Maritime Anomaly Detection using Autoencoders and

OPTICS-OF

Henri Iltanen

Master’s thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, October 8, 2020

Acknowledgements

Writing this thesis has been a learning journey and a huge undertaking. It
has not always been easy to find strength and time after a workday to do the
research, but in the end, it was worth it and I’'m both proud and grateful
having finished it. Here are some of the acknowledgements which I want to
share since, without the help of these people, this thesis would not have been
possible:

I want to thank both of my thesis instructors for guidance and for
sharing their expertise.

I want to thank Awake.AI Oy for providing the data, and a special
thanks to my co-workers at Awake for interesting discussions, helping
with getting the data and for pointing out the opportunity for the thesis.

I want to thank all my classmates and teachers for the past years at the
university and also on their observations about the thesis which led to
new insight.

I want to thank my parents, little sister and friends for their continuous
support throughout the years.

Most of all, I want to thank my amazing and loving wife for her contin-
uous support and encouragement and for putting up with me through
the long evenings of working on this project.

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Faculty of Science Department of Computer Science

Tekija — Forfattare — Author

Henri Iltanen

Ty6n nimi — Arbetets titel — Title

Maritime Anomaly Detection using Autoencoders and OPTICS-OF

Oppiaine — Larodmne — Subject

Computer Science

Tyo6n laji — Arbetets art — Level Aika — Datum — Month and year Sivuméiidra — Sidoantal — Number of pages

Master’s thesis October 8, 2020 88

Tiivistelmd — Referat — Abstract

Anomaly detection is an important task in many domains such as maritime where it is used
to detect, for example, unsafe, unexpected or criminal behaviour. This thesis studies the use
of deep autoencoders for anomaly detection on high dimensional data in an unsupervised
manner. The study is performed on a benchmark data set and a real-life AIS (Automatic
Tracking System) data set containing actual ship trajectories. The ships’ trajectories in the
AIS data set are a form of time-series data, and therefore recurrent layers are used in an
autoencoder to allow the model to capture temporal dependencies in the data.

An autoencoder is a neural network architecture where an encoder network produces an
encoding and decoder network takes the encoding intending to produce the original input.
An encoding is a compressed fixed-sized vector presentation of the original input. Since the
encoding is used by the decoder to construct the original input, the model learns during the
training process to store essential information of the input sequence to the encoding.

Autoencoders can be used to detect anomalies using reconstruction error by assuming
that a trained autoencoder is able to reconstruct non-anomalius data points more accurately
than anomalous data points, and therefore data points with high reconstruction error can
be considered anomalies. In addition to reconstruction error, the autoencoders produce
encodings. The research of this thesis studies the possibility of calculating an outlier score for
the encodings and combining the score with resconstruction error to form a combined outlier
score. OPTICS-OF (Ordering Points to Identify the ClusteringStructure with Outlier Factors)
is a density based anomaly detection technique which can be used to calculate outlier scores
for the encodings. The outlier score of OPTICS-OF for a data point is based on how isolated
it is within its neighbourhood.

The proposed method is evaluated on a benchmark Musk data set for which anomalies are
known. A data set with labelled anomalies provides a setting for analyzing the performance
of the method and its properties. The method is then put to the test on the AIS data set
where it is used to find new anomalies in the data set from two derived distinct feature sets.
The AIS data set contains one known anomaly which is presented both as an example of a
maritime anomaly and for which more detailed analysis of the produced outlier scores are
presented.

The results of the study show potential for the proposed combined score method, and
the analysis identifies multiple areas for further research. Deep autoencoders are successfully
used to find new anomalies from the AIS data set which show actual behaviour deviating
from normal ship movement.

ACM Computing Classification System (CCS):
Machine learning

Avainsanat — Nyckelord — Keywords

Anomaly Detection, Deep Learning, Autoencoder, OPTICS-OF, Reconstruction Error, Maritime, AIS

Sailytyspaikka — Forvaringsstéalle — Where deposited

Muita tietoja — Ovriga uppgifter — Additional information

Contents

1

Introduction 1
1.1 Anomaly Detection and Maritime Traffic 1
1.2 Goals of the Research 2
1.3 Structure of the Thesis 3
Machine Learning 4

2.1 Types of Learning and Problems. 4
2.2 Machine Learning Model 5
2.3 Loss Function 7
2.4 Training Loop 8
2.5 Performance evaluation 9

1

2.6 Sequence Prediction Problems 1
Neural Networks 13
3.1 Artificial neuron 13
3.2 Activation functions 15
3.3 Perceptron network L. 17
3.4 Feed-Forward Neural Network 19
3.5 Recurrent neural network 22
3.6 Long Short Term Memory Networks 24
Autoencoder Architecture 27
4.1 Encoder - Decoder Structure and an Autoencoder . . . 27
4.2 Sparse Autoencoder 28
Anomaly Detection using an Autoencoder and Density
Based Outlier Scores 30
5.1 Anomaly Detection 30
5.2 Autoencoding as a Model-Based Technique 31
5.3 Density Based Technique for Analysing of Encodings . . 31
5.4 OPTICS-OF Density Based Technique 32
5.5 Combining Outlier Scores 36
Overview of Data and Feature Selection 39
6.1 Musk Anomaly Detection Benchmark Data Set 39
6.2 Maritime Anomaly Detection using AIS Data 40
6.3 Cargo Ship Engine Failure as Known Anomaly 44
Methodology 46
7.1 Research design 46

7.2 Normalization, Train - Test Data Split, Loss Function
and Hyperparameters 47

iii

Q W B ©

7.3 Autoencoder with a Deep Encoder and a Shallow Decoder 49

7.4 Machine Learning Model Implementations 50
Results and Discussion 53
81 Musk Data Set 53
82 AISDataSet 59
Conclusions 67
Musk Data Numeric Results 69

AIS Data Location Wise Features Numeric Results 76

AIS Data Location Agnostic Features Numeric Results 80

iv

1 Introduction

In this thesis, a novel anomaly detection method based on deep learning
for high dimensional data is introduced. This introduction provides a
high-level survey of anomaly detection and its use in maritime traffic.
Then the goals of the research are described, and finally, the structure

of the thesis is presented.

1.1 Anomaly Detection and Maritime Traffic

Anomaly detection is a problem which belongs under a Data Mining
umbrella. Data mining is a process of discovering interesting and useful
information from the data. The amount of data available for analysis
has been growing rapidly[Panl4]. In many cases, the data points which
deviate from the majority of the data points are the most interesting
[BKNS99]. These data points can stem from abnormal behaviour; for
example, in the financial domain, abnormal data points could indicate
a fraud and in computer systems anomalous behaviour can indicate an
intrusion to the system [Panl4]. The process of identifying abnormal
data points, also called outliers or anomalies in a data set is called
anomaly detection.

In maritime domain anomaly detection is referred to as Mar-
itime Anomaly Detection [Bom06]. Detecting unsafe and suspicious
activity such as drug smuggling, people trafficking, drunk sailing or
piracy are examples of tasks of Maritime Anomaly Detection [Kow12].
As such, it has been identified as a critical part of increasing situational
awareness in maritime traffic [Bom06]. AIS (Automatic Identification
System) data is the primary method used by various maritime tracking
services [PVDT17]. All passenger ships and ships with gross tonnage
300 or more are required to have AIS transmitter on a ship. The AIS
transmitter sends data of the ships location and additional metadata.
The AIS data has been used to detect anomalies in ship traffic for
example in [PVD*17].

1.2 Goals of the Research

In this thesis, a data mining method taking advantage of deep learning
and neural networks for detecting anomalies [Aggl7] in an unlabeled
data set is evaluated on two data sets. The proposed method is a
combination and an extension of the methods presented in [PVDT17]
and [YZZ718]. To the best of of my knowledge the proposed method is
new and has not been tried before. The goal of the research is to evaluate
the performance of the proposed method and its components. In the
proposed method, an autoencoder neural network is used to reduce the
dimensionality of data and form compressed fixed size presentations
of data points called encodings. An outlier score is calculated for the
encodings using an OPTICS-OF algorithm [BKNS99]. The quality of
the encodings is tied to reconstruction error. The goal is to evaluate the
possibility of combining reconstruction error and OPTICS-OF analysis
of encodings to form a combined outlier score. The robustness of the
method is evaluated on a benchmark Musk data set and finally is used
in practice to detect anomalies in a maritime domain on an AIS data
set.

The AIS data set contains ship trajectories collected between
30.10.2019 and 14.01.2020 at the Gulf of Bothnia. The focus of the
research is to find anomalies in commercial ship traffic and therefore
the research limits itself to cargo and tanker ships which should follow
shipping routes. A heat map of the AIS data set is presented in Figure
1 (left). The AIS data contains one known anomaly presented in Figure
1 (right), which is used for detailed analysis and as an example of an
abnormal ship behaviour. The goal is to see which kind anomalies deep
autoencoder can identify from the AIS data set using the proposed
method.

The results of the research indicate potential for the proposed
method and show that it can be successfully used to identify anomalies
in the AIS data set. The results on the benchmark data set highlight
behaviour of both OPTICS-OF and reconstruction error, and similar
behaviour is also visible on the AIS data set. The correlations between

anomaly detection efficiency, model complexity and training data quality

are presented. The shortcomings of the proposed method are identified
and potential solutions outlined for further research.

Figure 1: A heat map of the AIS data used in the research is presented at
the left of the image. On the right, an example anomalous trajectory is

displayed.

1.3 Structure of the Thesis

This thesis starts with an overview of machine learning and sequence
prediction problems. It then continues to introduce neural networks
and focuses on recurrent neural networks and their variant LSTM
(Long Short Term Memory) networks [GBC16], which are suitable for
time series analysis and sequence prediction. Thus LSTM'’s possess
abilities which are required in the analysis of the AIS data. Chapter 4
presents autoencoder architecture. The details of the evaluated anomaly
detection method are presented in Chapter 5. The methodology of the
research is presented in Chapter 7. After which results and conclusions
follow.

2 Machine Learning

In machine learning, a computational model improves its performance
by experience. In his book "Machine Learning The Art and Science
of Algorithms that Make Sense of Data" Peter Flach [PeF12] gives
the following definition for machine learning "Machine learning is the
systematic study of algorithms and systems that improve their knowledge
or performance with experience’. In machine learning the goal is to learn
structure and relationships in the data which can be used to understand
the data and possibly make predictions based on it. Machine learning
has benefited from the vast growth of available computing power and
data. Machine learning has been used to solve problems in various
fields, including medicine, astronomy, and engineering [GaJ15]. In this
chapter, general terminology, the process of training and evaluating

machine learning models is introduced.

2.1 Types of Learning and Problems

At the time of writing, there are three fields that machine learning can
be roughly categorized to: supervised learning, unsupervised learning,
and reinforcement learning [PeN10]. The categorization is based on the

type of data used for learning and goals of tasks being solved.

Supervised Learning: In supervised learning, the model is given
input-output pairs, and the task is to learn a function from input to
output [PeN10]. For example supervised learning data could contain
input features for a house price such as the number of rooms, number
of floors and floor area and then the house price acts as the output
variable [GaJ15].

Unsupervised Learning: Unsupervised learning systems learn from
data which does not have any labels. When there are no labels in
the data the best the learning system can do is to learn patterns in
the input data. Extracting customer groups from customer data is an

example of unsupervised learning [PeN10].

Reinforcement Learning: In reinforcement learning an agent learns

by interacting with an environment. In reinforcement learning the data

comes in the form of observations and rewards from the environment.
Reinforcement learning can be used for example to teach robots to
walk where they observe the world and their body through sensor
measurements. The reward in the example can be a function which
includes, for example, the stress on joints, walking speed and how
upright the robot is walking [RiS18].

In this thesis, the research being conducted is an unsupervised learning
scenario, since the data being used is not labelled from the perspective
of the model. However, the analysis is going to be using supervised
learning techniques to construct and train a model. As the research
in this thesis illustrates the categories of machine learning have many
similarities and dependencies in terms of techniques and methods, and
often lines between categories can get blurred. In this thesis, the focus
is both on unsupervised and supervised learning since methods from
both categories are heavily present in the research.

Supervised learning prediction problems can be roughly di-
vided into two categories according to the type of output value: regres-
sion and classification tasks. In regression tasks, the output value is
continuous. An example of this is predicting the price of a stock on the
market. In a classification task, the goal is to predict a category for the
input. Therefore in classification tasks, the output value is discrete. An
example of a classification task is predicting a breed of a dog in an image.
There are many dog breeds, and so there are multiple categories, but the
output value is discrete, not continuous. Classification problems with
multiple categories are referred to as multiclass-classification problems.
In this thesis the problems are regression problems where the output

values are continuous.

2.2 Machine Learning Model

In machine learning, the goal is to estimate a function f, which describes
relationships and structure in the data.

Definition 1. Let us assume there is a relationship between a value
vector of interest Y and a feature vector X, which can be presented in

the following form.

Y =f(X)+e

Function f is some unknown function and € is the general error term.

(GaJ15]

The value of interest Y is the sum of a function f with an
input X and the general error term e. In all real-world situations,
most often the feature vector X cannot capture everything needed
to predict the value of interest Y. The general error term e contains
this inaccuracy. The general error term also includes error caused
by measurement inaccuracy in case there is some. Machine learning
methods can not reduce the error included in the general error. The
function f describes the relationship between feature vector X and the
value vector Y. With machine learning methods, one can produce an
estimate of f. By choosing and training an appropriate model, one can
reduce the error by getting a better estimate f of f.

Machine learning can be used both to understand the data and
to make predictions. When the goal is to gain a deeper understanding
of the data and not necessarily to make the best possible predictions,
requirements for the method are different than in a pure prediction task.
When the goal is solely to make good predictions machine learning
model can be treated as a black box which produces predictions. When,
however, one wishes to get insight into the relationships in the data, the
model has to describe the structure it has discovered understandably.
In many cases, the simpler the model, the easier it is to interpret
and the other way around the more complex model, the harder it is
interpreted. On the other hand, as model complexity grows the ability
for it to estimate function f increases and therefore, it can make better
predictions unless it becomes subject to overfitting; a phenomenon

presented in the next section.

2.3 Loss Function

In training machine learning models, the goal is to find a better estimate
f of the function f. In order to get a better estimate, one has to be able
to measure the difference between the prediction produced by f and
the correct value Y. The difference is called loss, and it is calculated
using a loss function. A loss function is referred to in numerous sources
with various terms in addition to loss like error - and cost function. In
this thesis, the term loss function is used.

As loss function measures the loss in the predictions of the
model, it is central for the learning process and has to be selected
appropriately for a task at hand. A loss function takes a vector of
predictions and the corresponding correct values as an input. The
output is a single scalar which describes the combined loss for all
provided inputs. Let us examine loss functions for classification and
regression tasks. The most intuitive way of calculating the error in
a classification task is to calculate the amount of miss-classified data
points. A loss function which calculates the amount of miss-classified
data points is called an absolute loss function. The corresponding
absolute loss function for a regression task is a function which computes
the distance between the prediction and the true values.

The equation for calculating an absolute loss. The d is a
vector of correct values and y presents a vector of predicted values. For
a classification task we have

1= if d; # i
n: @

L,
i=0 |0, otherwise ,

and for a regression task

1 n—1

520|di—2/z‘|- (2)

The values are accumulated by calculating an average.

There are many properties which are desirable for a loss
function. These include: robust to outliers in the data, continuous and
insensitive to noise in the data. Different loss functions have a different

set of properties. There are many loss functions which include, for
example, mean squared error, log loss, and hinge loss. Mean Squared
Error is a loss function for calculating loss for continuous values (see
Definition 2). It takes an average squared absolute error. It penalizes
predictions which are far from correct value comparatively more since

the loss grows exponentially relative to the absolute error.

Definition 2. Mean Squared Error. The d is a vector of correct values

and y is a vector of predictions.

