
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2883–2889
Brussels, Belgium, October 31 - November 4, 2018. c©2018 Association for Computational Linguistics

2883

An Encoder-Decoder Approach to the Paradigm Cell Filling Problem

Miikka Silfverberg
Department of Linguistics

University of Colorado / University of Helsinki
first.last@colorado.edu

Mans Hulden
Department of Linguistics

University of Colorado
first.last@colorado.edu

Abstract

The Paradigm Cell Filling Problem in mor-
phology asks to complete word inflection ta-
bles from partial ones. We implement novel
neural models for this task, evaluating them on
18 data sets in 8 languages, showing perfor-
mance that is comparable with previous work
with far less training data. We also publish a
new dataset for this task and code implement-
ing the system described in this paper.1

1 Introduction

An important learning question in morphology—
both for NLP and models of language
acquisition—is the so-called Paradigm Cell
Filling Problem (PCFP). So dubbed by Ackerman
et al. (2009), this problem asks how it is that
speakers of a language can reliably produce
inflectional forms of most lexemes without ever
witnessing those forms before. For example, a
Finnish noun or adjective can be inflected in 2,263
ways if one includes case forms, number, and
clitics (Karlsson, 2008). However, it is unlikely
that a Finnish speaker would have heard all forms
for even a single, highly frequent lexical item. It
is also unlikely that all 2,263 forms are found in
the aggregate of all the witnessed inflected forms
over different lexemes and speakers must be able
to assess the felicity of, and possibly produce
such inflectional combinations they have never
witnessed for any noun or adjective. Figure 1
illustrates the PCFP.

This paper investigates PCFP in three different
settings: (1) when we know n > 1 randomly se-
lected forms in each of a number of inflection ta-
bles, (2) when we know a set of frequent word
forms in each table (this most closely resembles
an L1 language learning setting), and finally (3)

1https://github.com/mpsilfve/pcfp-data

when we know exactly n = 1 word form from
each table.

We treat settings (1) and (2) as traditional
morphological reinflection tasks (Cotterell et al.,
2016) as explained in Section 2. In contrast, set-
ting (3) is substantially more challenging because
it cannot be handled using a traditional reinflec-
tion approach. To overcome this problem, we uti-
lize an adaptive dropout mechanism which will be
discussed in Section 2. This allows us to train the
reinflection system in a manner reminiscent of de-
noising autoencoders (Vincent et al., 2008).

pondrá

ponga haga

hiciera

… …

hablar

…

hablen

SBJV;PRS;3;SG

IND;FUT;3;SG

SBJV;PRS;3;SG

SBJV;PST;1;SG

NFIN SBJV;PRS;3;PL

…
SBJV;PRS;2;SGSBJV;PRS;2;SG SBJV;PRS;2;SG

SBJV;PST;1;SG SBJV;PST;1;SG

IND;FUT;3;SG IND;FUT;3;SG

NFINNFIN SBJV;PRS;3;PLSBJV;PRS;3;PL

SBJV;PRS;3;SGSBJV;PRS;1;SG SBJV;PRS;1;SGSBJV;PRS;1;SG

SBJV;PST;3;SGSBJV;PST;3;SG SBJV;PST;3;SG

Figure 1: Illustration of the PCFP using a fraction of Spanish
verb tables: given such partially filled paradigms, the task is
to fill in all the missing forms.

Related Work Neural models have recently
been shown to be highly competitive in many dif-
ferent tasks of learning supervised morphological
inflection (Faruqui et al., 2016; Kann and Schütze,
2016; Makarov et al., 2017; Aharoni and Gold-
berg, 2017) and derivation (Cotterell et al., 2017b).
Most current architectures are based on encoder-
decoder models (Sutskever et al., 2014), and usu-
ally contain an attention component (Bahdanau
et al., 2015).

The SIGMORPHON (Cotterell et al., 2016) and
CoNLL-SIGMORPHON (Cotterell et al., 2017a,
2018) shared tasks in recent years have explored
morphological inflection but not explicitly the
PCFP. In the 2017 task, participants were given
full paradigms—i.e. a listing of all forms—of
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lexemes during training after which they were
given incomplete paradigms which had to be com-
pleted at test time. This is a slightly unrealistic
setting in an L1-style learning scenario (Blevins
and Blevins, 2009) where arguably very few full
paradigms are ever witnessed and where general-
ization has to proceed on a number of very gappy
paradigms. Of course, such gaps form a distri-
bution where frequently used lexemes have fewer
gaps than infrequent ones, which we will attempt
to model in this work.

