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saving mutation, which is masked by the

anticonvulsant properties of CO2.
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SUMMARY
African naked mole-rats were likely the first mammals to evolve eusociality, and thus required adaptations to
conserve energy and tolerate the low oxygen (O2) and high carbon dioxide (CO2) of a densely populated fosso-
rial nest. As hypercapnia is known to suppress neuronal activity, we studied whether naked mole-rats might
demonstrate energy savings in GABAergic inhibition. Using whole-colony behavioral monitoring of captive
naked mole-rats, we found a durable nest, characterized by high CO2 levels, where all colony members spent
the majority of their time. Analysis of the naked mole-rat genome revealed, uniquely among mammals, a histi-
dine point variation in the neuronal potassium-chloride cotransporter 2 (KCC2). A histidine missense substitu-
tionmutation at this locus in the human ortholog of KCC2, found previously in patientswith febrile seizures and
epilepsy, has been demonstrated to diminish neuronal Cl� extrusion capacity, and thus impairs GABAergic
inhibition. Seizures were observed, without pharmacological intervention, in adult naked mole-rats exposed
to a simulated hyperthermic surface environment, causing systemic hypocapnic alkalosis. Consistent with
the diminished function of KCC2, adult nakedmole-rats demonstrate a reduced efficacy of inhibition thatman-
ifests as triggering of seizures at room temperature by theGABAA receptor (GABAAR) positive allostericmodu-
lator diazepam. These seizures are blocked in the presence of nest-like levels of CO2 and likely to bemediated
through GABAAR activity, based on in vitro recordings. Thus, altered GABAergic inhibition adds to a growing
list of adaptations in the naked mole-rat and provides a plausible proximate mechanism for nesting behavior,
where a return to the colony nest restores GABA-mediated inhibition.
INTRODUCTION

Eusociality, a system of extreme reproductive altruism, has

evolved only twice in vertebrates, both times in fossorial mole-

rats, as proposed initially by Richard Alexander in 1974 [1, 2]. Of

the two eusocial mole-rat species, the more reproductively

skewed eusocial African naked mole-rat is believed to have

evolved first, around 35 million years ago [3]. Unlike other verte-

brates,maturenakedmole-rats rarelydisperse fromtheir natal col-

ony but participate in a caste systemwith overlapping adult gener-

ations cooperating in foraging, brood care, and maintenance and

defense of the colony nest [4]. The transition to eusociality in this

speciesappeared tooccurnot longafter itbecamefossorial,which

servedasa successful adaptation to thrive in thepredator-rich and

patchy food conditions of semi-arid sub-Saharan Africa. Asmem-

bers of the Bathyergidae family, African mole-rats range from sol-

itary to eusocial within similar environmental niches. It is clear that

theemergenceofeusociality in thenakedmole-rat isanadaptation

to enhance evolutionary fitness, rather than a constraint.
2068 Current Biology 30, 2068–2077, June 8, 2020 ª 2020 The Autho
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The rarity of eusociality among mammals underscores the

challenges posed by such an adaptation. The largest challenge

is likely to be overcoming the high energy costs required by

mammals compared to invertebrates. A durable and defensible

centralized colony nest appears to be a universal feature of eu-

social species [5], yet a densely occupied underground nest in

naked mole-rats—the species with the largest colony size (up

to 300 individuals) of any mammal [6]—limits access to O2 and

food. Naked mole-rats have successfully reduced energy de-

mand and increased efficiency behaviorally through cooperative

foraging [7], thermoregulation (huddling) [8, 9], and physiologi-

cally through adaptations including lowered metabolic rate

[9–11], enhanced O2 delivery to organs [12–14], and remarkable

alternative metabolic strategies to address hypoxia [15].

Huddling in the naked mole-rat nest is achieved due to the

permissive fossorial environment, which buffers the wide daily

and seasonal excursions measured aboveground to stable tem-

peratures at the deeper parts of the burrow, likely to house the

colony nest [6, 16, 17]. These areas are cooler (19�C–28�C)
r(s). Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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[16] than the range of naked mole-rat thermoneutrality (31�C–
34�C) [8]. When naked mole-rats huddle at thermoneutral tem-

peratures, O2 consumption and metabolic demand decrease

as group size increases [9]. This is likely due to the unique lack

of a hypercapnia-triggered increase in ventilation in this species

[18], achieved, in part, through diminished substance P signaling

[19]. Therefore, large-group huddles in the cool colony nest may

be particularly advantageous for both thermoregulation and en-

ergy conservation.

The most accurate estimates of naked mole-rat burrow air

composition to date show only mildly elevated levels of CO2

(0.4%) in unoccupied or low occupied areas [16], well within the

range of what has been reported for other fossorial mammalian

species [20]. It is clear, however, from a number of experimental

studies that naked mole-rats have adapted to tolerate elevated

CO2 levels. These adaptations include prolonged survival even

in extreme hypercapnia [15], the lack of typical behavioral and

respiratory responses to elevated ambient CO2 levels [15,

21–23], a decreased CO2 sensitivity of neuronal gap junctions

[24], and an insensitivity to certain acidic stimuli [25–27].

These adaptations, along with lower than expected adult brain

volume [28] and neuron number [29] likely reflect the nakedmole-

rat’s ability to restrict energy consumption by the brain, the most

energy-demanding organ in the body [30]. The naked mole-rat

colony nest may create a permissive environment for brain en-

ergy savings through hypercapnia, which has been shown to

diminish neuronal activity in rodents [31], non-human primates

[32], and humans [33]. The potent anticonvulsant action of CO2

in rodents and humans [34, 35] is in line with the fact that hyper-

capnia suppresses neural excitability. Thus, we hypothesize that

maintaining the brain in a chronic hypercapnic state establishes a

positive selection pressure for gene variants that save energy by

eliminating other mechanisms to maintain inhibitory tone. While

such variants might lead to seizures and lowered fitness in a nor-

mocapnic environment, they may increase fitness through low-

ered metabolic need under hypercapnia.