SRS

jZo(dz- — ;)

2.4 Training Loop

Once a loss function has been selected the process of training the
model can be treated as an optimization problem. The goal is to find
parameters 0 for the model f , which minimize the selected loss function.
The set of all possible parameter selections is called a search space.
The search space often contains multiple local minimums, and in many
practical problems, the goal is to find an acceptable local minimum since
finding the global minimum for a complex search space is extremely
difficult. In order to avoid ending up to the same local minimum each
training time, the parameters of the model are first given random values,
so each time, different sections of the search space can be explored.
There are also other ways to select initial parameter values which can
be handcrafted for the chosen model architecture; an example of such
parameter initialization technique is described in [HZRS15].

Exploring the search space for feasible parameter values can
be performed using a variety of methods like gradient descent or evo-
lutionary algorithms. In this thesis, the optimization of the model is
performed using an Adam optimizer [KB14] which is a method which
builds upon gradient descent optimization. The detailed description of
gradient descent and its variants are not in the scope of this thesis, but
a high-level description is presented next. Further information can be
obtained from [KB14].

A gradient for a parameter w is defined as the partial deriva-
tive of the parameter in respect to the loss function. Optimization
using gradient descent is simply taking steps to the direction of the
steepest descent. Meaning the direction where the derivative of the loss
function is lowest. The update step of gradient decent is defined in
Definition 3. As the gradient descent uses the derivative, it requires the
loss function to be partially differentiable. The length of each step in
machine learning setting is often referred to as the learning rate. The
too-high learning rate can lead to overstepping good solutions, and on
the other hand, too small learning rate can lead to getting stuck to a
suboptimal local minimum or cause slow convergence. Learning rate
can be a static scalar value, or it can be adjusted during the training, for
example, by starting with a higher learning rate and gradually lowering

it as a function of taken steps.

Definition 3. Iteration step for updating parameter w with gradient
descent. wye, is the updated parameter value, w4 is the old parameter
value and « is the learning rate. The g—g is the partial derivative of the
loss function in respect to the parameter w.

oF

Wnew = Woid — &

ow

In the training process, a data point of the data set is passed to
the model, which then outputs a prediction based on it. The prediction
is compared to the label of the data point, and an error is calculated
using a loss function. A gradient descent iteration step is performed
on the parameters of the model. The number of data points which are
processed between parameter updates is called batch size. Batch size is
a hyperparameter which with the learning rate has a significant effect
on the results of the training. [HHS17] [SKL17]

2.5 Performance evaluation

When evaluating the prediction accuracy of a supervised learning model,
one needs to consider does the model generalize well to unseen data.

Often it is possible to fit a complex enough model almost perfectly to the

data used for the training and as a result, get a model which generalizes
poorly on unseen data. This phenomenon is called overfitting.

In machine learning, there is a trade-off between bias and
variance. In machine learning context variance describes the models
sensitivity to noise and individual data points in the training data. Bias
is the simplified assumptions which the model makes about the patterns
in the data. The variance increases with model complexity, and bias
decreases. Ideally, one would want to have a model with a low bias and
a low variance. High variance leads to overfitting, and high bias leads
to underfitting. Underfitting is the opposite of overfitting and means
that the model does not have enough expressiveness to describe the
relationships in the data to make good predictions.

To test performance of a model, one has to cut the data set
into at least two parts: the test set and the training set. Data in the test
set is not used during the training of the model but is used to evaluate
performance only after the training is completed. Correspondingly data
in the training set is only used to train the model, and good accuracy
on the training set cannot be used to state that the model has a good
performance. Plotting the losses during training for test and training
set shows that initially, loss decreases for data points on both sets, but
at some point loss on the test set starts to increase while the loss on
training set continues to decline. The point where the loss on test set
starts to increase marks the point where the model starts to overfit the
data. The overfitting is visualized in Figure 2.

In addition to training and test sets, it is beneficial to have a
validation set. The validation set is not used for training but is used for
tuning the various hyperparameters of the model, for example, neural
network architecture, batch size and learning rate (see Chapter 3). Since
the hyperparameters are fine-tuned for best accuracy on the validation
set only the test set which has not been used building the model can

be used to determine how well the model performs on unseen data.

10

Overfitting

0.200 Train

| — Test
0.175 ‘
0.150

0125 |

[%2)
& 0.100

0.075

0.050 ',\ Model Starts

to Owverfit

0.025

0.000 h —

Figure 2: Training progress for a model showing how the model eventually

starts to overfit the training data.

2.6 Sequence Prediction Problems

Machine learning models can be used to discover patterns in various
kinds of data, for example, images and text. In this thesis, the AIS data
is time series data which can be modelled as a set of sequences. This
section introduces sequences in a machine learning and data mining
context.

In traditional supervised machine learning problem, the data
is a set of observations where each observation is a feature vector.
A sequence prediction differentiates from the traditional supervised
problem in a few fundamental ways. In a sequence prediction problem,
each observation is a list of feature vectors where the order is essential.
Example of such a sequence is for example text and a sequence of
frames in a video recording. In the case of text, for example, the
meaning of a phrase can change completely if the order of words is
altered. For example in case of movie reviews two reviews "The mouvie
was entertaining, not boring at all.” and "The movie was boring, not
entertaining at all." even though they contain same words. A data set

11

for a sequence prediction problem is a set of sequences. Another typical
speciality for sequence prediction problems is that they must deal with
various lengths of sequences. Considering text data as an example, the
sentences in text consist of various amounts of words.

A sequence prediction problem can be formalized as follows:

a sequence to modelling prediction has a set of S sequences as data:
S =Xo, Xq,..., X0,
where each sequence X; contains feature vectors for all n; time steps
Xi = (Tio, Ti1, v Tin,)

All feature vectors have the same dimensions, but lengths n; may vary
between sequences. The output of a sequence prediction model can
be a scalar, a fixed size vector or a variable-sized sequence. Sequence
prediction problems can be divided into different categories according

to the type of output:

e Predicting scalar values for a sequence (example: predicting the

next element in a sequence)

e Predicting a label for a sequence (example: prediction whether a

review is positive or negative).

e Generating a new sequence from a sequence (example: music
generation).

e Predicting a Sequence from a sequence (example: machine trans-

lation).

Sequence prediction problems require sophisticated models to efficiently
discover patterns in sequential data. Models requirements also vary on
the type of output. This research focuses on the sequence to sequence
prediction and in the next chapter, a model suitable for sequence
prediction is presented.

12

3 Neural Networks

A neural network is a machine learning model which was inspired by
the structure of biological neural networks [PeN10]. Neural networks
have also gotten many terms from their biological inspirations: nodes in
a neural network are often called neurons, and there are memory units
in recurrent neural networks [Bral6]. Artificial neural networks have a
history starting from 1943 when Warren McCulloch and Walter Pitts
developed the first model for artificial neuron [PeN10]. After initial
research, the interest in neural networks has experienced highs and
lows. During mid-80’s neural networks were popular in the artificial
intelligence research community but on the 1990s lost some of their
appeal. After 2010 neural networks became again very popular under a
new name deep learning [Bral6]. Deep learning’s success was enabled
by increased computational capacity, availability of large data sets and
improved training methods. Deep learning has achieved unprecedented
success in many machine learning problems [GMfMPIfMitS14]. In this
chapter, neural networks are introduced starting from a single artificial
neuron and gradually moving from a single layer neural network, the
perceptron network to more complex networks ending at a deep recurrent

neural network.

3.1 Artificial neuron

A neural network consists of layers of nodes and edges between nodes on
separate layers. Each layer can have multiple artificial neurons which in
this thesis are referred as nodes. [PeN10] In this chapter, the building
block of a neural network, the artificial neuron is introduced. Artificial
neurons loosely mimic neurons of the human brain.

An artificial neuron has three parts: input function, activation
function, and an activation. The artificial neuron gets as an input two
vectors: values x and weights w, which both have a length 7. The input
function combines the values and weights into a single value which is
fed to the activation function. The most popular input function is a
weighted sum function, but in theory, other kinds of input functions

could be used.

13

Input 'Activation
Function ! Function

Sew O

Figure 3: In the figure, the input values x; and weights w; come from the
left links. The input function weighted sum is used to combine 7 values
and weights into a single value. Then the value is passed to an activation
function which outputs the activation a of the artificial neuron which is then
outputted to the right links. [PeN10]

The activation function is applied to the result of the input
function. Activation function can be used to control the output of the
artificial neuron. The activation function mimics biological neurons
ability to decide whether or not to produce an activation. Activation
functions have a central role in the expressive power of the neural
networks since non-linearity is introduced through non-linear activation
functions. A neural network with only linear activation functions is
unable to approximate non-linear relationships in the data. There are
many different commonly used activation functions, the ones used in
this thesis are presented in Section 3.2.

The final output of the artificial neuron is the output of the
activation function. This value is called an activation. Now we can
write a simple mathematical model for an artificial neuron which is
presented in Definition 4.

14

Definition 4. A mathematical model for an artificial neuron using a
weighted sum as an input function. a is the activation of the artificial
neuron, z; is the ith the input value and w; is the weight of the ith
input link. o is an activation function which outputs the activation a.

n
a = O’(Z Tw;)
i=0

3.2 Activation functions

Activation functions have different properties, and choosing a correct
activation function is critical when designing neural networks. We are
now going to examine the following activation functions step-, sigmoid-,

tanh- and ReLu functions (functions are plotted in Figure 4).

Step Sigmoid
1.0 _ 1.0
0.8 0.8
0.6 0.6
> >
0.4 0.4
0.2 0.2
0.0 { ——— 0.0
-10 0 10 -10 0 10
X x
Tanh Relu
1.0 10
8
0.5
6
- 0.0)l
a
-0.5
2
-1.0 0
-10 0 10 -10 0 10
X X

Figure 4: The figure shows plots of step-, sigmoid-, tanh- and ReLu activation

functions.

15

The step activation function defined in Definition 5 can be
used between the layers of a network and to output a boolean value
from a network. The step activation function is used in the perceptron
example presented in Section 3.3. The Relu activation function defined
in Definition 6 is commonly used between layers of the network. It
is also useful for outputting a positive scalar value from the networks
output layer. RelLu adds non-linearity to the plain linear activation
function f(z) = z being a non-linear activation function gives ReLu an
advantage and makes it a more powerful function approximator than
linear alternatives. In the research of this thesis, ReLu was tested,
but for some reason, a tanh activation function yielded better results.
The tanh function defined in Definition 8 is a common choice for an

activation function between LSTM layers.

Definition 5. The step activation function for an artificial neuron:

f() = 1, ifx>0

0, otherwise
Definition 6. The ReLU activation function.

fa) = x, ifx>0

0, otherwise

The sigmoid activation function is defined in Definition 7.
The sigmoid activation function always outputs a value between zero
and one. It is well suited for outputting confidence or probability
as an output. Sigmoid also has an essential role in LSTM networks
presented in Section 3.6 where the sigmoid function is used to decide

which information to remember and which to forget.

Definition 7. The sigmoid activation function:

16

Definition 8. The tanh activation function:

e —1

tal’lh(x) = m

3.3 Perceptron network

Perceptron network is a feed-forward neural network with a single
layer, meaning that all the inputs are directly connected to the outputs.
[PeN10] Perceptron was first proposed by Frank Rosenblatt in 1958
[Ros58]. In this chapter, it is shown by an example how a perceptron
network can be used to solve a simple classification problem.

The data of the example has two features xzo and z;. For
each pair of features, there is a label y which is either one or zero.
The data has four hundred data points in total generated from two
normal distributions. The task is to find a linear-separation in the data
which could be used to predict the label for future data points. In this
example, we are not doing a model evaluation, but instead, the focus is
on the process of training the perceptron network.

The input function is chosen to be the weighted sum. Since
we want to output a value which is either one or zero, we are going to
use the step function as an activation function (see Definition 5).

Since there is a single output, the perceptron network has
one neuron where all edges of the input layer are connected (see Figure
5). The input features are xy and x;, and also, a bias input with a
value of one is added. The weights connecting the inputs to the output
node are marked with a row matrix W, which has three values.

W = [U)O, wh, w2]

17

Wy

Wy

Figure 5: The image describes the architecture of the perceptron used in
the example. The xy and x; are the inputs features, by is the bias which
is selected to have value one. The weights wg, w; and we are marked to
the corresponding links. Weighted sum and step function are presented as
separate nodes in the figure as details. These details are omitted in upcoming

figures.

The output of a perceptron network for an input vector

Z = [z, 21, 1] can be calculated using the Equation 3.

1 ifZ-w>0
a= (3)
0 otherwise

wi = w; + o (d;j —y;) - @y (4)

During the training of the perceptron, the weights w are updated using
Equation 4. The subscript j is the index of a data point. « is the
learning rate. The weights were initialized randomly. A learning rate
of @« = 0.001 was used for training the perceptron for 100 epochs.
Figure 6 visualizes the training results. In the figure, the two classes
in the data set are visualized, and a decision boundary learned by the
perceptron. By the epoch 100, the perceptron has discovered quite good
decision boundary for separating the two classes. In order to solve more

18

complex problems, neural networks with non-linearity and more layers

are required. This is the topic of the next section.

Fpoch 29

Figure 6: The images present the increase of accuracy for the perceptron

network while it is trained.

3.4 Feed-Forward Neural Network

A feed-forward neural network is a multilayered perceptron consisting
of an input layer, a number of hidden layers and an output layer. The
nodes on each layer are connected to all nodes on the next layer. There
are no other edges in a feed-forward neural network. In Figure 7, a
feed-forward neural network with one hidden layer is presented.

The input layer has a node for each input of the network and
a bias node. The bias node always has activation of one. Activation of
the other nodes at the input layer is the input which was given to the
network. The layers between the input layer and the output layer are
called hidden layers. Each of the hidden layers has several nodes, an
activation function and a bias node with a constant value of one. The
output layer is the final layer of the network, and its activation is the
output of the network. The output layer has nodes and an activation
but no bias node.

19

Input Layer Hidden Layer Output Layer

Figure 7: Feed-Forward Neural Network with an input layer, output layer
and a single hidden layer. The o present the activation functions and b the
bias. There are two weight matrices W7 and Ws. Individual weights of the

weight matrices have also been marked to the figure to corresponding links.

Input and hidden layers are connected to the next layer by a
set of edges. Each edge has a weight associated with it. The weights
for each set of edges are stored in a matrix W; where the index specifies
the layer the edge is connected to. The individual weights are indexed
Wiofrom- The weights of the network have been marked to the Figure
7. In the matrix W, the row specifies which node at the target layer
the edge with the weight is connected to and the column specifies from
which node the edge is coming from on the previous layer. Hence the
matrix W has dimensions k£ x ¢ where k is the number of nodes on the
target layer (not including the bias since there are no edges coming to
bias node) and i is the number of nodes on the previous layer (including
the bias node).

20

Woo Wo1 --° Wok

Wip W11 -+ Wik

Wi Wi - Wik

The input for the neural network is presented as a vector z.
The vector x = [xg, 1, ..., Tx] becomes the activation of the input layer.

The process of calculating an output in a feed-forward neural
network is called feed-forward. Calculating the output of a feed-forward
neural network is merely calculating the activation for each layer and
feeding a vector of the activations’ as an input to the next layer until
the output of the output layer has been calculated hence the name
feed-forward. The process has been formulated in the Equation 5.
[GBC16]

a; = O'I(I/Vl X al—l) (5)

To use a gradient-based optimization algorithm to train the
neural network, the gradients of the loss function respect to the weights
of the neural network need to be calculated for each forward pass. In
practice, most neural network machine learning libraries, including Ten-
sorflow used in the research of this thesis use automatic differentiation
to calculate the gradients. The details of automatic differentiation are
outside the scope of this thesis, but more details can be obtained from
[PGCT*17].

