
GigaScience, 9, 2020, 1–11

doi: 10.1093/gigascience/giaa055
RESEARCH

RESEARCH

TinderMIX: Time-dose integrated modelling of
toxicogenomics data
Angela Serra1,2, Michele Fratello1,2, Giusy del Giudice1,2, Laura
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Abstract

Background: Omics technologies have been widely applied in toxicology studies to investigate the effects of different
substances on exposed biological systems. A classical toxicogenomic study consists in testing the effects of a compound at
different dose levels and different time points. The main challenge consists in identifying the gene alteration patterns that
are correlated to doses and time points. The majority of existing methods for toxicogenomics data analysis allow the study
of the molecular alteration after the exposure (or treatment) at each time point individually. However, this kind of analysis
cannot identify dynamic (time-dependent) events of dose responsiveness. Results: We propose TinderMIX, an approach
that simultaneously models the effects of time and dose on the transcriptome to investigate the course of molecular
alterations exerted in response to the exposure. Starting from gene log fold-change, TinderMIX fits different integrated time
and dose models to each gene, selects the optimal one, and computes its time and dose effect map; then a user-selected
threshold is applied to identify the responsive area on each map and verify whether the gene shows a dynamic
(time-dependent) and dose-dependent response; eventually, responsive genes are labelled according to the integrated time
and dose point of departure. Conclusions: To showcase the TinderMIX method, we analysed 2 drugs from the Open
TG-GATEs dataset, namely, cyclosporin A and thioacetamide. We first identified the dynamic dose-dependent mechanism of
action of each drug and compared them. Our analysis highlights that different time- and dose-integrated point of departure
recapitulates the toxicity potential of the compounds as well as their dynamic dose-dependent mechanism of action.

Keywords: toxicogenomics; gene expression; integrated modeling; dose-response; time course; BMD; dynamic
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Introduction

Toxicogenomic methods are widely used for the assessment of
chemical hazards and environmental health [1]. Omics tech-
nologies have been broadly accepted and recognized as efficient
and reproducible tools to study the effects of chemical exposures
on different organisms [2]. In particular, transcriptomics tech-
nologies allow the investigation of gene expression patterns of

thousands of genes after exposure to a substance [3] and they
have been widely used in toxicogenomics [4–7].

Direct effects of chemical insults are generally expected to
follow a monotonic dose-response alteration resulting in in-
creasing effect as the dose increases until a plateau is reached
[8]. In classical toxicology, this is observed as an increasing num-
ber of deceased animals or any other measurable apical end
point. A similar effect can be appreciated in gene expression al-
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2 TinderMIX: Time-dose integrated modelling of toxicogenomics data

teration. Because the changes in gene expression occur much
earlier than apical end points, transcriptomic data can be used
as a complementary approach to estimate relevant points of de-
parture (PODs) and hence provide valuable information for the
toxicological assessment [9, 10].

Until now, the no-observed-adverse-effect-level [11] and the
benchmark dose (BMD) [12] methods have been used to help
the interpretation of transcriptomic dose-response data and
to derive transcriptomic PODs. In particular, by modelling the
patterns of dose-responsiveness of gene expression, the BMD
method provides an estimate of the lowest dose of a chemical
able to induce a significant change in biological activity.

However, assaying the mechanism of action (MOA) of expo-
sure at multiple time points is valuable to highlight useful infor-
mation on the kinetic molecular responses of a biological sys-
tem. For example, the experimental set-up for the in vivo stud-
ies in the Open TG-GATEs involves animal treatment in which
each drug is tested at 3 doses (low, medium, and high) at multi-
ple time points [7]. Thus, 1 major challenge is the interpretation
of these toxicogenomics data, especially for identifying patterns
of alterations of the gene expression that are correlated to both
the dose levels and the time points. Different methods have been
proposed to identify genes that show a dose-response effect [13,
14] or to study the gene expression dynamics at individual time
points [15, 16]. However, this kind of approach does not allow
an easy interpretation of the time-dependent dynamics happen-
ing after the exposure and the molecular adaptation process. To
date, few efforts have been done to propose a methodology able
to identify sets of genes that show similar expression patterns
with respect to both dose and time [17].

