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 CURRENT
OPINION Individualized blood pressure targets during

postcardiac arrest intensive care

Markus B. Skrifvarsa, Anders Ånemanb,c,d, and Koen Ameloote,f,g

Purpose of review

To discuss recent findings relevant to optimizing blood pressure targets in adult, postcardiac arrest (PCA)
patients and whether to tailor these based on specific patient, cardiac arrest or treatment characteristics.

Recent findings

Observational data suggest that mean arterial pressure (MAP) below 65–75 mmHg in PCA patients is
associated with worse outcome. A higher MAP could be beneficial in patients with chronic hypertension
who more frequently have a right shift of the cerebral autoregulation curve. Two recent randomized pilot
trials compared lower and higher MAP targets during PCA care and found no significant effect on
biomarkers of neurological injury. The haemodynamic interventions in those studies did not use any
cerebral perfusion endpoints beyond a static MAP targets during ICU stay. Individualized, dynamic MAP
targets based on assessments of cerebral perfusion and tailored to the specifics of the patient, cardiac
arrest circumstances and treatment responses may be more conducive to improved outcomes. Pilot data
suggest that near infrared spectroscopy monitoring may be used to determine the cerebral autoregulatory
capacity and an optimal MAP, but this approach is yet to be tested in clinical trials.

Summary

Current evidence suggests targeting a MAP of at least 65–75 mmHg in PCA patients. Future studies should
focus on whether certain patient groups could benefit from higher and dynamic MAP targets.

Keywords
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INTRODUCTION

The cause of death in patients with return of spon-
taneous circulation (ROSC) after cardiac arrest and
admitted to an ICU, is either neurological, cardio-
genic or related to multiorgan failure. In a single-
centre study from France about one third of patients
died from circulatory shock and two thirds from
hypoxic ischaemic brain injury (HIBI) [1]. Death
from circulatory shock occurred in general during
the first 3 days whereas death from neurological
injury occurred between days 3 and 5 [1]. Nonethe-
less, various degrees of early circulatory failure with
high lactate and need for vasopressors were key
features in all patients who experienced poor out-
come. An adequate mean arterial blood pressure
(MAP) is paramount to maintain organ blood flow
and hence oxygen delivery sufficient to meet oxy-
gen demands in the brain, the heart and other
organs. Importantly, optimal MAP goals may differ
over time and between patients. In this review we
discuss haemodynamic goals in postcardiac arrest
(PCA) patients and whether MAP targets should be

individualized to improve in particular cerebral
blood flow (CBF) and as a corollary neurological
outcome.
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PATHOPHYSIOLOGY OF HYPOTENSION
AND PERFUSION CHANGES
Hypotension in PCA patients is multifactorial
reflecting changes in cardiac output (CO) [stroke
volume (SV) and heart rate] and vascular conduc-
tance [2]. An inflammatory response is commonly
seen which is related to hypoxia and systemic
ischaemia-reperfusion following ROSC and results
in vasodilatation and low systemic vascular resis-
tance [3,4]. Cardiac index is often low mainly in
patients with acute coronary syndromes as the ini-
tial cause of cardiac arrest. In addition, most patients
receive continuous infusions of sedative agents to
induce and tolerate target temperature management
(TTM), for example propofol, which may decrease
cardiac contractility and vascular resistance. Studies
have not demonstrated a difference in MAP related
to the specific temperature for TTM [5].

The complex cardiovascular compromise
observed in PCA patients may furthermore involve
disruption to ventriculoarterial coupling, impaired
arterial elastance and changes to arterial augmenta-
tion [6]. These factors may have important implica-
tions for the propagation of the arterial pressure
wave and its translation into propulsion of blood
volume [7] and introduce uncertainty regarding
how to best monitor invasive arterial pressure. These
aspects of MAP targets remain sparsely studied
despite recent progress in hypertension research, a
common cardiovascular disease in PCA patients [8].

In most PCA patients the systemic haemody-
namic compromise is most notable in the first 24–
48 h after which it generally resolves [9]. The CBF

follows a slightly different time course [10] and after
an early but brief (20 min) postcardiac arrest hyper-
aemic response as a result of vasoparalysis, a period
of hypoperfusion follows that may last up to 12 h
and mainly reflects an uncoupling of metabolic
vasoregulation. In the final phase up to 72 h after
ROSC, CBF is typically restored to normal but may
again demonstrate a hyperaemic response [11,12].
The latter has been associated with nonsurvival [11]
and likely reflects persistent loss of cerebrovascular
resistance. The influence of MAP on cerebral perfu-
sion during these phases is obviously quite diver-
gent and a static MAP target may lead to both
hypoperfusion as well as hyperperfusion at different
points in time.