Once the gradients have been computed. The optimization
can be performed using an optimization algorithm like stochastic gra-
dient descent or one of its extensions such as Adam optimizer. The
optimizer will update the weights based on the gradients and the learn-
ing rate to minimize the loss specified by the loss function. This process
is called backpropagation. [GBC16]

Feed forward neural networks are well suited for tasks where
there are fixed-sized inputs and outputs. They, however, are not well
suited by themselves for sequence prediction problems. The feed-forward

neural networks can only take a fixed-size vector as an input, but the

21

length of sequences can vary. Methods like a sliding of a fixed sized
window or padding and truncating inputs can be used to transform
sequences into a form which they can be fed to a feed-forward network,
but these approaches come with their own set of problems. For a
sliding window, only elements within the window can be used to make
a prediction if meaningful data falls outside the window the prediction
might lose accuracy. If the size of the window is large, then only some
set of parameters will see specific parts of the sequence and shifting the
sequence causes the network to see input on parameters which have
never seen it before. In other words, the learned information about
some part of the sequence does not transfer if the part is encountered
in another part of the window. In summary, if only few time steps are
always required to make an accurate prediction feed-forward neural
network might be a good choice, but in general it is not an ideal choice
for a sequence prediction problem. [GBC16]

3.5 Recurrent neural network

Recurrent neural networks address the shortcoming of feed-forward
neural networks being able to accept only fixed-size inputs and produce
only fixed-size outputs and not being able to take into account previ-
ous inputs in the same sequence. By considering previous inputs in
the sequence, recurrent neural networks are able to capture temporal
dependencies which standard feed-forward neural networks are not able
to capture. Recurrent neural networks ability to accept variable-length
inputs and produce variable-length outputs and capture temporal de-
pendencies make them ideal for sequence modelling problems. [GBC16]

Recurrent neural networks are neural networks which take a
sequence as an input and then for each time step evaluate the neural
network. A recurrent neural network can be thought as a neural network
which has a loop allowing it to maintain a state. When evaluated, the
loop is unwound through the time steps of a sequence as in Figure 8.
The input for each time step consists of the features of the time step
and hidden state of the recurrent neural network. Hidden state h is
updated on each time step and propagated to the next time step. This

way, the recurrent neural network is able to consider previous inputs

22

A\

Figure 8: A recurrent neural network where output ¢, input « and state h are
presented. N indicates a neural network which is evaluated each time step.
This could be, for example, feed-forward neural network or a convolutional
neural network. Unfolding the loop in the recurrent neural network through
time steps in a sequence is illustrated.

via the hidden state. The equation for calculating the hidden state at
each time step is presented in Equation 6 [GBC16]

ht = f(Wh X ht—l + Wa; X l’t) (6)

The success of feed-forward neural networks and neural net-
works in general in approximating complex functions is attributed from
the ability to stack multiple layers. When a neural network has multiple
layers, each of the layers solves some part of the task, and the result is
fed to the next layer, which then builds upon it [HS13].

In one sense, recurrent neural networks are by default mul-
tilayered since they are unfolded through time steps. In addition to
unfolding through time steps, recurrent neural networks can also be
stacked. By stacking recurrent neural networks, the network is able
to consider the time series on multiple time scales. [HS13] Stacked
recurrent neural networks have been shown to solve many complex

problems with long temporary dependencies.

23

Recurrent neural networks are trained using a method called
backpropagation through time. In the algorithm, the gradients have
to be calculated for each time step using the chain rule. When the
sequences are long, the backpropagation requires a vast number of
multiplications. This can lead to a problem called vanishing or exploding
gradients. The vanishing exploding gradient problem means a situation
where the gradients either become very small; hence the term vanish or
become very large, i.e. explode. When gradients are very small, also
the learning updates become minimal and cause the learning to stall.
[GBC16]

On the contrary, huge gradients cause the learning steps to
take leaps which often leads to overstepping and prevents closing in on
a good solution. The vanishing-exploding gradient problem limits the
recurrent neural networks ability to learn long temporal dependencies.
As a solution, multiple variations and extensions of vanilla recurrent
neural networks have been developed, one of which is introduced in the
next section. [GBC16]

3.6 Long Short Term Memory Networks

Long Short Term Memory Networks LSTM networks reduce the ex-
ploding or vanishing gradient problem [GBC16]. LSTM has a cell state
which controls the flow of information between time steps in addition to
the hidden state. LSTM has gates which are used to modify the state
and form an output. An overview of LSTM is presented in Figure 9.

The forget gate is used to forget irrelevant information from
the cell state. The forget gate has its own weight matrix. The inputs
of the forget gate are the previous hidden state h;_; and the current
input z;. A sigmoid function is used to output a value between zero
and one for each of the elements in the cell state. An element-wise
multiplication is performed between the output of the forget gate and
the cell state. Since the output of the forget gate is between zero
and one for each element effectively the value of one means keep the
information of the element in the cell state and zero means completely
forget the information in the element of cell state. The formula for the
forget gate is presented in Equation 7. [GBC16]

24

Figure 9: An illustration of a single long short term memory networks
memory cell. Illustration contains forget-, update and output gates and

variable symbols which correspond to the ones presented in the equations.

fr =Wy x [hy_1, 2] + by) (7)

The second operation in an LSTM cell is the update gate. The
update gate identifies new information from the current time step and
previous hidden state, which to include in the cell state. This is done
in two parts: decide which values to update and generating candidate
values for the update. As in forget gate first, a sigmoid function with a
weight matrix and inputs are used to calculate a vector ¢, where each
value is between zero and one. The vector 7, is used to select values
from the potential new candidates to include in the cell state. The
candidate vector C; also has its own weight matrix and uses previous
hidden state and inputs to form a vector with the same dimensions as
the cell state. A tanh function is used as a non-linear function from
the output values. Then an element-wise multiplication is performed
between the selection vector 7; and candidates C; to select which new
information is to be included in the cell state. Finally, the result of
the multiplication is added to the cell state with vector addition. The

25

process has been formalized in Equations 8 and 9. [GBC16]
'L.t = O'(VVZ X [ht—la l’t] + bl) (8)

C, = tanh(We X [hy_1,] + be) (9)

The forget and update gates define how the cell state is
updated each time step. The update for the cell state on a time step

has been formalized in Equation 10.
= fi*xc—1 + 1% C, (10)

The final output of an LSTM cell is the hidden state h;. The
calculation for h; is presented in Equations 11 and 12. The calculation
has the same gate structure as the forget and update gates. First, a
sigmoid function is used to calculate a vector with values between zero

and one which is used to select which values of the cell state are output
at the time step. [GBC16]

0 = (W, x [he_r, 2] + bo) (11)

hy = o4 * tanh(¢;) (12)

The way LSTM mitigates the vanishing or exploding gradient
problem is evident by taking a closer look at the Equation 10 which
specifies the calculation for updating the cell state at each time step. The
updating of the cell state at each time step contains only element-wise
multiplication and addition and no matrix multiplications, which was
the case with vanilla recurrent neural networks. This allows gradients
to have an undisturbed flow which significantly aids the training back-
propagation process. For this reason, LSTM’s are more effective at
detecting long term temporal dependencies than vanilla recurrent neural
networks. LSTM’s can be stacked in the same manner as vanilla
recurrent neural networks to form deep LSTM networks. In practice
LSTMs have proved to be very succesfull in many applications. [GBC16]

26

4 Autoencoder Architecture

Nodes in a neural network can be organized to form many types of
architectures. The architecture of a neural network is central for its
performance and abilities. In this thesis, an autoencoder architecture is
used since it has the ability to construct meaningful low dimensional
presentations of data called encodings. An autoencoder is suitable for
unsupervised learning setting. Autoencoder is trained in a supervised
manner, but the output is the input itself, and therefore autoencoder is
an unsupervised learning technique. Next autoencoder and its compo-

nents are presented in more detail.

4.1 Encoder - Decoder Structure and an Autoencoder

Autoencoder utilizes an encoder-decoder structure. In an encoder-
decoder structure, the encoder outputs a fixed-length vector presentation
which is referred to as encoding. The encoding is used as an input
to the decoder, which then constructs the final output of the network.
Encoder decoder architecture is visualized in Figure 10. Encoder-
decoder architecture can be used for example for solving sequence
to sequence prediction problems like machine translation, where the
encoder encodes the sentence from the original language to an encoding
from which the decoder then constructs a corresponding sentence on
the target language [CVMG™14].

The name of the autoencoder comes from the idea that the
encoder and decoder are trained together with the goal of reproducing
the original input. Once autoencoder has been trained, the encod-
ings present a fixed-length presentation of the input encapsulating
some of the relevant information. Autoencoders can be used for tasks
like dimensionality reduction, data compression and feature learning.
[JZ7X13]

In many sequence to sequence prediction problems, the inputs
and outputs have varying sizes. The encoder-decoder architecture can
be coupled with recurrent neural networks to construct a network which

can consume variable-size inputs and produce variable size outputs.
[CVMGT14]

27

Tde

Encoder Encoding Decoder

Figure 10: An encoder-decoder architecture and its parts encoder, encoding
and decoder a presented on a high level. The illustration illustrates a simple
feed-forward based architecture. Other variations can be implemented by

replacing encoder and decoder with other types of neural networks.

4.2 Sparse Autoencoder

It has been observed that while using autoencoders for dimensionality
reduction and feature learning sparsity can improve the quality of the
produced encodings [LZW18]. Sparsity in an encoding means that a
significant proportion of values in the encoding are zero or near zero.
The goal of enforcing sparsity on an encoding of an autoencoder is
to reduce the number of unused features and to improve the model’s
generalization [LZW18§].

The architecture of an autoencoder can be used to guide the
network to produce desirable encodings. In addition to the number of
layers and nodes in a network, various constraints can be applied to
enforce properties for the encoding [LZW18]. There are many ways of
enforcing sparsity on the encoding [LZW18]. In this thesis, [; regular-
ization is used to enforce sparsity on the encodings [JZZX13]. The Iy

regularization is defined in Definition 9.

28

Definition 9. Let a be a scalar called regularization factor, n the
number of nodes on a layer of neural network. Now the [; regularization

can be defined as follows:

n
ll = Q- Z |[L’7,|
=0

29

5 Anomaly Detection using an Autoencoder and

Density Based Outlier Scores

In this chapter, a method for calculating an outlier score for data points
in a high dimensional data set using autoencoders is proposed. The
chapter first provides an overview of anomalies and anomaly detec-
tion and then moves to describe the parts of the proposed method

individually.

5.1 Anomaly Detection

An anomaly is a data object which significantly differs from the majority
of data objects [Pan14]. The term anomaly has many synonyms like
an outlier and a deviation which are used in various contexts [Panl4].
In this thesis, the terms outlier and anomaly are used extensively. In
anomaly detection, the goal is to identify these distinct data objects
from the rest typically without any supervision. Anomaly is not a binary
property of a data point but is best modelled as a score which indicates
how isolated the data point is from the rest [BKNS99]. A metric which
is used to measure the anomalousness of a data point is called an outlier
score. There are multiple techniques for anomaly detection, for example,
model-, proximity- and density-based techniques. In this thesis, a novel
method which combines both model and density-based techniques is
presented. [Panl4]

In a model-based approach, a data object is identified as an
anomaly if it does not fit the model well. The model-based approach
requires the model to describe the normal cases accurately so that
anomalies can be separated from the normal cases. One practical tool
for model-based approach is naturally neural networks. Neural net-
works have been successfully applied for anomaly detection in domains
such as aviation [NS16], computer systems [BCMLK16] and maritime
[INVH*"18]. In case of a neural network model, the data points which

are far from their prediction are considered as anomalies.

30

5.2 Autoencoding as a Model-Based Technique

Autoencoder neural network architecture presented in Chapter 4 is well
suited for model-based anomaly detection in an unsupervised problem
setting and autoencoders have been used for this purpose in [ZP17] and
[AC15]. The decoder of the autoencoder creates a reconstruction of the
original data. The difference between the original data and its recon-
struction can then be used as an outlier score since the reconstruction
error describes how well the autoencoder is able to capture the essence
in the data point and how well the data point fits the autoencoder
model. The outlier score defined by the absolute difference between the
data point and its reconstruction is referred to as reconstruction error.
The reconstruction error has been formalized in Definition 10. [Aggl7]

Definition 10. Let D be a data set, and D’ be a data set reconstructed
from D via an autoencoder. Then the reconstruction r error is defined
to be the absolute difference between the original data point Xy, € D

and its reconstruction by the autoencoder X; € D'
T = |X0 — X1|

5.3 Density Based Technique for Analysing of Encodings

Using the reconstruction as the sole metric for anomaly detection
assumes that the autoencoder is not able to capture the structure of
most of the anomalies in the data. However, depending on the data set,
this might not be sufficiently feasible. Autoencoders have the ability
to model highly non-linear structure in the data, and at least for some
anomalies, it might be able to create accurate reconstructions and
therefore yield low reconstruction error also for some anomalies. The
ability of autoencoders to fit the model also to anomalies has been used
as an advantage in multiple research in the form of a dimensionality
reduction technique which can also capture anomalies efficiently. When
the autoencoder is able to capture the structure of the anomalies as
well as the non-anomalous data points, the encodings produced by
the autoencoder can be used to detect anomalies using density-based
methods. This approach has been successfully used to detect anomalies

31

in [PVD*17].

In density-based techniques, outlier score is based on the
density of objects on the area of the data point being considered.
Sophisticated density-based techniques also take into consideration the
density of the neighbouring data points when calculating an outlier
score. Density-based techniques require a distance metric which is used
to calculate a distance between any two data points. The use of a
distance metric makes density-based techniques prone to the curse of
dimensionality. [Pan14] [BKNS99]

The curse of dimensionality refers to problems which arise
when dealing with high dimensional data. An example is increased time
complexity which is the context in which the curse of dimensionality
is described in [Cla94]. In the context of clustering and calculating
outlier scores, the problem which arises is the average increased distance
between any two data points. Distance between data points is central
for calculating outlier scores, and increased distance between data points
can change the situation so that points do not have any near neighbours.
Increased distances can also make the distances between data points
increasingly homogeneous and therefore make it more difficult to detect
anomalies.

Due to the curse of dimensionality, it is beneficial to try to
keep the sizes of the encodings produced by an autoencoder as small as

possible while not sacrificing too much expression power of the encoding.

5.4 OPTICS-OF Density Based Technique

In this thesis, OPTICS-OF (Ordering Points to Identify the Clustering
Structure with Outlier Factors) method [BKNS99] is used for calculating
outlier scores for encodings constructed by an autoencoder. It is based
on a clustering technique OPTICS (Ordering Points to Identify the
Clustering Structure) [ABKS99] [BKNS99].

The OPTICS-OF method takes into consideration the local
cluster structure of the data set. The sense of locality allows the
method to work effectively on data sets with clusters of varying density
when compared to other density-based approaches which use global
parameters for cluster density such as DBSCAN. The concept of local

32

Data Set B

°] g
®
° ®
®
°
" eg00
e® o o °
(]) OW .O

Figure 11: The figure illustrates a data set with a varying density. Red
dots present normal data points and dark dots 07 and 09 present anomalies.
There are two clusters within the data set A and B.

density is visualized in Figure 11. The cluster A has considerably larger
density than cluster B. The data point 0; is an anomaly since it has
a considerably lower density than its local neighbours. However, if a
global parameter describing the density of the whole data set would
be required. It would then become very difficult to detect anomalies
such as 0;. The data point o has neighbours within roughly the same
distance as data points in cluster B and therefore has roughly the same
density as data points in cluster B. So without taking into consideration
the locality of the data point it is hard to detect anomalies other than
the ones which are far from all other data points such as 0,. Next, the
details of OPTICS-OF method are presented. The presented definitions
are from the paper [BKNS99] (markings vary partly from the original).

