident
which occupies the solitary sites, also significantly increases with γ. Both d∗1 and d∗2 exceed 0.5
(recall that also in the Hamilton-May model, dispersal always exceeds 0.5), and d∗1 > d∗2, i.e.,
the resident strategy restricted to the clustered sites has a higher probability of dispersal than
the resident with only global dispersal. As seen in Figure S6, the difference between d∗1 and d∗2
is large when there is a large contrast between the costs of local and global dispersal, i.e., when
s is high and γ is low.

At singularities of the type ((d∗1, 0), (d∗2, q
∗
2)), the first resident is still restricted to the

clustered sites (due to q∗1 = 0). According to our numerical results (see the data file at
https://doi.org/10.5061/dryad.9ghx3ffd0), the second resident has a high probability of dispers-
ing globally (q∗2 > 0.5 at every dimorphic singularity we have located). Hence the two residents
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Figure S6: Dispersal propensities in evolutionarily stable dimorphisms ((d∗1, 0), (d∗2, 1)). Black
lines: d∗1, dashed lines: d∗2. p = 0.5. The value of b is irrelevant (see text), but the results are
valid only for evolutionarily stable dimorphisms of the form ((d∗1, 0), (d∗2, 1)), i.e., in the white
areas of Figure S5.

are always strongly differentiated in their pattern of connectivity, measured by q. q∗2 is the low-
est (i.e., closest to 0.5) when b and s are high (this is consistent with the fact that a dimorphic
singularity with q∗2 < 1 appears via a transcritical bifurcation through q∗2 = 1 as b or s increases,
cf. Figure S5) and when p is low. d∗1 > d∗2 > 0.5 holds also for these singularities. d∗1 and d∗2
increase with b (the possibility of returning to a solitary site after failing to disperse globally
affects the second resident directly, but also the first resident responds to changing b because it
coevolves with the second). d∗1 and d∗2 also increase with s, but decrease with p. Unexpectedly,
changing γ may have a non-monotonic effect on a singularity of the type ((d∗1, 0), (d∗2, q

∗
2)).
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