
GPU-accelerated k-mer counting

Pekka Jylhä-Ollila

Helsinki October 8, 2020

UNIVERSITY OF HELSINKI

Master's Programme in Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/335970026?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Study Programme in Computer Science

Pekka Jylhä-Ollila

GPU-accelerated k-mer counting

Simon Puglisi

Master's thesis October 8, 2020 17 pages + 1 appendices

GPU, k-mer counting, compression

Thesis for the Algorithms study track

K-mer counting is the process of building a histogram of all substrings of length k for an input

string S. The problem itself is quite simple, but counting k-mers e�ciently for a very large input

string is a di�cult task that has been researched extensively. In recent years the performance of

k-mer counting algorithms have improved signi�cantly, and there have been e�orts to use graphics

processing units (GPUs) in k-mer counting. The goal for this thesis was to design, implement

and benchmark a GPU accelerated k-mer counting algorithm SNCGPU. The results showed that

SNCGPU compares reasonably well to the Gerbil k-mer counting algorithm on a mid-range desktop

computer, but does not utilize the resources of a high-end computing platform as e�ciently. The

implementation of SNCGPU is available as open-source software.

ACM Computing Classi�cation System (CCS):

Theory of computation → Design and analysis of algorithms → Parallel algorithms

Tiedekunta � Fakultet � Faculty Koulutusohjelma � Studieprogram � Study Programme

Tekijä � Författare � Author

Työn nimi � Arbetets titel � Title

Ohjaajat � Handledare � Supervisors

Työn laji � Arbetets art � Level Aika � Datum � Month and year Sivumäärä � Sidoantal � Number of pages

Tiivistelmä � Referat � Abstract

Avainsanat � Nyckelord � Keywords

Säilytyspaikka � Förvaringsställe � Where deposited

Muita tietoja � övriga uppgifter � Additional information

HELSINGIN YLIOPISTO � HELSINGFORS UNIVERSITET � UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

1.1 Prior work on k-mer counting . 1

2 GPU overview 2

2.1 CUDA . 2

2.2 libthrust . 4

3 Algorithm 5

3.1 Overview . 5

3.2 Input processing . 6

3.3 Sort and compress . 8

3.4 Output encoding . 11

3.5 Multiway merge . 12

4 Results 12

5 Conclusions 15

6 Acknowledgements 15

References 16

Appendices

1 Data sets

1

1 Introduction

A common task in bioinformatics algorithms is k-mer counting [MK11, KDD17].

Given a string S, the problem is to count the frequency of each unique substring

of length k in S. K-mer counting has several applications in bioinformatics, such

as de novo assembly of genome sequences [BJS+02], estimating genome size and

read error correction [KSS10]. Outside of bioinformatics, k-mer counting has been

used to approximate string compressibility [RRRS13]. In computational linguistics,

k-mers (called N -grams in that �eld) are also used for language models [SPHC16].

In the case of DNA sequences, the string S represents a DNA sequence, and the

string alphabet is Σ = {A,C,G, T}. The size of the alphabet is σ = |Σ| = 4.

Examples of 4-mers and 7-mers of the string "AGACGCTACGT" are shown in

Figure 1 and Figure 2.

This thesis describes SNCGPU, a sorting-based algorithm for k-mer counting, that

is designed to run on a graphics processing unit (GPU). The algorithm supports

any size of k and utilizes available CPU cores. The implementation is available as

open-source software at https://gitlab.com/jype/sncgpu.

1.1 Prior work on k-mer counting

The �rst algorithm that signi�cantly improved on the k-mer counting performance

of sequential algorithms was Jelly�sh [MK11]. Jelly�sh uses a lock-free hash ta-

ble for parallel insertion and updates on a multi-core CPU. Later, algorithms like

DSK [?] and KMC2 [DKGDG15] used a two-disk approach to reduce the e�ect of

AGACGCTACGT

AGAC

GACG

ACGC

CGCT

GCTA

CTAC

TACG

ACGT

Figure 1: Example of string 4-mers.

AGACGCTACGT

AGACGCT

GACGCTA

ACGCTAC

CGCTACG

GCTACGT

Figure 2: Example of string 7-mers.