BLOOD PRESSURE AND CEREBRAL
CIRCULATION

Cerebral circulation in health is tightly controlled
by multiple regulatory systems that ensure homeo-
static CBF despite a variable MAP, generally referred
to as cerebrovascular autoregulation (CVAR) [13].
Increased sympathetic tone in the large vessels to
the brain, in particular the tortuous part of the
internal carotid artery, lead to vasoconstriction
and in addition both the blood arterial tension of
oxygen (PaO2) and carbon dioxide (PaCO2) take part
in vasoregulation that is also influenced by the
general haemodynamic state, that is MAP and CO.
The pial vessels of the neurovascular unit are sensi-
tive to changes in PaO2, PaCO2, MAP and mediators
of metabolic demand also when exposed via the
cerebrospinal fluid and form the pivotal component
of CVAR capacity. Although MAP often receives
most attention in relation to CBF, the bony enclo-
sure of the brain means that the intracranial pres-
sure (ICP) acts as a Starling resistor which becomes
important in circumstances with markedly elevated
venous pressure; both increased ICP and heart fail-
ure with raised venous pressure in PCA patients may
thus offset the impact of MAP changes. Recent
studies have highlighted that the almost canonized
paradigm of effective CVAR between a MAP of 50
and 150 is not correct [14]. The lower limit of
autoregulation appears to be close to a MAP of
70 mmHg [15] with CVAR more effective for increas-
ing than for decreasing MAP [16] which combined
suggest a far more pressure-passive CBF than con-
ventionally appreciated [13].

As HIBI is the main cause of morbidity and
mortality in PCA patients it is not surprising that
methods to monitor cerebral tissue oxygenation and
the influence of MAP on CBF have attracted consid-
erable interest. Many methods may be used to mon-
itor CBF after cardiac arrest [17,18], for example

KEY POINTS

� Observational data suggest that the lowest MAP target
is around 65–75 mmHg.

� Targeting higher MAP have theoretical benefits but the
evidence from two randomized pilot trials did not show
any alleviation of biomarkers of neurological injury.

� Limited data exist on the optimal type of vasopressors
and inotropes but noradrenaline appears to have many
positive effects.

� The influence of MAP on cerebral blood flow is highly
dependent on individual thresholds for cerebral
autoregulation that are often right-shifted in PCA
patients, mainly in hypertensive patients or patients
using antihypertensive drugs before cardiac arrest.

� The optimal MAP to sustain cerebral perfusion may
vary from patient to patient but thus far there are
limited data on whether its timely identification in ICU
may be used to improve patient-centred outcomes
following cardiac arrest.

Cardiopulmonary resuscitation
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transcranial Doppler (TCD), MRI, Xenon computer
tomography and near-infrared spectroscopy (NIRS),
but only TCD and NIRS are available in the ICU with
sufficient ease of operation. This review will focus on
NIRS given its capacity for continuous monitoring
at the bedside with minimal operator dependence
[19,20] and with automated analyses for CVAR
available [21] as well as the authors’ own
research experience.

Near infrared spectroscopy is a noninvasive
method to estimate regional cerebral oxygen satu-
ration (rSO2), typically in the superficial parts of the
frontal lobes encompassing the watershed area
between the anterior and middle cerebral arteries.
Although there are many determinants of rSO2, the
major influence in a short (minutes) time window is
CBF. By analysing the linear correlation between
changes in rSO2 versus concurrent changes in
MAP in the time domain, often referred to as tissue
oxygenation index (TOx), a quantitative assessment
of CVAR may be obtained. The more positive the
correlation, the more passively rSO2 and thus CBF,
behaves during MAP changes whereas a TOx of zero
or even a negative correlation indicates preserved
CVAR capacity. The lowest and highest MAP for
which the TOx transgresses from preserved to lost
CVAR, in most studies at a threshold of TOx 0.3,
indicate the upper and lower limits of autoregula-
tion whereas the MAP associated with the least TOx
value indicates the optimal MAP at which CVAR is
most effective. The use of NIRS to calculate TOx and
derived indices of CVAR has been applied in several
pilot studies of PCA patients [22–24], comatose
patients in ICU [19] and in healthy volunteers [25].