In the present work, we propose a new computational frame-
work, TinderMIX, for dose- and time-dependent gene expres-
sion analysis that aims to combine dimensionality reduction,
BMD analysis, and polynomial fitting to find groups of genes that
show a dynamic dose-response (DDR) behaviour. The integrated
modelling used in TinderMIX allows us to interpolate the contin-
uous joint dose-time space and predict the molecular alteration
values for the doses and time points not included in the origi-
nal experiment. Moreover, our approach is importantly able to
inform on POD in both the dimensions of the doses and time
points, hence resolving at once 2 analytical tasks that, thus far,
have only been carried out subsequently to each other.

To illustrate our methodology we analysed the gene expres-
sion data for cyclosporine A and thioacetamide from the Open
TG-GATEs database.

Materials and Methods

The TinderMIX methodology proposed in this study starts from
the sample-wise log fold-change of the genes and is able to iden-
tify which of them show a DDR behaviour and to estimate their
joint dose-time POD. The methodology is composed of multi-
ple steps that can be grouped into 2 parts: the gene modelling
with POD identification (Fig. 1) that is executed for every gene
in the dataset, and the POD interpretation of the dynamic dose-
responsive genes (DDRG) identified in the first part (Fig. 1).

As for the classical BMD analysis, the first step of the gene
modelling analysis (Fig. 1A) consists of fitting different poly-
nomial functions to each gene log fold-change and identifying
the optimal one by using a nested model hypothesis test [18].
The difference with the classical BMD analysis performed so far
is that the fitted models are 3D functions in the space of the
dose, log fold-change, and time. Indeed, so far, the BMD analy-

sis has mainly been performed in the dose and log fold-change
space for each time point individually. Afterward, the optimal
3D model is mapped in the dose-time dimensional space by
means of contour plots (Fig. 1B). A monotonically increasing or
decreasing (with respect to the doses) dynamic dose-responsive
area (DDRA) is identified starting from a user-specified activa-
tion threshold. (Fig. 1C). If this DDRA is present, the gene is con-
sidered DDR and its POD is identified on the basis of the first
dose level and activation time (Fig. 1D). Moreover, the effect of
dose and time in the DDRA is compared to elucidate whether
the modifications in the log fold-change values are due to a pos-
itive or negative effect of the time and dose and also to elucidate
which of the 2 variables contribute most (Fig. 1E). Indeed, if the
time has a stronger effect compared to the dose we can hypothe-
size that the effect under analysis can be an adaptation process;
on the other hand, if the dose contributes the most we can hy-
pothesize that we are observing an effect directly correlated to
the exposure. In the second part of the analysis, the DDR genes
identified can be grouped according to their POD labels (Fig. 1F).
Eventually, overrepresented pathways can be calculated for each
gene category (Fig. 1G).

Time-dose fitting

For every gene, linear regression models including first-, second-
, and third-order polynomials (Eqs 1–3) of the explanatory vari-
ables (log fold-change) are fitted. These models are selected as
representative of those used in classical BMD analysis [8, 12, 13].
Indeed, unlike the γ and logistic models, polynomials are easily
generalized to >1 input variable and they can be used for reliable
approximation of other functions.

LFC = β0 + β1Dose + β2Time (1)

LFC = β0 + β1Dose2 + β2Time2

+β3(Dose × Time) + β4Dose + β5Time (2)

LFC = β0 + β1Dose3 + β2

(
Dose2 × Time

)

+β3

(
Dose × Time2

)
+ β4Time3 + β5Dose2

+β6Time2 + β7(Dose × Time) + β8Dose + β9Time (3)

The fitting was performed by using the R lm function from
the stats package [19]. The best-fitting model is selected per-
forming a nested model hypothesis test [18]. The test is per-
formed using the R function analysis of variance (ANOVA), which
takes a list of models as an input. Each model in the list is consid-
ered as the “full” model with respect to the previous “restricted”
model in the list, where a number of partial regression coeffi-
cients are set to 0. In other words, a model is restricted, with
respect to the full model, in the sense that it does not consider 1
or more explanatory variables. For each pair of subsequent mod-
els in the list, we test the significance of the amount of variance
explained by a subset of predictors of the restricted model, com-
pared to the variance explained by all the variables of the full
model. We also add to the test, at the head of the list of mod-
els, an implicit constant model in which all the partial regres-
sion coefficients are 0, except for the intercept β0. This is done
to assess the quality of the fit in the first place. If the P-values
corresponding to testing the models in Eqs 1–3 against the con-
stant model are not significant, that gene is not considered as
having a dose-response effect. If, on the other hand, there is a
significant amount of variance explained by any of the models
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Serra et al. 3