2

expensive I/O operations, and further improved the execution time. Currently the

most e�cient k-mer counter is KMC3 [KDD17], which is CPU-based. The only two

existing algorithms we are aware of that use GPUs for k-mer counting are Gerbil

[ERMH17] and the work by Suzuki et. al [SKIA14], with only Gerbil having a public

implementation available.

2 GPU overview

Graphics processing units (GPUs) are specialized devices designed for highly par-

allel computing. Originally GPUs were intended only for computer graphics, but

have since found use in parallel computation and machine learning. They have

gained popularity in the scienti�c community due to their general-purpose parallel

computation capabilities [OHL+08]. GPUs are typically more e�cient than central

processing units (CPUs) for computational tasks that process large blocks of data

in parallel. Algorithms that process large amounts of data can often be adapted for

GPU acceleration, although to date there has been relatively little work and basic

algorithmic and data structural tools for GPUs are still missing. Recently there

has been work on for example B-Tree [AAJ+19], and dynamic hash table [AFCO18]

GPU data structures.

2.1 CUDA

CUDA is a high-level extension of C/C++ for general purpose computation on

NVIDIA GPUs. GPUs use hundreds of parallel processor cores for executing CUDA

kernels in parallel. The CUDA kernels are executed in threads, which each have their

own private local memory [ND10].

Threads are organized into a grid of thread blocks, where threads can use fast

shared per-block memory. Threads from di�erent blocks in the same grid can access

global GPU memory via atomic operations. The CUDA architecture is illustrated

in Figure 3.

CUDA kernels are implemented in standard C language with some CUDA speci�c

additions, such as the __global__ modi�er and built-in thread index variables. The

__global__ modi�er is used to de�ne a function that is called from the host, and ex-

ecuted on the GPU. Another important CUDA intrinsic function is __syncthreads,

which speci�es a synchronization point for all threads in a block. The function is

3

Figure 3: CUDA architecture

4

useful when an algorithm takes advantage of per-block shared memory, for example

calculating sub-matrices for e�cient matrix multiplication.

A simple SAXPY (single-precision A times X plus Y) kernel is shown in Algorithm 1.

The __global__ modi�er indicates that saxpy_kernel is a kernel entry-point, and

the function call saxpy_kernel�<B, T�> launches the kernel in parallel with B

blocks running T threads.

Algorithm 1 CUDA SAXPY kernel

__global__
void saxpy_kernel(int n, float a, float* x, float* y)
{

const int i = blockDim.x * blockIdx.x + threadIdx.x;

if (i < n)
y[i] = a * x[i] + y[i];

}

void saxpy(int n, float a, float* x, float* y)
{

// set launch configuration parameters
int block_size = 256;
int grid_size = (n + block_size - 1) / block_size;

// launch saxpy kernel
saxpy_kernel <<<grid_size , block_size >>>(n, a, x, y);

}

2.2 libthrust

libthrust is a parallel C++ template library for CUDA that provides an abstract

interface to fundamental parallel algorithms [BH12]. The library speeds up the pro-

totyping and development of parallel applications, while still making it possible to

write specialized parts of the application with CUDA. libthrust automatically han-

dles limits imposed by CUDA, and automates the launch con�guration for maximal

GPU occupancy during run-time.

User-de�ned operations in libthrust are written as C++ function objects. The

function objects can be used to adapt generic algorithms provided by libthrust to

implement user-de�ned operations. The example Algorithm 2 shows a SAXPY

implementation using libthrust.

The libthrust vector generic container has an interface similar to that of the C++

Standard Template Library (STL). An STL vector can be uploaded to GPU memory

by passing it to the libthrust vector constructor, or by copying its contents to GPU

5

memory using the thrust::copy function. The same can be done vice-versa to retrieve

results from GPU memory.

Algorithm 2 libthrust SAXPY example

struct saxpy_functor
{

const float a;

saxpy_functor(float a) : a(a) {}

__host__ __device__
float operator ()(float x, float y)
{

return a * x + y;
}

};

void saxpy(float a,
__device__ vector <float >& x,
__device__ vector <float >& y)

{
// setup functor
saxpy_functor func(a);

// call transform
transform(x.begin(), x.end(),

y.begin(), y.begin(),
func);

}

3 Algorithm

In this section we describe the sort-and-compress GPU algorithm (SNCGPU). The

sort-and-compress part is written using libthrust and can be executed on both the

CPU and GPU. The algorithm uses a similar two-disk approach as some other k-mer

counting algorithms. The �rst disk is called the working disk, and is used for storing

temporary �les. The second disk is the input/output-disk. It contains input data

and is used to store the �nal output data.