Silfverberg et al. (2018) evaluate an extension
to a linguistically informed symbolic paradigm
model based on stem extraction from the longest
common subsequence (LCS) shared among re-
lated forms (Ahlberg et al., 2014, 2015). While
the original LCS paradigm extraction method was
intended to learn from complete inflection ta-
bles (Hulden, 2014), Silfverberg et al. (2018)
present modifications to allow learning from in-
complete paradigms as well, and apply it to the
PCFP. Comparing against their results, shows that
our neural model consistently outperforms such a
subsequence-based learning model.

Kann et al. (2017) report results on so-called
multi-source reinflection in which several input
forms are used to generate one output form. This
task is related to the PCFP; however, Kann et al.
(2017) use full inflection tables for training. More-
over, their approach is applicable for PCFP only
when 3 or more forms are given in the input ta-
bles. Since this mostly excludes our experimental
settings, we do not compare to their system. Mal-
ouf (2016, 2017) documents an experiment with a
generator LSTM in completing inflection tables in
up to seven languages with either 10% or 40% of
table entries missing. Our work differs from this in
that Malouf gives as input a two-hot encoding of
both the lexeme and the desired slot during train-
ing and testing for which an inflection table is to be
completed, which means the system cannot com-
plete paradigms which it has not seen examples of
in the training data. By contrast, our system has
no notion of lexeme and we simply work from the
symbol strings which are collections of inflected
forms of a lexeme given in the test data which
may in principle be completely disjoint from train-
ing data lexemes. We use the Malouf system as a
baseline to compare against.

2 Encoder-Decoder Models for PCFP

We explore two different models for paradigm fill-
ing. The first model is applicable when n > 1
forms are given in each inflection table. When ex-
actly one (n = 1) form is given, we use another
model.

Case n>1 When more than one form is given
in training tables, PCFP can be treated as a mor-
phological reinflection task (Cotterell et al., 2016),
where the aim is to translate inflected word forms
and their tags into target word forms. For ex-
ample, a model would translate tried+PAST into
the present participle (PRES,PCPLE) form try-
ing. We adopt a common approach employed
by Kann and Schütze (2016) and many oth-
ers: we build a model which translates an input
word form, its tag and a target tag, for example
tried+PAST+PRES,PCPLE, into the target word
form trying.

Our model closely follows the formulation of
the encoder-decoder LSTM model for morpholog-
ical reinflection proposed by Kann and Schütze
(2016). We use a 1-layer bidirectional LSTM en-
coder for encoding the input word form into a se-
quence of state vectors and a 1-layer LSTM de-
coder with an attention mechanism over encoder
states for generating the output word form.

We form training pairs by using the given forms
in each table, i.e. take the cross-product of the
given forms and learn to reinflect each given form
in a table to another given form in the same table
as demonstrated in Figure 2.2 During test time,
we predict forms for missing slots based on each
of the given forms in the table and take a majority
vote of the results.3

Case n=1 When only one form is given in each
inflection table, we cannot train the model as a tra-
ditional reinflection model. The best we can do is
to train a model to reinflect forms into the same
form walked+PAST+PAST 7→ walked and then
try to apply this model for reinflection to fill in
missing forms walked+PAST+PRES,PCPLE 7→
walking. According to preliminary experiments,
this however leads to massive over-fitting and the
model simply learns to only copy input forms.

2Note that the CoNLL-SIGMORPHON data provides a
‘citation form’ that identifies each table; we do not use this
form and the model has no knowledge of it.

3When only two forms are given in the partial inflection
table, we randomly choose one of the resulting output forms
since the vote is always tied.
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augšanai   N,DAT,SG
augšanā    N,LOC,SG
augšana    N,NOM,SG
augšana    N,VOC,SG
augšanas   N,GEN,SG
augšanu    N,ACC,SG
augšanu    N,INST,SG

augšanu+N,ACC,SG+N,DAT,SG  ! augšanai
augšanai+N,DAT,SG+N,ACC,SG ! augšanu

Figure 2: Partial inflection table for the Latvian noun au-
gana ’growth’. From a partial inflection table with two given
forms, we get two training examples. With n given forms in
a table, we hence produce n(n− 1) training examples.

si l e y d es s ä
stem

g e r a m m t
r e s i g n e r

0.000.250.751.00 0.50

Figure 3: Language model confidences for a Finnish noun
(singular inessive of sileys ’smoothness’), a German past par-
ticiple (of rammen ’to ram’) and a French verb (infinitive
form of resigner ’to resign’). The figure demonstrates that
confidence is higher in the inflectional affixes than in the stem
in general. It is also high at the stem-affix boundary.