Themammalian brainworks close to theoretical limits on energy

consumption, with most of it used to maintain the ionic driving

forces that are needed for electrical signaling [30]. Changes in

the functions and expression patterns of ion channels and trans-

porters may thus have evolved in the naked mole-rat to protect

neurons during states of energy crisis. An important energy-

demanding process in the mammalian brain is the extrusion of in-

traneuronalCl�by theKCC2cation-chloridecotransporter [36]. As

a secondary-active transporter, KCC2 indirectly expends ATP to

extrude Cl– via energy stored in the K+ gradient generated by the

Na-K ATPase [37]. KCC2 is typically downregulated under energy

crises [36] and inhibition of cation-chloride cotransport enhances

ATP recovery following oxygen-glucose deprivation [38]. In typical

mammals, the ability ofGABA to hyperpolarize neurons and inhibit

their activity depends upon the developmental up-regulation of

KCC2, leading to lowered intraneuronal Cl� concentration [37].

Improper function of KCC2 can impair GABAergic signaling and

has been implicated in seizure and neurodevelopmental disorders

such as epilepsy, autism, and schizophrenia [39–46].

Here, we monitored whole-colony behavior of captive naked

mole-rats and found that these animals consistently established

a colony nest. Each colony member spent the majority of their

time in the nest, which was measured to have elevated CO2
levels. Notably, naked mole-rats demonstrated a vulnerability

to hypocapnic alkalosis, which manifests as seizures in environ-

ments that mimic the aboveground conditions in their native

habitat. Analysis of the naked mole-rat genome revealed a

species-specific histidine point variant in exon 22, a highly

conserved regulatory region of KCC2 [47, 48]. This variation

has also been identified in humans with febrile seizures, idio-

pathic generalized epilepsy, autism spectrum disorder, and

schizophrenia, in contrast to the general population carrying an

arginine at this position [41, 43, 44]. Apart from the naked

mole-rat, the only other species across Mammalia without an

arginine at this locus is the only other eusocial mammal, the

Damaraland mole-rat, which carries a cysteine.

Consistent with diminished function of KCC2, nakedmole-rats

demonstrate reduced efficacy of GABAergic inhibition, which,

remarkably, manifests as the triggering of seizures in adult naked

mole-rats at room temperature by the GABAergic positive

allosteric modulator diazepam. These seizures are blocked or

reversed in the presence of nest-like levels of CO2 and are likely

to be mediated through GABAAR activity, based on in vitro re-

cordings. We propose that naked mole-rats have adapted a

diminished GABAergic inhibitory tone as an energy-saving

mechanism due to the permissive neuromodulatory conditions

of the high CO2 colony nest, thus establishing the nest as an

important attractor for animal activity.

RESULTS

Captive naked mole-rats housed in an environment with multi-

ple interconnected chambers demonstrated a prominent nest

in each colony, with the nest location determined by colony

members. The implantation of whole colonies with passive

radio frequency identification (RFID) transponders and the

positioning of antennas around the housing environment [49]

showed a highly conserved space utilization, with the majority

of activity concentrated around a single nest chamber, with

the location of the nest chamber changing periodically (Fig-

ure 1A). Tracking the activity of individual colony members

showed that all individuals of the colony remained in the nest,

huddling [50], with forays to the food chamber and specific

chambers designated by the colony as toilet chambers.

Regardless of caste (reproductive, large worker, small worker)

or time of day, even when measured over long time periods, all

individuals spent a large proportion of time in the nest chamber

(more than 70%, averaged over 26 days and across two col-

onies), with the queen and breeding male of each colony

showing the highest proportion of time in the nest (Figure 1B).

Visual representations of the individual naked mole-rat and

chamber locations confirmed the nest as a focus of colony

behavior over weeks of measurement (Video S1).

Measurements of CO2 from a total of 96 chambers in the occu-

pied housing environments of five different naked mole-rat col-

onies showed a steep gradient from the nest to non-nest areas

with a minimum recorded value of 0.05% (of volume) in a toilet

chamber, and a maximum recorded value of 2.33% in a nest

chamber, which is considerably higher than the highest levels

recorded in non-nest portions of the burrow in the wild [16].

The nest chamber of each colony consistently showed the

highest CO2 levels (1.15% ± 0.41%, n = 8), followed by the
Current Biology 30, 2068–2077, June 8, 2020 2069



Figure 1. Colony Behavior of Naked Mole-Rats Shows Preference for High CO2 Environments

(A) Radio frequency identification (RFID)-measured proportion of time spent in each of 11 colony chambers in the laboratory housing environment of colony TT-2

over four 60-h periods (consecutive weekendswith no human intervention). See Video S1 for an overview of hourly activity. Note the high concentration of animals

in chamber ‘‘I’’ for the first two periods and chamber ‘‘E’’ for the third and fourth periods, indicating the relocation of the colony nest. #Location of the colony nest

during each period.

(B) Proportion of time spent at the colony-nest location (determined based on the location of the majority of colony members at any given hour) for each of the 36

members of the TT-2 colony over a 26-day period, which includes the four periods identified in (A). Colors of individual lines represent the proportion of time spent

in the nest for each animal and is based on the scale provided in (A). The colony queen is indicated by a red line, and the breeding male is indicated by a blue line.

(C) Chamber air CO2 levels for each of the chambers in colony TT-2 collected with a minimum of three samples per chamber over a 14-day period. Note that the

nest location was consistently in chamber ‘‘K’’ during this collection period, as indicated by #.

(D) Activity at test chamber RFID antennas during exposure to compressed room air (air; 0.04%CO2), pure N2, or two levels of highly elevated CO2. Exogenously

delivered gases were infused into a non-nest chamber in two different colonies, and the activity at RFID antennas was quantified. See Figure S1 for an example of

colony-nest movement during a gas infusion experiment. ***p < 0.001 to baseline levels (100), one-way ANOVA with Bonferroni-adjusted pairwise comparison.
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chamber where food was placed each day (0.49 ± 0.13%, n = 5).

Figure 1C shows the housing environments for the TT-2 colony

with average CO2 values recorded per chamber. Thus, our re-

sults suggest that naked mole-rats spend the majority of their

time in the most CO2-rich areas of the housing environment,

despite protection and equivalent temperature elsewhere in

the housing environment.