3.1 Overview

The algorithm is executed in two phases. In the �rst phase, k-mers are parsed

from the input data into bins. The size of a bin is speci�ed by a GPU work size

parameter, that should be smaller than half of the available GPU memory. The

k-mers are assigned to bins by their most signi�cant bits, so that the same k-mers

6

>SRR2003395 .13958 HWI -ST365 :221: C0AMHACXX :8:1101:13349:3773 length =50
AATAAACCATCTATTCAAGCTAGATCGGAAGAGCACACGTCTGAACTCCA
>SRR2003395 .13959 HWI -ST365 :221: C0AMHACXX :8:1101:13317:3774 length =50
TTCCTTACCTACTCTACTACAGATCGGAAGAGCACACGTCTGAACTCCAG
>SRR2003395 .13960 HWI -ST365 :221: C0AMHACXX :8:1101:13416:3780 length =50
CTCACTGAAGCTGGAGCTGTAGATCGGAAGAGCACACGTCTGAACTCCAG
>SRR2003395 .13961 HWI -ST365 :221: C0AMHACXX :8:1101:13426:3794 length =50
GGTAGACCATTAACACGTAAAAGATCGGAAGAGCACACGTCTGAACTCCA

Figure 4: Genome read data in FASTA format

are placed into the same bin. Since the k-mers in each bin are independent, the bins

can be processed in parallel. When a bin has become full, the k-mers in the bin

are sorted and run-length encoded (RLE), so that each k-mer appears only once,

followed by the number of times it occured in the bin. The sorted RLE k-mers are

then written to a temporary �le. A single bin may produce multiple temporary �les.

In the second phase, the k-mers for each bin are read from temporary �les. The

sequences in each bin are merged using a multiway merging algorithm, and again

sorted and run-length encoded. The resulting sequence is written to a �nal output

�le. At the end of the second phase, the output for each bin contains the sorted

k-mers and their corresponding frequencies.

3.2 Input processing

The pipeline starts with parsing FASTA format input into k-mers. An example of

FASTA format data is shown in Figure 4. K-mers are encoded as one or more 64-bit

integers by the input parser. The number of integers required to encode a k-mer is

dkdlog2 σe/64e. The remaining unused bits are set to 0 to maintain sorting order.

For DNA sequences, the parser encodes the alphabet Σ = {A,C,G, T} as binary
00, 01, 10 and 11 respectively.

For a single k-mer, the integers that are used to represent the k-mer are stored in

arrays called channels. The least signi�cant integer is stored in the �rst channel, and

the most signi�cant integer in the last channel. This improves sorting performance

with large amounts of k-mers by representing them as a Structure of Arrays [BH12].

The channels form a sequence of k-mers, which is stored in a bin. A bin is a sequence

where all k-mers have the same most signi�cant bits; this improves the compression

ratio when similar k-mers are placed in the same bin. The data structures are

illustrated in Figure 5. The example shows four bins, but the number of bins can

be adjusted to be any power of two.

7

Figure 5: Bins, sequences, channels and k-mers.

8

Input processing is done in a single thread that parses k-mers into bins from the

FASTA input data. The bin is full when its size reaches the speci�ed GPU work

size. Once a bin is full or the input has been consumed, the bin is placed into the

sort and compress queue for further processing.

3.3 Sort and compress

The sort and compress step sorts a sequence of k-mers and applies run-length en-

coding. Using libthrust, the sorting and compression can be carried out using both

the CPU and GPU.

The sequence is then sorted using a lexicographical sorting algorithm described

below. The algorithm creates a permutation vector, which will contain the indices

of each k-mer in the sorted sequence. The permutation vector is �rst initialized to

the sequence 0..n. For each channel in the sequence, the vector is updated by doing

a stable sort on the permutation vector, with the channel values as the sort keys.

The �nal permutation vector is applied to each channel to get the sorted sequence.

The lexicographical sorting algorithm is shown in Algorithm 3.

