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Abstract

The detection of dependence structures within a set of random variables provides a

valuable basis for a detailed subsequent investigation of their relationships. Nonpara-

metric tests for independence require only basic assumptions on the marginal or joint

distribution of the involved variables. In this paper, we review nonparametric tests of

independence in bivariate as well as multivariate settings which are throughout ready-to-

use, i.e., implemented in R packages. Highlighting their distinct empirical size and power

properties in various small sample settings, our analysis supports an analyst in deciding

for a most adequate test conditional on underlying distributional settings or data char-

acteristics. Avoiding restrictive moment conditions, the copula based Cramér-von Mises

distance of Genest & Rémillard (2004) is remarkably robust under the null hypothesis and

powerful under diverse settings that are in line with the alternative hypothesis. Based on

distinguished test outcomes in small samples, we detect nonlinear dependence structures

between childhood malnutrition indices and possible determinants in an empirical appli-

cation for India.
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1 Introduction

Statistical analyses mostly target at the identification and quantification of dependence struc-

tures between the variables of interest. Yet, dependence between random variables can be

present in various (e.g., linear or nonlinear) forms. Most commonly, analysts apply standard

linear regression models presuming linear dependence structures. Whereas classical proce-

dures, such as Pearson’s correlation coefficient (e.g. Pearson, 1920) or Wilks’ test (Wilks,

1935), diagnose linear dependence in a parametric framework, they might fail to detect nonlin-

ear and nonmonotone dependence structures. Therefore, nonparametric tests aim at keeping

prior assumptions on the variables’ distribution under the null hypothesis and their relation

under the alternative hypothesis at a minimum.

Classical nonparametric approaches have been developed to test for monotone, but not

necessarily linear, bivariate dependence structures by means of ranks. Popular representatives

for rank based dependence measures are Kendall’s tau (Kendall, 1938) and Spearman’s rho

(Spearman, 1904). Such bivariate dependence tests, however, might lack consistency under

several dependence structures (see Rémillard, 2014, for an example). Against this background,

various tests for independence have been developed more recently. These tests are supposed

to provide powerful tools to detect various forms of dependence especially if more than two

random variables are considered.

As noticed by Josse & Holmes (2014), several test procedures are concurrently employed

in distinct research communities. Suggestions of new tests are typically accompanied with

comparative evidence gathered from stylized Monte Carlo experiments which use specific

types of data (either under the null hypothesis or with regard to particular alternatives). For

instance, Josse & Holmes (2014) compare a nonparametric approach based on distance covari-

ances with a multivariate extension of Pearson’s correlation coefficient for linear dependence.

Similarly, Siqueira Santos et al. (2013) compare nonparametric tests with a focus on nonlinear

dependence structures typically present in the gene expression literature. Noticing that such

comparisons might miss important characteristics of various independence diagnostics under

diverse frameworks of data generation, we provide a comprehensive overview on the diver-

sity of nonparametric tests suggested in the recent literature. With particular attention on

those procedures that are applicable in multivariate samples, we categorize the tests in regard

to their underlying theoretical framework, and distinguish multivariate approaches based on
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spatial signs and ranks, empirical copulas and distance covariances. Along these lines, we

consider representative tests which are examined in more detail. Studying simplified, though

representative, scenarios for the generation of bivariate and multivariate samples allows to

trace the test performances (in finite samples) back to essential characteristics of the data.

Since alternative nonparametric tests rely on distinct measures of dependence, our work (i)

highlights the signaling content of rival dependence diagnostics under diverse dependence

patterns, and (ii) points to the scope of alternative tests under more complex data structures.

In an application to data of childhood malnutrition in India we further illustrate the perfor-

mance of the tests. We consider a standard regression scenario investigating the explanatory

content of several variables on one (resp. two) outcome variables. Specifically, we examine the

influence of certain characteristics of the child and it’s mother on childhood malnutrition. By

means of nonparametric independence tests we diagnose the dependence between malnutri-

tion indices in a bivariate setting, and consider dependence between the bivariate malnutrition

index and potential determinants by means of tests of groupwise (in)dependence. The non-

parametric framework can be exploited to identify nonlinear and nonmonotone dependence

structures as a cornerstone for further analysis of the explicit relation between child malnu-

trition and its possible determinants.

In the next section we describe distinguished dependence structures which might be

present within a set of p random variables. In Section 3, we briefly characterize the consid-

ered test procedures along with some extensions and describe their theoretical background.

Section 4 provides the simulation results, followed by the empirical example in Section 5.

Section 6 concludes.

Throughout we use the following notation: Univariate continuous real valued random

variables are denoted by x1, . . . , xp ∈ R. A set of these random variables of size p1 and p2 is

denoted by x1 = (x1, . . . , xp1) ∈ Rp1 and x2 = (x1, . . . , xp2) ∈ Rp2 , respectively. The associ-

ated marginal distribution functions are Fxk for k = 1, . . . , p, and Fx1 , Fx2 . Furthermore, the

joint distribution functions are Fx1,...,xp (for the first two variables Fx1,x2) and Fx1,x2 , respec-

tively. Sample observations are indexed with i = 1, 2, . . . , n, such that n is the sample size. A

random sample of, for instance, variable x1 is {x1,1, . . . , x1,n}. Furthermore, a random sample

of the set of variables x1 consists of observations x1,i = (x11,i, . . . , x1p1,i)
′ for i ∈ {1, . . . , n}.

The rank of observation i = 1, . . . , n of variable xk, k = 1, . . . , p, is denoted as R
(k)
i .
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Figure 1: Bivariate standard normal distribution with ρ = 0.8 (left), normally distributed variables with

Clayton copula with parameter θ = 1.5 (middle) and the functional relationship x2 = x21 +ε for x1 ∼ N (0, 0.5)

and ε ∼ N (0, 0.2) (right).

2 Dependence structures

Quantifying the relation between random variables often relies on the a-priori suggestion of

a linear association (see, e.g., the linear positive linkage displayed in the left hand side panel

of Figure 1). However, dependence between the variables can not only be characterized by a

linear but by means of diverse functional forms. Besides the linear relationship two further

examples of dependence structures between two random variables x1 and x2 are displayed in

Figure 1. The second structure is characterized by dependence in the lower tail of the distri-

butions. Such types of nonlinear dependence are commonly described by means of copulas,

i.e. a function C which combines the two marginal distribution functions Fx1 and Fx2 to the

joint distribution function Fx1,x2(x1, x2) = C(Fx1(x1), Fx2(x2)). One sided tail dependencies,

as displayed in Figure 1, could be modeled by means of the Clayton copula. In general, the

copula C can be uniquely determined following Sklar’s theorem (Sklar, 1959). For a detailed

description of dependence modelling by means of copulas see, e.g., Joe (1997). Furthermore,

a functional nonlinear and nonmonotone association characterizes the relationship between

the variables in the right hand side panel of Figure 1.

Although nonparametric tests of the null hypothesis of independence aim at performing

adequately irrespective of the underlying distribution, they build upon certain (test specific)

regularity assumptions. These might imply performance differences conditional on both the

marginal distributions under the null hypothesis and the type of dependence under the al-

ternative hypothesis. Starting from the examples of Figure 1, one might distinguish diverse

nonmonotone and nonlinear dependence structures generated by copulas or based on func-

tional associations. Additionally, for specific applications, e.g., economic data, modifications
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of these structures might be of interest.1 We consider several forms of dependence in subsets

of a set {x1, . . . , xp} of univariate random variables x1, . . . , xp ∈ R. Besides pairwise (i.e.,

bivariate) dependencies the structures can become increasingly complicated in larger sets of

random variables with p > 2. Next, we outline the null hypotheses of bivariate, groupwise

and joint independence.

1. Bivariate independence: As illustrated in Figure 1, with p = 2, the considered test

procedures assess dependence between two random variables x1 and x2. The corre-

sponding null hypothesis is H0 : Fx1,x2(x1, x2) = Fx1(x1)Fx2(x2) with joint distribution

function Fx1,x2 and marginals Fx1 , Fx2 .