The Definition 11 gives a definition for neighbourhood of
data point p which contains all data points within a distance at most
e from p. A distance from one of k-nearest neighbours is formulated
in the Definition 12. Using Definitions 11 and 12 a definition for k-
nearest neighbourhood of a data point p is formulated in Definition 13.

[BKNS99]

33

Definition 11. Let € be a positive real number, D a data set and d a
distance measure in the data set D. The € — neighborhood for p € D is
defined as

Ne—neighbourhood(p) = {O €D | d(p7 0) < 6}

Definition 12. Let k£ be a natural number and D a data set. Then for
a data point p € D k-distance can be defined as

k-distance(p) = d(p, 0), where o € D is such that at least for k objects
o' € D it holds d(p, 0") < d(p, o) and for at most k — 1 objects o' € D it
holds that d(p, o) < d(p, o).

Definition 13. Let £ be a natural number and D a data set. Then
k-neighborhood for data point p € D can be defined as

Ni(p) ={o € D | d(p,0) < k-distance(p)}

The k-nearest neighbourhood contains all data points which
are within a distance of k-nearest neighbor from the data point p (see
Figure 12). The k-nearest neighbourhood of a data point can contain
more than k£ data points in case it has more than one neighbours exactly
at k-distance. An example of this is visualized in Figure 12 where data
points 07 and o, are exactly k-distance from data point p.

The k-nearest neighbourhood is used in outlier score calcula-
tions as a local neighbourhood of a data point, and when determining
the outlier score of a data point, its is density compared against the
densities of data points within its k-nearest neighbourhood. The value
of k is the sole parameter of the method, and it is marked with MinPts
which is a shorthand for Minimum Points and refers to the minimum

number of points to form a neighbourhood. [BKNS99]

34

Figure 12: The k-nearest neighborhood of data point p € D. In the illustra-
tion the size of k-nearest neighborhood is larger than k since both 01,02 € D

are exactly k-distance(p) from p.

In the OPTICS and OPTICS-OF methods the core and reach-
ability distances are used as a metric for the local density of the cluster
[ABKS99] [BKNS99]. The core distance of data point p € D is the
smallest distance € < e which contains at least MinPts data points

(see Definition 14). If such € does not exist, then the core distance is
not defined for data point p [BKNS99].

Definition 14. Let € be a positive real number, MinPts a natural
number and p € D a data point. Then the core-distance denoted as v

is defined as

Undefined, |N:(p)| < MinPts
Ve MinPts(P) = . _
MinPts-distance(p), otherwise

The reachability distance between two objects in a data de-
fines the smallest distance, which makes two data points directly density-
reachable [BKNS99]. Meaning the smallest distance required to make
a point p part of the neighbourhood of point o. Since to create a
neighbourhood at least MinPts points are required, the reachability
distance can not be smaller than the core distance of the core point in
the query. The reachability distance is defined in Definition 15.

35

Definition 15. Let € be a real number, MinPts a natural number and
p,0 € D data points in data set D. Then reachability-distance denoted
as 1 is defined as

Undefined, |N.(0)| < MinPts
@/Je,MinPts(% 0) = .
max (Ve minpts(0), d(p, 0)), otherwise

The local reachability distance describes the reachability dis-
tance of a point p with respect to its neighbourhood. Using local
reachability distance a calculation for outlier factors (later in this thesis
referred to as outlier scores) can be defined by comparing local reach-
ability distance of a point to the points in its neighbourhood. The
local reachability distance is defined in Definition 16 and outlier factor

calculation in Definition 17.

Definition 16. Let p € D be a data point in data set D and MinPts
a natural number. Then the Ird (local reachability density) of a data
point p is defined as

S o Yoo MinPts(P; 0)
Irdwminpes(p) = 1/ GNMWTXT(I\]:I)' Pts(p)| S
mets(p

Definition 17. Let p € D be a data point in a data set D and MinPts
a natural number. Then the OFyp,pis outlier factor (outlier score) is
defined as

D Irdpinpes(0)
0ENNinPts(P) Irdpinpes (P)

OF minpts(p) = | Nnsinpes(p)

5.5 Combining Outlier Scores

The reconstruction error of an autoencoder can be treated as an outlier
score, and the OPTICS-OF method can be used to calculate an outlier
score for the encodings produced by the autoencoder. Outlier scores
from separate methods can be combined to form an overall outlier score
for a data point [AS15]. Next, a general procedure designed for the
combination of outlier scores is presented. In this thesis it is used to

combine the reconstruction error and OPTICS-OF outlier scores.

36

1200 OPTICS-OF Reconstruction Error Aligned by Mean

1200

N
=3
o

1000 1000

-
I~}
a

-
a
o

800

Align by mean

=
N
@

frequency
[~
(=3
53
frequency
o
1)

S
frequency
(-3
(=3
53

IS
S
S
~
a
IS
S
o

v
o

N
a

200 I
o

0.0 0.5

[0
000 025 050 075 1.00 000 025 050 075 1.00
outlier score

outlier score outlier score

Figure 13: The figure presented the procedure of aligning normalized outlier
scores by mean before combination. The histograms on the left present
OPTICS-OF outlier scores of the encodings and the reconstruction errors.
The rightmost histogram visualized both outlier scores after they have been
aligned by mean.

The outlier scores produced by the different methods need to
be normalized before combination [AS15]. Otherwise, different scales
in outlier scores would cause some of the outlier scores to dominate the
final combined outlier score over others. In addition to normalizing the
outlier scores, the scores are shifted so that they share the same average.
The operation is illustrated for reconstruction error and OPTICS-OF
outlier score in Figure 13. The intuition for the shift operation is that
depending on the data set and other parameters, the outlier scores have
different abilities of detecting anomalies and the distribution of outlier
scores differs. However, since the vast majority of the data points in
the data set are non-anomalous points, the average of the outlier score
reflects the outlier score received by non-anomalous points. This can
be used to align the outlier scores properly.

Two standard formulas for combining outlier scores are aver-
age and max functions [AS15]. For combining the reconstruction error
and OPTICS-OF outlier score, the max function has better properties
than the average function, and therefore in this thesis, max-function is
used for combining the reconstruction error and OPTICS-OF outlier
score. The max is considered better since it is enough that either recon-

37

struction error or OPTICS-OF outlier score is large for a data point for
it to be considered an anomaly. There is a dependency between the re-
construction error and the OPTICS-OF outlier score since OPTICS-OF
outlier score is calculated from the encodings. The reconstruction error
describes the accuracy of the reconstruction and therefore reflects the
quality of the encoding for a data point. When the reconstruction error
is large, it is not relevant if the OPTICS-OF outlier score is small since
the encoding does not describe the data point well. Vice versa, if the
OPTICS-OF outlier score is large and reconstruction error is small the
overall outlier score should be large since the encoding indicates that
the data point is an anomaly. Because of this dependency, the average
function is not deemed desirable for combining reconstruction error and
OPTICS-OF outlier scores.

To optimize the performance of the reconstruction error -
OPTICS-OF combined outlier score, a more sophisticated function
might be required. However devising such a function requires insight
into the behaviour of reconstruction error, OPTICS-OF and the au-
toencoders behaviour with data sets containing anomalies. In this
thesis, the aim is to construct this insight and the development of more

sophisticated combining function is left for future research.

38

6 Overview of Data and Feature Selection

In this thesis, the method introduced in Chapter 5 is used to detect
anomalies in two data sets. This chapter provides an overview of those

data sets and the features which were derived from the data.

6.1 Musk Anomaly Detection Benchmark Data Set

In order to evaluate the efficiency of the method and its’ components
presented in Chapter 5, a benchmark data set which contains labels
differentiating anomalous and non-anomalous data points are used. A
modified Musk data set originally from UCI Machine Learning repository
was chosen as a benchmark data set. The data set was acquired through
the ODDS library [Ray16]. The original data set was modified for the
research performed in [AS15] where it was also used for evaluating
anomaly detection methods. The same modified data set is used in the
research of this thesis.

The Musk data set was chosen from the available data sets
since it has a relatively high number of features 166, and it has also
been used in existing anomaly detection research [AS15]. The high
number of features provides an opportunity to evaluate the method of
Chapter 5 with a high dimensional data set. The fact that the data set
has been used as a part of existing research from the anomaly detection
domain provides validation of the quality of the data set for the purpose
of evaluating the performance of the method.

The Musk data set contains 3062 data points and has 166
features. The data set contains 97 anomalies which are 3.2% percentage
of the whole data set. Each data point has a label which indicates
whether the data point is an anomaly or not but these are used only
for evaluation. The non-anomalous data points of the data set are from
non-musk classes j146, j147, and 252, while the anomalous data points
are from musk classes 213 and 211. [AS15]

39

6.2 Maritime Anomaly Detection using AIS Data

The anomaly detection method of Chapter 5 is used to detect anomalies
in real-life data set of ship trajectories. The AIS data (Automatic
Identification System) consists of dynamic GPS data and rarely changing
static metadata [PVD™17]. The dynamic GPS data consists of a series
of longitude and latitude coordinates coupled with a timestamp and a
mmsi (unique identification) of a ship which the coordinate belongs. The
metadata contains general information about each ship, for example,
name, type and size. The AIS data is used by ship tracking services,
and it is the primary method for collision avoidance in maritime traffic
[PVD*17]. According to the International Maritime Organization’s
International Convention for the Safety of Life at Sea, all passenger
ships and ships with gross tonnage 300 or more are required to have an
AIS transmitter on a ship [PVD*17].

The research of this thesis uses AIS data which contains data
for ships near Finland from 30.10.2019 until 14.01.2020. The data points
were filtered to include only ships in the area of interest which was
selected to be the Gulf of Bothnia. This research limits the investigation
to cargo and tanker ships. The cargo and tanker ships are mostly larger
commercial ships which follow shipping routes. Their potential deviation
from normal behaviour is considered to be interesting. The Figure 14
shows heat map images of the data before any filtering, after filtering
by position to include on the Gulf of Bothnia and after filtering by ship
type. When comparing the position filtered image (centre image) to the
image after ship type filtering (rightmost image), it is visible that many
trajectories travelling along the coastline have been filtered out. The
ship type filtered image also contains considerably fewer trajectories
which move on areas with little traffic since the image shows slightly
fewer trajectories with very dark red colouring indicating some but little
amounts of traffic on the area.

Ships near and at ports behave differently than ships at open
sea. At ports ships are often required to make sharp turns, move
at a slow speed and are subject to towing. The movement patterns

commonly occurring at ports are anomalous behaviour when occurring

40

Non Filtered Data After Position Filtering Atfter Position ond
Ship Type Filtering

Figure 14: The leftmost image in the figure presents the whole data set
available for the research. The centre image displays the data set after data
was filtered to include only the points in the area of interest Gulf of Bothnia.
The rightmost image is the fully filtered data which only includes cargo and
tanker ships.

at open sea. The research of this thesis focuses on finding anomalies
occurring at open sea and therefore also data points at and at the
virginity of ports are filtered out.

The AIS data contains data points consisting of locations of
each ship coupled with a timestamp. The data points are divided into
trajectories in the same manner as in [YZZ118] with slight variations.
The following list contains the rules which were used to group AIS data

points to trajectories:

e Two hours is the maximum time difference between any two
consecutive AIS data points in the same trajectory. In case the
time difference between two data points is larger the trajectory is

divided into two separate trajectories.

e Max length for any trajectory is set to two days. If the trajectory
is longer than two days, it is divided so that each is at max two

days long.

After the AIS data points had been grouped into trajectories were
filtered with the following conditions:

e A trajectory must contain at least five data points.

41

e A trajectory must contain a time span of at least an hour.

If a trajectory does not fulfil the specified conditions, it is considered
not to have enough information to be useful.

The frequency of the data points in the original data set
varied but for large proportions was around one sample per 5 minutes.
The 5-minute frequency made the trajectories very long and caused
many problems in the training phase, such as not being able to fit
training data into GPU memory and very long training times. As a
solution, the data points were downsampled to one data point every 15
minutes. Since cargo and tanker ships are large ships changes in their
movement happens mostly slowly therefore 15 minutes was deemed
acceptable time interval.

Two distinct feature sets are derived from the AIS data and
used separately for anomaly detection. Research in [YZZ118] introduces
location-agnostics features. In [YZZ18] encodings produced by an au-
toencoder from the location-agnostic features are successfully used to
cluster ship trajectories showing that the derived features are meaningful.
Location-agnostic features capture the shape of a trajectory and move-
ment of a ship along it. The features do not take a stand on the location
of the trajectory [YZZ"18]. The location agnostics features use a sliding
window to extract a behaviour sequence from each of the trajectories.
Set of trajectories from which behaviour sequences were generated was
expanded from the original set of trajectories by including their subsets
of 4, 12 and 24 hours. Therefore some of the behaviour sequences are
overlapping. For each step of the sliding window, a behaviour sequence
entry is formed by first calculating average speed, acceleration and
change of rotation [YZZ"18]. Then the final behaviour sequence en-
try is formed by calculating the following for each of the properties:
{mean, max, 75%-quantile, 50%-quantile, 25%-quantile, min}. The val-
ues are calculated directly using longitude and latitude, and also an
approximation is made that longitude and latitude are located on a flat
surface. This research uses the same features with the same approxima-
tion since [YZZT18] showed them to be successful as a feature set for

analyzing ship trajectories.

42

Smoothing

Figure 15: On the left, in the figure, there is a rasterized version of a heat
map before smoothing. The smoothed version of the rasterized heat map is
presented on the right side of the figure.

The other feature set is not location-agnostic but instead uses
the location of trajectory heavily. The heat map captures the locations
of the common shipping lanes. Since shipping lanes are considered
an essential feature for the movement of cargo and tanker ships, the
location of each point on a trajectory was given a heat score based on
its position on the heat map. In order to not include minor details on
the heat map, the map was rasterized into a grid where the size of each
cell is 0.1 times 0.1 longitude and latitude angles. The rasterized heat
map has cells containing vastly more points than some of the other
cells. In order to take into account that a shipping lane is considered
normal as long as it has a significant amount of traffic, a reasonable max
value was set to cells with huge heat scores. In the rasterized heat map,
there are lots of areas where the heat scores between neighbouring cells
vary greatly. Feature values which exhibit sudden dramatic changes
proved to be problematic in the training phase of the research. In
order to moderate the dramatic changes, a smoothing procedure was
performed on the heat map. In the smoothing phase, value for each cell
was selected to be the mean of it and the cells within two Manhattan
distance from it. The Figure 15 shows the rasterized heat map before
and after the smoothing operation. The other features for the location

43

wise feature set includes the actual longitude and latitude, heading and
the previously described heat score. The location wise sequences were
chosen to present six hours long time intervals where each sequence
consists of 24 data points with intervals of 15 minutes. In order to hide
the cuts in trajectories of six-hour intervals, sequences were generated
using a sliding window which moved was always moved only half of
its length. The sequences of the feature set are therefore partially

overlapping.

6.3 Cargo Ship Engine Failure as Known Anomaly

Engine Failure

Engine Restarted

Fasta Alond

Figure 16: The anomalius trajectory where the ship Sampogracht experienced
an engine failure. The engine failure and restart have been marked to the

image as well as the expected route (dashed line).

The data set contains one initially known anomaly. The known anomaly
servers both as an example of an anomaly in maritime traffic which the
research aims to locate and as a case for which more detailed analysis
can be performed. A Dutch cargo ship Sampograft (see Figure 17)
drifted on the sea after experiencing engine failure on the night between
12.01.2020 and 13.01.2020 [ML20]. The trajectory of Sampograft during
the 12th and 13th of January is visualized in Figure 16. It is visible that

44

© Juergen Braker
MarineTraffic.com

Figure 17: Cargo Ship Sampogracht experienced an engine failure during
12th and 13th of January 2020 and drifted on the Gulf of Bothnia.

the engine failure caused the ship’s trajectory to deviate from typical
trajectories in the area. The expected trajectory is marked in the images
with a dashed line. The engine failure also caused the ship to slow down
significantly, which can be seen as the distance between measurements
getting smaller during the time the engine was not used. Also, sudden
drifting behaviour could be considered abnormal in general.