Figure 1 TinderMIX methodology. The TinderMIX methodology is composed of several steps that are grouped into gene modelling and POD interpretation. First, starting

from the pairwise log fold-change of each gene a 3D polynomial model is fitted (A). Second, the 3D model is mapped in its 2D effect map by means of contour plots.
The lines in the contour plots describe the shape of the 3D model by showing the portion of the space where the fitted model has a constant log fold-change, indicated
by the value on the lines. A positive value means that the gene is upregulated; otherwise it is downregulated (B). Third, the dynamic dose-responsive area (DDRA) is
identified. Starting from a user-defined activity threshold, the time-dose effect map is divided into regions of different colors. A blue region is a part of the map where

the log fold-change is lower than the threshold, thus marked as a non-active area. A green or red area indicates an activation, with a log fold-change greater than the
threshold. In particular, a green area (called “dynamic dose-responsive increasing area”) is characterized by an increase of the log fold-change when the dose increases,
while a red area (called “dynamic dose-responsive decreasing area”) presents a decrease of log fold-change when the dose increases. In the example shown in (D) the
highlighted area is colored in green, indicating an increasing log fold-change with respect to dose. A gene is considered DDR if there is a DDRA in the activity map,

with a monotonic behaviour of the log fold-change from a dose to the highest one tested. In the map, the front of the dose-responsive area is marked with a yellow
line. Moreover, a red line is used to mark the IC50 front, which is the line connecting the set of doses (1 for each time point) that specifies the 50% of gene activity (C).
Fourth, based on the first dose and time of activation the gene receives an activation label that specifies its dose and time POD. The time-dose effect map is divided

into a 3 by 3 grid. The sections of the dose axis are named “Sensitive” (S), “Intermediate” (I), and “Resilient” (R), while for the time axis the labels “Early” (E), “Middle”
(M), and “Late” (L) are assigned. The final label was then obtained by identifying the earliest and most sensitive point of activation and concatenating the dose and
time of the single labels (D). Fifth, the effect of the dose and time in the DDRA is compared (E). The second part of the analysis consists of the POD interpretation. The
letters “d” and “t” stand for dose and time, respectively. In the label, a capital letter means that there is a stronger effect of a variable with respect to the other. If the 2

letters are both capitals, it means that the effect is of similar intensity. Concordance in the increase of the fold-change and dose/time is indicated with a plus sign, and
decrease with a minus sign. Thus, the DDRGs identified are grouped by their POD labels (F). The colors in (F) indicate the amount of DDRGs for each POD, ranging from
lower numbers depicted in dark blue, to higher numbers depicted in light blue. Eventually a pathway enrichment analysis for the genes in each category is performed
(G).

in Eqs 1–3, then we return the fitted model corresponding to the
lowest P-value.

Time-dose effect map prediction and dynamic
dose-responsive gene identification

For each gene, the selected model is used to predict an activ-
ity map with the values of a smooth log fold-change function
on a grid of 50 × 50 points covering the entire range of doses
and time points tested. This map is represented as a contour
plot and used to identify the dose-response area. A desired ac-
tivity threshold corresponding to a 10% increase/decrease with
respect to controls is set to identify the responsive area of each
gene time-dose effect map. If a gene does not show an activ-
ity satisfying the threshold, it is removed from the analysis. A
gene is also removed from the analysis if the responsive area
does not include the highest dose of the experimental setting.
The selected threshold of 10% is a default threshold used in BMD

analysis of transcriptomics data [8, 12, 13]. For the genes pass-
ing the previous filtering, the gradient of the smooth log fold-
change function is computed at each point of the 50 × 50 grid.
Each point of the grid is segmented according to whether its con-
nected components show a monotonically varying (with respect
to the whole dose range) increment or decrement of the log fold-
change values. If only 1 component, with either increasing or
decreasing behaviour, is present in the map and it contains the
highest dose, then the component is selected as the candidate
DDRA. However, if the highest dose is not contained in the area,
then the gene is considered not responding and removed from
the analysis. On the other hand, if multiple components with
different increasing or decreasing behaviour are present in the
map, 1 of the 2 is selected as candidate dose-responsive area, ac-
cording to the criteria described in Additional File 1. In particu-
lar, each candidate region is weighted according to the following
criteria:

ri = np + ntp−md − md, i ∈ {r1, . . . , rn}, (4)
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Figure 2 Different methodologies implemented to identify the dynamic dose-
response POD on a sample gene map. With the “most left” method (A) the POD
area is marked as sensitive-early because the activation DDRA is already present