2. Groupwise independence: Analyzing two sets of variables can be thought of as a

generalization of bivariate dependence tests where two disjoint subsets of {x1, . . . , xp}

are subjected to testing, i.e., x1 ∈ Rp1 and x2 ∈ Rp2 such that p1 + p2 = p. The

corresponding null hypothesis is H0 : Fx1,x2(x1,x2) = Fx1(x1)Fx2(x2) for multivariate

distribution functions Fx1,x2 , Fx1 and Fx2 . Furthermore, some tests allow to diagnose

the dependence between more than two disjoint subsets, where p1 + . . . + pc = p and

c > 2.

3. Mutual independence: To test for overall independence within a set of random

variables {x1, . . . , xp} the null hypothesis is formulated as H0 : Fx1,...,xp(x1, . . . , xp) =

Fx1(x1) · · ·Fxp(xp). The tests exploit the fact that mutual independence is equivalent to

independence within all subsets of {x1, . . . , xp}. This hypothesis is equivalent to stating

groupwise independence and choosing subsets of size p1 = p2 = . . . = pc = 1.

In spite of assessing the same null hypothesis, the considered nonparametric independence

tests differ in their theoretical derivation. To identify sources of performance differences, we

review the theoretical background of the test procedures in the next section and consider

their performance under specific marginal distributions and dependence structures by means

of a simulation study in Section 4.

1Tests for serial dependence in time series are not explicitly considered here. An overview of corresponding

approaches is given in Diks (2009).
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3 Tests for independence

Independence diagnostics might be classified into four distinct categories according to their

theoretical background. Recently, copula, spatial sign and rank and kernel based methods

have been developed to test nonparametrically for independence in a multivariate frame-

work. For benchmarking purposes we compare these approaches with classical test procedures,

namely Hoeffding’s D and diagnostics going back to Wilks (1935) in bivariate and multivari-

ate designs, respectively. A direct comparison between the described tests is hardly feasible,

as the approaches define multivariate dependence differently, namely groupwise (spatial sign

and rank based, kernel based methods) or mutual (copula based method). Accounting for

these disparities, we describe in this section how the tests and their modifications each assess

all types of possible dependencies, i.e. bivariate, groupwise and mutual. Table 1 at the end

of this section is supposed to provide further guidance for assigning distinct independence

diagnostics to their corresponding implementations in R packages and functions. Throughout

the section, we describe the framework of the tests, the test statistics and their empirical

formulation.

3.1 Classical tests for independence

The category of classical independence tests consists of widely applied approaches that are

frequently implemented in statistical software. Several nonparametric tests for bivariate de-

pendence and one parametric test for multivariate dependence are shortly described in the

following.

Pearson’s correlation coefficient (e.g., Pearson, 1920) was one of the first measures of

linear correlation between two random variables. Shortly after, rank correlation methods such

as Kendall’s tau (Kendall, 1938) and Spearman’s rho (Spearman, 1904) were developed to

test nonparametrically for independence in bivariate settings. The nonparametric procedure

introduced in Hoeffding (1948) was further extended by Blum et al. (1961) who tabulate the

distribution of Hoeffding’s D under the null hypothesis of independence. For two random

variables x1 and x2, Hoeffding’s D builds on the theoretical statistic

∆x1,x2 =

∫
[Fx1,x2 − Fx1Fx2 ]2 dFx1,x2 , (1)

which measures the distance between the joint distribution and the product of marginal distri-
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butions in a Cramér-von Mises (CvM) sense. For two random samples of size n, x1,1, . . . , x1,n

and x2,1, . . . , x2,n the empirical counterpart of ∆x1,x2 reads as

Td =
α− 2(n− 2)β + (n− 2)(n− 3)γ

n(n− 1)(n− 2)(n− 3)(n− 4)
, (2)

where

α =

n∑
i=1

(R
(1)
i − 1)(R

(1)
i − 2)(R

(2)
i − 1)(R

(2)
i − 2), (3)

β =
n∑
i=1

(R
(1)
i − 2)(R

(2)
i − 2)Qi and γ =

n∑
i=1

Qi(Qi − 1). (4)

Here, R
(1)
i and R

(2)
i are the ranks of observations x1,i and x2,i, respectively. Furthermore, Qi

denotes the number of observation pairs (x1,j , x2,j) for which the ranks of x1,j and x2,j are both

smaller than the ranks of x1,i and x2,i, respectively, i.e. Qi =
∑n

j=1 I{R
(1)
j < R

(1)
i }I{R

(2)
j < R

(2)
i }.

The statistic in (2) evaluates dependence between two univariate random variables. Wilks’

test (Wilks, 1935) can serve as a benchmark diagnostic in a multivariate set of random

variables under the assumption of Gaussianity. For p variables x1, . . . , xp, mutual dependence

is assessed by means of Wilks’ Lambda, i.e.,

TLm = −n · log

(
det (cov(x1, . . . , xp))

var(x1) · . . . · var(xp)

)
. (5)

The covariance and the variances in (5) are estimated on the basis of a random sample of

x1, . . . , xp. Similarly, the statistic

TLg = −n · log

(
det (cov(x1, . . . , xp))

det(cov(x1)) · det(cov(x2))

)
(6)

is suitable to test for independence between two groups of variables x1 ∈ Rp1 and x2 ∈ Rp2 .

The empirical versions of the test statistics in (5) and (6) are asymptotically χ2-distributed

with p and 2 degrees of freedom, respectively.

For the simulation study in Section 4 we use the test statistic (2) in bivariate settings.

This statistic is implemented in the function hoeffd of the R package Hmisc (Harrell, 2015).

To test for mutual and groupwise independence in multivariate settings we use the statistics

in (5) and (6), respectively.

3.2 Tests based on spatial signs and spatial ranks

In the following, we consider two nonparametric analogs to Wilks’ test in (6) based on stan-

dardized spatial signs and ranks. These dependence measures were introduced in Taskinen
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et al. (2005) and extend the method of Puri & Sen (1971). More precisely, Kendall’s tau

and Spearman’s rho are formulated in the multivariate setting by means of spatial signs and

ranks. In this sense, the test statistics serve to test for groupwise independence and reduce

to Kendall’s tau and Spearman’s rho in the bivariate case. To test for mutual independence

we use a Fisher combination of p-values of these statistics.

Two sets of random variables x1 and x2 are assumed to follow an elliptically symmetric

marginal distribution. Accordingly, the multivariate marginal densities of xk, k = 1, 2, can

be given as

fxk
(xk) = det(Σk)

−1/2 exp
(
−Ψ(||Σ−1/2

k (xk − µk)||)
)

(7)

for some function Ψ(·), shape matrix Σk and location vector µk. For common choices of Ψ

the density fxk
corresponds to the multivariate normal distribution, t-distribution or power

exponential function. The shape matrix Σk is a positive definite, symmetric and affine invari-

ant matrix, and || · || is any permutation and sign change invariant metric. Furthermore, let

z1,i denote a vector of standardized data points of observation i, i.e. z1,i = V̂
−1/2

1 (x1,i − µ̂1)

with µ̂1 being an affine-equivariant location estimator and V̂1 denoting an estimator of the

shape matrix.2

Then, for the standardized data points z1,i and z1,j , i, j = 1, . . . , n, the vector of stan-

dardized spatial signs reads as

Ŝ
(1)
ij =


z1,i−z1,j

((z1,i−z1,j)′(z1,i−z1,j))1/2
if z1,i − z1,j 6= 0

0 otherwise.

(8)

Analogously, the standardized spatial sign vector for the second set x2,i = (x21,i, . . . , x2p2,i)
′

is defined by Ŝ
(2)
ij . The vector of the standardized spatial ranks of observation i then results

as the average of these signs: R̂
(k)
i = 1

n

∑n
j=1 Ŝ

(k)
ij , where k = 1, 2.

Using these definitions the multivariate extensions of Kendall’s tau and Spearman’s rho

are

τ2 =
∣∣∣∣∣∣ 1

n2

n∑
i=1

n∑
j=1

Ŝ
(1)
ij Ŝ

(2)′
ij

∣∣∣∣∣∣2 and ρ2 =
∣∣∣∣∣∣ 1
n

n∑
i=1

R̂
(1)
i R̂

(2)′
i

∣∣∣∣∣∣2, (9)

2More detailed descriptions of covered distributions and the theoretical background are given in Oja (2010).

