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Abstract
We study resident-invader dynamics in fluctuating environments when the invader
and the resident have close but distinct strategies. First we focus on a class of
continuous-time models of unstructured populations of multi-dimensional strategies,
which incorporates environmental feedback and environmental stochasticity. Then
we generalize our results to a class of structured population models. We classify
the generic population dynamical outcomes of an invasion event when the resident
population in a given environment is non-growing on the long-run and stochastically
persistent. Our approach is based on the series expansion of amodel with respect to the
small strategy difference, and on the analysis of a stochastic fast-slow system induced
by time-scale separation. Theoretical and numerical analyses show that the total size
of the resident and invader population varies stochastically and dramatically in time,
while the relative size of the invader population changes slowly and asymptotically
in time. Thereby the classification is based on the asymptotic behavior of the relative
population size, and which is shown to be fully determined by invasion criteria (i.e.,
without having to study the full generic dynamical system). Our results extend and
generalize previous results for a stable resident equilibrium (particularly, Geritz in J
Math Biol 50(1):67–82, 2005; Dercole and Geritz in J Theor Biol 394:231-254, 2016)
to non-equilibrium resident population dynamics as well as resident dynamics with
stochastic (or deterministic) drivers.
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1 Introduction

Two important issues in the framework of adaptive dynamics are which mutant strate-
gies can invade a population of given resident strategies, and what would be the
population dynamical outcomes of an invasion event. The long-term growth rate of a
newly arrived and initially rare mutant with strategy y in the environment generated
by a population of resident strategy x (i.e., invasion fitness of mutant y in resident
x) determines whether an invasion event may occur or not (Metz et al. 1992, 1996;
Dieckmann and Law 1996; Geritz et al. 1997, 1998). If y can invade x but not vice
versa, does it mean that y will eventually take over x and becomes the new resident?
In general, this need not happen as examples of unprotected coexistence and the “res-
ident strikes back” phenomenon show (see e.g., Doebeli 1998; Parvinen 1999; Mylius
and Diekmann 2001; Dercole et al. 2002). However, if y is close to, but not identical
to x , Geritz (2005) and Dercole and Geritz (2016) have shown that invasion without
back-invasion generically implies substitution, and mutual invasion generically leads
to coexistence in a broad class of population models. They found that the generic pop-
ulation dynamical outcomes of an invasion event of similar strategies are determined
by invasion criteria alone, i.e., without having to study the full generic dynamical
system.

The focus of Geritz (2005) and Dercole and Geritz (2016) is on resident-invader
dynamics of similar strategies in a constant environment, providing that the resident
population in a large ecological community is at a hyperbolic attracting steady state.
Recently, there has been considerable interest in questions related to evolution of
phenotypic diversity in fluctuating environments (Kussell and Leibler 2005; Kisdi and
Liu 2006; Geritz et al. 2007; Schreiber 2012b; Wakano and Iwasa 2013; Ripa and
Dieckmann 2013; Melbinger and Vergassola 2015; Sæther and Engen 2015; Ferris
and Best 2019). The purpose of this paper is to extend and generalize the results of
Geritz (2005) and Dercole and Geritz (2016) to environmental fluctuations due to non-
equilibrium population dynamics (e.g., cycle, quasiperiodic trajectory and chaos) or
environmental stochasticity. This requires (i) considering an explicit model that takes
account of environmental feedback and environmental stochasticity, and (ii) specifying
the population dynamics of residents in fluctuating environments.

A population affects its environment, and the environment in turn affects the popula-
tion. Such an environmental feedback loop characterizes the interaction of populations
with their environments and plays a central role in their ecological and evolutionary
dynamics (Metz et al. 1996, 2008; Meszéna and Metz 1999; Kisdi and Geritz 2016;
Lion 2018b). Examples of feedback variables are: interacting species (e.g., predator,
prey and food); different classes in a population who is structured by age, sex, spa-
tial location, etc; and physical variables (e.g., temperature and humidity) which have
been shown that they may provide a feedback between ecological communities and
local physical patterns in some concrete examples (see the Introduction of Benaïm and
Schreiber (2019) and references therein). These feedback variables need to be mod-
elled with their own dynamics. Environmental stochasticity, however, generally refers
to effects of fluctuations in external factors (which can be biotic or abiotic) on model
parameters (Nisbet and Gurney 1982; Kliemann 1983; Chesson 1986; Tuljapurkar
1990). These external factors drive the dynamics of the aforementioned feedback
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Resident-invader dynamics of similar strategies… 909

variables but not vice versa. This is what differentiates environmental stochasticity
from environmental feedback.