The idea for our approach in case n = 1 is
to first learn to segment word forms into a stem
and an affix, for example walk+ed. We then hide
the affix in the input form and learn to inflect. In
other words, we map the word form walked into
walk$$ and then learn a mapping walk$$+PAST
7→ walked. This model suffers less from over-
fitting and we can use it to find missing forms in
partial inflection tables.

Since we do not have access to segmented train-
ing data, we cannot directly train a segmentation
model. Instead, we use the forms in the train-
ing data to train an LSTM language model con-
ditioned on morphological tags. We then use the
language model for identifying which characters
belong to stems and which characters belong to
affixes.

As shown in Figure 3, the language model in
general gives higher confidence for predictions of
characters in the affix than in the word stem. Nev-
ertheless, it only gives a probabilistic segmenta-
tion into a stem and affix(es). Therefore, we do
not perform a deterministic segmentation. Instead
we use the language model to guide a character
dropout mechanism in our word inflection model.
When the language model is very confident, as in
the case of affix characters, we frequently drop
characters. In contrast, when the language model

Our baseline Malouf (2017)

FINNISH NOUNS 99.50 99.27 ±0.09
FRENCH VERBS 99.88 99.92± 0.02
IRISH NOUNS 85.11 85.69 ±1.71
KHALING VERBS 99.66 99.29 ±0.08
MALTESE VERBS 98.65 98.93 ±0.32
P. CHINANTEC VERBS 91.16 91.20 ±0.97
RUSSIAN NOUNS 95.90 96.34 ±0.96

Table 1: We reproduce experiments in Malouf (2017) using
our own implementation of the model. In contrast to Malouf
(2017), who used cross-validation, we train one system for
each language. Therefore, we only report standard deviation
for the results in Column 2.

is less confident, as in the case of stem characters,
we typically keep the character. Apart from this
adaptive dropout applied during training, our in-
flection system in case n = 1 is exactly the same
as in case n > 1.

More precisely, given an input word form,
which is a sequence of characters x = x1, ..., xT ,
the LSTM language model emits a probabil-
ity p(xt+1,ht,Ext ,Ey) for the next character
xt+1 based on the entire previous input sequence
x1, ..., xt. Here ht is the hidden state vector of
the language model at position t, E a joint tag
and character embedding and y the morphologi-
cal tag of the input word form. The embedding
vector Ey is in fact a sum of sub-tag embeddings.
For example, EPAST+PCPLE denotes EPAST+EPCPLE.
This allows us to handle combinations of sub-
tags which we have not seen in the training data.
Guided by the language model, we replace in-
put characters xt+1 during training of the rein-
flection system with a dropout character $ with
probability equal to language model confidence
p(xt+1,ht,Ext ,Ey).4

Baseline Model As a baseline model, we use the
neural system presented by Malouf (2016, 2017)
for solving PCFP. It is an LSTM generator which
is conditioned on the table number of the partial
inflection tables and the morphological tag index.
The model is trained to generate training word
forms in inflection tables. During testing, it can
then generate missing forms by conditioning on
morphological tags for the missing forms.

In order to assure fair comparison, we perform
the paradigm completion experiment described in
Malouf (2017), where 90% of the word forms in
the data set is used for training and the remaining
10% for testing. 5 As the results in Table 1 show,

4In practice, we pad input forms with end-of-sequence
characters in order to be able to drop x1 if needed.

5We perform the the experiments on the original data sets,



2886

our results very closely replicate those reported by
Malouf (2017).

Implementation details We use 1-layer bidirec-
tional LSTM encoders, decoders and generators
with embeddings and hidden states of size 100.
We train the language model for case n > 1 for 20
epochs and all other models for 60 epochs with-
out batching. We train 10 models for every lan-
guage and part-of-speech and apply majority vot-
ing to get the final output forms. All models were
implemented using DyNet (Neubig et al., 2017).

3 Data

We use UniMorph morphological paradigm data
in our experiments (Kirov et al., 2018). Uni-
morph data sets are crowd-sourced collections
of morphological inflection tables based on Wik-
tionary. We conduct experiments on noun and verb
paradigms from eight languages.6 Not all lan-
guages have 1,000 noun and verb tables. Hence,
our selection is not complete as seen in Table 3.