For the multivariate extension of Spearman’s rho we estimate the shape matrix by means of a rank based

covariance matrix (see also the documentation of the corresponding R package SpatialNP (Sirkia et al., 2018)).
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respectively, and the corresponding test statistics are

Ts =
np1p2

4c2
1c

2
2

τ2 and Tsr =
np1p2

c2
1c

2
2

ρ2. (10)

The constants c1 and c2 in (10) depend on the marginals Fx1 and Fx2 . Respective estimates

are

ĉ2
1 =

1

n

n∑
i=1

(
R̂

(1)′
i R̂

(1)
i

)
and ĉ2

2 =
1

n

n∑
i=1

(
R̂

(2)′
i R̂

(2)
i

)
. (11)

The test statistics in (10) are χ2-distributed with p1p2 degrees of freedom under the null

hypothesis of no dependence between x1 and x2. Furthermore, the tests are efficient for

alternatives that are contiguous to an elliptical null distribution. Under these alternatives

the test statistics in (10) follow a noncentral χ2-distribution where the noncentrality param-

eter depends on the constants c2
1 and c2

2 and the assumptions on the distribution under the

alternative hypothesis (for more details on its exact definition, see Taskinen et al., 2005).

For the simulation study in Section 4 we apply the test statistic based on spatial ranks

which is implemented in the function sr.indep.test of the package SpatialNP (Sirkia et al.,

2018) with option rank. Furthermore, we use Fisher combined p-values to test for mutual

dependence.

3.3 Tests based on the empirical copula

By means of copulas the null hypothesis of mutual independence within a set of random

variables {x1, . . . , xp} is H0 : C(Fx1(x1), . . . , Fxp(xp)) = Fx1(x1) · . . . · Fxp(xp), where the

function C refers to the corresponding unique copula (Sklar, 1959).

The test procedure considered in the following was introduced in Genest & Rémillard

(2004), and further analyzed and extended in subsequent works by Genest et al. (2006),

Genest et al. (2007) and Kojadinovic & Holmes (2009). The test statistic is formulated as

a Cramér-von Mises (CvM) distance and moreover, applies the decomposition techniques

for empirical copulas introduced in Deheuvels (1981). In a first step, a set {x1, . . . , xp} of

univariate random variables x1 ∈ R, . . . , xp ∈ R is partitioned into all possible decompositions.

The global coefficient for mutual dependence in {x1, . . . , xp} then consists of the dependence

measures within all decompositions. Let A ⊂ Sp = {1, . . . , p} denote a possible subset of

indices. For instance, in the bivariate case only one single subset A = {1, 2} has to be

considered.
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For subsets of indices A, B ⊂ Sp, the joint copula of x1, . . . , xp is expressed by means of

a Möbius decomposition M which decomposes the copula C as

MA(C) ≡
∑
B⊂A

(−1)|A\B|C(uB)
∏

k∈A\B

uk (12)

for u1, . . . , up ∈ [0, 1] and uB ∈ [0, 1]p such that

uBk =


uk if k ∈ B

1 if k /∈ B.

Mutual independence, i.e. the independence copula, is characterized by the copula C for which

MA(C) ≡ 0 for all A ⊂ Sp. To test for independence based on a sample of observations, the

empirical version of the decomposition in (12) reads as

MA(Cn) =
1√
n

n∑
i=1

∏
k∈A

[
I{R(k)

i ≤ (n+ 1)uk} − Un(uk)
]
, (13)

where Cn corresponds to the empirical copula, R
(k)
i is the rank of xk,i and Un is the distribution

function of a random variable uniformly distributed on {1/(n+ 1), 2/(n+ 1), . . . , n/(n+ 1)}.

The resulting 2p−p−1 CvM statistics (one for each possible decomposition of A ⊂ {1, . . . , p})

consist of the decomposition in (13),

TA =

∫
[0,1]p
{MA(Cn)}2du, (14)

which is calculated as

TA =
1

n

n∑
i=1

n∑
j=1

∏
k∈A

[
2n+ 1

6n
+
R

(k)
i (R

(k)
i − 1)

2n(n+ 1)
+
R

(k)
j (R

(k)
j − 1)

2n(n+ 1)
−

max(R
(k)
i , R

(k)
j )

n+ 1

]
. (15)

It is worth to notice that the CvM statistic in (14) forms a multivariate measure of

dependence similar to Hoeffding’s D in the bivariate case. The expression in (13) defines the

distance between the empirical copula, instead of the bivariate empirical joint distribution

function, and the distribution under independence. Mutual dependence in a subset A ⊂ Sp is

then measured by combining these distances in the CvM statistic in (14). Genest & Rémillard

(2004) discuss several methods to obtain a global test statistic for mutual independence

in {x1, . . . , xp}. On the one hand, various combination methods of the p-values of TA are

considered. For instance, the Fisher combination of p-values is defined as

TW = −2
∑
|A|>1

log(pTA), (16)
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where pTA is the p-value of TA. Under the null hypothesis, TW converges to a χ2-distribution

with 2(2p − p − 1) degrees of freedom. As an alternative, a measure of mutual dependence

can be defined by means of a global CvM functional

TB =

∫
(0,1)d

{
√
n

(
Cn(u)−

p∏
k=1

Un(uk)

)}
du, (17)

with cumulative distribution function Un of a uniformly distributed variable on {1/n, . . . , n/n}

and the empirical copula Cn. It is worth mentioning that the combination of p-values has

been shown to yield more powerful test procedures than measuring overall dependence based

on the test statistic in (17) (Genest & Rémillard, 2004).

The described procedures apply to test for bivariate or mutual independence within a set

of univariate random variables. Additionally, the tests based on the empirical copula can be

extended to the multivariate case by means of a bootstrap procedure. Kojadinovic & Holmes

(2009) derive a bootstrap version to test for mutual independence between vectors of random

variables {x1, . . . ,xp}. Under the null hypothesis of independence, Kojadinovic & Holmes

(2009) build the bootstrap samples by sampling independently from the empirical marginal

distribution function of each vector xi, i = 1, . . . , p. Furthermore, Beran et al. (2007) use

a similar approach by applying the theory of so-called half-spaces and a CvM statistic to

diagnose dependence between random vectors x1 and x2.

For the simulation study in Section 4 we apply TB in (17) to test for independence in

bivariate settings. To test for mutual dependence we compare the statistics TW in (16)

and TB as implemented in indepTest from the package copula (Hofert et al., 2015). For

groupwise dependence in multivariate settings we apply the bootstrap version implemented

in multIndepTest of the copula package.

3.4 Tests based on distance covariances and kernel based distances

The two last subsections covered multivariate extensions of Kendall’s tau, Spearman’s rho and

Hoeffding’s D with Ts, Tsr in (10) and TB in (17), respectively. In the following, we point out

that the dependence coefficient proposed in Székely et al. (2007) pursues an alternative way

by processing interpoint distances. For sets of random variables x1 ∈ Rp1 and x2 ∈ Rp2 with

finite moments, let ϕx1 , ϕx2 and ϕx1,x2 denote the marginal and joint characteristic functions,

respectively. Székely et al. (2007) introduce the test for independence between x1 and x2 in
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two versions: On the one hand, based on the distance covariance

V2(x1,x2) = ||ϕx1,x2(t, s)− ϕx1(t)ϕx2(s)||2 ≥ 0, (18)

and alternatively, based on the distance correlation

R2(x1,x2) =


V2(x1,x2)√

V2(x1,x1)V2(x2,x2)
if V2(x1,x1)V2(x2,x2) > 0,

0 otherwise.