A population of a resident strategy in a fluctuating environment generally requires
to be non-growing on the long-run and stochastically persistent. The non-growing
property means that the long-term growth rate of the resident population in a given
environment is zero. Stochastic persistence is an important concept to characterize
population dynamics in fluctuating environments, which captures the property that
if initially present, even if only in small size, then it will be present over arbitrary
long periods of time in a stochastic sense. There are serval different (not necessarily
equivalent) definitions of stochastic persistence (see e.g., a review in Schreiber 2012a).
In this paper, we use the definition of Schreiber et al. (2011) and Benaïm (2018) which
asserts that the probability of a population being near extinction is arbitrarily small.

The rest of this paper is organized as follows. In Sect. 2, we focus on the analysis of
resident-invader dynamics of a class of unstructured population models. In Sect. 2.1, a
class of polymorphic unstructured population models for multi-dimensional strategies
and an explicit formulation of environmental feedback and environmental stochastic-
ity is presented. In Sect. 2.2, we review some basic concepts used in this paper. In
Sect. 2.3, we specify when a population of a given strategy is a resident. Section 2.4
gives the definition of invasion fitness. In Sect. 2.5, we present the basic analysis
of invasion dynamics of similar strategies. Particularly, in Sects. 2.5.2 and 2.5.3, we
classify the generic population dynamical outcomes of an invasion event. In Sect. 3,
we illustrate how to generalize the results of the unstructured population models to
a class of structured population models. In Sect. 4, we apply our results to examples
of evolving bacteria in a chemostat, Lotka-Volterra competition, structured SIRS epi-
demic dynamics, and the evolution of timidity of the prey in a prey-predator model.
The first two examples are designed to highlight different ways that our results can
be used. The third example is designed to illustrate how a concrete structured popula-
tion model can be reformulated into our framework. The last example is designed to
demonstrate that our results are applicable to the evolution with the non-equilibrium
resident dynamics. In Sect. 5, we conclude with discussing how our results relate to
the existing literature and what possible generalizations are. Proofs are given in the
“Appendix”.

Before proceeding with the analysis, we introduce some default notations used in
this paper. Let X be the strategy space, N be the space of non-negative population
sizes, E be the space of feedback variables and Θ be the space of external factors.
Each of these spaces is assumed to be a subset of a normed vector space. f (i) is the
i th derivative of function f with respect to its first argument, and f (i, j) is the i th
derivative of function f with respect to its first argument and the j th derivative with
respect to its second argument. The superscript � means transpose of a vector or a
matrix.
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910 Y. Cai, S. A. H. Geritz

2 Unstructured populationmodels

2.1 The polymorphic populationmodel

Consider a population of strategies x1, . . . , xk ∈ X whose sizes at time t are given by
n1,t , . . . , nk,t ∈ N , respectively. The population of x1, . . . , xk interact with et ∈ E
that describes the feedback environment. Generally, et may correspond to interact-
ing species, different classes of the population, physical factors, or any combination
thereof. n1,t , . . . , nk,t as well as et may be influenced by a stochastic driver θt ∈ Θ that
describes external factors. The per-capita growth rate f of individuals with strategy xi
depends on the current environmental condition (et , θt ). Under these considerations,
the dynamics of the polymorphic unstructured population are given by

ṅi,t = f (xi , et , θt )ni,t , i = 1, . . . , k (2.1a)

where the dot denotes differentiation with respect to time variable t . Notice that for a
given environmental condition (et , θt ), (2.1a) is linear in the population size. All the
nonlinearity of (2.1a) comes from how the environment et depends on the population
sizes.

Before introducing the formulation of the dynamics of et , let us look at how the
environment et depends on the population sizes in the following two deterministic
models.

Example 1 Lehtinen and Geritz (2019) studied the evolution of timidity in a prey
species whose predator has cannibalistic tendencies, inwhich the population dynamics
is given by

(prey i) ṅi,t = nFi,t g

(∑
j
nFj,t

)
− μni,t − βnFi,t p

S
t ,

(adult predator) ṗt = 1
T Jt − δ pt ,

where the reproduction of prey i is limited by competition (of resources, territories,
breeding sites, etc.) among the foraging preynFi,t = ni,t

1+xi pt
with the per-capita birth rate

g
(∑

j n
F
j,t

) = a − c
∑

j n
F
j,t , a searching adult predator pSt = pt

1+βh
∑

j n
F
j,t

captures

the foraging prey at the rate β, the maturation of juvenile predators Jt = γβ pSt
∑

j n
F
j,t

σ+(1−λ)α pSt
with the mean time T depends on the cannibalistic pressure they experience through-
out their juvenile period, and the per-capita death rate of the adult predator and the
predation-independent per-capita death rate of the prey are δ and μ, respectively. The
prey strategies differ only in their level of timidity xi ∈ R+ := X . Other parameters
are all positive constant. Let