To determine whether naked mole-rats tolerate or prefer the

hypercapnia experienced in the nest chamber, we measured

the amount of activity in a non-nest chamber in the same housing
2070 Current Biology 30, 2068–2077, June 8, 2020
environment infused with exogenous CO2. Following a 24-h

baseline period, CO2, compressed room air (containing 0.04%

CO2), or pure nitrogen gas (N2) was infused into the test cham-

ber. High CO2 levels levels comprising 2.5% or 11%were tested

and run in two separate experiments with different colonies and

housing arrangements. When the level of RFID activity at the en-

trances to the gas infusion chambers was measured, we found

significant increases in the frequency of visits when CO2 was

infused but not when the gas infused was room air or pure N2

(Figure 1D).
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The effect of CO2 infusion on nesting behavior was also exam-

ined bymonitoring the influence of gas application to the existing

colony environment on nest location in the colony. Figure S1

shows the proportion of time spent by animals in the TT-2 colony

in one of three observed nesting locations (chambers G and K—

typical nesting locations; and chamber M—a location that was

not previously used as a colony nest). Nesting in the test

chamber M was monitored through a 24-h baseline period, a

24-h CO2 infusion period, a 71-h recovery period, a 5-h N2

infusion period (set to return CO2 to 0.1%), and a second 71-h

recovery period. During the baseline period, an average of

6.5% ± 0.8% of animals nested in chamber M during any given

hour, with the majority of animals nesting in chamber G

(83.1% ± 1.41%). Nesting in chamber M increased slightly

from baseline (8.4% ± 2.0%) during the period of CO2 infusion.

When the CO2 infusion was turned off, nesting in chamber M

increased to 40.8% ± 4.3%, establishing the nest in this

chamber for the first time and reaching the highest percentage

of nesting animals for any of the three nests (98.4%) during

hour 57 of recovery. Conducting a similar routine in a

third colony (L-1), under video surveillance, showed the move-

ment of the nest to a chamber adjacent to the gas infusion cham-

ber during infusion of 2.5% CO2.

Pure N2 gas was infused into chamber M (at a rate identical to

the rate of CO2 infusion), lowering chamber M CO2 values to

baseline (0.01%). During this period, the animals exited chamber

M andmoved the nest to chamber K, reducing the percentage of

animals in chamber M to 11.9% ± 3.1% for this period. This part

of the experiment, which was planned to run for 24 h, was dis-

continued after 5 h when animals were found deceased

in chamber L, near the entrance to chamber M. During the next

recovery period, the nest was maintained in chamber K

(60.2% ± 2.6% of animals), with an average of 8.2% of animals

located in chamber M during this period.

Using a Bayesian structural time-series model, we assessed

the impact that these experimental manipulations had on the

activity patterns in the test chamber. Figure S1 shows an over-

lay of the actual activity data along with the predicted activity,

which was derived from the 24-h baseline period. The model

yielded a significant impact of the experimental manipulation

overall (Bayesian one-sided tail area probability: p = 0.001),

with the CO2 recovery, N2 infusion, and N2 recovery all

showing a significant increase from the activity levels pre-

dicted by the model (p< 0.0125, Bonferroni-corrected). Taken

together, our results show that high CO2, but not other exog-

enous gases tested, cause an increase in visits and nesting

behavior in a part of the housing environment that is not

commonly visited and does not typically house the colony

nest. Animals build nests adjacent to the infusion chamber

during CO2 infusion and into the infusion chamber after CO2

is turned off, indicating a preference for the higher CO2 areas

of the housing environment.

Nakedmole-rat activity above ground has been observed only

rarely in the native habitat [51]. Therefore, we tested the hypoth-

esis that captive naked mole-rats would display a physiological

sensitivity to the warmer, low CO2 surface environment. Adult

naked mole-rats were exposed to simulated nest conditions

(2.5% CO2/21% O2/76.5% N2 at 32�C), to room air (0.04%

CO2/21% O2/78.96% N2 at 20�C), or to simulated surface
conditions [8], where room air was heated to 42�C. Respiratory
rate measured under these environmental conditions demon-

strated a significant effect of temperature, more than doubling

during exposure to the simulated surface environment (Figure

2A). Systemic pH and blood CO2 partial pressure values in naked

mole-rats ranged from respiratory acidosis in the simulated nest

conditions to relative hypocapnic alkalosis when exposed to the

hyperthermia-promoting simulated surface conditions (Figure

2B). Hyperventilation often followed a period of motor hyperac-

tivity in the simulated surface environment. This activity typically

subsided after around 10 min. In 9 out of 10 animals exposed to

simulated surface environment, signs of seizure activity (head-

bobbing, mouth automatisms, generalized convulsions; Video

S2) appeared after the cessation of hyperactivity, on average

14.4 ± 1.2 min after the chamber ambient temperature reached

42�C. Rectal temperature, measured after removal from the

chamber heated to 42�C, averaged 41.7�C ± 0.6�C (n = 10). An-

imals demonstrating these seizures were males and females

from four different colonies ranging in age from 5 months to

nearly 4 years; nearly all were well past the age of sexual maturity

(6 months) and considered adults, despite the presence of a

number of neotenous features [28, 52, 53].

Figure 2C shows a representative cortical electroencephalo-

gram (EEG) recording of seizure activity during exposure to a

simulated surface environment (0.04% CO2/21% O2/78.96%

N2 at 42
�C). Seizures produced in the simulated surface environ-

ment were prevented when simulated nest air at 42�C (2.5%

CO2/21% O2/76.5% N2) was deployed in the environmental

chamber (Figure 2D). Wavelet decomposition and line-length

analysis used to automatically identify epileptiform activity [54]

confirmed experimenter observation of seizures in all of the

EEG-implanted animals exposed to simulated surface environ-

ment containing low (0.04%) ambient CO2 (n = 3), and in none

of the animals exposed to the similarly heated high (2.5%)

ambient CO2 environment (n = 3). When animals removed from

simulated surface conditions were exposed to simulated nest

air (2.5% CO2/21% O2/76.5% N2) after the beginning of a

seizure, high-frequency, high-amplitude cortical seizure events

subsided in the EEG (Figures 2C and 2D), but head-bobbing

and mouth automatisms continued for the remainder of the

experiment (>10 min).

The elevated respiratory rates and blood pH measured in

naked mole-rats in the simulated surface environment (Figures

2A and 2B) indicate that respiratory alkalosis is the underlying

seizure trigger, similar to seizures observed under similar

conditions in children [55] and in rat and mouse pups [56–60].

In mice and rats, this high susceptibility to brain alkalosis-

induced seizures subsides toward the third week of life [56],

which in these species is closely paralleled by the develop-

mental up-regulation of KCC2 and consequent maturation of

GABAergic signaling [37, 61].