(19)

In (18), || · || corresponds to the norm in a weighted L2-space of functions on Rp1+p2 . More

precisely,

V2(x1,x2) =
1

cpcq

∫
Rp+q

|ϕx1,x2(t, s)− ϕx1(t)ϕx2(s)|2

|t|1+p
p |s|1+q

q

dtds, (20)

for constant cd = π(1+d)/2

Γ((1+d)/2) , with Γ(·) denoting the complete gamma function (see Székely

et al., 2007, for more details). Hence, the dependence measures V2 and R2 are zero if and

only if the two considered sets x1 and x2 are independent. For two random samples, con-

sisting of the vectors x1,i = (x11,i, . . . , x1p1,i)
′ and x2,i = (x21,i, . . . , x2p2,i)

′, i = 1, . . . , n, the

corresponding test statistics are calculated from the sample covariances

TdCov = V2
n(x1,x2) =

1

n2

n∑
i,j=1

|x1,i − x1,j |p1 −
1

n

n∑
j=1

|x1,i − x1,j |p1 −
1

n

n∑
j=1

|x1,i − x1,j |p1 +
1

n2

n∑
i,j=1

|x1,i − x1,j |p1


×

|x2,i − x2,j |p2 −
1

n

n∑
j=1

|x2,i − x2,j |p2 −
1

n

n∑
j=1

|x2,i − x2,j |p2 +
1

n2

n∑
i,j=1

|x2,i − x2,j |p2

 ,

(21)

where | · |p1 and | · |p2 denote interpoint Euclidean distances in Rp1 and Rp2 , respectively. The

empirical version of R2
n obtains from inserting V2

n(x1,x2) into (19). Restricting x1 and x2

to have finite moments, the test is consistent for any type of dependence. Under the null

hypothesis, nV2
n/S

d→ Q for n → ∞, where S = ( 1
n2

∑n
i,j=1 |x1,i − x1,j |p1)( 1

n2

∑n
i,j=1 |x2,i −

x2,j |p2) and Q is a nonnegative quadratic form of centered Gaussian random variables. More

specifically, Q
d
=
∑∞

j=1 λjZ
2
j for independent standard normal distributed random variables

Zj and nonnegative constants λj which depend on the distributions of x1 and x2.

Székely et al. (2007) and Székely & Rizzo (2009) modify and extend the tests based on

(18) and (19) in several ways. For instance, the norm used in (18) is generalized to || · ||α
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which implies a more general weight function and results in α-distance dependence measures.

A further specification of the distance covariance is obtained by choosing the covariance with

respect to a certain stochastic process. The Brownian motion, for instance, obtains the

Brownian distance covariance.

Rémillard (2009) argues that the performance of the tests based on (18) and (19) depends

on the marginal distributions and further, the statistic in (21) is only applicable to test for

independence between two sets of random variables. To address these concerns, Matteson

& Tsay (2013) suggest probability integral transformations to avoid the dependence on the

marginal distributions. In addition, they provide a test for mutual independence using the fact

that the null hypothesis of mutual independence within a set of random variables {x1, . . . , xp}

is equivalent to H0 : ϕxk,xk+ = ϕxkϕxk+ for all k = 1, . . . , p− 1 and k+ = k+ 1, . . . , p. Then,

the corresponding test statistics is a combination of the bivariate statistics

TdCov = n ·
p−1∑
k=1

V2
n(xk, xk+). (22)

Sejdinovic et al. (2013) embed the distance covariance within a more general group of

dependence measures which has originated from machine learning. The kernel based so-called

Hilbert-Schmidt independence criterion (HSIC) measures the distance between embeddings

of distributions into reproducing kernel Hilbert spaces (RKHS). Choosing specific distance

induced kernels, the distance covariance is then equivalent to the HSIC based on the RKHS.

By linking these two classes of statistics TdCov might be considered as a representative for

HSICs. In the following, we only consider TdCov and refer to Sejdinovic et al. (2013) for

performance comparisons of further HSICs with alternative kernel choices.

For the simulation study in Section 4 we apply TdCov in (21) to test for independence in

bivariate and groupwise settings. We use the function indep.test of the R package energy

(Rizzo & Szekely, 2014). For mutual independence we apply the function permTest of the

steadyICA package (Risk et al., 2015).

4 Performance under specific dependence structures

Although all considered tests have been proposed to evaluate the null hypothesis of inde-

pendence nonparametrically, their underlying distributional assumptions are more or less

restrictive. Especially in small samples this might lead to size and power differentials under
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Table 1: R packages and functions corresponding to the procedures described in Section 3 and applied within

the simulation study. Corresponding independence diagnostics are given in parentheses.

classical spatial rank empirical copula distance covariance

R package Hmisc SpatialNP copula energy

(Harrell, 2015) (Sirkia et al., 2018) (Hofert et al., 2015) (Rizzo & Szekely, 2014)

steadyICA

(Risk et al., 2015)

R function for distinct dependence levels

bivariate hoeffd (Td) sr.indep.test (Tsr) indepTest (TB) indep.test (TdCov)

mutual Wilks’ Lambda (TLm) Fisher comb. of Tsr indepTest (TW , TB) permTest (TdCov)

groupwise Wilks’ Lambda (TLg) sr.indep.test (Tsr) multIndepTest (TB) indep.test (TdCov)

the null hypothesis and certain dependence alternatives, respectively.3 The following simula-

tion study is supposed to identify such performance differentials. We describe the simulation

design first and discuss the results afterwards.

4.1 Simulation setting

As outlined in Section 2, the considered tests diagnose dependence between two continuous

random variables, two or more vectors of variables, or mutual dependence in a set of more

than two variables. Within these settings we compare the size and power of the tests either

with respect to the implied correlation ρ or the sample size n. The underlying distributional

settings are summarized in Table 2. We consider representative distributions and dependence

structures which are supposed to unravel differences and similarities of the tests. In more

diverse settings, for instance, alternative choices of sample sizes, copulas and marginals, the

results are in line with those discussed in the following.

4.1.1 Bivariate sets of random variables

The two random samples (x1,1, . . . , x1,n) and (x2,1, . . . , x2,n) are generated under the null hy-

pothesis (independence) and under the alternative hypothesis (dependence). Two elliptical

3For instance, Shih & Emura (2016) study the properties of Spearman’s rho and Kendall’s tau under specific

copula structures.
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copulas and one representative of Archimedean copulas determine the dependence structure

alternatively. In addition, we study a direct association by means of a nonlinear and non-

monotonic function with noise. Finally, we investigate robustness of the tests to modifications

of these dependence structures.

For correlation levels ρ = 0, 0.1, . . . , 0.8, we generate bivariate sets of random variables,

and, hence, focus on the correlation moving from the null hypothesis of independence to larger

degrees of dependence. More precisely, for elliptical copulas a correlation matrix Vx1,x2 =(
1 ρ
ρ 1

)
determines the dependence structure. Archimedean copulas, e.g. the Clayton copula,

can be formulated with respect to a coefficient determining the strength of correlation by

means of a generator function ψ(ρ), ρ ∈ [0,∞). For the explicit definition of the copula

as a function of correlation ρ we refer to the documentation of the respective R functions

(Hofert et al., 2015). The generator function of the Clayton copula is, for instance, ψ(ρ) =

(1 + ρ)−1/θ with θ ∈ (0,∞). We calculate four test statistics, namely Hoeffding’s Td, the

Cramér-von Mises statistic TB, the multivariate extension of Spearman’s rho Tsr, and the

distance covariance TdCov (see Table 1). The estimated power of the tests is the share of

R = 1000 test statistics Td,TB, Tsr and TdCov with p-value below the nominal significance

level of α = 0.05.4 We provide the size adjusted power with respect to the empirical level α̂,

and compare the size and power of the tests for sample sizes n = 10, 50, 100.

Dependence modeling by means of copulas: Three distinct marginal distributions and

a dependence structure determined by three copulas specify the bivariate distribution struc-

ture. Regarding the univariate marginal distributions we choose the standard normal, the

exponential and the Cauchy distribution. Monotonic and linear dependence is covered by

means of the bivariate Gaussian distribution. Moreover, the Student’s t- and Clayton copula

allow for tail dependencies and thus, represent nonlinear dependence structures. In order to

generate respective random samples of size n, we apply the R functions mvdc and rMvdc from

the R package copula (Hofert et al., 2015).

Functional dependence structure: From a distinct perspective, dependence can be seen as

an information structure characterizing the data. Increasing the level of noise in a bivariate set

of random variables changes the structure from a deterministic relationship to independence.

4In this study, the considered nominal significance level is α = 0.05. Similar results obtain with respect to

other conventional levels, for instance α = 0.1.
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We relate two random variables x1 and x2 directly by means of a function, i.e. x2 = f(x1),

to allow for nonlinear and nonmonotonic types of dependence. As an example, we consider

a quadratic structure x2 = x2
1 + ε, where x1 ∼ N (0, 0.5),5 and ε ∼ N (0, σ2) is a Gaussian

noise term with increasing standard deviation σ = 0, 0.1, . . . , 1.5. The variables x1 and ε

are independently drawn in every Monte Carlo iteration indexed by r = 1, . . . , R. Perfect

dependence corresponds to σ = 0, whereas a low level of association is present if σ = 1.5. A

generated sample with σ = 0.2 has been shown as an example in the right hand side panel of

Figure 1.