45

7 Methodology

This chapter presents the research design and used neural network
architectures and implementation details. Research design includes the
data normalization and data split strategy. The chosen neural network

architectures are presented with justifications.

7.1 Research design

The goal of this research is to evaluate the anomaly detection method
presented in Section 5 and identify the properties of its components. The
proposed method is an extension of the method presented in [PVD*17].
In the method, an autoencoder is used to detect anomalies by combining
reconstruction error and OPTICS-OF outlier score calculated from the
encodings. The proposed method is evaluated using the Musk data set
described in Chapter 6.1. The method is then applied to two feature
sets derived from a real-life AIS data set described in Section 6.2. Both
the Musk and AIS data set are treated in an unsupervised manner. The
labelling in the Musk data set is used solely to evaluate the performance
of the method and is not seen by the models. The AIS data set contains
one trajectory known to be anomalous described in Section 6.3, which
is used to evaluate and analyze the behaviour of the proposed method.
Autoencoders have been used to detect anomalies in existing
research with successful results in [PVD*17]. Also, encodings produced
by an autoencoder were used in [YZZ"18] to cluster trajectories. The
research in [YZZ718] provides proof that an autoencoder can be used to
construct meaningful encodings from features derived from AIS data. In
[PVD*17] AIS was used in combination with over-the-horizon radar to
detect anomalies from encodings. In [PVD™17] anomalies are identified
from the encodings using a density-based technique OPTICS. The
research of this thesis takes a similar approach to analyze encodings
by using a density-based technique OPTICS-OF which is based on
OPTICS for identifying anomalies from the encodings.
Reconstruction error of an autoencoder is identified as an
important metric for detecting anomalies in [Aggl7]. Since outliers are

potentially more resistant to compression than non-anomalous data

46

points [Aggl7] reconstruction error can be used to detect potential
anomalies. The reconstruction error indicates the quality of any par-
ticular encoding, and therefore, there exists a dependency between the
reconstruction error and the OPTICS-OF outlier score. The max func-
tion is used to combine reconstruction error and OPTICS-OF outlier
score to produce a single outlier score as described in Section 5.5.

The Musk data set contains labelling, which indicates which
data points are anomalies. The labelling allows the construction of a
training and test sets which contain various proportions of the anomalies.
Autoencoder models are trained with the constructed data sets and
performances of reconstruction error, OPTICS-OF and the combined
outlier score are calculated. Evaluating the models’ performances when
they have been trained with seeing different proportions of the anomalies
in the training phase can be used to evaluate the performance of the
method on unseen anomalies and robustness not to overfit on individual
anomalies in the training data.

The proposed model is then applied to the two feature sets
of the AIS data set to see whether it is able to identify the known
anomaly described in Section 6.3 and to find yet unknown anomalies.
The AIS data set is a more complex one than the Musk with sequence

to sequence prediction problem setting and high dimensional features.

7.2 Normalization, Train - Test Data Split, Loss Function
and Hyperparameters

The data points were normalized to aid and speed up the learning
process on all feature sets. The Musk data was normalized using
standard min-max scaling. On the AIS data set, both location-wise
and location-agnostic features were normalized. A min-max scaling
was used for the speed features. Longitude and latitude positions were
scaled with min-max scaling where min and max were taken from the
enclosing bounding box of the area of interest.

The feature sets were divided into three parts train, test and
validation sets. On the Musk data set division was done separately
for anomalies and non-anomalous data points in a randomized fashion.

Then the final data sets containing specified proportions of anomalies in

47

the training set were formed. On the AIS data, some of the sequences
are overlapping; for this reason, it was not possible to make division by
selecting sequences at random. If sequences would have been selected
randomly overlapping sequences might have ended up in different sets
resulting into a situation where a data point might have been presented
both in a training and test set. Therefore the split on the AIS data was
done by diving the trajectories and corresponding sequences by date.
The test set was chosen to be from 1sth to 10th of December 2019,
validation set from 11th to 15th of December 2019 and the training
data the rest of the data.

The loss function is chosen to be MSE (Mean Squared Error)
defined in Definition 2. In the training of an autoencoder, the goal
of the training is to minimize the reconstruction error. MSE can be
used to minimize the Fuclidean distance between the reconstruction
and the original input and is therefore considered to be a good fit for
the purpose. Even though in the training of the model the goal is to
minimize the MSE and reconstruction error this is not the overall goal
the model is used for. In Figure 18 it can be seen that the precision
of the model for anomaly detection and the MSE do not correlate.
In order for the model to be useful it must be able to capture some
relevant patterns in the data but as the figure shows lower MSE does
not guarantee better anomaly detection results. Since anomalies in
the data set are not known it is not possible to use anomaly detection
precision as a loss function.

The primary hyperparameters of the research are batch size
and learning rate. Multiple learning rates and batch size were tested.
Here the performance means performance on anomaly detection. It is
possible that some other hyper parameter values would have yielded
better results but which were not found in the experiments. However it
is difficult to measure the effect a hyperparameter has on an unlabeled
data set. On batch sizes, the best performances were obtained using
small batch sizes between one and ten. On the Musk data set batch
size, the final models were trained with a batch size of five. On the
feature sets derived from the AIS data the batch size was set to one.

The learning rate was set to le—4 for the models trained on feature

48

sets of AIS data and to le—3 for the models trained on the Musk data.

Decoder Size vs Precision

Decoder Size vs Test MISE

OPTICS-OF
—— Reconstruction Error

0.014

0.012

— Test

5 0.010
>

Precision
o
&

0.4 0.008

0.006

0 50 100 150 200 250 0 50 100 150 200
Decoder Size Decoder Size

Figure 18: Precisions and Test MSEs plotted as a function of Decoder Size.
The x-axis has the number of nodes in the decoder in addition to the output
nodes, and the y-axis has the precision of OPTICS-OF and reconstruction

error anomaly detection methods on labelled Musk data set.

7.3 Autoencoder with a Deep Encoder and a Shallow De-
coder

In this thesis, autoencoders are used for dimensionality reduction and
feature learning in an anomaly detection context. The goal is that
the autoencoder learns high-level features of the data, which is then
presented in the encoding analyzed using OPTICS-OF. Multiple autoen-
coder architectures with varying sizes and symmetries were tested on
the Musk data set. The most successful architecture employed a deep
encoder with multiple hidden layers and a shallow decoder with a single
layer. The architectures were evaluated both by the performance of the
OPTICS-OF and reconstruction error methods in detecting anomalies
from the encodings and the level of reconstruction error on the Musk
data set. Reasoning providing a possible explanation why the deep
encoder with a shallow decoder proved to be successful is presented

next.

49

250

In order to enable the encoder to learn high-level features,
the encoder has multiple hidden layers. Since the encoding should hold
relevant information of the original data, the process of constructing
the original input from the encoding should not require multiple hidden
layers. Not having multiple layers on the decoder reduces the complex
logic the model stores via the weights in the decoder. Figure 18 shows
how anomaly detection precision drops as more nodes are added to the
decoder. There is a similar but weaker effect when nodes are dropped
from the encoder. This might indicate that in general simpler models
are more effective at anomaly detection. However more research would
be required to verify this.

The AIS data is more complex than the Musk data. Therefore
in its case, the decoder also has one hidden LSTM layer in addition to
time distributed layer (on info about time distributed layer see Section
7.4).

The reasoning of this section was used to select the neural
network architecture for the research. It is possible that some other
architectures would have performed better. As with the hyperparame-
ters, it is not trivial to optimize the architecture for anomaly detection
performance since it can not be measured on an unlabeled data set.
Therefore the same reasoning which was used on the Musk data set was

also applied on the AIS data set.

7.4 Machine Learning Model Implementations

The machine learning models were implemented using the Tensorflow
2.0 library [AAB*15] and trained on a GeForce GTX 1080 NVIDIA
GPU. The data preprocessing used lots of other open-source libraries
which at the time of writing are commonly used.

The Musk data set has features which are suitable for a feed-
forward neural network. Autoencoders with Feed-Forward encoders and
decoders were used in the research performed on the Musk data set.
Multiple tests were performed to determine good architecture. The final
architecture is presented in Figure 19. The design follows the reasoning
presented in Section 7.3.

50

Input Vector Output Vector

Dense(size=o. activation=linear)

Dense(size=64. activation=tanh)

Dense(size=e. activation=tanh) L1 Regularization

Figure 19: The architecture of autoencoders used with the Musk data set.

On the feature sets of the AIS data, a sequence to sequence
multilayer LSTM autoencoders are used to construct encodings of ship
trajectories. The reason for using LSTM over, for example, a sliding
window and a feed-forward neural network is the ability of LSTMs to
observe temporal dependencies as described in Chapter 3. An LSTM
was chosen over other recurrent neural network variations such as gated
recurrent unit since in [YZZ18] LSTM was observed to outperform
gated recurrent unit when working with the location-agnostic feature
set and LSTMs have better ability to detect long term dependencies
than vanilla recurrent neural networks [YZZ%18]. Multiple different
architectures were tested, and the final chosen architecture is shown
in Figure 20. The architecture features the deep encoder and shallow
decoder for which the reasoning was presented in Section 7.3.

The last layer on the AIS data autoencoders is time dis-
tributed dense layer. Time distributed layer runs the input through the
same weights and layer for each time step. The result is a time series
where each time step is an output vector of the time distributed layer.

o1

Input Sequence Output Sequence

ISIMGize=e. activation=tanh)" L1 Regularizatior

Figure 20: The architecture of autoencoders used with the AIS data set.

52

8 Results and Discussion

In this Chapter, the main empirical results of the research are presented
with accompanying analysis. The first section goes through the results
on the Musk data set presented in Section 6.1. On the Musk data
set, the anomalies are known, and this makes it possible to analyze
how the amount of anomalies in the training data affects the model’s
ability to detect anomalies. The other focus area on the Musk data
set results is to evaluate the performance of the reconstruction error,
OPTICS-OF encoding analysis and the combined outlier score. We also
aim to identify the characteristics of their behaviour.

The second section presents the results on the AIS data set
presented in Section 6.2. Two distinct feature sets have been derived
from AIS data, and the results are presented for both data sets. Here
the focus is to present the results on the known anomaly presented in
Section 6.3 for reconstruction error, OPTICS-OF encoding analysis and
the combined outlier score. Lastly, some examples of the trajectories
with highest outlier scores are presented coupled with general notions
of which kind of trajectories received high outlier scores and which
properties they had in common.

8.1 Musk Data Set

This section presents the results of the experiments performed on the
Musk data set. First, the metric used for the evaluation is presented,
followed by details of the training processes of the models. Then results
of the anomaly detection are presented for each of the three methods:
reconstruction error, OPTICS-OF and combination of the two scores.
The numerical results are listed in Appendix A.

On the Musk data set 3.2% the data points with the largest
outlier scores are selected as anomalies. This means that in the experi-
ments performed on the Musk data the number of selected anomalies
always equals to the true number of anomalies in the data. Now the
performance of the models can be evaluated using a metric called preci-
sion. Precision is the number of true positives divided by a sum of true
positives and false positives (see Definition 18). In the case of the Musk

93

data set and the described anomaly selection scheme this calculates the
percentage of the anomalies in the data points which the model assigns
the highest outlier scores.

encoding size: O

—— train loss

0.041 —— validation loss
.., 0.031
V)
>

0.02 1

0.01 1 L o . R

0 25 50 75 100 125 150
epoch

Figure 21: Visualization of training progress for the Musk data set. The
model had an encoding size of 6 and was shown 40% of the anomalies during
the training phase. The red line is the loss on the training set, and the grey

line is a loss on the validation set.

Definition 18.

L True Positives
Precision =

True Positives + False Positives

For the Musk data set autoencoder networks with the same
architectures were trained with various encoding sizes e, and the number
of anomalies shown to the network was varied. The final MSE losses
are listed in Table 2. The neural networks were trained for 150 epochs
each. The training process proceeded in a similar fashion for all the
trained models. The models learned most during the first few epochs
after which the learning stalled. Validation data was also used to make
sure that there was no significant overfitting. Since the loss is roughly
the same on training, validation, and test sets, it can be concluded that
the models have not suffered from overfitting. The training process for
one of the models is visualized in Figure 21; the other models had very

54

similarly shaped training curves.

MSEs on 80% / 20% Anomaly Split Reconstruction Error Precision on 40% / 6O% Anomaly Split

0.025

Em Train 1.0
N Test

B Reconstruction Error

0.020
0.8

0.015

o
o

MSE

Precision

0.010

I
IS

0.005 0.2

3 6 8 12 16 24 48 96 0.0 3 6 8 12 16 24 48 96

Encoding Encoding

0.000

Figure 22: Correlations between encoding size and MSE and reconstruction
error precision. The encoding size - MSE correlation is presented on the left

chart and encoding size - reconstruction error precision on the right chart.

A clear correlation between the encoding size and the loss
of the final model is evident in Table 2: as the encoding is increased
the loss of the final model decreases. This is due to the amount of
information the encoder is able to contain to the encoding, making it
easier for the decoder to construct the original input. The described
correlation is presented in Figure 22 on the (left).

Table 2 shows that varying the number of anomalies in the
training data does not have a significant impact on the model’s ability
to capture the structure of the non-anomalous data points. This is
pointed out by the fact that the MSE losses on the training set are very
similar on all proportions of anomalies in the training set. However,
the values indicate that when most of the anomalies reside in the test
set the MSE loss on the test set is larger than on the training set. This
confirms that the models can not capture the structure of anomalies
using the same method as for non-anomalous data points since the
trained model gives bad reconstructions for anomalies it has not seen
during the training.

95

Average Reconstruction Error Precision on Anomaly Selits

1.0 Bmm Reconstruction Error

i

0.
0%/100% 40%/60% 80%/20% 100% /0%
Anomaly Data Split

o o o
N (<] co

Average Precision

N

Figure 23: Correlation between the average precision of reconstruction error
for the chosen encoding sizes and the proportion of anomalies in the training
data.

The precisions of models for detecting anomalies using recon-
struction error are displayed in Table 3. The table shows a clear trend
that the amount of anomalies in the training data has a significant
effect on the reconstruction error’s performance on anomaly detection.
When the models have not seen any anomalies, the reconstruction error
is able to spot all of the anomalies in the Musk data set. This means
that the models produce large errors for anomalies since they can not
capture their structure, having only seen non-anomalous data points
in the training phase. When more anomalies are shown to the models
in the training phase, they learn to also reconstruct anomalies better
and therefore, in overall the reconstruction error of the anomalies de-
creases. The Figure 23 presents the correlation between the proportion
of anomalies in the training set and the reconstruction error’s precision.

As described in Chapter 6, the anomalies in the Musk data set
are taken from other classes of musk. Therefore some of the anomalies
in the data set may be similar to each other since they could belong to
the same class of musk even though they are different from the majority
of data points. This might amplify the decrease in performance when

o6

larger proportions of anomalies are included in the training set since the
model being trained can learn characteristics of the anomalies better if
it has more than one similar case. Therefore it is not clear whether or
not this effect would be present in case the anomalies stemmed from
some more random data source, for example, measurement error.

Another correlation visible in Table 3 is the correlation be-
tween the encoding size and the precision of the model to capture
anomalies. Small encoding sizes produce models which are good at
detecting anomalies. When the encoding size is increased the precisions
of the resulting models drop rapidly. However, when the encoding size is
increased enough, the precision increases again. The efficiency of small
encoding sizes in anomaly detection supports the claim that anomalies
are more resistant to compression in the context of the model, which
mostly sees non-anomalius data points. With small encoding sizes,
the rate of compression is larger. It is not clear why the performance
of models with large encoding sizes increases when encoding size is
increased further. This phenomenon would require further research.
The phenomenon is presented in Figure 22 (right).