After sorting the k-mer sequences, the sequences are run-length encoded. Run-

length encoding is a data compression algorithm, which stores consecutive repeated

values as a single value along with the number of occurences. The algorithm is

trivial to implement on the CPU, but not as straight-forward on the highly parallel

GPU.

The paper [Bal] describes how run-length encoding can be implemented as a parallel

algorithm. In short, the algorithm takes an integer array in as input and produces

an array flags, where a 1 means the adjacent elements in in were equal and 0 if non-

equal. A pre�x sum is calculated for the flags array to produce rle_indexes, which

contains indexes to in from where elements will be copied. Finally, the run-length

encoded output is produced by doing a scatter operation with in as the input and

rle_indexes as the mapping. In the scatter operation, the run-length for each

symbol can be calculated from rle_indexes by subtracting adjacent elements.

The algorithm shown here is an extended version, as the encoding has to be applied

to multiple channels in the sequence, and their lengths. The run-length encoding

algorithm is shown in Algorithm 4 as pseudocode.

After run-length encoding has been applied to the sorted sequence, the sequence

contains only unique k-mers. The RLE k-mer sequences are copied back to host

9

Algorithm 3 Parallel lexicographical sort

// Based on libthrust example lexicographical_sort.cu
template <typename KeyVector , typename PermutationVector >
void update_permutation(KeyVector& keys , PermutationVector& permutation)
{

// Temporary storage for keys
KeyVector tmp(keys.size ());

// Permute the keys with the current reordering
thrust :: gather(permutation.begin(), permutation.end(),

keys.begin(), tmp.begin ());

// Stable sort the permuted keys and update the permutation
thrust :: stable_sort_by_key(tmp.begin(), tmp.end(),

permutation.begin ());
}

template <typename KeyVector , typename PermutationVector >
void apply_permutation(KeyVector& keys , PermutationVector& permutation)
{

// Copy keys to temporary vector
KeyVector tmp(keys.begin(), keys.end ());

// Permute the keys
thrust :: gather(permutation.begin(), permutation.end(),

tmp.begin(), keys.begin ());
}

template <typename KeyVector , typename ValueVector >
void sort_sequence(std::vector <KeyVector >& seq ,

ValueVector& lengths , uint64_t n)
{

if (seq.size() == 1)
{

// Regular sort_by_key is sufficient
thrust :: sort_by_key(seq [0]. begin(), seq [0]. end(),

lengths.begin ());
return;

}

KeyVector permutation(n);
thrust :: sequence(permutation.begin(), permutation.end ());

// Get permutation vector for sequence
for (uint32_t i = 0; i < seq.size (); ++i)

update_permutation(seq[i], permutation);

// Apply permutation to each channel
for (uint32_t i = 0; i < seq.size (); ++i)

apply_permutation(seq[i], permutation);

// Apply permutation to run lengths
apply_permutation(lengths , permutation);

}

10

Algorithm 4 Parallel run-length encoding

function AdjacentDifference(channel[n])

di� ← vector(n)

di�[0] ← 1

for i ← 1 to n do

di�[i] ← channel[i] 6= channel[i-1]

end for

return di�

end function

function ScanSequence(sequence[m][n])

combined ← AdjacentDifference(sequence[0])

for i ← 1 to m do

di� ← AdjacentDifference(sequence[i])

combined ← combined ∨ di�

end for

return combined

end function

function RunLengthEncode(sequence[m][n],lengths[n])

encoded ← vector(m,n)

encodedLengths ← vector(n)

combined ← ScanSequence(sequence)

indices ← combined · 0..n
remove indices[i] where indices[i] = 0

for i ← 0 to m do

encoded[i] ← gather indices from sequence[i]

end for

combined ← inclusive scan of combined

encodedLengths ← reduce lengths by key combined

return encoded, encodedLengths

end function

11

Table 1: simple-8b selector options.

Selector value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ItemWidth 0 0 1 2 3 4 5 6 7 8 10 12 15 20 30 60

GroupSize 240 120 60 30 20 15 12 10 8 7 6 5 4 3 2 1

Wasted bits 60 60 0 0 0 0 0 0 4 4 0 0 0 0 0 0

memory, and placed into the output queue.

3.4 Output encoding

A common bottleneck in k-mer counting is storage I/O performance. Reading and

writing several gigabytes of data is usually more expensive than the actual counting.