Modifications of the dependence structures: In practice, the assumption of a homoge-

neous distribution within the entire sample might be not appropriate for an actual data set.

For instance, in economic data a varying dependence structure might be present. Further-

more, not only dependence between the marginals might exist but the marginals themselves

might incorporate dependence in their variances (see, for instance, Manner & Reznikova,

2012). Allowing for modifications of the distributional settings we consider varying degrees

of dependence first. For this purpose, we generate a bivariate normally distributed sample

with two distinct levels of correlation, i.e. ρ1 = 0.2 in the first half and ρ2 = 0.4 in the second

half of the sample. As a second modification, we formalize dependence among the marginals

as implied by a bivariate GARCH process. More explicitly, we sample data from a so-called

Constant Conditional Correlation GARCH(1,1) process (CCC-GARCH(1,1), see Bollerslev,

1990). Accordingly, observations xk,i, i = 1, . . . , n, k = 1, 2, are drawn as

xk,i = h
1/2
k,i zk,i with hk,i = ak0 + akkx

2
k,i−1 + bkkhk,i−1 and zi ∼ N (0, P ), (23)

with Gaussian innovations zi,k and ak0 = 1, akk = bkk = 0.4. Dependence between the uni-

variate GARCH processes is modeled by means of an unconditional covariance matrix P with

p11 = p22 = 1 and off diagonal elements p12 = p21 = ρ = 0.4. For a more detailed description

of CCC-GARCH sampling we refer to the manual of the R package ccgarch (Nakatani, 2010).

5Siqueira Santos et al. (2013) consider alternative choices for the distribution of x1 as, for instance, equidis-

tant points or the uniform distribution. Additionally, they study further nonmonotonic and nonlinear depen-

dence structures, i.e., alternative choices of the function f .
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Table 2: Simulation settings.

dependence structure power performance wrt parameter

bivariate normal, t, Clayton copula with n = 10, 50, 100

x1, x2 normal, exponential, Cauchy marginals (size, size adj power for ρ = 0.4)

ρ = 0, 0.1, . . . , 0.8 (power)

x2 = x21 + ε, x1 ∼ N (0, 0.5), ε ∼ N (0, σ2) σ = 0, 0.1, . . . , 1.5

varying dependence, ρ1 = 0.2, ρ2 = 0.4 n = 20, 50, 100

CCC-GARCH(1,1), ρ = 0.4 n = 20, 50, 100

mutual normal copula with normal and ρ = 0, 0.1, . . . , 0.8

x1, x2, x3 Cauchy marginals, n = 100

groupwise normal copula and marginals, ρinter = 0, 0.1, . . . , 0.8

{x11, x12}, {x22} n = 100, ρintra = 0 and 0.8

4.1.2 Multivariate sets of random variables

As described in Section 2, a set of more than two random variables might exhibit groupwise or

mutual dependence. To uncover differences and similarities between tests for mutual indepen-

dence, we consider a most simple framework, i.e. a set of three univariate random variables.

Within such sets {x1, x2, x3} we formalize the dependence structure under the alternative

hypothesis by means of equal correlation ρ in bivariate tuples {x1, x2}, {x1, x3}, {x2, x3}. Ac-

cordingly, the correlation matrix of {x1, x2, x3} reads as

Vx1,x2,x3 =


1 ρ ρ

ρ 1 ρ

ρ ρ 1

 . (24)

Similar to the bivariate case, we consider several marginal distributions and three dimensional

copulas with increasing levels of correlation ρ = 0, 0.1, . . . , 0.8. We study the performance

of two versions of the copula based procedures, namely the global CvM statistic TB and the

Fisher combination of p-values in subsamples TW . Moreover, we consider the mutual version

of the distance covariance TdCov, a Fisher combination of p-values of the bivariate Tsr statistics

and Wilks’ lambda TLm.

Furthermore, we compare tests for groupwise dependence between two sets of variables
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x1 = {x1, x2} and x2 = {x3}. In (24), we have only considered one single correlation

level ρ such that independence implies zero correlation globally (i.e., ρ = 0). Borrowing from

the simulation study in Kojadinovic & Holmes (2009), the correlation matrix employed to

formalize groupwise dependence of {x1,x2} reads as

Vx1,x2 =


1 ρintra ρinter

ρintra 1 ρinter

ρinter ρinter 1

 . (25)

The null hypothesis of groupwise independence corresponds to absence of inter group

correlation (ρinter = 0). Accordingly, we study power properties with respect to increasing

inter group correlation, i.e. ρinter = 0.1, . . . , 0.8. Apart from inter group dependence, ρintra

in (25) denotes the strength of intra group correlation. Intra group correlation ρintra might

differ from zero even under the null hypothesis of groupwise independence. To account for

distinct degrees of intra group dependence in the simulation study, we select two distinct

levels of correlation within x1, namely, ρintra = 0 (no correlation) and ρintra = 0.8 (strong

correlation).

To be more precise on the performance of the considered multivariate tests in a general

multivariate setting, we also study a four dimensional case and test for groupwise dependence

between two sets x1 = {x1, x2} and x2 = {x3, x4}. Dependence is generated in analogy to

the trivariate case using a correlation matrix

Vx1,x2 =


1 ρintra ρinter ρinter

ρintra 1 ρinter ρinter

ρinter ρinter 1 ρintra

ρinter ρinter ρintra 1

 . (26)

We compare four test statistics under the null hypothesis and the alternative hypothesis of

groupwise dependence: the Cramér-von Mises statistic TB, the statistic Tsr based on spatial

ranks, the distance covariance TdCov and the parametric test based on Wilks’ lambda TLg.

4.2 Simulation results

In the following discussion, the results for size and size adjusted power provide a baseline

comparison of the tests. In the subsequent investigation we consider power properties with
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respect to increasing correlation for copulas and decreasing noise for functional dependence.

Furthermore, we address robustness of the tests under modifications of the stylized depen-

dence structures. In multivariate sets of random variables we study the performance of the

considered tests under mutual and groupwise dependence alternatives.

4.2.1 Bivariate sets of random variables

Empirical size and size adjusted power

Table 3 documents the estimated size and the size adjusted power of the test statistics Td,TB,

Tsr and TdCov with respect to three distinct copulas for sample sizes n = 10, 50, 100 and

correlation levels ρ = 0 (size, in columns 4-7) and 0.4 (power, in columns 8-11). Under

respective regularity conditions the test statistics are supposed to converge to the asymptotic

distribution for increasing sample sizes (see Section 3). Consequently, the empirical size α̂

converges to the true level α = 0.05 under these regularity conditions. Deviations from the

true level might reflect, on the one hand, violations of the conditions. On the other hand,

they contrast the small sample performance of the tests with asymptotic approximations and,

in particular, are informative on the speed of convergence.

We generate bivariate samples under the null hypothesis by means of the respective copula

with zero correlation. Although all samples comprise independently drawn marginals, the

independence tests perform differently under distinct choices of copulas and marginals. Over

all generated samples, the size distortions of the CvM statistic TB appear smaller compared

with those of the other test procedures. Furthermore, the empirical size of TB changes only

slightly with respect to the chosen marginal distributions. In contrast, size distortions of

Tsr are slightly larger and those of Td are much larger. The statistic Td shows oversizing

in nearly all considered samples. The statistic TdCov holds adequate size properties for a

sample generated by means of the Gaussian or the Clayton copula. However, we can observe

oversizing of this test for the Student’s t-copula in combination with all marginals. Under

Cauchy marginals, TdCov shows an empirical level as large as α̂ = 0.461.

The power estimates displayed in Table 3 are adjusted with respect to the empirical size

of the tests. The size adjustment lowers (increases) the rejection frequencies of oversized

(undersized) tests to enable a direct comparison of the power of alternative test procedures.