The anomaly detection results for OPTICS-OF method are
displayed in Table 4. The OPTICS-OF anomaly detection method was
applied to the encodings produced by the models. The table shows the
encoding sizes, MinPts parameters of the OPTICS-OF method and the
number of anomalies shown to the model in the training phase. The
numeric precision results indicate abysmal performance for the OPTICS-
OF method on the Musk data set. However, looking closer which data
points the OPTICS-OF flags as anomalies with different parameters
reveals that with small values of MinPts OPTICS-OF produces large
outlier scores to only a few data points from which a large proportion are
actual anomalies. The described phenomenon is presented in Figure 24.
Some values of MinPts have been omitted from the sequence but they
closely follow the trend where OPTICS-OF starts to give increasing
amounts of larger outlier scores when MinPts is increased and the
amount of false positives increases rapidly. The same phenomenon can
be observed regardless of the number of anomalies shown to the model

in the training phase.

o7

101
0.5

ool LI
0 500 1000 1500 2000 2500 3000
index

(encoding: 46. minpts: O
1.0 -

Gos W‘Wv

0.0
1000 1500 2000 2500 3000

minpts: 14)
1.0

- | WWMMMMM

1000 1500 2000 2500 3000

Figure 24: Outlier scores for each data point in the musk data set. The indices
of data points are on the x-axis, and the outlier score given by OPTICS-OF
is on the y-axis. The anomalies are located in indexes 0 - 96. A grey vertical
line has been drawn to separate the anomalies and non-anomalius data
points.

The OPTICS-OF outlier score and reconstruction error were
combined, as described in Section 5.5. The results of the combined
scores on Musk data set are presented in table 5. The table shows
that when reconstruction error is performing poorly and the MinPts
parameter has been chosen correctly combining the OPTICS-OF score
with reconstruction error can result into a small increase in performance
on the Musk data set in comparison to using just reconstruction error.
The performance increase is due to OPTICS-OF being able to pick up
a few anomalies which reconstruction error misses when performing
poorly. The slight increase is most evident when 100% of the training
samples were in the training set since that is when reconstruction error
has the worst performance.

It is also noticeable that combining OPTICS-OF with recon-
struction error on many occasions also lowered the performance when
comparing to the performance of just reconstruction error. On the
Musk data set reconstruction error performed extremely well and in
many cases caught 100% of the anomalies and in these cases every
miss classification from the side of OPTICS-OF potentially lowers the

o8

performance. When the value of MinPts was not optimal large drops
in performance appear.

8.2 AIS Data Set

In this section results on the AIS, data set are presented. Two sets of
features have been derived from the AIS data, as described in Chapter
6. The AIS data set has one known anomaly presented in Section 6.3,
which is of particular interest. Since the known anomaly is only one
case, it can not be used to evaluate the performance of the anomaly de-
tection methods. This section focuses on presenting findings made using
anomaly detection methods presented in Chapter 5 and aims to point
out what characteristics sequences flagged as anomalies posses. The
numeric results for location-wise feature set are presented in Appendix

B and for location-agnostic features in Appendix C.

0.0071 | —— train loss
—— validation loss

0.0061 |
0.005{ |
200041 |
0.003
0.002
0.001

Fpoch

Figure 25: Training curve for a model trained with AIS location-wise feature
set with an encoding size 8. The figure shows that most of the learning

happened in the first few epochs.

Models were trained on the two feature sets with same archi-
tecture presented in Section 7.4. They were trained for 20 epochs each.
For models trained on the location-wise data set the training to proceed
by most of the learning happening on the first few epochs and then
stalling. For the models trained on the location-agnostic data set the
learning similarly stalled for some time after first few epochs but then

suddenly experienced a massive increase in performance. The training

99

0.030 \\ —— train loss

0.025 \ —— validation loss

0.020

Loss

0.015

0.010

0.005

0.000

Eooch

Figure 26: Training progress for a model trained with AIS location-agnostic
feature set with an encoding size 8. The figure shows that there is a sudden
increase in performance after the training had mostly stalled after the first
few epochs.

process exhibiting the described behaviour is presented in Figure 26.
It is not clear what causes this behaviour nor is it clear would a sim-
ilar increase in performance also happen on the location-wise feature
set after some amount of epochs or is this behaviour inherent for the
location-agnostic feature set and the model type combination. It is
worth noting that similar training behaviour was also present on models
trained on location-agnostic features in [YZZ"18]. A training curve
for one of the models trained on location-wise data set is presented in
Figure 25.

On all the training curves on both data sets the validation loss
and training loss are relatively close together and on the fully trained
models losses on test and training sets are on the same level. This
indicates that there has been no significant overfitting.

The table 6 presents MSE losses of the trained models on the
location-wise feature set and corresponding results for models trained
on location-agnostic feature set are in table 10. The training losses
exhibit the same characteristics which were also evident on the models
trained on the Musk data set: training losses decrease as the encoding
size increases also as is common test set has slightly higher loss than
the training set.

60

°® o
ot ®)
/ \\1\/‘4
°
o\

Figure 27: Sequences belonging to the known anomaly and indicates an

index for the sequences used in the location-wise features results in tables.

The Figures 27 and 28 define indexes for the feature sequences
of location-wise and location-agnostic feature sets which are part of
the anomaly of interest. The reconstruction error, OPTICS-OF and
combined outlier score and presented for each of these sequences. Some
of the sequences are partially overlapping for the reasons described in
Chapter 6.

Tables 7 and 11 present the results of anomaly detection
using reconstruction error for the known anomaly. The tables list the
percentage of sequences in the feature set, which have a larger outlier
score than the feature corresponding to index. Meaning the smaller the
value, the more sequence is considered to be an outlier. For example,
on location-wise features on a model with encoding size eight 0.1% of
the sequences have higher outlier scores than sequence at index zero in
the anomaly of interest.

On location-wise features, the sequence at index zero has the
largest reconstruction error of the sequences in the known anomaly.
The sequence at index zero has a smooth turn which is normal ship
movement in the area, and it contains the slow of ships speed as the
engine failure occurred. Out of the sequences belonging into the known
anomaly’s trajectory the ones at index zero, and five get the largest
scores. They both display smooth shape and large variations in speed
which attracted high outlier scores from reconstruction error in general.
Other sequences in the known anomaly contained drifting of the ship.

61

Figure 28: Sequences belonging to the known anomaly and indicates an index
for the sequences used in the location-agnostic features results in tables.

62

These did not receive high outlier scores. The reason for this might be
that the data set contained lots of similar slow speed trajectories; the
main difference was that their location was usually nearer the coastline.

On location-agnostic features, the models assign large recon-
struction errors to sequences at index zero and six. The reasoning for
the characteristics which attract high scores from reconstruction error is
the same as presented for reconstruction error on location-wise features.

The OPTICS-OF behaved similar way as with Musk data
set in terms of a number of data points it assigned large outlier scores
for. With small values of MinPts, few data points received large outlier
scores and as MinPts was increased the number of data points with large
outlier scores also increased. The phenomenon was inline with Figure
24 of the OPTICS-OF on Musk data set. The results of OPTICS-OF
on the known anomaly on both location-wise and location-agnostic
data sets varied greatly depending on the encoding size. The numeric
results are presented in tables 8 and 12. On sequences of the known
anomaly with location-wise features, OPTICS-OF is able to identify
one or two sequences as potential anomalies on each encoding size, but
it varies which ones. On location-agnostic features, the performance of
OPTICS-OF is poorer.

The reconstruction error mostly dominates the combined
outlier scores on the known anomaly on both feature sets. There are few
exceptions on location-agnostic data set where combined outlier score
performs significantly better than reconstruction error. Such cases are
present for MinPts value 2 on (encoding: 8, index: 3) and (encoding: 4,
indez: 1).

The Figure 29 shows some of the trajectories which the models
trained on location-wise features assigned highest outlier scores. The
reconstruction error was highest on trajectories with a large number
of turns and smooth round shapes. The first image of reconstruction
error anomalies shows a ship arriving at a port where ships navigate
between islands. Many of the ships arriving at the particular port got
high outlier scores because of the navigation manoeuvres which were
required to avoid the islands. In general, these cases can be considered

as miss-classifications. However, the chosen image shows also other

63

unexpected behaviour since the ship has then quickly exited the port
towards the north without entering the port. The image in the centre
shows a trajectory where a ship has taken a circular route. The third
image shows a trajectory where a ship has made two 180 degree turns
on a short interval.

OPTICS-OF gave high outlier scores to trajectories which
contained data points resulting from an anchored or otherwise stationary
ship. Other qualities which attracted large outlier scores from OPTICS-
OF were sharp turns and moving along the coastline. The first image
from the right on OPTICS-OF row shows the trajectory of an anchored
ship. Ships anchoring, for example, to wait for berths to become
available at ports is common. Therefore these cases can be considered
as miss-classifications. Next two images show examples of trajectories
with multiple sharp turns which could be considered abnormal to a
cargo ship.

The last row in the image presents findings from the combined
scores. The combined score assigned highest values to some of the same
trajectories as OPTICS-OF and reconstruction error. Anchored ships
from OPTICS-OF also got high combined scores. Three images here
show some of the finds from the combined score.

Figure 30 shows trajectories which received high outlier scores
from models trained on location-agnostic features. The OPTICS-OF
method produced poor results on location-agnostic features. The figure
shows that OPTICS-OF assigned high outlier scores to long trajectories
which moved along regular shipping lanes. A lot of the OPTICS-OF’s
poor performance also transferred to the combined score which therefore
also had a poor performance. Reconstruction error performed better,
finding some trajectories with odd shapes. On location-agnostic feature
set reconstruction error miss-classified a large number of anchored ships

as anomalies.

64

Reconstruction
Error

OPTICS-OF

Combined

Score

Figure 29: Example trajectories which the models trained with location-wise
features assigned highest outlier scores. Three figures to best present the
findings were selected for each outlier detection method.

65

Reconstruction
Error

OPTICS-OF Combined

Score

Figure 30: Example trajectories which the models trained with location-
agnostic features assigned highest outlier scores. For reconstruction error,
three figures to present the findings are displayed. For the OPTICS-OF and
combined score, one image is displayed showing all trajectories with highest
outlier scores.

66

9 Conclusions

The goal of this thesis was to evaluate the use of deep autoencoders
for anomaly detection in maritime domain. The thesis proposes a new
method which uses both reconstruction error and analysis of encodings
by OPTICS-OF to construct an outlier score. The method and its
components are evaluated on a benchmark Musk data set and a real-life
AIS data set.

The results indicate that reconstruction error produced by an
autoencoder can be used to identify anomalies as the data points with
high reconstruction errors. The effectiveness of reconstruction error is
dependent on the size of the encoding of an autoencoder and proportion
of anomalies in the training set. The results show on the Musk data set
that small encoding sizes work better for anomaly detection when using
reconstruction error as an anomaly detection method. This supports
the claim presented in [Aggl7], which states that anomalies are more
resistant to compression than non-anomalous data points in the context
of a model trained on the data set. However, on the Musk data set
results revealed a phenomenon where large encoding sizes increased
performance in contradiction to the claim. Further research and analysis
are required to identify the mechanics leading to the phenomenon.

The research on the thesis aimed to answer whether it was
possible to increase the performance of anomaly detection by incor-
porating OPTICS-OF analysis of encodings to reconstruction error.
OPTICS-OF was applied on the encodings produced by an autoencoder
to produce outlier scores. The scores produced by OPTICS-OF and
reconstruction error were then combined to form a combined outlier
score. The results show improvement over reconstruction error in some
cases, but in most cases, there was either no change and in some cases
a decrease in performance. In summary, it can be stated that there
is potential to improve performance by incorporating OPTICS-OF
analysis of encodings, but more research is required to find perhaps a
better function for the combination than the max function used in this
thesis. The method should also be applied to a larger number of both
benchmark and real-life data sets to draw further conclusions.

67

The behaviour of the OPTICS-OF was similar on all feature
sets derived from both Musk and AIS data sets considering the number
of large outlier scores assigned. The results also highlight that the
choice of the parameter MinPts is crucial for the performance of the
OPTICS-OF. On all feature sets, multiple values were tried for MinPts,
and in both cases, the most relevant results were considered to be for the
values where OPTICS-OF assigned fewer large outlier scores. Whether
this phenomenon could be used as a way to identify good choices for
the value of MinPts automatically requires further research.

A deep autoencoder and OPTICS-OF encoding analysis were
applied on a real-life AIS data set containing ship trajectories with the
goal of using the method to identify anomalous ship trajectories. Two
distinct feature sets were derived from the raw AIS data. Reconstruction
error successfully identified a large number of anomalous trajectories
from both feature sets. OPTICS-OF was successful on other data set
where it identified a set of anomalies distinct from the ones identified by
reconstruction error. On the other data set, OPTICS-OF miss-classified
too many cases to have been considered useful. In general, the findings
of the method on the AIS data set show promising results and show
potential for further research.

The results on Musk data set showed that there is a correlation
of percentage anomalies in the training set and the performance of the
trained model on anomaly detection task. The dependency between
performance and the anomaly free training set provides a potential
application for deep autoencoder and OPTICS-OF encoding analysis
to be used to both identify anomalies in a data set and also be used to

clean training data from anomalies.