at the lowest dose and shortest time point. With the “cumulative” method (B),
the POD is marked as sensitive-early, sensitive-middle, and sensitive-late. The
label is obtained by using 80% of the cumulative length of the DDRA border (yel-
low line). With the “presence” method (C) the POD is labelled as sensitive-early,

sensitive-middle, sensitive-late, intermediate-early, and resilient-early. With the
“mix” method (D) the POD is labelled as sensitive-middle because the DDRA
starts already at lower doses and shorter time points and the area is also the
one with a higher coverage by the DDRA.

where np is the number of points included in the region,
ntp-md is the number of time points (rows in the gene map) that
are included in the candidate region that include the highest
dose, md is the minimum dose covered by the candidate region,
and n is the number of candidate regions found in the gene
maps. The optimal region is selected as the one maximizing the
score. The active region is further reduced, by removing time
points that are still active (log fold-change > 1.1) outside the op-
timal region but with a non-monotonic behaviour compared to
the one inside the optimal region.

We identify the external borders of the segmented responsive
area using a trace-boundary algorithm. The dose-responsive
front is identified as the smallest dose present in the respon-
sive area for each time point. Moreover, the IC50 front is also
computed as the doses that give 50% of changes in the log fold-
change at every time point.

POD label assignment

The dose-time space is partitioned into 3 × 3 regions, where
each dose can be labelled as sensitive, intermediate, or resilient
and each time point is labelled as early, middle, or late. Different
strategies to identify the POD of the DDRGs are implemented in
TinderMix (Fig. 2). The first method is called the “most left” strat-
egy (Fig. 2A). It looks for the first available POD region by iden-
tifying the most sensitive point of activation (lowest dose) and
then its corresponding earliest time point. The second method,
called “cumulative,” ranks the regions in the 3 × 3 scheme based
on the percentage of points of the border of the DDRA that they
contain. Then the regions needed to cover the X% of the border
are identified and marked as POD (Fig. 2B). X is a threshold spec-
ified by the user. In case of X = 100, the “cumulative” method
gives the same result as the “presence” method. The third strat-
egy, called “presence,” identifies as PODs all the regions con-
taining the DDRA border marked as a yellow line (Fig. 2C). The

fourth method, called “mix,” creates a score for each region that
takes into account how close the region is to the lowest dose
and earliest time point, how much area of the region is covered
by the DDRA, and how many points of the DDRA border are con-
tained in it. The region with the higher score is selected as POD
(Fig. 2D). When the most sensitive and most early region is also
the one with higher coverage, the mix and most left methods
give the same results. In all the approaches the final POD label
is obtained by concatenating the dose and time of the single la-
bels. For example, a gene with label sensitive-early is a gene that
shows a response already at low doses and early time points.
On the other hand, a resilient-late gene shows a response only
at high doses and late time points. It is important to highlight
that the labelling strategies are meant to give an indication of
the POD, but they are not self-explanatory of the whole gene
expression dynamic. The presence and cumulative approaches
identify multiple regions as POD, giving a better approximation
of the shape of the DDRA area. These 2 approaches are suggested
when the focus of the study is on a few genes. On the other hand,
the most left and mix approaches identify only the starting point
of the gene activation and can be easily used to group genes and
give biological interpretation of a chain of events. In the analy-
ses conducted in this work we have used the most left approach
because it follows the toxicological assumption that a toxicant
is considered active at the lowest dose and earliest time point at
which its effect is significantly deviating from the control status.

Time and dose influence by means of gradient

Once the DDRA is identified, the influence of time on the fold-
change is studied by analysing the vector field of gradients in the
region. For each point, the magnitude and the angle of the gradi-
ent are computed and used to evaluate the time-dose response
score as follows:

tds = 1∑n
i=1 modi

×
(∑n

i=1
gi × modi

)
, (5)

where gi and modi are the angle and magnitude of the gradi-
ent in the i-th point in the DDRA and n is the number of points in
the same region. This score can be used to categorize the genes
on the basis of the dose and time effect on their fold-change.
According to the time-dose response score, the active genes are
divided into 4 groups, corresponding to the 4 quadrants of Carte-
sian space. In the first quadrant the fold-change increases with
both time and dose (0 < tds ≤ 90); in the second quadrant the
fold-change increases with time but decreases with dose (90 <