Overall, Td shows a slight lead in terms of size adjusted power in small samples (n = 10)
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and Tsr in larger samples (n = 100). Under Gaussian copula dependence, the size adjusted

power of all tests converges with a similar rate and almost approaches unity for n = 100. As

the only exception, the size adjusted power of TdCov fails to converge within the considered

sample sizes under the Gaussian copula with Cauchy marginals. For dependence generated by

means of a Student’s t-copula, the results are similar to the Gaussian dependence structure.

Moreover, the tests (except TdCov for Cauchy marginals) are consistent under dependence

modeled by means of a Clayton copula while showing slower convergence rates as under a

Gaussian and Student’s t-copula.

Theoretically, the inferior performance of the distance covariance TdCov for specific marginals

is in line with its dependence on the marginal distribution (see Section 3). In particular, the

moments of the Cauchy distribution are not finite and thus, the regularity conditions that

underlie TdCov do not hold. Overall, the size distortions in small samples indicate which tests

might not be appropriate given the underlying distributional setting. The baseline comparison

of size and size adjusted power displays comparable test performances in the standard setting,

i.e., the Gaussian copula with normal and exponential marginals. However, under a t-copula

we can observe notable differences as described above. Consequently, under tail dependencies

the choice of the test appears more crucial for the test decision. In terms of empirical size, the

test statistic TB seems to perform best irrespective of the underlying distribution. Addition-

ally, we observe that the considered tests show inferior power under dependence governed by

the Clayton copula. Moreover, the distance covariance performs weakly for specific marginals.

In order to compare the tests by means of the size adjusted power one has to have in mind

that the size adjustments are substantial in case of large size distortions. The size adjusted

power of a test serves to compare the test in simulated settings but is, however, not applicable

in practice since the empirical level α̂ is typically unknown. Therefore, in empirical research

one might rather be interested in the comparison of unadjusted power of tests for which it

can be safely presumed that their empirical size is close to the nominal level.

Power curves

Figure 2 displays unadjusted power curves with respect to varying levels of correlation ρ =

0, 0.1, . . . , 0.8 and fixed sample size n = 100. In particular, for ρ = 0.4 the size adjusted

counterparts of these empirical power estimates are displayed in Table 3. Studying the power
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Table 3: Empirical size α̂ and size adjusted power for correlation ρ = 0.4, R = 1000 and α = 0.05 with respect

to alternative bivariate copulas and marginals. Empirical sizes deviating from the true level by more than

0.014 (≈ 1.96
√

0.05 · 0.95/1000) are marked in bold.

size size adjusted power

copula marginal n d B sr dCov d B sr dCov

normal normal 10 0.099 0.052 0.057 0.050 0.334 0.184 0.240 0.205
50 0.066 0.050 0.048 0.048 0.795 0.748 0.809 0.790
100 0.063 0.055 0.053 0.055 0.970 0.967 0.979 0.978

exp. 10 0.100 0.046 0.045 0.048 0.361 0.157 0.195 0.217
50 0.062 0.048 0.050 0.049 0.765 0.720 0.780 0.728
100 0.058 0.050 0.045 0.043 0.968 0.964 0.971 0.954

Cauchy 10 0.115 0.054 0.061 0.047 0.354 0.167 0.230 0.154
50 0.065 0.050 0.050 0.051 0.781 0.745 0.796 0.323
100 0.055 0.041 0.046 0.041 0.961 0.951 0.970 0.386

Student’s t normal 10 0.135 0.058 0.071 0.083 0.390 0.197 0.263 0.296
50 0.074 0.053 0.057 0.085 0.720 0.687 0.739 0.805
100 0.067 0.065 0.075 0.105 0.969 0.968 0.978 0.986

exp. 10 0.131 0.054 0.070 0.066 0.331 0.167 0.232 0.268
50 0.057 0.047 0.054 0.100 0.745 0.693 0.754 0.837
100 0.069 0.057 0.062 0.137 0.959 0.956 0.961 0.983

Cauchy 10 0.103 0.053 0.058 0.117 0.351 0.168 0.224 0.367
50 0.071 0.054 0.056 0.321 0.743 0.720 0.757 0.941
100 0.074 0.068 0.078 0.461 0.968 0.966 0.974 0.998

Clayton normal 10 0.104 0.046 0.051 0.062 0.248 0.104 0.126 0.151
50 0.061 0.045 0.042 0.047 0.429 0.346 0.369 0.406
100 0.063 0.059 0.055 0.062 0.727 0.714 0.716 0.772

exp. 10 0.120 0.058 0.061 0.044 0.245 0.091 0.123 0.083
50 0.050 0.040 0.048 0.046 0.372 0.333 0.396 0.228
100 0.044 0.048 0.055 0.057 0.663 0.677 0.722 0.481

Cauchy 10 0.120 0.051 0.050 0.053 0.126 0.080 0.086 0.111
50 0.071 0.056 0.058 0.051 0.460 0.407 0.450 0.251
100 0.065 0.048 0.055 0.057 0.714 0.660 0.712 0.355
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Figure 2: Power curves for bivariate dependence modeled by means of copulas: t-copula with Gaussian

marginals (left) and Gaussian copula with Cauchy marginals (right).

curves, our interest is in their overall shape or, more specifically, in the degree of dependence

that yields a power of unity such that the tests detect dependence with probability one.

First, we study the results for a representative copula structure in the left hand side

panel of Figure 2, namely the t-copula combined with Gaussian marginals. The resulting

empirical sizes for ρ = 0 are comparable with those displayed in Table 3. In this setting the

power curves of the considered tests have a similar shape. Power of unity is attained for a

similar level of correlation for the t-copula (ρ ≈ 0.5). Comparing these results with those

generated, e.g., by the Clayton-copula, the power of all four tests converges to unity faster

in case of dependence generated from the t-copula than for dependence emerging from the

Clayton-copula. The procedures are consistent against both alternatives. Overall, TdCov and

Tsr slightly outperform the independence diagnostics based on the CvM statistic in these

scenarios.

Furthermore, the right hand side panel of Figure 2 displays power curves for a Gaussian

copula with Cauchy marginals. In line with the results shown in Table 3, the power curve

of TdCov stays throughout remarkably below the other curves. Especially, under Cauchy

marginals with non existing moments TdCov suffers from power weakness. In addition, having

also in mind the size distortions under the t-copula with Cauchy marginals, TdCov might not

be appropriate under these specific marginal distributions. Nevertheless, for alternatives far

away from the null hypothesis of independence (ρ = 0.8) all tests show power of unity.

Besides copula dependencies we relate the variables x1 and x2 in a functional manner

x2 = x2
1 + ε to represent a nonlinear and nonmonotone dependence alternative. Rejection
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frequencies for samples of size n = 100 are depicted in the left hand side panel of Figure 3.

Starting with the deterministic relationship and modeling dependence up to a certain level

of noise, we are interested if this type of dependence is detected, rather than in the test

behavior close to/under the null hypothesis. Except the spatial rank based procedure Tsr

the power of all tests is unity for the deterministic relationship x2 = x2
1 (i.e. σ = 0) up to

moderate levels of uncertainty (σ = 0.3). Power estimates for both the CvM statistic TB

and Hoeffding’s Td increase with a decreasing level of uncertainty, but are throughout smaller

in comparison with the power of TdCov. In contrast, the spatial rank based procedure Tsr

indicates the deterministic association x2 = x2
1 in only 30% of the cases. For the convergence

of Tsr, Taskinen et al. (2005) assume an elliptical distribution so that the procedure is not

necessarily consistent against the nonmonotone alternative. Furthermore, Ding & Li (2014)

argue that dependence structures formalized as functional relationships might correspond to

singular copulas. A singular copula violates the assumption of absolutely continuous copulas

imposed by Genest & Rémillard (2004). Thus, for such a dependence structure TdCov might

be preferred over Td and TB while Tsr suffers from prohibitive power loss.

In summary, the results for the power curves allow similar conclusions as those documented

for empirical size and size adjusted power of the tests. Standard distributional settings lead

to comparable performances of all tests. In particular, oversizing under the t-copula and the

inferior performance of TdCov are notable in this respect. Furthermore, one would rank the

tests differently based on their performance under a nonmonotone dependence structure.