In humans, KCC2 is encoded by the solute carrier family 12

member 5 (SLC12A5) gene. Recently, an arginine to histidine

mutation at site 952 of human KCC2b (KCC2-R952H; aka

KCC2-R975H in the KCC2a splice variant), located in the highly

conserved regulatory region encoded by exon 22, was identified

by us as a loss-of-function mutation associated with febrile

seizures in humans [41]. Examination of the published naked

mole-rat genome [62, 63] revealed a histidine, uniquely among
Current Biology 30, 2068–2077, June 8, 2020 2071



Figure 2. Hyperthermia-Induced Respiratory

Alkalosis Promotes Seizures in Adult Naked

Mole-Rats

(A) Hyperthermia increases breathing rate of naked

mole-rats (n = 5). **p < 0.01, Mann-Whitney U test.

(B) Hyperthermia promotes systemic hypocapnic

alkalosis in the naked mole-rat. Blood pH values

range from acidosis in the simulated nest conditions

(n = 3) and in room air (n = 4) to hypocapnic alkalosis

in simulated surface conditions (n = 7)mimicking the

warm aboveground conditions of the animal’s

native habitat in the Horn of Africa. pCO2, partial

pressure of CO2. *p < 0.05, Kruskal-Wallis test, fol-

lowed by Dunn’s post hoc test.

(C and D) Cortical EEG recordings of naked mole-

rats exposed to a chamber heated to 42�C
containing (C) room air (0.04% CO2) or (D) high

CO2-containing air (2.5% CO2). Cyan and red

marks indicate periods of abnormal spikes and

seizures (respectively) detected by an automated

line-length analysis based on the artifact-removed

and wavelet-decomposed EEG trace [54]. Note the

lack of abnormal spikes or seizures (cyan or red

marks) detected in the presence of 2.5% ambient

CO2 (D). See Video S2 for an example of hyper-

thermia-induced seizure behavior.
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mammals, as a species-specific variant at this homologous

position in the orthologous gene encoding for KCC2 in the naked

mole-rat (Figure 3). Intriguingly, we identified a cysteine variation

in this position in the published genome [64] of the Damaraland

mole-rat (Fukomys damarensis) (Figure 3), a close relative of

the naked mole-rat and the only other eusocial mammal species

noted to date. Both naked mole-rats and Damaraland mole-rats

have been reported to lack clear behavioral responsiveness to

high ambient CO2 [22] (but see [65]). Naked mole-rats and Dam-

araland mole-rats are the only mammalian species with a native

variant in this position in region encoded by exon 22 of KCC2.

Figure S2 expands the analysis based on genomes of the eu-

archontoglires (supramammals) clade (Figure 3) to all published

whole genomes across Mammalia to demonstrate the high con-

servation of this amino acid locus.

The species-specific point variant of KCC2 identified in naked

mole-rats may have important consequences for neuronal

physiology. Overexpression studies of human KCC2-H952 in

mouse hippocampal and neocortical neurons have demon-

strated that a histidine at this position reduces the expression

of KCC2 in the neuronal plasma membrane, resulting in a low-

ered Cl– extrusion capacity of neurons expressing KCC2-H952

compared to those expressing wild-type human KCC2 (KCC2-

R952) [41, 43] (see also [66]).

To investigate the Cl– extrusion capacity of cortical pyramidal

neurons of 12-month-old nakedmole-rats and 2-week-old mice,

we performed patch clamp recordings of the reversal potential of

GABAAR-mediated currents (EGABA), which reflects the level of

intracellular Cl– concentration. Upon somatically loading the

neurons through the patch pipette with a defined constant Cl–

load of exactly the same magnitude, dendritic EGABA values

were determined by local puff application of GABA to a dendritic
2072 Current Biology 30, 2068–2077, June 8, 2020
segment at a fixed (e50 mm) distance from the somatic Cl–

loading site. These experiments, performed under pharmacolog-

ical block of bumetanide-sensitive secondary-active Cl– uptake

mechanisms [42], showed that, while the resting membrane

potential of layer 2/3 pyramidal neurons were comparatively

negative in, both, mice (n = 10) and naked mole-rats (n = 9), den-

dritic EGABA values in the latter species were more positive,

suggesting less efficient Cl– extrusion under the present condi-

tions (Figure 4A). Repetitive stimulation of GABAergic inputs on

pyramidal neurons, particularly in the absence of efficient Cl–

extrusion, reduces the amplitude of these inputs due to activ-

ity-dependent accumulation of intraneuronal Cl– and may even

result in a change in polarity of GABAAR-mediated currents

[67, 68]. This situation is particularly relevant to neuronal com-

partments with high surface-to-volume ratio, such as dendrites,

which are highly prone to fast activity-dependent shifts in EGABA

[37]. Notably, hyperthermic seizures triggered in immature ani-

mals by respiratory alkalosis may, under certain conditions,

even be exacerbated by GABAAR potentiation [59].

In light of the above, we set out to test whether a standard

GABA-potentiating anticonvulsant, diazepam, would block hy-

perthermia-induced seizures in full-grown nakedmole-rats. Strik-

ingly, diazepam injected intraperitoneally not only failed toprevent

seizures, but in fact triggered seizures when injected in roomair at

room temperature (20�C). Injection of 1 or 5mg/kg diazepam (i.p.)

in male and female adult naked mole-rats (weighing between 25

and 57 g and administered under ambient temperatures of 20�C
or 32�C) produced motor convulsions in 10 out of 10 animals.

The time to convulsions was typically less than 5 min following in-

jection of 5 mg/kg diazepam (n = 5) and greater than 20 min

following 1 mg/kg diazepam (n = 5). Two animals at each dose

were implanted with EEG electrodes, and motor convulsion



Consensus
Castor canadensis
Dipodomys ordii
Octodon degus
Fukomys damarensis
Heterocephalus glaber
Cavia porcellus
Chinchilla lanigera
Jaculus jaculus
Cricetulus griseus
Mus musculus
Rattus norvegicus
Microtus ochrogaster
Nannospalax galili
Marmota flaviventris
Macaca mulatta
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Figure 3. In Silico Analysis of the Naked

Mole-Rat Genome Reveals a Species-Spe-

cific KCC2 Variant

Alignment of the amino acid sequences encoded

by exon 22 of KCC2 orthologs in rodent and pri-

mate members of the euarchontoglires (supra-

primates) clade. Figure S2 demonstrates how

highly conserved this region is in all clades across

Mammalia. Amino acid arginine (R) at position 952

(in human KCC2b; NCBI: NP_065759.1) is highly

conserved among mammals with the exception of

the two eusocial species, the naked mole-rat

(Heterocephalus glaber; NCBI: XP_004858176.1),

which carries a histidine (H), and the

Damaraland mole-rat (Fukomys damarensis;

NCBI: XP_010624588.1), which carries a cysteine

(C) at this locus (based on the published genomes

[62–64]). *The first human disease-related muta-

tion of the gene encoding KCC2, an R-to-H mu-

tation (R952H) at this same position, has been

found in an Australian family with febrile seizures [41] and in a cohort of Canadian patients with idiopathic generalized epilepsy [43]. R952H has also been reported

in human autism spectrum disorders and schizophrenia [44]. Analysis and alignment were done in Geneious Prime using NCBI protein sequences of mammalian

KCC2/SLC12A5 orthologs. Dots indicate adherence to the consensus sequence.
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activity was confirmed to be accompanied by cortical seizures

(Figure 4B). Administration of 0.5 mg/kg diazepam produced no

sedation or behavioral signs of seizure in four of five animals in-

jected; instead, increased (agitated) behavior was observed.