tds ≤ 180); in the third quadrant the fold-change decreases with
both time and dose (180 < tds ≤ 270); in the fourth quadrant the
fold-change increases with dose and decreases with time (270 <

tds ≤ 360). The 4 quadrants can be further dissected in 3 smaller
sectors: 1 in which the dose has a stronger effect than the time, 1
in which they have the same effect, and 1 in which the time has
a stronger effect than the dose. We assign a label to each gene
composed by the letters d and t, standing for dose and time, re-
spectively, and a positive or negative sign. If the influence of 1 of
the 2 components is stronger than the other, this is highlighted
by using capital letters. For example, the label d + T + stands for
fold-change increasing with both dose and time, with a stronger
effect from the time.

Enrichment of biological pathways

KEGG enrichment analysis is performed by using the methodol-
ogy implemented in the FunMappOne tool [20]. Pathways were

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/9/5/giaa055/5843735 by guest on 14 O

ctober 2020



Serra et al. 5

considered significantly enriched if they have a corrected P-
value < 0.05.

Dataset collection

Pathological events registered in rats after drug exposure were
downloaded from the Open TG-GATEs database [7, 21]. Every
drug pathological score was computed by counting the number
of events occurring after the exposure normalized by the num-
ber of events in the controls. Cyclosporine A and thioacetamide
were selected as representative candidates for drugs with low
and high toxic impact, respectively [22–25].

Raw data microarray transcriptomic data for cyclosporine
A and thioacetamide exposure, in in vivo rat liver tissue, were
downloaded from the Open TG-GATEs dataset [7, 21]. Each
dataset consists of 48 samples, of which 12 are unexposed con-
trols and 12 are biological replicates for each dose level. Cy-
closporine A was tested with doses 30, 100, and 300 mg/kg, and
thioacetamide, with doses of 4, 15, and 45 mg/kg. In both cases,
samples were harvested at 4 different time points (3, 6, 9, and
24 hours). Transcriptomics data were preprocessed using the
pipeline implemented in the eUTOPIA tool [26]. The raw data
were imported into R v. 3.4 by using the justRMA function from
the Bioconductor utilities [27] to annotate probes to Ensembl
genes (by using the rat2302rnensgcdf [v. 22.0.0] annotation file
from the brainarray website [28]) and quantile normalize the re-
sulting expression matrix. Next, the experimental batch effects
due to technical variables were estimated and removed using
the ComBat algorithm implemented in the Sva package [27, 29].
For each pair of dose and time point, all the pairwise log fold-
changes for each gene were computed as the difference between
the log2 expression values of each pair of treated and control
samples. In this way, we obtained 108 pair-samples and 11,721
genes to be used in the TinderMIX analysis.

Results and Discussion

We developed a novel dose and time integrative modelling strat-
egy for transcriptomics data able to identify molecular features
with a DDR alteration pattern (Fig. 1). We showcase our method-
ology by analysing in vivo gene expression data for 2 drugs (cy-
closporine A and thioacetamide) available in the Open TG-GATEs
dataset.

Dynamic dose-dependent MOA

The TinderMIX methodology allows dy th ofe distribution of the
gene log fold-change with respect to both dose and time. For this
purpose, TinderMIX implements a strategy similar to the classi-
cal BMD analysis [12] but translated into a 3D space.

For every gene, linear and second- and third-order polyno-
mial models are fitted (Fig. 1A). The optimal model is selected
as the one with adjusted goodness-of-fit P-value < 0.01 and
best modelling performance according to the nested model hy-
pothesis test, as performed by ANOVA. Furthermore, for the
genes that pass the goodness-of-fit filtering, their dynamic dose-
responsiveness is investigated. Hence, TinderMIX maps the 3D
optimal model in its corresponding time-dose effect map by
means of contour plots (Fig. 1B). This step allows the DDRA to
be identified, by iterating the concept of dose-responsiveness
on each time point (Fig. 1C). We consider a gene to be dose-
dependently altered if its response is monotonic throughout
all the doses at any time point. Given the complex kinetics
of gene expression, interpolating the behaviour of the genes

Table 1. The number of dynamic dose-responsive genes

Drug DDRGs Linear Poly2 Poly3

Cyclosporine A 5,746 1,362 4,164 220
Thioacetamide 8,436 2,352 1,031 5,053

DDRG: dynamic dose-responsive gene. Linear, Poly2, and Poly3 are the numbers

of DDRGs that are fitted by a linear, second-, and third-order polynomial func-
tion, respectively.

between the tested doses increases the robustness of dose-
response modelling when multiple time points are assayed.