Robustness to modifications

Results documented in Table 4 address the robustness of the tests to non standard data

structures for samples of size n = 20, 50, 100. In heterogeneous random samples a varying

dependence structure (compared with constant dependence in the entire sample) might be

present. The results for a bivariate normal distribution with ρ1 = 0.2 and ρ2 = 0.4 indicate

that all considered test procedures remain consistent. The power for n = 100 is, in fact,

comparable with rejection frequencies in a sample with homogeneous correlation ρ = 0.3. For

larger samples or stronger levels of correlation all procedures show satisfactory power proper-

ties. Nevertheless, the power estimates of Td and TB converge slower than their counterparts

obtained from Tsr and TdCov.
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Figure 3: Power curve for quadratic dependence with

respect to the standard deviation of the noise term (σ =

0 refers to perfect dependence and σ = 1.5 to weak

association).

power

Type of modification n d B sr dCov

Varying dependence, 20 0.269 0.210 0.247 0.259
ρ1 = 0.2, ρ2 = 0.4 50 0.520 0.497 0.531 0.568

100 0.781 0.775 0.804 0.835

CCC-GARCH(1,1) 20 0.363 0.323 0.404 0.342
50 0.714 0.704 0.743 0.709
100 0.938 0.942 0.956 0.930

Table 4: Power with respect to different modifications

of the dependence structure and marginals for a bivari-

ate normal distribution.

Table 4 documents the results for a normally distributed CCC-GARCH(1,1) process with

unconditional correlation of ρ = 0.5. As it turns out, all considered tests are consistent against

this type of dependence with comparable speed of convergence and power of unity for about

n = 120. In particular, Tsr shows slight power leads in small samples. Overall, the tests are

robust under this data structure.

Summarizing the results for the bivariate case, we cannot identify a single nonparametric

test which is most powerful against all alternatives. Instead, the size and power performance

differs for distinct types of data. We have discovered dependence structures where slight

differences between the tests are identifiable, as well as structures where the test decision might

depend more strongly on the choice of the test. Based on its empirical size properties, the CvM

statistic TB might be preferred as it shows the most stable results. Irrespective of distinct

dependence structures the empirical level of TB is close to the nominal level of α = 0.05.

The other tests show oversizing especially under a t-copula, and the distance covariance

TdCov performs worst under the considered copula dependence structures. Nevertheless, TdCov
outperforms the other tests under nonmonotone dependence structures where, in contrast, Tsr

shows severe lacks of power.
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Figure 4: Power curves for mutual dependence as implied by a Gaussian copula with Gaussian (left hand side)

and Cauchy (right hand side) marginals: Wilks’ Lambda TLm (labeled L in the figure), the Fisher combination

of p-values TW and Tsr, the global CvM statistic TB and the distance covariance TdCov.

4.2.2 Multivariate sets of random variables

Multivariate nonparametric independence tests are supposed to have power against alterna-

tive hypotheses of mutual and groupwise dependence. In the following, we consider mutual

dependence first. Being representative for diverse copula structures the power curves under a

Gaussian copula with Gaussian and Cauchy marginals are displayed in Figure 4 for increasing

levels of correlation ρ among all pairs of variables.6 For ρ = 0, the considered tests exhibit

an empirical level close to α = 0.05. Similar to the bivariate scenarios, the shape of all power

curves shows comparable characteristics for a multivariate Gaussian distribution. The curves

displayed in the left hand side panel of Figure 4 uncover slight power differences between the

distinct test procedures for correlation levels between ρ = 0 and 0.4. In particular, the CvM

distance TB appears to outperform the other tests.

As displayed in the right hand side panel of Figure 4, both the distance covariance TdCov
and Wilks’ Lambda TLm perform poorly under Cauchy marginals in terms of power. The

distance covariance TdCov might suffer from power losses under a distribution lacking finite

moments (cf. Section 4.2.1), while the parametric test TLm relies on the assumption of Gaus-

sian distributed variables (see Wilks, 1935). Furthermore, Wilks’ Lambda TLm exceeds the

nominal significance level of α = 0.05 under Cauchy marginals.

In summary, in the considered multivariate sets the tests perform in analogy to the bivari-

6The asymptotic properties of Wilks’ Lambda have been shown under the multivariate Gaussian distri-

bution. Thus, the comparison with the nonparametric tests is informative on the trade-off between efficient

dependence detection within the Gaussian model, and robustness under more general distributional conditions.
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ate case under distinct marginals and copulas, nonlinear nonmonotone dependence structures

and the further modifications. Nevertheless, it is worth mentioning that, e.g., performance

differences between TB and TW might reflect distinct combinations of p-values. Given the

results in Genest et al. (2007), heterogeneous power properties (more precisely, power leads

of TW ) could result in higher dimensions for which the combination method might become

more important.
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Figure 5: Power curves for multivariate groupwise dependence modeled by means of the Gaussian copula, intra

group dependence modeled as in (25) with ρintra = 0 (left) and ρintra = 0.8 (right).

If the random variables can be aggregated to groups, it might be more interesting to

analyze the strength of dependence between the groups of variables (and not within the

groups). In Figure 5, power curves are shown for a trivariate set of Gaussian variables with

dependence between the marginals determined by means of the covariance matrix in (25).

Intra group dependence is fixed whereas inter group dependence varies between 0 and 0.7.

The power curves in Figure 5, for ρintra = 0 (left) and ρintra = 0.8 (right), show characteristics

which are comparable with the results for alternatives of mutual dependence. In both cases

the power of all test statistics equals unity for levels of inter group correlation in excess of

ρinter = 0.5. However, the higher ρintra the slower is the convergence to a power of unity.

The performance differences between the tests are relatively small for the standard copula

structures. The resulting power properties for variations of marginals and copulas are not

displayed here for space considerations but show qualitatively identical characteristics as

discussed above for the multivariate dependence structures.

We lastly study a four dimensional setting which is supposed to indicate how the results

further generalize to higher dimensions. While only displaying exemplary results, we refer
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Figure 6: Power curves for multivariate groupwise dependence modeled by means of the Gaussian copula with

correlation modeled as in (26) with ρintra = 0.

the reader to Kojadinovic & Holmes (2009) and Taskinen et al. (2005), who compare their

suggested tests (namely, TB and Tsr) with Wilks’ Lambda TLg in higher dimensions. The

power curves in Figure 6 show the behavior of the test statistics TLg, TB, Tsr and TdCov
under the Gaussian copula with Gaussian marginals. The correlation structure between

the variables is generated following the matrix in (26) without intra group dependence, i.e.,

ρintra = 0. We find similar power properties for all tests but Wilks’ Lambda which shows

strong oversizing under the null hypothesis of independence. Overall, the detected properties

of the nonparametric tests for independence can largely be generalized in higher dimensions.

5 Diagnosing dependence patterns for childhood undernutri-

tion

After analyzing diverse pairwise, groupwise and mutual dependence structures by means

of a simulation study, this section illustrates the performance of the tests by means of an

application to empirical data. We consider data for childhood undernutrition, one of the

most urgent public health challenges in developing and transition countries. In studying these

data, we are interested in the relation between distinguished measures of undernutrition and

a set of child’s and mother’s characteristics recorded in 1998/99 in the state Uttar Pradesh in

Northern India (provided by Demographic and Health Surveys, DHS, www.measuredhs.com).

In the following, we apply independence tests to subsamples of n = 87 and n = 55 children
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at the age of 3 month (cage = 3) and 9 month (cage = 9), respectively.

The impact of certain characteristics on undernutrition might be quantified by means

of regression models (see, for instance, Kandala et al., 2001; Klein & Kneib, 2016). As

a prerequisite, the considered nonparametric independence tests provide guidance for such

subsequent analysis. Childhood undernutrition itself can be measured by means of three

distinct criteria. First, acute undernutrition (wasting) measures insufficient weight for given

height. Second, chronic undernutrition (stunting) measures insufficient height given age.

Third, both forms of undernutrition are captured by means of measuring insufficient weight

given age (underweight). We apply bivariate and groupwise independence tests to study the

relationship between two undernutrition measures, namely wasting and underweight, and

their relationship to two of their possible determinants, namely the mother’s age and the

mother’s body mass index. It might be noted that further results for the remaining bivariate

combinations of indices, e.g. {underweight, stunting}, are similar to those displayed below.