(adult predators) e1,t = pt ,
(foraging preys) e2,t = ∑

j n
F
j,t = ∑

j
1

1+x j e1,t
n j,t ,
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then

ė1,t =
∑
j

γ
(
1 + βhe2,t

) βe1,t
(1+βhe2,t )(1+x j e1,t )

T
(
σ(1 + βhe2,t ) + (1 − λ)αe1,t

)ni,t − δe1,t .

Since e1,t is an implicit function of the prey sizes and e2,t is an explicit function
of e1,t , the environmental variable e2,t becomes nonlinear in the prey sizes. Thus,
the per-capita population growth rate f of prey type i in the nonlinear environment
(e1,t , e2,t ) := et is given by

f (xi , et ) = g(e2,t )

1 + xi e1,t
− μ − βe1,t

(1 + xi e1,t )(1 + βhe2,t )
.

Example 2 Dercole and Rinaldi (2002) and Dercole (2003) studied the evolution of
cannibalistic strategies, in which the interactions between k cannibalistic consumer
sub-populations with sizes ni,t and strategies xi ∈ R+ := X , i = 1, . . . , k, are
described by

ṅi,t = ni,t

(
γ

a0(xi )n0+∑
j a(xi ,x j )n j,t

1+h0(xi )a0(xi )n0+∑
j h(xi )a(xi ,x j )n j,t

(type i) −∑
j

a(x j ,xi )n j,t

1+h0(x j )a0(x j )n0+∑

 h(x j )a(x j ,x
)n
,t

−c
∑
j
n j,t

)
,

where the conversion factor γ , the competition coefficient c, and the size of a common
resource n0 are assumed to be positive constant, while the attack rate a (and a0)
and the handling time h (and h0) depend upon the strategies. In the bracket of the
equation, the first term is reproduction through the harvesting of the common resource
and cannibalism toward the sub-population j , the second term is mortality due to
cannibalism, and the last term is mortality due to competition. For a given strategy xi ,
let

(harvested food) e21,t (xi ) = ∑
j
a(xi , x j )n j,t ,

(handling times) e22,t (xi ) = ∑
j
h(xi )a(xi , x j )n j,t ,

(cannibalism) e23,t (xi ) = ∑
j

a(x j ,xi )
1+h0(x j )a0(x j )n0+e22,t (x j )

n j,t ,

(competition) e24,t = ∑
j
cn j,t .

Here the environmental variables e21,t , e22,t and e24,t are all linear in the population
sizes, but the environmental variable e23,t is a nonlinear and explicit function of e22,t
which leads to the nonlinearity of e23,t in the population sizes. Thus, the per-capita
population growth rate f of sub-population i with a given strategy xi in the nonlinear
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912 Y. Cai, S. A. H. Geritz

environment (e21,t , e22,t , e23,t , e24,t ) := et is given by

f (xi , et ) = γ
a0(xi )n0 + e21,t (xi )

1 + h0(xi )a0(xi ) + e22,t (xi )
− e23,t (xi ) − e24,t

(N.B., e21,t , e22,t and e23,t are functions of strategy xi and the strategy of sub-
population type i has infinitely many choices, which causes an infinite-dimensional
environment et to appear. We will provide more interpretations for the case of infinite-
dimensional environment below).

FollowingDiekmann et al. (2001) andGeritz (2005), the environment et is assumed
to be a linear function of the population sizes

et =
∑
j

I (x j )n j,t ,

where I (x j ) describes the environmental impact of a single individualwith strategy x j .
However, this assumption excludes many interesting models with nonlinear environ-
ments such as the previous two examples. In Example 1, the predator size necessarily
is an environmental variable for the preys, and the fraction of time individual prey
spend foraging depends on the adult predators. In Example 2, the harvested food, the
total handling times, and the compete-caused and cannibalize-caused death are envi-
ronmental variables for the sub-population i , in which the cannibalize-caused death
depends on the total handling times. We note that different environmental variables
may have different forms even in the same model. For instance, in Example 1, e1,t is
govern by a differential equation but e2,t is a function of e1,t . For these reasons, we
describe the environment by implicit (differential) equations.