68

A Musk Data Numeric Results

Table 1: Architecture Analysis: Decoder Size Compar-
isons on Autoencoder with Encoding Size 8 on Musk Data
Set

Decoder Size | Test MSE | OPTICS-OF Precision | Reconstruction Error Precision

output 0.015 0.196 0.897
output + 32 0.008 0.196 0.639
output + 64 0.007 0.175 0.546
output + 96 0.007 0.170 0.784
output + 252 0.005 0.149 0.711

Table 2: Training Losses on Musk Data Set

Anomalies Train/Test ‘ Encoding | Train MSE | Test MSE

3 0.022 0.030

6 0.016 0.025

8 0.013 0.023

0% / 100% 12 0.009 0.018
16 0.007 0.017

24 0.004 0.012

48 0.002 0.008

96 0.001 0.006

3 0.023 0.027

6 0.016 0.019

8 0.013 0.015

40% / 60% 12 0.009 0.010
16 0.007 0.008

24 0.004 0.005

48 0.001 0.002

96 0.001 0.001

3 0.024 0.024

6 0.017 0.017

80% / 20% 69

8 0.014 0.014
12 0.009 0.010
16 0.007 0.007
24 0.004 0.004
48 0.002 0.002
96 0.001 0.001

3 0.024 0.023

6 0.017 0.017

8 0.014 0.014

100% / 0% 12 0.009 0.009
16 0.007 0.007
24 0.004 0.004
48 0.002 0.002
96 0.001 0.001

Table 3: Reconstruction Error Precision on Musk Data

Set

Anomalies Train/Test ‘ Encoding | Precision

3 1.000
6 1.000

8 1.000

0% / 100% 12 1.000
16 1.000

24 1.000

48 1.000

96 1.000

3 1.000

6 1.000

8 0.876

40% / 60% 12 0.536
16 0.649

24 0.845

48 1.000

70

96 0.918

3 1.000

6 0.052

8 0.052

80% / 20% 12 0.278
16 0.361

24 0.577

48 0.897

96 0.588

3 0.835

6 0.031

8 0.052

100% / 0% 12 0.340
16 0.258

24 0.608

48 0.649

96 0.649

Table 4: OPTICS-OF Precisions on Musk Data Set

Encoding | MinPts ‘

0% | 40% | 80% | 100%

71

1 0.113 0.113 0.124 0.134

2 0.113 0.258 0.196 0.278

3 0.062 0.186 0.144 0.103

3 4 0.175 0.196 0.155 0.165
) 0.165 0.062 0.247 0.196

7 0.144 0.093 0.124 0.124

14 0.155 0.000 0.062 0.000

1 0.144 0.124 0.134 0.103

2 0.227 0.227 0.155 0.216

3 0.103 0.093 0.093 0.062

6 4 0.155 0.124 0.165 0.103
) 0.155 0.124 0.237 0.227

7 0.206 0.134 0.103 0.155

14 0.237 0.052 0.052 0.041

1 0.124 0.124 0.124 0.144

2 0.196 0.237 0.247 0.237

3 0.144 0.113 0.124 0.186

8 4 0.186 0.134 0.165 0.278
) 0.144 0.258 0.134 0.247

7 0.124 0.134 0.113 0.134

14 0.103 0.052 0.031 0.031

1 0.093 0.124 0.103 0.113

2 0.237 0.258 0.247 0.247

3 0.103 0.237 0.206 0.144

12 4 0.196 0.186 0.196 0.144
) 0.206 0.155 0.175 0.134

7 0.165 0.113 0.124 0.144

14 0.175 0.031 0.031 0.031

1 0.124 0.103 0.113 0.124

2 0.237 0.247 0.227 0.227

3 0.186 0.227 0.093 0.206

16 4 0.227 0.196 0.155 0.196
5) 0.144 0.216 0.165 0.237

7 0.124 0.175 0.144 0.227

14 0.041 0.031 0.031 0.031

1 0.134 0.144 0.113 0.113

2 0.196 0.247 0.216 0.227

3 0.237 0.289 0.299 0.216

24 4 0.237 0.309 0.289 0.289
) 0.155 0.237 0.289 0.196

7 0.093 0.206 0.124 0.113

14 0.041 0.031 0.031 0.031

1 0.124 0.124 0.124 0.134

2 0.227 0.216 0.216 0.258

3 0.237 0.165 0.134 0.175

48 4 0.196 0.155 0.155 0.206
) 0.155 0.206 0.175 0.113

7 0.072 0.124 0.082 0.082

72

14 0.052 0.031 0.062 0.062

1 0.134 0.134 0.155 0.134

2 0.216 0.278 0.278 0.258

3 0.165 0.206 0.186 0.186

96 4 0.216 0.186 0.186 0.175
) 0.155 0.134 0.134 0.155

7 0.082 0.062 0.124 0.196

14 0.062 0.093 0.093 0.103

Table 5: Combined Outlier Score Precisions on Musk
Data Set

Encoding | MinPts | 0% | 40% | 80% | 100%

1 0.990 1.000 1.000 0.845

2 1.000 0.990 1.000 0.845

3 1.000 0.990 1.000 0.835

3 4 1.000 0.979 1.000 0.835
) 1.000 0.979 1.000 0.835

7 0.928 0.959 1.000 0.835

14 0.918 0.918 0.804 0.825

1 1.000 1.000 0.062 0.041

2 1.000 1.000 0.093 0.082

3 0.876 0.959 0.082 0.093

6 4 0.897 1.000 0.113 0.134
) 0.897 0.990 0.165 0.186

7 0.969 1.000 0.124 0.103

14 0.918 0.897 0.062 0.041

1 0.990 0.876 0.093 0.082

2 0.990 0.876 0.113 0.103

3 0.918 0.835 0.072 0.072

8 4 0.948 0.856 0.093 0.103
5 0.969 0.856 0.113 0.062

7 0.928 0.866 0.082 0.103

14 0.825 0.670 0.031 0.031

73

1 0.990 0.536 0.289 0.361

2 0.990 0.577 0.309 0.371

3 0.938 0.505 0.309 0.351

12 4 0.918 0.526 0.330 0.330
) 0.959 0.526 0.320 0.340

7 0.969 0.546 0.299 0.340

14 0.938 0.474 0.175 0.320

1 1.000 0.660 0.361 0.268

2 1.000 0.660 0.361 0.320

3 0.959 0.680 0.351 0.258

16 4 0.990 0.660 0.330 0.278
) 0.938 0.660 0.330 0.278

7 0.969 0.660 0.351 0.278

14 0.928 0.567 0.268 0.227

1 1.000 0.845 0.588 0.608

2 1.000 0.845 0.588 0.608

3 0.979 0.835 0.577 0.598

24 4 0.979 0.835 0.608 0.598
) 1.000 0.835 0.577 0.588

7 1.000 0.845 0.577 0.598

14 0.990 0.629 0.577 0.536

1 1.000 1.000 0.897 0.649

2 1.000 1.000 0.897 0.660

3 1.000 0.948 0.825 0.649

48 4 0.990 0.928 0.794 0.598
) 0.990 0.979 0.845 0.629

7 0.990 0.928 0.722 0.526

14 0.948 0.845 0.639 0.526

1 1.000 0.928 0.598 0.649

2 1.000 0.938 0.629 0.680

3 1.000 0.907 0.588 0.701

96 4 1.000 0.866 0.608 0.711
) 1.000 0.918 0.619 0.670

7 0.990 0.670 0.485 0.485

74

14 | 0918| 0546 | 0.474| 0.495

75

B AIS Data Location Wise Features Numeric Re-

sults

Table 6: Training Losses on Location Wise Features

Encoding Train Test
2 0.005 341 0.005 687
4 0.001 386 0.001 560
8 0.000371 0.000 381
16 0.000 422 0.000436
24 0.000 389 0.000401
48 0.000371 0.000 381
96 0.000 335 0.000 342

Table 7: Reconstruction Control Data on Location Wise

Features
Encoding \ 0 \ 1 \ 2 \ 3 \ 4 \ 5
2 0.133 0.450 0.587 0.509 0.223 0.158
4 0.018 0.142 0.130 0.057 0.037 0.032
8 0.001 0.850 0.744 0.585 0.364 0.185
16 0.001 0.862 0.692 0.611 0.381 0.287
24 0.001 0.819 0.669 0.562 0.366 0.350
48 0.002 0.825 0.717 0.706 0.440 0.415
96 0.003 0.789 0.720 0.542 0.355 0.485

Table 8 OPTICS-OF on AIS Data Location Wise Fea-

tures
Encoding |[MinPts| 0 | 1 | 2 | 3 | 4 | 5
0372 | 0.175| 0372] 0.180] 0.225| 0.016
2 0.048 | 0.445| 0.548 | 0.065| 0.075| 0.015
3 0.378 | 0.197| 0.397| 0.087 | 0.050 | 0.018

76

4 0.203 0.148 0.366 0.076 0.124 0.002
) 0.164 0.151 0.562 0.069 0.124 0.002
7 0.178 0.335 0.929 0.106 0.097 0.026
14 0.220 0.425 0.297 0.668 0.027 0.933
1 0.038 0.153 0.137 0.024 0.192 0.425
2 0.034 0.197 0.159 0.025 0.017 0.038
3 0.034 0.124 0.164 0.040 0.022 0.052
4 4 0.037 0.084 0.156 0.042 0.025 0.032
) 0.039 0.085 0.190 0.050 0.026 0.034
7 0.049 0.089 0.194 0.532 0.065 0.033
14 0.124 0.180 0.332 0.256 0.120 0.079
1 0.125 0.452 0.452 0.065 0.010 0.452
2 0.039 0.510 0.601 0.562 0.016 0.140
3 0.040 0.443 0.350 0.362 0.018 0.112
8 4 0.057 0.386 0.320 0.423 0.000 0.135
) 0.089 0.322 0.283 0.283 0.023 0.176
7 0.102 0.339 0.261 0.210 0.032 0.166
14 0.081 0.204 0.055 0.045 0.040 0.175
1 0.025 0.474 0.474 0.072 0.117 0.286
2 0.020 0.527 0.527 0.272 0.138 0.099
3 0.023 0.475 0.401 0.312 0.122 0.115
16 4 0.028 0.423 0.370 0.402 0.131 0.076
5 0.037 0.402 0.446 0.407 0.105 0.104
7 0.045 0.362 0.412 0.241 0.095 0.104
14 0.059 0.343 0.315 0.049 0.046 0.153
1 0.194 0.487 0.487 0.081 0.033 0.270
2 0.024 0.491 0.689 0.491 0.040 0.157
3 0.028 0.566 0.326 0.671 0.113 0.199
24 4 0.032 0.462 0.409 0.513 0.155 0.228
) 0.038 0.449 0.423 0.354 0.184 0.179
7 0.043 0.334 0.086 0.317 0.135 0.155
14 0.056 0.287 0.048 0.048 0.059 0.178
1 0.083 0.489 0.489 0.100 0.102 0.188
2 0.027 0.582 0.780 0.532 0.041 0.121
3 0.040 0.504 0.381 0.381 0.142 0.061
48

77

4 0.052 0.459 0.403 0.259 0.204 0.049
5 0.053 0.393 0.369 0.276 0.130 0.071
7 0.051 0.339 0.087 0.054 0.102 0.071
14 0.055 0.290 0.049 0.047 0.057 0.122
1 0.119 0.500 0.500 0.098 0.301 0.111
2 0.030 0.428 0.428 0.299 0.130 0.028
3 0.043 0.528 0.397 0.373 0.127 0.026
96 4 0.049 0.426 0.320 0.272 0.152 0.038
5 0.052 0.371 0.299 0.033 0.112 0.042
7 0.051 0.311 0.294 0.049 0.092 0.042
14 0.053 0.315 0.055 0.050 0.050 0.044
Table 9: Combined Score on AIS Data Location Wise
Features
Encoding | MinPts ‘ 0 1 ‘ 2 3 4 5
1 0.133 0.468 0.594 0.471 0.224 0.159
2 0.133 0.635 0.703 0.396 0.224 0.159
3 0.134 0.472 0.598 0.408 0.225 0.159
2 4 0.134 0.442 0.578 0.402 0.225 0.136
5 0.134 0.443 0.706 0.398 0.225 0.159
7 0.134 0.558 0.955 0.420 0.226 0.159
14 0.134 0.602 0.519 0.767 0.225 0.159
1 0.019 0.144 0.131 0.058 0.038 0.033
2 0.018 0.143 0.131 0.058 0.037 0.032
3 0.018 0.144 0.131 0.058 0.038 0.033
4 4 0.019 0.144 0.132 0.058 0.039 0.033
5 0.019 0.144 0.132 0.058 0.039 0.033
7 0.019 0.145 0.133 0.059 0.039 0.033
14 0.019 0.144 0.132 0.059 0.039 0.033
1 0.001 0.691 0.691 0.504 0.370 0.186
2 0.001 0.720 0.765 0.745 0.368 0.186
3 0.002 0.690 0.643 0.648 0.368 0.187
8 4 0.002 0.661 0.632 0.680 0.000 0.188

78

5 0.002 0.632 0.614 0.614 0.369 0.188

7 0.002 0.641 0.604 0.583 0.368 0.187

14 0.002 0.584 0.519 0.514 0.384 0.190

1 0.001 0.690 0.690 0.477 0.387 0.289

2 0.001 0.715 0.715 0.578 0.388 0.289

3 0.001 0.688 0.648 0.602 0.388 0.289

16 4 0.001 0.656 0.630 0.645 0.390 0.290
) 0.001 0.648 0.672 0.650 0.391 0.290

7 0.001 0.627 0.654 0.569 0.392 0.290

14 0.002 0.613 0.600 0.486 0.399 0.293

1 0.001 0.690 0.690 0.470 0.374 0.356

2 0.002 0.689 0.799 0.689 0.378 0.360

3 0.002 0.729 0.596 0.788 0.377 0.359

24 4 0.002 0.671 0.642 0.698 0.380 0.361
) 0.002 0.666 0.653 0.615 0.381 0.361

7 0.002 0.602 0.486 0.595 0.382 0.362

14 0.002 0.575 0.476 0.476 0.384 0.367

1 0.003 0.716 0.716 0.529 0.449 0.423

2 0.002 0.759 0.894 0.733 0.452 0.424

3 0.003 0.721 0.663 0.663 0.456 0.428

48 4 0.004 0.703 0.675 0.610 0.461 0.433
) 0.003 0.671 0.660 0.620 0.464 0.435

7 0.003 0.647 0.541 0.528 0.465 0.434

14 0.003 0.626 0.531 0.529 0.465 0.435

1 0.004 0.713 0.713 0.517 0.359 0.523

2 0.004 0.679 0.679 0.618 0.363 0.493

3 0.004 0.731 0.667 0.656 0.364 0.493

96 4 0.005 0.683 0.632 0.609 0.367 0.503
) 0.005 0.656 0.623 0.502 0.366 0.507

7 0.004 0.629 0.621 0.511 0.364 0.508

14 0.004 0.627 0.519 0.516 0.369 0.511

79

C AIS Data Location Agnostic Features Numeric
Results

Table 10: Training Losses on Location Agnostic Features

Encoding Train Test
2 0.000 864 0.000 938
4 0.000676 0.000 735
8 0.000518 0.000 577
16 0.032 726 0.032934
24 0.016 251 0.016 384
48 0.000 481 0.000 538
96 0.016 197 0.016 327

Table 11: Reconstruction Control Data on Location Ag-
nostic Features

Encoding| 0 | 1 | 2 | 3 | 4 | 5 | 6
2 0.006 | 0.602| 0304] 0204] 0224] 0728| 0.044
4 0.000 | 0.632| 0493 | 0534| 0262| 0888| 0.062
8 0.005| 0582| 0565| 0613 0281| 0.749| 0.056
16 0.011| 0514| 0490 | 0533| 0385| 0.609| 0.100
24 0.005| 0501| 0524| 0571 0367| 0.622] 0.098
48 0.005 | 0527 | 0.506| 0.565| 0244| 0.667| 0.054
96 0.006 | 0.496| 0.539| 0.560| 0.349| 0619 0.101

Table 12: OPTICS-OF on AIS Data Location Agnostic

Features
Encoding |[MinPts| 0 | 1 | 2 | 3 | 4 | 5 | 6
0.405| 0405| 0405| 0405| 0405| 0405| 0.361
2 0.560 | 0.613| 0.915| 0544 | 0518 | 0.260 | 0.587
3 0.080 | 0.692 | 0.584| 0.800| 0.592| 0.299| 0.453

80

4 0.173 0.165 0.565 0.740 0.321 0.297 0.248
) 0.057 0.160 0.846 0.542 0.471 0.305 0.215
7 0.049 0.097 0.772 0.562 0.400 0.442 0.151
14 0.037 0.047 0.529 0.563 0.415 0.919 0.121
1 0.404 0.404 0.158 0.153 0.056 0.081 0.215
2 0.252 0.016 0.078 0.786 0.187 0.743 0.243
3 0.874 0.016 0.094 0.943 0.933 0.664 0.247
4 4 0.670 0.007 0.130 0.981 0.325 0.420 0.188
) 0.417 0.003 0.243 0.985 0.458 0.594 0.143
7 0.018 0.005 0.411 0.941 0.259 0.936 0.105
14 0.001 0.025 0.364 0.798 0.121 0.778 0.136
1 0.404 0.341 0.042 0.423 0.423 0.107 0.037
2 0.982 0.490 0.599 0.006 0.841 0.237 0.030
3 0.979 0.606 0.441 0.030 0.760 0.306 0.035
8 4 0.931 0.527 0.453 0.134 0.996 0.164 0.060
5 0.882 0.243 0.468 0.175 0.992 0.120 0.078
7 0.082 0.083 0.457 0.544 0.881 0.090 0.123
14 0.002 0.073 0.629 0.760 0.653 0.051 0.121
1 0.420 0.420 0.420 0.420 0.420 0.420 0.065
2 0.907 0.638 0.892 0.470 0.454 0.539 0.120
3 0.839 0.496 0.030 0.992 0.715 0.925 0.191
16 4 0.987 0.272 0.030 0.608 0.705 0.240 0.280
5 0.787 0.258 0.074 0.140 0.766 0.188 0.441
7 0.527 0.116 0.140 0.128 0.444 0.155 0.428
14 0.273 0.054 0.825 0.805 0.536 0.448 0.381
1 0.422 0.422 0.422 0.422 0.422 0.012 0.019
2 0.782 0.147 0.656 0.795 0.643 0.019 0.043
3 0.748 0.156 0.936 0.629 0.446 0.047 0.165
24 4 0.363 0.085 0.297 0.941 0.536 0.127 0.204
) 0.035 0.109 0.168 0.581 0.395 0.204 0.303
7 0.004 0.146 0.209 0.232 0.363 0.550 0.319
14 0.001 0.177 0.788 0.691 0.592 0.408 0.272
1 0.435 0.170 0.435 0.435 0.435 0.435 0.137
2 0.959 0.598 0.014 0.803 0.426 0.672 0.060
3 0.761 0.765 0.007 0.628 0.787 0.797 0.156
48