First, we apply the bivariate independence tests Wilks’ Lambda TL, the CvM statistic TB,

the spatial rank based statistic Tsr and the distance covariance TdCov to the set {underweight,

wasting}. The test statistics and the corresponding p-values are displayed in Table 5. The

test results indicate dependence between these two indices of malnutrition at a significance

level of α = 0.1 for both samples with cage = 3 and cage = 9. Furthermore, all tests except

for Wilks’ Lambda TL indicate significant dependence at level α = 0.05 in the sample of

cage = 3. The distinguished outcomes of TL and the nonparametric tests for cage = 3 might

result from an underlying dependence structure that differs from the bivariate normal model,

for instance, including tail dependence (subsequent investigations of the precise dependence

structure could, for instance, follow Rosco & Joe, 2013). Accordingly, the level of dependence

between the indices might be stronger for more extreme levels of undernutrition. Additionally,

the dependence between underweight and wasting is indicated to be stronger in the second

sample (cage = 9), since the corresponding p-values are throughout below 0.005. For older

children (cage = 9) it might be more likely that both forms of undernutrition, rather than

only one, are observed jointly.

Moreover, we investigate the dependence between the two dimensional set of {underweight,

wasting} and two of the mother’s characteristics, namely, the mother’s age at birth (mage)
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Table 5: Independence test results for the set {underweight, wasting} with respect to the child’s age (cage = 3

and cage = 9 month) and based on samples of sizes n = 87 and n = 55, respectively.

{underweight, wasting} TL TB Tsr TdCov

n = 87, cage = 3 statistic 5.163 0.090 7.956 20.946

p-value 0.076 0.009 0.005 0.01

n = 55, cage = 9 statistic 22.232 0.219 23.657 40.938

p-value 0.000 0.001 0.000 0.005

and the mother’s body mass index (mbmi).7 We apply the same tests as in the bivariate

setting in their multivariate form (studied in Section 4.1.2) to the two dimensional set of mal-

nutrition indices x1 = {underweight, wasting} and one further characteristic being either

x2 = {mage} or x2 = {mbmi}, respectively.

The test results are documented in Table 6. We can diagnose marked differences between

the test outcomes. Studying the dependence between malnutrition and the mother’s age,

i.e. x2 = {mage}, none of the considered tests except for Wilks’ Lambda TL for cage = 3

leads to a rejection of the independence hypothesis with 10% significance. For cage = 9 the

p-values of the CvM statistic TB and the distance covariance TdCov are smaller but still do not

indicate dependence in the second sample (cage = 9) with significance of 10%. In contrast,

the p-values of Wilks’ Lambda TL and the spatial rank based statistic Tsr are larger in the

sample of nine month old children in comparison with three month old children. In light of

the simulation results discussed in Section 4.2 this discrepancy could, on the one hand, reflect

a nonlinear relationship that differs from an elliptical distribution. On the other hand, the

smaller sample size and the stronger dependence within x1, i.e. between underweight and

wasting, could explain performance weaknesses in the sample with cage = 9 (see Section

4.2.2).

In contrast, the test results partly indicate dependence between the mothers’s body mass

index and the two dimensional undernutrition index of their children. For instance, the null

7The whole set of characteristics, i.e. possible covariates in a regression model, are listed in Klein & Kneib

(2016) and the references therein. Klein & Kneib (2016) further describe the nonlinear effects of the covariates

on the bivariate distribution using nutrition data from all over India.
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Table 6: Independence test results for the sets x1 = {underweight, wasting} and x2 = {mage} or x2 =

{mbmi} with respect to the child’s age (cage = 3 and cage = 9 month) and based on samples of sizes n = 87

and n = 55, respectively.

x1={underweight, wasting} TL TB Tsr TdCov

x2={mage} cage = 3 statistic 5.542 0.015 2.027 3.476

p-value 0.063 0.840 0.363 0.585

cage = 9 statistic 1.356 0.026 1.527 4.642

p-value 0.508 0.363 0.466 0.420

x2={mbmi} cage = 3 statistic 3.490 0.053 4.150 2.920

p-value 0.175 0.041 0.126 0.055

cage = 9 statistic 2.620 0.082 6.229 3.568

p-value 0.270 0.007 0.044 0.070

hypothesis of independence is rejected with 10% significance by means of the CvM statistic

TB and the distance covariance TdCov in both samples (cage = 3, 9). Based on the sign rank

based statistic Tsr we can only diagnose dependence for cage = 9. In contrast, by means of

Wilks’ Lambda TL independence cannot be rejected and throughout, the p-values are even

larger for cage = 9 in comparison with cage = 3. These distinct test results point to a

nonlinear, possibly nonmonotone, and at least non Gaussian dependence structure.

Overall, the test results are in line with the results of Klein & Kneib (2016) who study

the dependence between childhood undernutrition and a set of the child’s and their mother’s

characteristics by means of copula regressions for data from all over India. Our results show

that the dependence for cage = 9 is stronger as it is for cage = 3, and might exhibit a

non elliptical distribution in both samples. In line with our dependence diagnosis Klein &

Kneib (2016) characterize the dependence between wasting and underweight by means of a

bivariate Clayton copula obtaining a larger dependence coefficient in the sample of children

aged 9 months.

Applying the multivariate tests we have detected dependence between the mother’s body

mass index (mbmi) and the bivariate set of undernutrition measures, and we are led to

expect a nonlinear form of dependence. Furthermore, the relation between the mother’s age

(mage) and the undernutrition indices {underweight, wasting} lacks significance. Testing for
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independence between distinct combinations of possible covariates and the bivariate response

variable might serve to select covariates with significant explanatory content.

In summary, performance differences between the considered tests show up in most of

the samples of the nutrition data. The independence tests benefit from satisfactory power

even for samples of small size. Moreover, the multivariate tests are applicable to large sets of

variables to diagnose between or within dependence in a flexible way. Thereby, dependence

between the undernutrition measures and the set of all determining characteristics, as well as

mutual dependence within the set of indices could be assessed in further investigations.

6 Conclusions

Nonparametric tests for independence provide a useful basis to decide if the multivariate dis-

tribution of random variables merely relies on their marginal distributions, or if it is worth

to undertake the specification of a dependence structure. Meeting basic distributional as-

sumptions, nonparametric independence tests have been developed to detect various forms of

dependence between two or more random variables. We have described several dependence

structures fundamentally, and provided a comprehensive overview of the theoretical back-

ground of multivariate nonparametric independence tests. Our review comprises traditional

tests, as well as more recently suggested approaches based on spatial signs and ranks, the

empirical copula and the distance covariance.

In a comparative simulation study we consider diverse distributional settings, such as

(non)linear copula dependencies, nonmonotone structures and some modifications which point

at diverse potential applications. A simulation study unravels distinguished size and power

properties under the null hypothesis and specific dependence alternatives, respectively. As a

general conclusion, our results do not indicate one overall most powerful test. Rather, the form

of dependence appears crucial for the tests to perform preferably. Whereas under multivariate

normality the tests show almost equivalent performance, the choice of the tests should be

made more cautiously under non Gaussian distributional settings. In particular, the distance

covariance performs poorly under distributions which lack finite moments. Furthermore, one

might not be able to detect a nonmonotone nonlinear dependence structure by means of

spatial rank based tests whereas the distance covariance performs best under this dependence

alternative. The test based on the Cramér-von Mises (CvM) statistic seems to be most robust
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to the diversity of dependence structures. Generally, merits and drawbacks of the alternative

tests found in bivariate settings are confirmed for trivariate and four dimensional tests on

mutual and groupwise dependence.

In an application to malnutrition data we find that distinguished test outcomes are infor-

mative for diverse forms of dependence between the variables and its strength even in samples

of small size. Consequently, their nonlinear relation might be subjected to further analysis,

for instance, by means of a semiparametric regressions.

The literature on nonparametric independence tests is growing, and already provides

refinements of the methods discussed in this work. For instance, Ding & Li (2014) combine

the distance covariance and copula based measures which might lead to power gains in the case

of a singular copula. Similarly, the set of Hilbert-Schmidt independence criteria (Sejdinovic

et al., 2013) promise improvements of dependence diagnosis over the stylized nonparametric

approaches compared here. While our results hint at test specific performance patterns, it

appears a fruitful avenue of future research to characterize merits and risks of most recent

dependence diagnostics under diverse distributional settings and higher dimensionality by

means of simulation studies.
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