The amount of storage I/O can be reduced by applying an encoding and decoding to

the data that is written to storage. The sort-and-compress GPU algorithm does post-

processing and variable-length encoding on k-mers, and uses Simple-8b encoding for

k-mer frequencies.

As a post-processing step, we take the adjacent di�erence of each k-mer in the

sequence to improve the compression ratio. This is done as an arbitrary precision

integer substraction between each k-mer in the sequence.

The integers that represent each k-mer are encoded with variable length quantity

(VLQ) encoding [SWYZ02]. VLQ encoding uses a variable number of bytes to

represent arbitrarily large unsigned integers. In each byte, 7 bits are used to store

integer data, and the most signi�cant bit marks the continuation of bytes. If the

most signi�cant bit in the current byte is 0, then the byte is the last byte of the

VLQ encoded integer. If the bit is 1, then another byte follows. For example, the

integer 1234 (100 11010010 in binary) would be encoded as 10001001 01010010.

K-mer frequencies are encoded with Simple-8b encoding [AM10]. Simple-8b is a fast

integer encoding for packing variable quantities of integers into 64-bit words. The

encoding uses a 4-bit selector that speci�es the common length of integers in each

64-bit word. The selector options are shown in Table 1. In the �gure, GroupSize

is the number of integers encoded to the 64-bit word. ItemWidth is the number of

bits used per encoded integer. For example, a selector value of 4 would mean that

there are 20 3-bit integers encoded into the 64-bit word.

After encoding k-mers with Simple-8b encoding and frequencies with VLQ encoding,

12

Table 2: Data sets.

Data set No. of bases (G) Size (GB) Avg. read length

M. Balbisiana 56.3 98.6 100.0

H. Sapiens 121.4 166.0 151.0

GRCh38 3.0 3.3 1000.0

Random 10.0 10.2 1000.0

the k-mers and frequencies are written to per-bin temporary �les.

3.5 Multiway merge

At the end of the �rst phase, the sorted k-mers and their corresponding frequencies

have been written to the working disk. The second phase does a multiway merge on

the sequences in each bin, and creates the �nal output to the input/output-disk.

The second phase re-uses the sort and compress algorithm from Section 3.3. The

main di�erence is that input is read from multiple temporary �les, and merged using

a multiway merging algorithm into one sequence per bin. The �nal output is also

one sequence per bin instead of multiple temporary �les.

The multiway merge reads sorted k-mer sequences and frequencies from temporary

�les up to the speci�ed GPU work size. All k-mers less than or equal to the smallest

k-mer in the sequences are inserted into a merged sequence along with their fre-

quencies. The merged sequence is placed into the sort and compress queue. This is

repeated until all input has been processed.

In the second phase, sequences are sorted and compressed as in the �rst phase. The

�nal output is sorted pairs of encoded k-mers and corresponding frequencies per bin.

4 Results

The performance of SNCGPU was compared against Gerbil with data sets shown in

Table 2. The random data set consists of 10GB uniformly random reads of length

1000. The data sets section in the appendix contains links to the other data sets

that were used.

Tests were run on two test systems; system one is a mid-range desktop computer,

13

Table 3: Test systems.

System One System Two

CPU Intel Core-i5 2500K (4 cores) Intel Xeon (32 cores)

RAM 8 GB DDR3 360 GB DDR3

GPU Nvidia GeForce GTX 660 (2 GB) Nvidia Tesla V100 (16 GB)

Working disk 1 TB SATA SSD 1.5 TB NVMe SSD

I/O disk 480 GB SATA SSD 1.5 TB NVMe SSD

and system two is a high-performance computer in the Finnish Grid and Cloud

Infrastructure (persistent identi�er urn:nbn:�:research-infras-2016072533). Table 3

shows details on the test system hardware con�gurations.

Test results are shown in Table 4. The only time SNCGPU was slightly faster was

with k = 28 with the data sets GRCh38 and random data on test system one.

The M. Balbisiana data set has a shorter read length, which means that for large

k the running time decreases as there are less k-mers to process. The running time

increases more for both SNCGPU and Gerbil when k crosses multiples of 32 due to

changes in the internal representation of k-mers.

The test results show that the performance of SNCGPU is comparable to Gerbil on

test system one with small data sets, but on test system two SNCGPU does not

utilize the available resources as e�ciently as Gerbil. This is likely due to the fact

that sorting is a more memory intensive operation than hashing, which Gerbil uses.