The fifth animal injected with this this dose showed sedation for

20 min following injection. Thus, typically anticonvulsant doses

of diazepam [59] elicit seizures in adult naked mole-rats, indi-

cating an excitatory response to GABA in vivo.

In vitro extracellular electrophysiological recordings in hippo-

campal slices provide support that GABAAR can contribute to

neuronal hyperexcitability in the adult nakedmole-rat (Figure 4C).

Slices of adult naked mole-rat hippocampus routinely showed

unprovoked epileptiform burst discharges, similar to those

measured in chronic rodent models of epilepsy [69], in the CA3

pyramidal cell layer under normal recording conditions. When

the GABAAR agonist isoguvacine (200 mM) was added to the

perfusate, slices that were bursting increased their bursting ac-

tivity and developed spreading depression (n = 3 slices from 3

animals), indicating an excitatory response to GABAAR activa-

tion (Figure 4C).

DISCUSSION

Converging evidence from the current study posits CO2 as an

important and necessary environmental factor for naked mole-

rat brain physiology. In a semi-natural laboratory colony housing

environment, naked mole-rats establish clear nest areas that

harbor elevated CO2 levels. Analysis of the individual activity pat-

terns of colony members demonstrates that all colony members

spend the majority of their time in this part of the housing envi-

ronment, regardless of caste or time of day. When exogenous

CO2 was applied to the colony environment outside of the

nest, colony members made more visits to this CO2-rich area

and relocated the colony nest to the site of gas infusion, after

the gas was turned off.

The most accurate estimates of naked mole-rat burrow air

composition to date [16] show only mildly elevated ambient

CO2 levels in unoccupied or low occupied areas, within the range
of what most mammals experience and can tolerate. However,

the location of the colony nest at the deeper areas of the burrow,

which have temperatures below the range of thermoneutrality for

naked mole-rats (31�C–34�C) [8], suggests that huddling is a

necessary form of thermoregulation [9]. In captivity, in an envi-

ronment (29.2�C ± 1.4�C) maintained closer to their thermoneu-

tral range, naked mole-rats exhibited consistent huddling

behavior, which substantially increased ambient CO2 in the

nest chamber. When naked mole-rats were presently removed

from the colony and exposed to hyperthermia (42�C), which

was lower than the average temperature recorded at the surface

of naked mole-rat burrows in Ethiopia (46.8�C [16]), the animals

had seizures preceded by hyperventilation and the consequent

systemic hypocapnic alkalosis [56]. Indeed, blood measures un-

der these conditions showed a 36% reduction in CO2 and a pH

raised by 0.2 units.

Our analysis of the published naked mole-rat genomes [62,

63] revealed a species-specific loss-of-function histidine point

variant in exon 22 of the gene encoding KCC2, a developmen-

tally regulated cation-chloride cotransporter that is important

for establishing the neuronal Cl- gradient and thus the hyper-

polarizing action of GABA [37]. The previous findings of this

histidine variant in the gene encoding KCC2 in humans with

febrile seizures [41] and epilepsy [43] indicate that this KCC2

variant is likely to promote hyperexcitability via decreased

neuronal Cl� extrusion. Here, we show attenuated Cl� extru-

sion capacity in cortical neurons of the adult naked mole-rat,

which is consistent with work demonstrating loss-of-function

properties associated with this amino acid variation in human

KCC2 [41, 43].

In line with our genomic and patch clamp data, moderate

doses of diazepam, a GABAAR positive allosteric modulator,

triggered EEG-confirmed seizures in normal air at room

temperature. To our knowledge, the present study is the

first to show that potentiating GABAARs can elicit seizures

in vivo in a mature mammal. The effect of diazepam was

reversed when naked mole-rats were injected with the drug in

a hypercapnia-inducing environment, where diazepam elicited
Current Biology 30, 2068–2077, June 8, 2020 2073
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Figure 4. Reduced Neuronal Cl– Extrusion and Excitatory Network Responses to GABAA Receptor Activation in the Adult Naked Mole-Rat

(A) Cl� extrusion efficacy of neocortical pyramidal neurons in 12-month-old naked mole-rats and 2-week-old mice. Left: sample recordings of GABA-induced

currents (IGABA) evoked at a dendritic location 50 mm away from the somatic Cl� loading site. Arrow indicates timing GABA pressure microinjection. Right: box-

and-whisker (min-max range) plot of the reversal potential of dendritic GABAA receptor-mediated current (EGABA) and resting membrane potential (Em) illustrate a

more depolarized EGABA in the naked mole-rat (NM-R). **p < 0.01, Kruskal-Wallis test, followed by Dunn’s post hoc test.

(B) EEG recordings during injection of diazepam (DZP). Left: animal at room temperature was injected i.p. with 1mg/kg DZP. Colored lines indicate detected spike

(cyan) and seizure (red) activity using a line-length analysis on the wavelet-decomposed signal. Right: presence of 5% CO2 in the inhaled air prior to injection of

DZP (1 mg/kg) prevented seizure occurrence.

(C) Hippocampal slice extracellular recordings from the CA3 pyramidal cell layer. Left: baseline recording under standard conditions exhibited epileptiform

bursting. Middle: GABAAR agonist isoguvacine (200 mM) administered in the bath solution induced high-frequency bursting followed by spreading depression.