BLOOD PRESSURE AND PERFUSION OF
THE HEART

Coronary blood flow occurs during diastole and
hence the DBP and heart rate are of major impor-
tance [26]. Similar to the cerebral circulation, coro-
nary flow is kept relatively constant over a wide
range of blood pressures (BP) [26]. Even after suc-
cessful revascularisation the resistance to blood flow
may be increased as a result of vasospasm, formation
of microthrombi and tissue oedema that shift the
coronary autoregulation curve to the right [6]. By
increasing DBP one may increase coronary blood
flow which theoretically could salvage the areas
adjacent to the infarcted myocardium. An associa-
tion between higher DBP and improved outcome
after cardiac arrest was reported in one study [27]. In
this study of 171 PCA patients treated in the ICU,
low DBP during the first 6 h after cardiac arrest was
associated with outcome whereas SBP was not.
Within the constraints of the study design, no

conclusions regarding the possible mechanism(s)
for improved outcome can be drawn.

MEAN ARTERIAL PRESSURE TARGETS

Immediate targets after return of
spontaneous circulation

There is significant variability in MAP between
patients very early after ROSC [28]. After ROSC
there is high risk of re-arrest and therefore adequate
cardiopulmonary monitoring is paramount: con-
tinuous ECG to identify recurring arrhythmias,
noninvasive or preferably invasive BP and contin-
uous capnography [29]. Many PCA patients are
initially tachycardic and hypertensive, especially
if adrenaline has been administered during cardio-
pulmonary resuscitation. Given the 5–10 min half-
life of adrenaline one should initiate aggressive
treatment to maintain BP before the effects of
adrenaline has disappeared. Few studies have
assessed the immediate BP targets after ROSC.
One retrospective study indicated that failure to
achieve physiologic targets recommended in
Guidelines, including a SBP target of 120 mmHg,
during the prehospital phase increased the risk of
poor neurological outcome [28]. Similar observa-
tions have been made in PCA patients on arrival to
hospital [30,31]. Means to achieve these BP targets
include infusion of crystalloid solutions and the
administration of noradrenaline.

General mean arterial pressure targets in the
ICU

Assessment of CO in PCA patients during TTM is
challenging as large thermal noise generated by
cooling catheters tends to overrule the small ther-
mal signal by the thermistor in the right ventricle.
However, there is linear correlation between mixed
venous oxygen saturation (SVO2) as a surrogate for
CO and rSO2. The optimal MAP in PCA patients
should preserve brain perfusion, taking in to
account a potential right shift of the CVAR curve,
without exposing the heart to excessive afterload
that may impair SV, CO and cerebral perfusion. In
an observational study by Ameloot et al. maximal
rSO2 was achieved with a MAP of 87 mmHg with
higher MAP’s resulting in reductions of CO and
rSO2. In the same study, an average MAP between
76 and 86 mmHg and average SVO2 between 65 and
70% were associated with maximal odds for survival
with good neurological outcome. Several other stud-
ies have investigated associations between increased
MAP and improved survival and neurological out-
come [30]. Laurikkala et al. studied the area under

Individualized blood pressure targets Skrifvars et al.
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various MAP thresholds and compared these
between patients with good [cerebral performance
category (CPC) 1–2] and poor (CPC 3–5) neurologi-
cal outcome. In an analysis excluding the last 6 h
before death in the ICU it appeared that there was a
significant difference in time and magnitude (i.e.
area) below a MAP of 70 mmHg, but not at higher
levels [9]. Similar findings have been reported by
Kilgannon et al. [31] who showed that a MAP above
70 mmHg during the first 6 h after ROSC was associ-
ated with better neurological outcome (CPC 1–2)
and in a separate study a MAP more than 90 mmHg
was associated with improved neurological outcome
(modified Rankin Scale, mRS�3) [32

&

]. In an obser-
vational study by Russo et al. [33] focusing on
patients undergoing therapeutic hypothermia at
33 8C the optimal MAP appeared to be at least
75 mmHg. In contrast, Grand et al. [34

&

] found no
interactions between TTM and MAP and reported
impaired cognitive function (mini-mental state
score <27) in patients with higher MAP. On over-
view of conducted observational studies on MAP
and outcome after out-of-hospital cardiac arrest
(OHCA) are provided in Table 1.