81

4 0.785 0.750 0.092 0.454 0.633 0.331 0.161
5 0.696 0.408 0.119 0.531 0.496 0.414 0.177
7 0.695 0.270 0.647 0.623 0.487 0.681 0.215
14 0.388 0.040 0.765 0.824 0.363 0.721 0.484
1 0.137 0.295 0.455 0.455 0.455 0.455 0.023
2 0.692 0.120 0.302 0.967 0.902 0.835 0.032
3 0.526 0.065 0.010 0.966 0.880 0.904 0.063
96 4 0.717 0.051 0.030 0.614 0.622 0.888 0.210
5 0.053 0.047 0.020 0.586 0.599 0.562 0.181
7 0.026 0.048 0.064 0.568 0.556 0.552 0.200
14 0.010 0.122 0.213 0.846 0.399 0.597 0.206
Table 13: Combined Score on AIS Data Location Agnostic
Features
Encoding | MinPts ‘ 0 1 2 3 4 5 6
1 0.006 0.620 0.307 0.297 0.227 0.620 0.045
2 0.006 0.751 0.304 0.294 0.224 0.525 0.044
3 0.006 0.820 0.422 0.405 0.286 0.555 0.049
2 4 0.006 0.409 0.415 0.397 0.280 0.550 0.048
5 0.006 0.401 0.413 0.396 0.283 0.556 0.048
7 0.007 0.271 0.423 0.409 0.305 0.659 0.057
14 0.009 0.139 0.411 0.399 0.307 0.954 0.064
1 0.001 0.603 0.440 0.438 0.264 0.391 0.062
2 0.001 0.083 0.247 0.873 0.367 0.846 0.074
3 0.001 0.094 0.285 0.966 0.358 0.791 0.071
4 4 0.001 0.039 0.336 0.988 0.361 0.626 0.074
5 0.001 0.018 0.485 0.990 0.362 0.745 0.078
7 0.001 0.037 0.607 0.960 0.342 0.957 0.071
14 0.001 0.139 0.559 0.865 0.324 0.851 0.072
1 0.006 0.551 0.348 0.610 0.283 0.390 0.058
2 0.006 0.670 0.750 0.043 0.397 0.467 0.065
3 0.006 0.757 0.635 0.142 0.397 0.526 0.066
8 4 0.006 0.699 0.642 0.340 0.389 0.383 0.065

82

) 0.006 0.468 0.650 0.403 0.376 0.333 0.063

7 0.006 0.272 0.645 0.709 0.374 0.283 0.062

14 0.006 0.239 0.781 0.866 0.380 0.191 0.064

1 0.011 0.593 0.593 0.593 0.593 0.593 0.100

2 0.011 0.745 0.922 0.623 0.613 0.672 0.105

3 0.011 0.640 0.269 0.994 0.799 0.947 0.106

16 4 0.011 0.472 0.263 0.718 0.788 0.449 0.107
5 0.011 0.458 0.317 0.371 0.832 0.407 0.108

7 0.011 0.347 0.367 0.356 0.592 0.379 0.108

14 0.012 0.284 0.880 0.865 0.658 0.589 0.111

1 0.005 0.593 0.593 0.593 0.593 0.303 0.098

2 0.006 0.381 0.764 0.860 0.754 0.165 0.104

3 0.006 0.386 0.955 0.737 0.606 0.290 0.102

24 4 0.006 0.327 0.487 0.960 0.669 0.362 0.101
) 0.005 0.344 0.390 0.698 0.560 0.417 0.102

7 0.005 0.368 0.419 0.436 0.535 0.679 0.102

14 0.006 0.392 0.860 0.791 0.718 0.576 0.105

1 0.005 0.429 0.617 0.617 0.245 0.617 0.054

2 0.005 0.744 0.099 0.881 0.324 0.796 0.060

3 0.005 0.860 0.039 0.772 0.337 0.881 0.065

48 4 0.005 0.854 0.262 0.651 0.341 0.551 0.067
) 0.005 0.616 0.311 0.708 0.342 0.621 0.069

7 0.006 0.494 0.786 0.770 0.345 0.809 0.072

14 0.005 0.202 0.849 0.890 0.304 0.819 0.057

1 0.006 0.496 0.615 0.615 0.615 0.615 0.101

2 0.007 0.357 0.499 0.976 0.930 0.882 0.107

3 0.007 0.305 0.110 0.977 0.918 0.933 0.109

96 4 0.007 0.288 0.259 0.728 0.735 0.924 0.110
) 0.007 0.275 0.150 0.709 0.719 0.691 0.111

7 0.007 0.276 0.298 0.698 0.688 0.686 0.111

14 0.007 0.354 0.429 0.897 0.574 0.723 0.108

83

References

[AAB*+15]

[ABKS99]

[AC15]

[Aggl7]

[AS15]

[BCMLK16]

[BKNS99]

Abadi, Martin, Agarwal, Ashish, Barham, Paul,
et al.: TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. http://tensorflow.
org/, Software available from tensorflow.org.

Ankerst, Mihael, Breunig, Markus M., Kriegel, Hans
Peter, and Sander, Jorg: Optics: Ordering points
to identify the clustering structure. SIGMOD Rec.,
28(2):49-60, June 1999, ISSN 0163-5808. https:
//doi.org/10.1145/304181.304187.

An, Jinwon and Cho, Sungzoon: Variational autoen-
coder based anomaly detection using reconstruction
probability. Special Lecture on IE, 2(1):1-18, 2015.

Aggarwal, Charu C.: Qutlier Analysis. Springer
International Publishing AG, 2017.

Aggarwal, Charu C. and Sathe, Saket: Theoreti-
cal foundations and algorithms for outlier ensem-
bles. SIGKDD Explor. Newsl., 17(1):24-47, Septem-
ber 2015, ISSN 1931-0145. https://doi.org/10.
1145/2830544 .2830549.

Bontemps, Loic, Cao, Van Loi, McDermott, James,
and Le-Khac, Nhien An: Collective anomaly detec-
tion based on long short-term memory recurrent neu-
ral networks. In Dang, Tran Khanh, Wagner, Roland,
Kiing, Josef, Thoai, Nam, Takizawa, Makoto, and
Neuhold, Erich (editors): Future Data and Security
Engineering, pages 141-152, Cham, 2016. Springer
International Publishing, ISBN 978-3-319-48057-2.

Breunig, Markus M., Kriegel, Hans Peter, Ng,
Raymond T., and Sander, Jorg: Optics-of: Iden-
tifying local outliers. In Zytkow, Jan M. and

84

http://tensorflow.org/
http://tensorflow.org/
https://doi.org/10.1145/304181.304187
https://doi.org/10.1145/304181.304187
https://doi.org/10.1145/2830544.2830549
https://doi.org/10.1145/2830544.2830549

[Bom06]

[Bral6]

[Cla94]

[CVMGT14]

(GaJ15]

[GBC16]

[GMfMPIfMitS14]

Rauch, Jan (editors): Principles of Data Min-
ing and Knowledge Discovery, pages 262-270,
Berlin, Heidelberg, 1999. Springer Berlin Heidelberg,
ISBN 978-3-540-48247-5.

Associative Learning of Vessel Motion Patterns
for Maritime Situation Awareness, July 2006,
ISBN 1-4244-0953-5.

Computer age statistical inference Algorithms, Ev-
idence, and Data Science. Cambridge University
Press, 2016.

Clarkson, Kenneth L.: An algorithm for approx-
imate closest-point queries. In Proceedings of
the Tenth Annual Symposium on Computational
Geometry, SCG 94, page 160-164, New York,
NY, USA, 1994. Association for Computing Ma-
chinery, ISBN 0897916484. https://doi.org/10.
1145/177424.177609.

Cho, Kyunghyun, Van Merriénboer, Bart, Gul-
cehre, Caglar, Bahdanau, Dzmitry, Bougares, Fethi,
Schwenk, Holger, and Bengio, Yoshua: Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

An Introduction to Statistical Learning with Appli-
cations in R. Springer Science+Business Media New
York, 2015.

Goodfellow, Tan, Bengio, Yoshua, and Courville,
Aaron: Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Sciences, Razvan Pascanu from Universite de Mon-
treal, Kyunghyun Cho from Universite de Montreal
Yoshua Bengio from Universite de Montreal Guido

85

https://doi.org/10.1145/177424.177609
https://doi.org/10.1145/177424.177609
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Montufar from Max Planck Institute for Mathemat-
ics in the: Ont he number of linear regions of deep

neural networks, 2014.

[HHS17] Hoffer, Elad, Hubara, Itay, and Soudry, Daniel:
Train longer, generalize better: closing the general-

ization gap in large batch training of neural networks.
In NIPS, 2017.

[HS13] Hermans, Michiel and Schrauwen, Benjamin:
Training and analysing deep recurrent neural
networks. In Burges, C. J. C., Bottou, L.,
Welling, M., Ghahramani, Z., and Weinberger,
K. Q. (editors): Advances in Neural Information
Processing Systems 26, pages 190-198. Curran Asso-
ciates, Inc., 2013. http://papers.nips.cc/paper/
bl66-training-and-analysing-deep-recurrent-neural-networks.
pdf.

[HZRS15] He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and
Sun, Jian: Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
In Proceedings of the IEEFE international conference
on computer vision, pages 1026-1034, 2015.

[JZ7X13] Jiang, Xiaojuan, Zhang, Yinghua, Zhang, Wensheng,
and Xiao, Xian: A novel sparse auto-encoder for deep
unsupervised learning. In 2013 Sizth International

Conference on Advanced Computational Intelligence
(ICACI), pages 256-261. IEEE, 2013.

[KB14] Kingma, Diederik P and Ba, Jimmy: Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[Kow12] Maritime — anomaly detection using Gaus-
stan Process active learning, January 2012,

ISBN 978-1-4673-0417-7.

86

http://papers.nips.cc/paper/5166-training-and-analysing-deep-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/5166-training-and-analysing-deep-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/5166-training-and-analysing-deep-recurrent-neural-networks.pdf

[LZW18]

IML20]

[NS16]

INVH*+18]

[Pan14]

[PeF12]

[PeN10]

[PGC*17]

[PVD*17]

Li, Feng, Zuraday, JM, and Wu, Wei: Sparse rep-
resentation learning of data by autoencoders with
[sub 1/2" reqularization. Neural Network World,
28(2):133-147, 2018.

Maija Luotonen, Helsingin Sanomat: Hollanti-
lainen rahtialus ajelehti kohti rannikkoa selkimerelld,
latvan kone saatiin tuntien jalkeen kuntoon. January
2020.

Nanduri, Anvardh and Sherry, Lance: Anomaly de-
tection in aircraft data using recurrent neural net-
works (rnn). pages 5C2—1, April 2016.

Nguyen, D., Vadaine, R., Hajduch, G., Garello, R.,
and Fablet, R.: A multi-task deep learning architec-
ture for maritime surveillance using ais data streams.
In 2018 IEEE 5th International Conference on Data
Science and Advanced Analytics (DSAA), pages 331
340, Oct 2018.

Introduction to Data Mining. Pearson Education
Limited, 2014.

Machine Learning The Art and Science of Algo-
rithms that Make Sense of Data. Cambridge Univer-
sity Press, 2012.

Artificial Intelligence A Modern Approach. Pearson
Education, Inc., publishing as Prentice Hall, 2010.

Paszke, Adam, Gross, Sam, Chintala, Soumith,
Chanan, Gregory, Yang, Edward, DeVito, Zachary,
Lin, Zeming, Desmaison, Alban, Antiga, Luca, and

Lerer, Adam: Automatic differentiation in pytorch.
2017.

Protopapadakis, Eftychios, Voulodimos, Athana-
sios, Doulamis, Anastasios, Doulamis, Nikolaos,

87

[Ray16]

RiS1§]

[Ros58|

[SKL17]

[YZZ+18]

[ZP17]

Dres, Dimitrios, and Bimpas, Matthaios: Stacked au-
toencoders for outlier detection in over-the-horizon
radar signals. Computational intelligence and neu-
roscience, 2017, 2017.

Rayana, Shebuti: ODDS library, 2016. http://

odds.cs.stonybrook. edu.

Reinforcement Learning An Introduction. The MIT
Press, 2018.

Rosenblatt, Frank: The perceptron: A probabilistic
model for information storage and organization in
the brain. Psychological Review, 65:386—408, 1958.

Smith, Samuel L., Kindermans, Pieter-Jan, and Le,
Quoc V.: Don’t decay the learning rate, increase
the batch size. CoRR, abs/1711.00489, 2017. http:
//arxiv.org/abs/1711.00489.

Yao, Di, Zhang, Chao, Zhu, Zhihua, Hu, Qin,
Wang, Zheng, Huang, Jianhui, and Bi, Jing-
ping: Learning deep representation for trajectory
clustering. FExpert Systems, 35(2):e12252, 2018.
https://onlinelibrary.wiley.com/doi/abs/

10.1111/exsy. 12252, 12252 10.1111/exsy.12252.

Zhou, Chong and Paffenroth, Randy C: Anomaly de-
tection with robust deep autoencoders. In Proceedings
of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
665-674, 2017.

88

http://odds.cs.stonybrook.edu
http://odds.cs.stonybrook.edu
http://arxiv.org/abs/1711.00489
http://arxiv.org/abs/1711.00489
https://onlinelibrary.wiley.com/doi/abs/10.1111/exsy.12252
https://onlinelibrary.wiley.com/doi/abs/10.1111/exsy.12252

	Introduction
	Anomaly Detection and Maritime Traffic
	Goals of the Research
	Structure of the Thesis

	Machine Learning
	Types of Learning and Problems
	Machine Learning Model
	Loss Function
	Training Loop
	Performance evaluation
	Sequence Prediction Problems

	Neural Networks
	Artificial neuron
	Activation functions
	Perceptron network
	Feed-Forward Neural Network
	Recurrent neural network
	Long Short Term Memory Networks

	Autoencoder Architecture
	Encoder - Decoder Structure and an Autoencoder
	Sparse Autoencoder

	Anomaly Detection using an Autoencoder and Density Based Outlier Scores
	Anomaly Detection
	Autoencoding as a Model-Based Technique
	Density Based Technique for Analysing of Encodings
	OPTICS-OF Density Based Technique
	Combining Outlier Scores

	Overview of Data and Feature Selection
	Musk Anomaly Detection Benchmark Data Set
	Maritime Anomaly Detection using AIS Data
	Cargo Ship Engine Failure as Known Anomaly

	Methodology
	Research design
	Normalization, Train - Test Data Split, Loss Function and Hyperparameters
	Autoencoder with a Deep Encoder and a Shallow Decoder
	Machine Learning Model Implementations

	Results and Discussion
	Musk Data Set
	AIS Data Set

	Conclusions
	Musk Data Numeric Results
	AIS Data Location Wise Features Numeric Results
	AIS Data Location Agnostic Features Numeric Results