We conduct experiments on two different sets
of tables: (1) we randomly sample 1,000 tables for
each language and part-of-speech, and (2) we se-
lect Unimorph tables including some of the 10,000
most common word forms according to Wikipedia
frequency. The Wikipedia word frequencies are
based on plain Wikipedia text dumps from the
Polyglot project (Al-Rfou et al., 2013). Georgian
and Latin did not have a Polyglot Wikipedia so
we excluded those. Moreover, we excluded Lat-
vian verbs because there was very little overlap
between the most frequent Wikipedia word forms
and Unimorph table entries (< 200 forms occurred
in both). Details for both types of data sets are
given in Tables 3 and 2.

# Tables Table Size

FINNISH NOUNS 1,335 27.3
FINNISH VERBS 513 38.9
FRENCH VERBS 1,131 47.8
GERMAN VERBS 657 24.9
LATVIAN NOUNS 802 12.8
SPANISH VERBS 1,067 62.8
TURKISH NOUNS 884 78.5

Table 2: Details for inflection tables chosen according to
Wikipedia word frequency.

however, we did not have access to the exact splits into train-
ing and test data used by Malouf (2017). This may influence
results.

6Finnish (fin), French (fre), Georgian (geo), German
(ger), Latin (lat), Latvian (lav), Spanish (spa) and Turkish
(tur).

Table Size Unique Forms
per Table

FIN N 27.7 25.7
FIN V 39.0 37.6
FRE V 47.5 36.1
GEO N 19.0 16.9
GER V 28.9 12.3
LAT N 11.9 7.2
LAT V 99.8 94.8
LAV N 11.6 7.6
SPA V 62.5 52.1
TUR N 74.4 54.8

Table 3: Details for randomly sampled inflection tables. The
data for each language and part-of-speech consist of 1,000
tables.

Our system Baseline

FINNISH NOUNS 63.64± 3.24 25.63± 1.63
FINNISH VERBS 24.82± 1.13 16.14± 1.14
FRENCH VERBS 31.34± 1.18 14.34± 0.87
GERMAN NOUNS 18.73± 1.26 67.16± 3.20
GERMAN VERBS 61.21± 1.85 50.18± 2.58
LATVIAN NOUNS 76.90± 5.30 57.28± 2.05
SPANISH VERBS 27.27± 0.72 16.61± 0.70
TURKISH NOUNS 33.87± 2.03 25.00± 2.52

Table 4: Overall results for filling in missing forms when the
10,000 most frequent forms are given in the inflection tables.
We give the 0.99 confidence intervals as given by a one-sided
t-test. Figures where one system significantly outperforms
the other one are in boldface.

4 Experiments and Results

We perform two experiments. In the first one, we
take the set of 1,000 randomly sampled inflection
tables for each language and part-of-speech and
then randomly select n=1, 2 or 3 training forms
from each table. We then train a reinflection sys-
tem on these forms and use the resulting system
to predict the missing forms. We report accuracy
on correctly predicted missing forms and on re-
constructing the entire paradigm correctly. In our
second experiment, we consider Unimorph tables
which contain entries from a list of 10,000 most
common word tokens compiled using a Wikipedia
dump of the language as explained above. We take
the forms in the top-10,000 list as given and train a
model which is used to reconstruct the remaining
forms in each table. We train an identical model
as in the case n > 1 on tables with more than one
given form. As in the first task, we evaluate with
regard to accuracy for reconstructed forms and full
tables. Results are presented in Tables 4 and 5, and
Figure 4.

5 Discussion and Conclusions

Table 4 shows results for completing tables for
common lexemes. Our system significantly out-
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Our System Baseline
1 form 2 forms 3 forms 1 form 2 forms 3 forms