RECENT RANDOMIZED STUDIES
COMPARING LOWER AND HIGHER MEAN
ARTERIAL PRESSURE

Recently, two trials have randomized PCA patients
between a lower (MAP 65–75 mmHg) and a higher
MAP target (MAP 80–100 mmHg) (Table 2). In both
trials, interventions were started on ICU admission
and lasted for 36 h. The COMACARE trial published
in 2018 randomized 120 patients with OHCA and
ventricular fibrillation [35

&&

]. The mean dose of
noradrenaline required to achieve the assigned
MAP targets were around 0.05 mg/kg/min in the
lower group and 0.20 mg/kg/min in higher group.
The study showed that targeting higher MAP was
feasible and safe. However, the study failed to show
any difference in rSO2 or any difference in the level
of neuron specific enolase as a surrogate marker of
the magnitude of neurological injury.

In 2019, the NEUROPROTECT study was pub-
lished. The NEUROPROTECT trial randomized 112
OHCA patients (including 35 patients with non-
shockable rhythm) to either a standard group with
a MAP target of 65–75 mmHg or a haemodynamic
optimization group that included a higher MAP
target (MAP 85–100 mmHg) as well as an optimiza-
tion of the mixed venous saturation (SVO2 65–75%)
[36

&&

]. No difference in the extent of brain injury as
measured with diffusion weighted MRI at day 5 was
found between the two groups. In contrast with
COMACARE, patients randomized to receive the
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intervention in NEUROPROTECT did not show the
typical drop of rSO2 during the first 12-h of their ICU
stay. We hypothesize that unopposed use of nor-
adrenaline as in COMACARE may result in inappro-
priate increase of left ventricle afterload, reduction
in SV and cerebral perfusion whereas the more
frequent use of dobutamine in NEUROPROTECT
(as guided by continuous SVO2 monitoring) may
have better preserved SV and cerebral perfusion.

While these two trials were not powered for
patient-centred outcomes, rather than targeting a
higher MAP for all patients it seems plausible that
treatment should be individualized and directed
towards subgroups for whom a higher MAP is
needed. A post-hoc analysis of the COMACARE
cohort to evaluate NIRS based indices of CVAR is
currently in progress [37].

MEANS TO INDIVIDUALIZE MEAN
ARTERIAL PRESSURE TARGETS

Using near-infrared spectroscopy

Pham et al. [22] studied 23 PCA patients and showed
that perturbed CVAR was present in 78% of patients
in the first 3 days in ICU. Although there were no
differences in MAP or rSO2 levels between survivors
and nonsurvivors, TOx was an independent predic-
tor of outcome and discriminated between survivors
(all with favourable neurological outcome) and non-
survivors with an area under the curve of 0.88 [95%
confidence interval (CI) 0.75–0.90]. Ameloot et al.
[23] studied 51 PCA patients and found disturbed
CVAR in 35%, typically in patients with pre-cardiac
arrest hypertension. The time spent under the indi-
vidual optimal MAP for CVAR was independently
associated with nonsurvival (odds ratio 0.97; 95% CI
0.96–0.99). Sekhon et al. [24] investigated 20 PCA
patients and 15% of TOx measurements indicated
absence of CVAR during a median patient monitor-
ing period of 30 h. Significantly, the TOx increased
with temperature and worsening CVAR associated
with increased temperature was also reported in an
observational study of 85 acutely comatose neuro-
critically ill patients [38]. Collectively, these studies
in PCA patients demonstrated wide range of CVAR
disturbances with the optimal MAP between 76 and
103 mmHg. It is thus conceivable that a static MAP
target of 65–75 mmHg in PCA patients could be
associated with cerebral hypoperfusion. Relying
on static ‘one-size fits all’ NIRS rSO2 values may
not work as a post-hoc study of the COMACARE
study failed to show any association between either
the highest, lowest, mean or median NIRS rSO2

values and neurological injury measured with bio-
markers or neurological outcome [39].
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Based on comorbidity

In the study by Ameloot et al. [23], the presence of
chronic hypertension was associated with a right
shift of the CVAR curve. The calculated optimal
MAP was significantly higher in patients with
chronic hypertension. The two randomized pilot
studies comparing low and high MAP [35

&&

,36
&&

]
did not find any interaction between neurological
injury (MRI findings or biomarkers) based on the
presence of chronic hypertension, although limited
statistical power precludes any firm conclusions. In
one retrospective study from the TTM study group,
lower MAP was associated with decreased renal
function [40]. In the NEUROPROTECT trial on the
other hand higher MAP was associated with
increased urinary output but no difference in creati-
nine [36

&&

].