System two has much more memory available, but the bandwith and latency are

roughly the same as on system one, which becomes a bottleneck.

Figure 6 shows running times for the M. Balbisiana and H. Sapiens data sets on

both test systems. It can be seen that SNCGPU does not gain much at all from the

available hardware resources on test system two, while Gerbil is on average seven

times faster than it is on test system one.

The optimal number of k-mer counting CPU threads for SNCGPU on both test

systems was determined to be four, where one thread uses the GPU for counting.

Using any more CPU threads decreased the running time. The reason is likely

because of cache trashing caused by the sorting algorithm memory usage patterns.

The hashing algorithm used by Gerbil has much more linear memory usage patterns

which scale better with the greater number of CPU cores.

Storage device read and write speed have a large e�ect on the running time of

14

Table 4: Running times in seconds.

System one System two

Data set k SNCGPU Gerbil SNCGPU Gerbil

M. Balbisiana 28 1392.60 1084.24 1288.97 154.92

40 1880.57 1020.96 1532.73 156.74

53 1578.70 849.66 1401.92 143.84

65 1859.30 808.65 1755.27 147.39

H. Sapiens 28 3909.32 3645.42 3957.48 487.90

40 5670.06 3876.77 5451.88 452.29

53 6060.71 3472.72 5308.86 442.29

65 8048.00 3667.11 5287.78 444.43

GRCh38 28 127.50 146.22 111.35 30.79

40 200.46 162.50 129.69 31.96

53 238.45 186.83 143.58 37.60

65 331.39 231.90 211.13 45.17

Random 28 424.26 594.17 276.08 69.91

40 654.47 631.75 368.56 73.51

53 819.26 672.64 383.73 92.10

65 1081.56 730.90 557.35 107.16

28 40 53 65

20

40

60

k

Time (min) S1, SNCGPU
S1, Gerbil
S2, SNCGPU
S2, Gerbil

(a) Results for M. Balbisiana data set.

28 40 53 65

50

100

150

200

250

k

Time (min) S1, SNCGPU
S1, Gerbil
S2, SNCGPU
S2, Gerbil

(b) Results for H. Sapiens data set.

Figure 6: Running times on test systems one (S1) and two (S2).

15

Gerbil. The encoding used by Gerbil is simple and fast but has a low compression

ratio. Gerbil could bene�t from a better choice of encoding to increase the storage

throughput. SNCGPU reads and writes less data due to its output encoding so its

performance does not depend as much on the storage device speed.

The optimal encoding depends largely on the CPU and storage speed. The VLQ

and Simple-8b encodings were determined to be the best for SNCGPU after testing

on test system one, but di�erent encodings might have worked better on test system

two.

During the �rst phase, SNCGPU spends most of its time waiting for input bins to

�ll up instead of actual counting or writing output. Not much time was spent on

optimizing the input processing code, which could have improved the performance

signi�cantly.

5 Conclusions

The GPU-accelerated SCNGPU k-mer counting algorithm was presented. Testing

on two systems showed that the performance of SNCGPU on a mid-range desk-

top computer is moderate, but it does not perform as well as Gerbil on high-end

computing platforms.

Gerbil could bene�t by utilizing a similar compression scheme as SNCGPU. This

would reduce the e�ect of the storage I/O performance bottleneck that limits the

performance of Gerbil.

As future work, SNCGPU could be improved to utilize multiple GPUs, and a CPU

sorting algorithm that scales better with the number of available CPU cores. Using

a di�erent k-mer counting algorithm on the CPU than GPU could also be a better

solution.

6 Acknowledgements

The test results were produced using computational resources from the Finnish Grid

and Cloud Infrastructure (persistent identi�er urn:nbn:�:research-infras-2016072533).

16

References

AAJ+19 Awad, M. A., Ashkiani, S., Johnson, R., Farach-Colton, M. and Owens,

J. D., Engineering a high-performance gpu b-tree. Proceedings of the 24th Sympo-

sium on Principles and Practice of Parallel Programming, 2019, pages 145�157.

AFCO18 Ashkiani, S., Farach-Colton, M. and Owens, J. D., A dynamic hash ta-

ble for the gpu. 2018 IEEE International Parallel and Distributed Processing

Symposium (IPDPS). IEEE, 2018, pages 419�429.