FIN N 18.87± 0.41 (0.00± 0.00) 81.72± 0.78 (16.50± 3.76) 93.07± 0.71 (54.80± 4.27) 6.07± 0.29 (0.00± 0.00) 46.64± 0.97 ( 0.00± 0.00) 65.60± 1.25 ( 0.80± 0.65)
FIN V 19.88± 0.69 (0.00± 0.00) 87.73± 0.36 (59.20± 5.73) 94.63± 0.41 (75.50± 3.82) 12.35± 0.58 (0.00± 0.00) 63.56± 0.89 ( 0.90± 0.90) 81.49± 0.42 (17.20± 2.21)
FRE V 15.66± 0.65 (0.00± 0.00) 78.30± 0.66 (23.50± 4.06) 83.64± 0.72 (35.60± 4.63) 11.46± 0.33 (0.00± 0.00) 61.01± 0.79 ( 0.40± 0.53) 74.07± 1.00 ( 7.60± 2.53)
GEO N 28.66± 1.12 (0.00± 0.00) 90.53± 0.48 (53.20± 6.03) 96.02± 0.48 (84.80± 3.28) 21.14± 0.84 (0.00± 0.00) 78.91± 0.56 (23.50± 4.03) 90.61± 0.76 (51.30± 6.19)
GER N 39.46± 2.18 (2.50± 1.83) 84.65± 2.00 (61.30± 4.33) 93.38± 0.86 (78.30± 3.14) 40.25± 2.09 (4.40± 1.83) 72.26± 1.70 (32.70± 4.70) 86.49± 2.09 (57.30± 5.11)
GER V 43.38± 0.68 (0.00± 0.00) 92.73± 0.41 (54.70± 3.75) 95.83± 0.38 (70.00± 4.99) 33.97± 1.13 (0.00± 0.00) 83.32± 0.48 (17.10± 3.27) 90.51± 0.62 (34.90± 3.92)
LAT N 16.89± 1.20 (0.00± 0.00) 83.59± 1.20 (49.50± 5.13) 91.02± 0.76 (68.70± 4.47) 23.62± 1.19 (0.10± 0.32) 63.27± 1.25 (17.40± 4.09) 77.96± 1.34 (32.90± 5.60)
LAT V 17.34± 0.37 (0.00± 0.00) 83.01± 0.30 (27.00± 2.65) 89.66± 0.44 ( 2.80± 1.35) 5.96± 0.21 (0.00± 0.00) 52.68± 0.43 ( 0.00± 0.00) 68.95± 0.47 ( 0.00± 0.00)
LAV N 30.11± 1.27 (2.00± 1.37) 85.41± 1.07 (48.50± 4.00) 94.83± 0.53 (83.40± 4.37) 22.35± 0.88 (2.60± 1.39) 64.76± 1.28 (22.20± 3.17) 79.21± 1.13 (40.80± 4.41)
SPA V 27.78± 0.69 (0.00± 0.00) 87.44± 0.34 (32.20± 5.71) 94.81± 0.25 (59.00± 6.71) 10.88± 0.35 (0.00± 0.00) 70.67± 0.27 ( 0.40± 0.53) 84.08± 0.38 (11.60± 2.91)
TUR N 15.70± 0.44 (0.00± 0.00) 88.90± 0.60 (19.20± 4.89) 92.07± 0.37 (22.80± 4.22) 7.94± 0.39 (0.00± 0.00) 61.95± 0.72 ( 5.60± 2.95) 77.02± 0.49 (11.40± 3.82)

Table 5: Accuracy for filling in missing forms when n=1,2 or 3 forms are given in the inflection table (accuracy for complete
paradigms in parentheses). We give the 0.99 confidence intervals as given by a one-sided t-test. Figures where one system
significantly outperforms the other one are in boldface.
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Figure 4: Detailed results for filling in missing forms when the 10,000 most frequent forms are given in the inflection tables.
The blue bars (on the left) denote accuracy for our system and green bars (on the right) accuracy for the baseline system. The
graphs show accuracy separately for tables where 1, 2, 3, 4, and > 4 forms are given.

performs the baseline on all other datasets apart
from German nouns. We believe that the rea-
son for the German outlier is the high degree of
syncretism in German noun tables. To see why
syncretism is harmful, consider the German noun
Gräben. Its paradigm consists of eight forms but
four of those are identical: Gräben. Only this
form is observed among the top 10,000 forms in
the German Wikipedia. Following Section 2, this
gives rise to 12 training examples where both the
input and output form are Gräben. This strongly
biases the system to copying input forms into the
output. However, this will never give the correct
output because, by design, missing forms cannot
be Gräben.7 This can be seen as a problem with
our datasets rather than the model itself. Conse-
quently, an important future work in addressing
the PCFP from an acquisition perspective is to
create realistic and accurate data sets that model

7If the same word form occurs in multiple slots, all of
them are considered known.

learner exposure both in word types and frequen-
cies to enable assessment of the true difficulty of
the PCFP.

There is a notable transition from witnessing
one form in each inflection table to witnessing two
forms. With only two forms given, we already ap-
proach accuracies reported in earlier work (Mal-
ouf, 2016, 2017) that used almost complete tables
to train—only 10% of the forms were missing.
Additionally, our encoder-decoder model strongly
outperforms that generator model designed for the
same task with the same amount of training data
on nearly all of our datasets.
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