Based on presence of acute myocardial
infraction

In the NEUROPROTECT trial there was a significant
difference in troponin levels favouring the higher
MAP group [36

&&

]. In the COMACARE trial there
was a trend towards lower troponin levels in the
higher MAP group [35

&&

]. A pooled analysis of both
trials (unpublished data) suggest that in a subgroup of
patients with shock and acute myocardial infarction
verified with angiography, troponin levels over time
were significantly lower in the high-MAP patients.
This may be related to improvements of DBP and
coronary perfusion that offsets increased myocardial
oxygen consumption by using higher doses of nor-
adrenaline. Although the number of life threatening
arrhythmias’ were not different between patients
randomized to low versus higher MAP targets, these
findings at least show that using higher doses of
noradrenaline to increase MAP is safe and feasible
even in patients with an acute coronary syndrome
immediately after successful revascularization.

Mean arterial pressure targets and target
temperature management

In a sub-study of the TTM trial Bro-Jeppesen et al. [5]
studied BP, cardiac function and vasopressor
requirements in patients treated with TTM at either
33 or 36 8C. They found that TTM 33 8C was associ-
ated with bradycardia and a lower CO which could
explain a reduced lactate clearance. There was no
major difference in MAP levels between TTM groups
but patients treated at 33 8C required slightly more
vasopressor support. A MAP less than 65 mmHg was
associated with increased mortality and poor neu-
rological outcome independent of TTM at 33 or
36 8C.

Oxygen and carbon dioxide

Both PaO2 and PaCO2 influence CBF and the arterial
oxygen content. Thus, it seems reasonable to
assume that the effects of targeting different MAPs
may be modified by the concomitant PaO2 and
PaCO2. The COMACARE pilot trial, which is limited
by sample size, did not however, demonstrate any
interactions between MAP and PaO2 or PaCO2 [41].

CHOICE OF VASOPRESSOR IN
POSTCARDIAC ARREST PATIENTS

No study to date has directly compared different
vasopressors in PCA patients. Vasodilatation is one
feature of the postcardiac arrest syndrome with a
decrease in systemic vascular resistance. Large
amounts of fluid may be needed in selected patients.
Noradrenaline has many beneficial properties as it
effectively increases MAP without causing severe
tachycardia. In a study including patients with car-
diogenic shock, noradrenaline was found to be supe-
rior to adrenaline given the severe tachycardia and
aggravated shock observed with the latter [42

&&

].
Indeed, in both the COMACARE and NEUROPRO-
TECT trials most patients were treated with nor-
adrenaline and the haemodynamic profiles of
patients appeared favourable, with increases in
MAP without severe tachycardia or arrhythmias
[36

&&

,39].

AREAS OF FUTURE RESEARCH

Although it seems promising to target a patient
tailored optimal MAP by real-time bedside monitor-
ing of CVAR based on correlations between rSO2 and
MAP, some important questions remain to be
answered. First, in typical PCA patients, rSO2 drops
during the first 12 h of ICU stay. Although it seems
paramount to start any haemodynamic interven-
tion as early as possible during this critical time
window, determination of patient tailored optimal
MAP may take several hours. In addition, it has been
hypothesized that patient tailored optimal MAP
may be a dynamical parameter that changes contin-
uously during this critical time frame depending on
levels on vasopressor support (noradrenaline may by
itself cause some cerebral vasoconstriction), seda-
tion and arterial carbon dioxide. Future observa-
tional studies need to solve these issues before
pilot trials targeting patients tailored optimal MAP’s
are ready for prime time. Factors that may influence
the optimal MAP in OHCA patients are outlined in
Fig. 1.

The current Guidelines on PCA care do not
recommend any one strict MAP target [29]. Instead
the recommendation is to titrate MAP to an
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adequate level in which lactate levels decrease and
the patients has adequate urine output (0.5–1 ml/
kg/h). Notwithstanding, a fairly large body of evi-
dence suggest that it may not be wise to decrease
MAP to levels below 70 mmHg. Future studies
should focus on whether some subgroups of patients
benefit from even higher MAP.

CONCLUSION

A MAP of 70 mmHg is likely to be adequate in most
patients after cardiac arrest. Limited evidence sug-
gest associations between better outcome and
higher pressures in patients with an acute myocar-
dial infarction, chronic hypertension and cerebral
oedema. More refined ways to determine the
optimal MAP requires further study before wider
application.
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