AM10 Anh, V. N. and Mo�at, A., Index compression using 64-bit words. Software:

Practice and Experience, 40,2(2010), pages 131�147.

Bal Balevic, A., Fine-grain parallelization of entropy coding on

GPGPUs, http://tesla.rcub.bg.ac.rs/~taucet/docs/papers/

HIPEAC-ShortPaper-AnaBalevic.pdf. Retrieved 2020-02-09.

BH12 Bell, N. and Hoberock, J., Thrust: A productivity-oriented library for CUDA.

In GPU computing gems Jade edition, Elsevier, 2012, pages 359�371.

BJS+02 Batzoglou, S., Ja�e, D. B., Stanley, K., Butler, J., Gnerre, S., Mauceli, E.,

Berger, B., Mesirov, J. P. and Lander, E. S., Arachne: a whole-genome shotgun

assembler. Genome research, 12,1(2002), pages 177�189.

DKGDG15 Deorowicz, S., Kokot, M., Grabowski, S. and Debudaj-Grabysz, A.,

KMC 2: fast and resource-frugal k-mer counting. Bioinformatics, 31,10(2015),

pages 1569�1576.

ERMH17 Erbert, M., Rechner, S. and Müller-Hannemann, M., Gerbil: a fast and

memory-e�cient k-mer counter with GPU-support. Algorithms for Molecular

Biology, 12,1(2017), page 9.

KDD17 Kokot, M., Dªugosz, M. and Deorowicz, S., KMC 3: counting and manip-

ulating k-mer statistics. Bioinformatics, 33,17(2017), pages 2759�2761.

KSS10 Kelley, D. R., Schatz, M. C. and Salzberg, S. L., Quake: quality-aware

detection and correction of sequencing errors. Genome biology, 11,11(2010),

page R116.

MK11 Marçais, G. and Kingsford, C., A fast, lock-free approach for e�cient parallel

counting of occurrences of k-mers. Bioinformatics, 27,6(2011), pages 764�770.

17

ND10 Nickolls, J. and Dally, W. J., The GPU computing era. IEEE micro,

30,2(2010), pages 56�69.

OHL+08 Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E. and

Phillips, J. C., GPU computing. Proceedings of the IEEE, volume 96, 2008,

pages 879�899.

RLC13 Rizk, G., Lavenier, D. and Chikhi, R., DSK: k-mer counting with very low

memory usage. Bioinformatics, 29,5(2013), pages 652�653.

RRRS13 Raskhodnikova, S., Ron, D., Rubinfeld, R. and Smith, A., Sublinear algo-

rithms for approximating string compressibility. Algorithmica, 65,3(2013), pages

685�709.

SKIA14 Suzuki, S., Kakuta, M., Ishida, T. and Akiyama, Y., Acceler-

ating identi�cation of frequent k-mers in DNA sequences with GPU,

http://on-demand.gputechconf.com/gtc/2014/poster/pdf/P4190_

bioinformatics_genome_assembly_GPU.pdf, 2014. Retrieved 2020-04-26.

SPHC16 Shareghi, E., Petri, M., Ha�ari, G. and Cohn, T., Fast, small and exact:

In�nite-order language modelling with compressed su�x trees. Transactions of

the Association for Computational Linguistics, 4, pages 477�490.

SWYZ02 Scholer, F., Williams, H. E., Yiannis, J. and Zobel, J., Compression of

inverted indexes for fast query evaluation. Proceedings of the 25th annual inter-

national ACM SIGIR conference on Research and development in information

retrieval, 2002, pages 222�229.

Appendix 1. Data sets

M. balbisiana

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA098/SRA098922/SRX339427/SRR956987.fastq.bz2

ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/SRA098/SRA098922/SRX339427/SRR957627.fastq.bz2

H. Sapiens

https://dnanexus-rnd.s3.amazonaws.com/NA12878-xten/reads/NA12878D_HiSeqX_R1.fastq.gz

https://dnanexus-rnd.s3.amazonaws.com/NA12878-xten/reads/NA12878D_HiSeqX_R2.fastq.gz

GRCh38

https://hgdownload.cse.ucsc.edu/goldenpath/hg38/bigZips/hg38.fa.gz