Starting from a standard gene activation threshold of 10%,
TinderMIX identified 5,746 and 8,436 dose-responsive genes in
cyclosporine A and thioacetamide, respectively (Table 1). In the
case of cyclosporine A, most of the genes were fitted by the
second-order polynomial model, while for thioacetamide by the
third-order polynomial model (Table 1). This suggests that there
is a predominant non-linear relationship between the log fold-
changes, the dose levels, and the time points. The complete lists
of DDR genes for cyclosporine A and thioacetamide are available
in Additional Files 2 and 3, respectively.

Furthermore, the sensitivity of the TinderMIX method to the
activation threshold was investigated. The analyses were run for
different activation thresholds (10%, 20%, 30%, 40%, and 50%). In
both drugs in our case study, the number of DDRGs decreases
with increasing threshold (Additional File 4).

TinderMIX labelling for point of departure

By identifying the first dose and time point present in the
DDRA (Fig. 1C), TinderMIX assigns to each DDRG an activity la-
bel (Fig. 1D). The label provides information on the joint time-
dose POD at a glance. For instance, the labels aid drawing a
hypothetical sequence of events. The fact that a gene can re-
spond at different dose ranges informs on the sensitivity of cer-
tain molecules and regulatory machinery to a specific exposure.
The analysis of the DDRG profiles might give insights about the
harmfulness of a compound. Indeed, substances that activate
many genes at low doses are probably more toxic than those
exerting resilient responses. This is the case of the 2 drugs we
analysed, as cyclosporine A shows most of the activation at low
and high doses and early and middle time points, while thioac-
etamide shows most of the activation at low doses at all the time
points (Fig. 3).

Effect of time and dose on the dynamic MOA

Even though the labels that TinderMIX assigns inform on the
gene POD, they do not give insights on the relative impact of
the dose and time on the variation of the log fold-change. To
dissect these effects and the relative contribution of dose and
time to the gene alteration, TinderMIX weighs their effect in the
time-dose effect maps (Fig. 1B). Indeed, by studying the direc-
tion of the gradient in each pixel of the DDRA (Fig. 1C), we are
able to assess the contribution of time and dose to the DDR be-
haviour of the gene expression and whether its effect is positive
or negative (Fig. 1E). Moreover, TinderMIX generates a radar plot
that summarizes the relative effect of dose and time onto the
DDRG as well as their direction (Figs 4 and 5). There are different
scenarios where it is useful to recognize whether the genes are
more prominently affected by the dose or the time. For example,
genes for which the exposure has a predominant effect might
be more sensitive to the dose. On the other hand, some genes
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Figure 3 The number of dose-responsive genes for each gene category in cyclosporine A (A) and thioacetamide (B). The colors indicate the amount of dose-responsive
genes for each gene category, ranging from lower numbers depicted in dark blue, to higher numbers depicted in light blue.

might be under complex regulatory mechanisms, some of which
could be secondary to the exposure itself. Thus, their expression
is not only altered in a dose-dependent manner but also kinet-
ically modulated along the time. Indeed, in both cyclosporine A
and thioacetamide, late genes undergo a stronger effect of time
than of the dose (Figs 4 A–C and 5 A–C), as expected because
transcriptomic alterations happening 24 h after the exposure are
more likely to be due to regulatory processes happening down-
stream from the primary drug-induced response. On the other
hand, early and middle genes appear to be more affected by the
dose, especially in the case of thioacetamide, a compound with
a more pronounced known toxic potential (Fig. 5 D, E, G, and H).
Therefore, our tool provides better insights about the exposure
MOA on a biological system, by providing both quantitative and
qualitative estimation of the perturbation with respect to time
and dose.