Right: posterior distribution of burst power mean difference showing the 95% highest density interval, which does not cross zero, demonstrating a significant

increase in burst power by isoguvacine.
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a typical sedative response. In a hypercapnia-adapted species,

such as the naked mole-rat, the low atmospheric levels of CO2

are likely to increase network activity and thus promote activity-

dependent Cl– loading of post-synaptic neurons at GABAergic

synapses [37]. Our data indicate that naked mole-rat cortical

neurons possess a relatively low capacity for extrusion of intra-

neuronal Cl�, and the consequent low level of inhibitory

GABAergic tone under conditions of normal atmospheric CO2

levels is counteracted by the anticonvulsant properties of hy-

percapnia in the nest.

We propose that the anticonvulsant action of elevated CO2 in

the nakedmole-rat colony nest has acted as a selection pressure

for mutations that conserve energy at the expense of GABAergic

inhibition [30, 36] in a hypoxic environment. Support for this

comes from our observation that the Damaraland mole-rat, the

only other eusocial mammal identified to date, is the only other

mammal with a non-consensus amino acid at the pertinent locus

in the exon 22 of KCC2. Our findings may therefore shed light on

a proximate cause for the extremely low rates of dispersal in eu-

social mammals.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Diazepam Henry Schein Cat. No. 1278188

Isoflurane Vet One Cat. No. 501017

Ketoprofen Zoetis https://www.zoetisus.com/products/horses/

ketofen.aspx

Bumetanide Tocris Cat. No.3108

TTX Tocris Cat. No. 1078

CGP 55845 Tocris Cat. No. 1248

CNQX Tocris Cat. No. 1045

D-AP5 Tocris Cat. No. 0106

GABA Tocris Cat. No. 0386

Isoguvacine Tocris Cat. No. 1298

Deposited Data

African naked mole-rat colony behavior based on

whole colony radio frequency identification (colony

TT-2, April 2015)

This Paper https://academicworks.cuny.edu/si_pubs/202

Carbon dioxide attracts nesting behavior in captive

African naked mole-rats

This Paper https://academicworks.cuny.edu/si_pubs/201

Software and Algorithms

The R Project for Statistical Computing The R Foundation https://www.r-project.org/

Causal Impact Package in R Developed by [70]. https://cran.r-project.org/web/packages/

CausalImpact/CausalImpact.pdf

IgorR Package in R Developed by G Jefferis https://cran.r-project.org/web/packages/IgorR/

IgorR.pdf

Pracma Package in R Developed by HW Borchers https://cran.r-project.org/web/package/pracma/

pracma.pdf

IgorPro (6) Wavemetrics https://www.wavemetrics.com/

Geneious Prime Biomatters https://www.geneious.com

MATLAB (R2018b) Mathworks https://www.mathworks.com/

Trojan Unique RFID System Dorset https://www.dorset.nu/identification/

rfid-products/

LabQuest Mini Sensor Vernier https://www.vernier.com/product/labquest-mini/

Sirenia Acquisition Pinnacle Technologies https://www.pinnaclet.com/software.html

Gem Premier 4000 Blood Gas Analyzer Instrumentation Laboratory https://www.instrumentationlaboratory.com

Patchmaster HEKA Elektronic https://www.heka.com/

Other

Microcontrolled gas valve Biospherix https://www.biospherix.com/products/proox-c21
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests should be directed to andwill be fulfilled by the LeadContact, DanMcCloskey (dan.mccloskey@csi.

cuny.edu). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All methods involving animals were approved by the Institutional Animal Care and Use Committee at the College of Staten Island in

the City University of New York and are in accordance with regulations required by the United States Department of Agriculture.

Naked mole-rats (Heterocephalus glaber) were maintained in colonies bred from animals originally provided by Bruce Goldman
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(UCONN). Five colonies of naked mole-rats (D-1, L-3, L-4, TT-1, TT-2) were housed in a 12h:12h low-light (50 Lux): dark (< 1 Lux)

environment (lights on: 7AM) maintained in a temperature (29:2± 1:4�C) and relative humidity (20%) controlled room (5 x 7 m).

Semi-naturalistic housing environments, established for each colony, were comprised of a series of 5 cm inner diameter clear poly-

carbonate tubes connecting square (27 3 32.5 3 10 cm) or rectangular (53 3 32.5 3 10 cm) chambers (polycarbonate steam table

pans with solid lids). Reptile heat cables were used under the cages to provide additional warmth to segments of each cage. A few

centimeters of corncob bedding, supplemented with pelleted rolled paper bedding, was placed in the bottom of each chamber. The

size of the housing environment was determined by the size of the colony such that there is roughly one chamber for every 5-10 an-

imals. Animals were fed ad libitum on a mixed diet of tubers, squash, fruits and Teklad Global 2019 lab chow (Harlan). The entire col-

ony was disassembled and cleaned approximately every two weeks and individual toilet chambers were checked and cleaned daily

on weekdays.

METHOD DETAILS

Colony behavior observations
Two colonies (L-4, n = 37; TT-2, n = 36) were arranged in semi-naturalistic environments equipped with twenty RFID antennas posi-

tioned between chambers to track the movements of each animal between chambers over extended periods of time. Each animal in

the colony was implanted with a Trovan Unique (Dorset) RFID transponder (11.5 3 2.2 mm) injected under the skin. RFID antennas,

circular in shape (100 mm inner-diameter), were placed around the tubing in the colony. When an animal passed an RFID antenna, a

record of this action was entered into a text file by the Trovan software. Events recorded from each antenna were passed to a com-

puter at a maximum rate of 10 events per second. Events were entered into a single text file, with each event containing the RFID tag

number that was read, the antenna where the reading occurred, and the date and time of the reading. The feeding chamber of each

colony was determined by the caregiver (the cage closest to the room entrance). Toilet chambers were determined by the colony and

varied within each colony, but were always single entry (dead end) small chambers of the colony structure. Toilet chambers were

easily identifiable as they were devoid of corncob bedding and were the only chambers that contained excrement. Certain chambers

were identifiable as nest chambers, as they contained nearly all of the unrolled paper bedding, and often had a mass of animals hud-

dled in them; these nest locations were determined by the colony members. A single nest chamber was typically observed for a col-

ony, although as many as three nest chambers have been observed at times. A dataset for each colony was selected as a 25.58-day

(614-h) series for L-4 (collected November 4-30, 2016), and a 26.67-day (640-h) series for TT-2 (collected April 1-27, 2015).The full

dataset is available throughCUNYAcademicWorks: https://academicworks.cuny.edu/si_pubs/202. Each collection period included

four 60-h weekend periods (selected for minimal staff activity) for a second detailed analysis.