Pathway enrichment analysis

To characterize the biological processes underlying the POD la-
bels assigned to the DDRG, we performed KEGG enrichment
analysis of the genes belonging to the 9 label categories previ-
ously identified (Additional Files 5 and 6). We further grouped
the enriched pathways on the basis of the time of activation to
draw a kinetic map of the events in the exposure time (Fig. 6).
Cyclosporine A is a known immunosuppressant drug, with a
low toxic potential. Indeed, at early time points, 108 deregulated
pathways were found (Fig. 6A), while, at middle and late time
points, only a few deregulated pathways (24 and 4, respectively)
were obtained. Cyclosporine A is known to inhibit the activation
of T lymphocytes by blocking the activity of calcineurin phos-
phatase [30]. In fact, several interleukins and chemokine-driven
immune system mechanisms were found significantly deregu-
lated at early time points. In particular, Th1 and Th2 cell differ-
entiation pathways were found altered. Among the main effec-
tors of such pathways Cd4, one of the main markers of T lympho-
cytes, was labelled by TinderMIX as a sensitive-early DDR gene.
On the other hand, thioacetamide exposure has been associated
with liver toxic effects and inflammatory cell infiltration [31]. As
might be expected for a more toxic drug, more deregulated path-
ways at any time point were retrieved in our analysis (Fig. 6B).
Among the ones enriched at early time points, infectious dis-

ease pathways such as hepatitis B and C, as well as the apoptosis
pathway, were enriched and both apoptotic and necrosis-related
genes were up-/downregulated, such as Fadd, Fas, Bad, and Bid.
Consistently with a hepatotoxic induced effect, the Aldh2 gene,
which is known to be altered in patients with chronic hepatitis
and non-alcoholic cirrhosis, was found also deregulated in in-
termediate pathways [32].

Visual inspection of the gene maps

To complement the information given by the POD labels, the
time-dose effect maps of the DDRG allow visualization of the
whole kinetics of the log fold-changes in the joint dose-time
space. Furthermore the levels of the contour plots specify
whether the gene is up- or downregulated. The effect maps of
the previously identified genes are described as an example.
As we can see from Fig. 7A, Cd4 is marked as sensitive-early,
and it is downregulated at early time points (log fold-change in
[−0.7, −0.4]). Furthermore, the log fold-change increases at mid-
dle time points (log fold-change in [−0.4, −0.1]) and is eventu-
ally upregulated at late time points (log fold-change in [0.1, 0.2]).
The expression pattern of this gene changes over time in concor-
dance with the known MOA of cyclosporine A [30]. On the other
hand, the Aldh2 gene is labelled as sensitive-middle because
the DDRA begins at the lowest doses and middle time points
(Fig. 7B). It does not show any activity at early time points with
low and middle doses, while it is dynamically dose-dependent
and downregulated already at early time points with high doses.
Its strength of downregulation increases with both time and
dose (log fold-change in [−0.15, −0.45]). The overall downregu-
lation visible in the map has already been reported in previous
studies demonstrating that, in rats, thioacetamide can directly
inhibit the Aldh2 isoenzyme [33].

Conclusion

In this study, we proposed TinderMIX, a novel methodology
for the joint time and dose modelling of toxicogenomics data.
TinderMIX consists of different steps that combine polynomial
model fitting, active region extraction, and pathway enrichment
analysis to identify genes with joined dose and time patterns of
responsiveness. TinderMIX allows the user to study the dynamic
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Figure 4 Cyclosporine A distribution of the number of responsive genes with respect to time and dose. The letters “d” and “t” stand for dose and time, respectively. In
the label, a capital letter means that there is a stronger effect of a variable with respect to the other. If the 2 letters are both capitals, it means that the effect is the

same. Concordance in the increase of the fold-change and dose/time is indicated with a plus sign, and decrease, with a minus sign. For cyclosporine A, the effect of
the dose is particularly strong for the intermediate-early and intermediate-middle genes (capital D in Figs 4H and E), while the effect of time is more evenly distributed
across the possible combinations. The early and middle genes mostly show an increase of the log fold-change with respect to the time (E, F, H, and I), whereas the
fold-change of late genes decreases over time. Considering the dose, the log fold-change of sensitive-late genes mainly decreases as the dose increases (D and A).

Differently, the intermediate and resilient genes show an increasing trend with respect to the dose (C, E, F, H, and I).

behaviour of the genes in the joint dose-time space, by interpo-
lating the omics feature levels and filling the gaps between the
doses and time points tested in the experiment. TinderMIX au-
tomatically assigns to the responsive genes an activation label
that specifies the joint dose and time POD of the gene and esti-
mates the strength of the effect of time and dose on each gene
activation. Moreover, it allows graphical inspection of the gene
maps as contour plots. Each gene map can give insights into the
dynamic and dose-dependent shape of the gene log fold-change.
It easily shows the POD of the gene, and it highlights the mono-
tonic trend of the responsive area. The TinderMIX methodology
also helps in grouping the genes on the basis of the activation
label and identifying the set of pathways associated with each

group in order to better characterize the underlying biological
mechanisms. In conclusion, TinderMIX can be used to investi-
gate the point of departure of genes with respect to dose and
time point upon chemical exposure with an integrated analyti-
cal approach.