Quantitative analysis of congregation
The RFID data were preprocessed to correct misreads and eliminate duplicate reads created when animals loitered under an an-

tenna. A state matrix, compiled in MATLAB using custom code, was populated by the last identified location for each animal and

updated for every new entry in the RFID data file. Activity was measured by moves, which were defined as a reading at a different

antenna location from the last known antenna, or at the same antenna location after the animal has moved away from the antenna

range (whichwas approximately 4 cm). Although the antennaswere positioned at the tunnels near entryways to chambers, our obser-

vation demonstrated that moves primarily represented activity between or within chambers, as prolonged stationary positioning in

tunnels was rare. A stringent metric for stationary behavior was developed wherein not moving or remaining stationary was defined in

units of an entire hour passing in which an individual animal was not read at a new antenna location. Proportion of time spent in the

colony nest chambers (defined as the chamber with the highest density of animals in any given hour) and the colony food chamber

(which is stable and determined by the animal care staff) was measured across each 60-h period. Proportion of time spent in the nest

was measured for each colony member and averaged across each of the 600+ h epochs.

Colony CO2 measurements
CO2 levels were measured repeatedly in 96 chambers across all naked mole-rat colonies by siphoning chamber gas into a polycar-

bonate bottle using Tygon tubing and a handheld vacuum pump. The siphon tubing was carefully inserted to a corner of the chamber

beneath the lid in order to avoid disturbing any animals in the chamber. Complete filling of the bottle was confirmed by displacement

of water to a second bottle in sequence. CO2 levels were recorded immediately after siphoning using a Vernier CO2 sensor interfaced

with a LabQuest Mini and a computer running Graphical Analysis software. Thesemeasures of air siphoned from the top of the cham-

ber are likely an underestimate of the CO2 levels encountered by animals at the chamber floor, especially inside of a huddle, but they

are sufficient to examine the relationship between aggregation and chamber CO2 levels.

Exogenous CO2 delivery to colony
After a 24-h baseline period, 100% CO2 was infused into non-nest chambers of the L-2 and TT-2 colonies through a microcontrolled

gas valve (Biospherix) at a pressure < 5 psi. The valve closed as the CO2 reached 11% (in the L-2 colony), or 2.5% (in the TT-2 colony).

Following a recovery period, compressed air (colony L-2) or 100% N2 (colony TT-2) was infused into the test chamber, with the gas

valve set to closewhen the chamber CO2 levels were below 0.01%. Analysis of the effects of gas infusion on animal behavior included

both visits to the test chamber, measured by RFID events at antennas around the test chamber, and a USB video camera positioned
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over the chamber, and computational analysis of nesting behavior in the colony TT-2 experiment. Average hourly events at the RFID

antennas surrounding the test chamber were measured for each of the baseline and gas infusion period. The full RFID dataset of this

experiment is availble for download at CUNY AcademicWorks: https://academicworks.cuny.edu/si_pubs/201. Statistical analysis of

the effect of gas infusion on nesting behavior in the TT-2 experiment was achieved using a Bayesian structural time series model

within the CausalImpact package in R [71]. The nesting location for each animal was computed for each hour over the 185-h exper-

iment as the chamber with the predominant location for that animal during the hour. The model analyzed the proportion of animals in

the test chamber (Chamber M) with activity for each hour at all of the RFID antennas around the TT-2 colony offered as predictor

variables. Themodel was based on 1000 iterations of the time series data using aGibbs sampling algorithm. The 95%highest density

interval was used as a threshold for significance.

Surgery and EEG Recording
Male and female adult naked mole-rats weighing more than 35 g (over one year of age) were deeply anesthetized with isoflurane and

placed in a mouse stereotaxic apparatus (Kopf) equipped with a nosecone to continue delivery of anesthesia at a concentration of

2.5%–3%and a flow rate of 0.5 LPM. Animals weremaintained on a heating pad andmonitored with a rectal thermometer for a target

temperature of 30�C. Following confirmation of general anesthesia and cleaning and local anesthesia of the scalp with lidocaine, the

skull surface was exposed via incision and a Pinnacle Technologies prefabricated three channel surface mount was secured to

the skull with posterior screw electrodes drilled ± 2.5 mm ML and �1.27 mm AP from bregma. Anterior screws were aligned with

the holes of the surface mount, and the headstage was secured in place with dental acrylic. Animals were allowed to recover for

one week before recording, with post-surgical monitoring and ketoprofen (5 mg/kg, i.p.) treatment for three days. EEG recordings

were made using Sirenia acquisition software (Pinnacle Technologies) and exported in European data format for subsequent pro-

cessing in MATLAB. Movement artifact, detected as events in the EMG channel which exceeded two times the channel standard

deviation and lasted for more than 250 ms, were set to zero within the EEG channels, and a fourth-order wavelet decomposition

and line length analysis was applied to the cleaned EEG signal using previously developed MATLAB scripts [54]. Seizure events

were considered events lasting more than five seconds and exceeding three times the standard deviation of the median line length

of a 5-min baseline at the start of the recording. Automated event detection was tested against visual analysis by another researcher

and matched with video of convulsions.

Induction of hyperthermic seizures
Male and female adult naked mole-rats (aged between five months and four years, 35-75 g) were introduced individually into a cir-

cular custom glove box chamber (353 22 cm) equipped with a video camera (GoPro Hero 4), a k-type thermocouple interfaced to a

digital thermometer (Nicety), a CO2 sensor (Vernier) and a commutator for EEG recordings (Pinnacle Technologies). The entire appa-

ratus was maintained in a laboratory incubator (Isotemp 525D, Thermofisher) for temperature control. Temperatures used were tar-

geted at 20�C, 32�C, and 42�C, and a 20-min exposure, unless mentioned otherwise, was initiated once the chamber recovered the

desired temperature after the animal was placed into the chamber via an airlock. Gases were humidified and delivered at constant

rates to the chamber. Room air or a custom gas mixture designed to mimic the nest environment (2.5%CO2/21%O2/76.5%N2) was

used to fill the chamber prior to animal entry. Observations of seizure behavior (rhythmic head movements with and without atypical

vocalizations, clonus in two or more limbs, generalized convulsions with whole-body tonic-clonic activity, or movement arrest) were

confirmed by an experimenter reviewing videos blinded to experimental conditions. In a subset of animals exposed to these environ-

ments, venous and mixed venous blood were collected following laceration of the saphenous vein or the right cardiac atrium after

20 min of exposure to these environments. Samples were collected within two min of exposure, after complete anesthesia with tri-

bromoethanol (Avertin, 250 mg/kg, i.p.). Blood gas measures were made within three min of sample collection using a GEM Premier

4000 blood gas analyzer (Werferen) [60].

Patch clamp recordings from cortical pyramidal neurons
Two 12-month-old nakedmole-rats and three postnatal day 16mice (C57BL/6) were deeply anesthetizedwith tribromoethanol (Aver-

tin, 125 mg/kg, i.p.) and transcardially perfused with 4�C sucrose-based slicing solution (in mM: 224 sucrose, 2.5 KCl, 0.5 CaCl2, 7.0

MgSO4, 1.25 NaH2PO4, 25 NaHCO3, 25 D-glucose). The brain was removed and embedded in low melting point agarose. Coronal

400 mm-thick sections were cut using a Compresstome (Precisionary Instruments) and then incubated for one hour at 34�C in

recording solution [72] (in mM: 124 NaCl, 3.5 KCl, 2 CaCl2, 25 NaHCO3, 1.1 NaH2PO4, 2 MgSO4, and 10 mM D-glucose) bubbled

with 95% O2/5% CO2 (carbogen).

Whole-cell voltage clamp and current clamp recordings were obtained using an EPC 10 patch clamp amplifier and Patchmaster

software (both HEKA). Neocortical slices obtained from naked mole-rats and mice were maintained at 32�C in a heated chamber

superfused at flow rate 3-3.5 ml/min with preheated carbogen-bubbled standard recording solution containing the following drugs:

10 mM bumetanide (to block Na-K-2Cl cotransport), 0.3 mM TTX, 1 mMCGP 55845, 10 mMCNQX, and 20 mMD-AP5 (all from Tocris)

[72]. Pyramidal neuronswere identified based on their morphology using a 40xwater-immersion objective (Zeiss). Restingmembrane

potential was recorded upon entering whole-cell configuration in current clamp with zero current injection. To assess the efficacy of

Cl� extrusion mediated by KCC2 in pyramidal neurons of neocortical layer 2/3, a constant somatic Cl� load (19 mM) was imposed

on the neuron in whole-cell patch configuration via the recording pipette (4-5 MU bath resistance) filled with the following recording

solution (in mM): 18 KCl, 111 K-gluconate, 0.5 CaCl2, 2 NaOH, 10 glucose, 10 HEPES, 2 Mg-ATP, 5 BAPTA; pH adjusted to 7.3 with
e3 Current Biology 30, 2068–2077.e1–e4, June 8, 2020
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KOH [72]. To assess EGABA values in voltage clamp, GABAA receptor-mediated currents were elicited at varying holding potentials at

a standardized dendritic location 50 mmaway from the soma using pressure (18 psi; 10-20ms)microinjection of 40 mMGABA (Tocris),

dissolved in extracellular recording solution containing the above drugs, applied via a second glass capillary micropipette (tip diam-

eter 2-3 mm) positioned close to the visually-traced apical dendrite of the same neuron.Membrane potential valueswere corrected for

a calculated liquid junction potential of 14 mV.

Extracellular field recordings from hippocampal slices
Three adult naked mole-rats were deeply anesthetized with tribromoethanol (Avertin, 125 mg/kg, i.p.) and transcardially perfused

with 4�C sucrose-based slicing solution (in mM: 252 sucrose, 5.0 KCl, 2.0 CaCl2, 2.0 MgSO4, 1.25 NaH2PO4, 26 NaHCO3, 10 D-

glucose). The brain was removed and embedded in low melting point agarose. Horizontal (400 mm) sections were cut through the

ventral two-thirds of the hippocampus, using a Compresstome, and incubated for one to four hours where they were maintained

at 32�C immersed in the above solution with sucrose now replaced by 126 mM NaCl (recording solution) and continuously bubbled

with carbogen, pH 7.4. Following incubation, slices were placed in a Haas-type interface recording chamber (Scientific Systems

Design), perfused with gravity-fed recording solution which was bubbled with carbogen, and warmed to 32�C. The slice surfaces

were exposed to humidified carbogen. Extracellular recording electrodesmade of borosilicate glass, pulled using a horizontal pipette

puller (P-97, Sutter Instruments) to a 5-15 MU resistance, and filled with recording solution, were placed in the CA3 pyramidal cell

layer. Data were amplified (ELC-03XS; NPI Electronic), and recorded on a computer running Igor Pro software (Wavemetrics) inter-

faced with an ITC-18 A/D board (Instrutech).

Spontaneous epileptiform bursts were identified as previously described in hippocampal slices from rats with spontaneous recur-

ring seizures [69, 70] defined as a cluster of population spikes greater than 2 standard deviations from the root mean square ampli-

tude of the trace. These events were nearly always present in the naked mole-rat CA3 pyramidal cell layer under typical recording

conditions without electrical or chemical provocation. Once detected, burst activity was monitored for a minimum of 10 min prior

to experimental manipulation. After a stable baseline recording was established, isoguvacine (200 mM) was added to the perfusate,

and a 10-min recording was initiated. Recordings were imported into R and converted to time series using the IgorR package. Quan-

tification of burst frequency, amplitude and power (line-length during the burst) was made using a moving window estimate of the

standard deviation of the background activity and the findpeaks function of the Pracma package in R. Peak detection was set at three

times the local standard deviation. Burst power was measured as the line-length of the trace divided by the duration of the burst

event. Mean differences for burst amplitude, duration and power from baseline to isoguvacine were estimated using a paired sample

Bayesian MCMC approach with default priors and Gibbs sampling in the Bayesian First Aid Package in R. Only results in which the

95% Highest Density Interval of the posterior distribution of the mean difference did not cross zero were considered significant.

QUANTIFICATION AND STATISTICAL ANALYSIS

Results in figures and text are reported as mean ± standard error of the mean, unless otherwise noted. Statistical analyses used are

noted in the Results section and figure captions. The number of animals, neurons, or slices is indicated by n, with the appropriate unit

indicated in the text.

DATA AND CODE AVAILABILITY

Datasets for the nest congregation and in situ gas infusion studies are available through the CUNY Academic Works server (with

links provided in the Key Resources Table). Additional data files for electrophysiological experiments, and commands used in R

and MATLAB for the preprocessing of behavioral and electrophysiological data are available from the Lead Contact upon request.
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