Availability of Source Code and Requirements

The TinderMIX method is available in the form of an R package,
which is available via a git repository:

� Project name: TinderMIX
� Project home page: https://github.com/grecolab/TinderMIX
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8 TinderMIX: Time-dose integrated modelling of toxicogenomics data

Figure 5 Thioacetamide distribution of the number of responsive genes with respect to time and dose. The letters “d” and “t” indicate dose and time, respectively. In the
label, a capital letter means that there is a stronger effect of a variable with respect to the other. If the 2 letters are both capitals, it means that the effect is comparable.

Concordance in the increase of the fold-change and dose/time is indicated with a plus sign, and decrease, with a minus sign. For thioacetamide, the effect of the time
on the dynamic dose-responsive genes is stronger than the effect of the dose (capital T in A–C, F, H, and I). The increase of time corresponds to an increase in the gene
expression in the intermediate-middle and resilient-middle genes (E and F). An opposite effect is visible on the intermediate-early and resilient-early genes (H and I).
In all the other sets of genes the positive and negative effect of the time on the fold-change is balanced (A–D and G). With respect to the dose, intermediate-middle

and resilient middle genes mainly show a direct correlation between the increase of the fold-change and the dose (E and F); the same effect can also be observed in
the early, sensitive-middle, and late genes (violet and green bars in A–D, G, and green bars in H and I) even though some of them are negatively affected by the doses
(red bars in A–D and G–I).

� Operating system(s): Platform independent
� Programming language: R
� Other requirements: Java
� License: GNU GPL (version 3 or greater)
� RRID:SCR 018364

Availability of Supporting Data and Materials

The data used to showcase the TinderMIX methodology are
available in the git repository at https://github.com/grecolab/Ti
nderMIX/tree/master/sample data. Further supporting data and

snapshots of our code are openly available in the GigaScience
repository, GigaDB [34].

Additional Files

Additional File 1: TinderMIX pseudo-code
Additional File 2: List of dynamic dose-responsive genes for cy-
closporine A. The file contains the following information: (1)
dose time comparison: specifies whether the activation is more
dependent on the dose or the time; (2) Gene Description: is a text
description of the gene; (3) Gene Symbol; (4) Joint Label: is the
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Figure 6 Venn diagram of the number of enriched pathways for each time category (early, middle, late) for the dynamic dose-responsive genes of cyclosporine A (A)
and thioacetamide (B).

Figure 7 Time-dose effect maps of the Cd4 (A) and Aldh2 (B) genes.

POD label; (5) gene sign: specifies whether the gene activation is
increasing or decreasing with respect to the dose; (6) MeanFC:
mean log fold-change of the gene in the POD area; (7) adj.pval:
adjusted P-value of the fitted polynomial model
Additional File 3: List of dynamic dose-responsive genes for
thioacetamide. The file contains the following information: (1)
dose time comparison: specifies whether the activation is more
dependent on the dose or the time; (2) Gene Description: is a text
description of the gene; (3) Gene Symbol; (4) Joint Label: is the
POD label; (5) gene sign: specifies whether the gene activation is
increasing or decreasing with respect to the dose; (6) MeanFC:
mean log fold-change of the gene in the POD area; (7) adj.pval:
adjusted P-value of the fitted polynomial model

Additional File 4: Sensitivity analysis of the activation threshold
Additional File 5: List of pathways for cyclosporine A
Additional File 6: List of pathways for thioacetamide

Abbreviations

ANOVA: analysis of variance; BMD: benchmark dose analysis;
DDR: dynamic dose response; DDRA: dynamic dose responsive
area; DDRG: dynamic dose responsive gene; IC50: half maximal
inhibitory concentration; KEGG: Kyoto Encyclopedia of Genes
and Genomes; MOA: mechanism of action; Open TG-GATEs:
Open Toxicogenomics Project-Genomics Assisted Toxicity Eval-

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/9/5/giaa055/5843735 by guest on 14 O

ctober 2020



10 TinderMIX: Time-dose integrated modelling of toxicogenomics data

uation System; POD: point of departure; TinderMIX: Time-Dose
Integrated Modelling of Omics Data.
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