In this paper, we consider an explicit formulation of the dynamics of the feedback
environment et = (e1,t , e2,t ) as illustrated in Fig. 1, which is given by

ė1,t = G1(et , θt ) +
∑
j

H1(x j , et , θt )n j,t ,

e2,t = G2(et , θt ) +
∑
j

H2(x j , et , θt )n j,t .
(2.1b)

Thedynamics of e1,t is givenby adifferential equation,while e2,t is an implicit function
of the current state of the system. The functions G1 and G2 describe the intrinsic
dynamics of the virgin environment (the environment unaffected by the population
of x1, . . . , xk). Given the current environment, the functions H1 and H2 describe the
environmental impact of a single individual with a given strategy. Consequently, the
second terms of (2.1b) gives the total environmental impact of the entire population of
x1, . . . , xk . These functions all involve the current environmental condition (et , θt ).
Herewewould like to highlight that e2,t is assumed to be unique defined by the implicit
equation. As Example 2 and “Appendix A” show, H2 can be a function of e2,t , but
e2,t is still unique defined. Alternatively, by allowing et to be infinite-dimensional, we
can also incorporate it into (2.1b) (Geritz 2005). For instance, in Example 2 and the
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Resident-invader dynamics of similar strategies… 913

model in Sect. 4.2, where the feedback variables at any time are a function of strategy
and where f (xi , et , θt ) involves the evaluation of et in xi (ref to “Appendix A” and
Sect. 4.2, respectively).

To consider external factors, we assume that {θt }t≥0 is a continuous time Markov
process which is defining on an underlying probability space and taking value in Θ .
From the definition of Markov process, the future state is independent of the past and
depends only the present, which is a natural consideration in reality and contains a
large number of ecologically interpretable factors. There are many ways to construct
a Markov process, e.g., a pure jump process and a process generated by stochastic
differential equations. In this paper, we assume that the process {θt }t≥0 is governed
by the following stochastic differential equation:

θ̇t = A(θt ) + B(θt )Ẇt , (2.1c)

where Ẇt is a white noise, namely Wt is a Brownian motion defined on a complete
probability space (Ω,F ,P) with a filtration {Ft }t≥0 satisfying the usual conditions
(i.e., it is right continuous and increasing whileF0 contains all P-null sets). (2.1c) can
be calculated using one of two methods: Itô or Stratonovich, but in fact our results do
not depend on the calculation methods used.

Model (2.1) is an extension of the deterministic population models used in Geritz
(2005), Dercole and Rinaldi (2008) and Dercole and Geritz (2016), which is intu-
itive and interpretable in biology and covers a large class of ecological models with
an explicit formulation of environmental feedback and environmental stochasticity.
Meanwhile, model (2.1) can be viewed as a revision of the stochastic population
model used in Kliemann (1983), but now takes account of strategies and feedback
variables. From the application point of view, any complicated considerations of bio-
logical mechanisms can be formulated into functions f ,G1, H1,G2, H2, A and B, and
a certain level of smoothness is assumed to make them mathematically meaningful.

Regarding (2.1), we make the following assumptions:

A1 The Markov process {θt }t≥0 is ergodic with invariant probability measure ν on Θ .

A2 The partial derivatives f (i, j),G(i)
1 , H (i, j)

1 ,G(i)
2 and H (i, j)

2 exit and are locally Lip-
schitz continuous andmeasurable in (e, θ) for all strategies and for all nonnegative
integers i, j ≤ 2. And functions A and B are locally Lipschitz continuous and
measurable in θ .

Assumption A1 indicates the process {θt }t≥0 is completely realized before we start to
observe the dynamics of (n1,t , . . . , nk,t , et ). Both meanings of ergodicity and invari-
ance are given in Sect. 2.2. Process {n1,t , . . . , nk,t , et }t≥0 is usually not Markovian.
By Assumption A1, however, process {n1,t , . . . , nk,t , et , θt }t≥0 is Markovian under
weak assumptions (ref to Arnold andKliemann (1983, Lemma 2.1)). Thereby it allows
us to utilize the excellent works in the theory of Markov processes for the analysis
of the process {n1,t , . . . , nk,t , et , θt }t≥0. Assumption A2 is a technical requirement to
guarantee the existence of chain rule and justify the series expansion.
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914 Y. Cai, S. A. H. Geritz

2.2 Some basic concepts

In order to state our results, we review some basic concepts in Markov process and
ergodic theory.

Throughout Sect. 2, let

Zt = (n1,t , . . . , nk,t , et , θt ),

which lies in space

Z = N k × E × Θ.

For any Borel set C ⊂ Z , let

Pz{Zt ∈ C} = P{Zt ∈ C |Z0 = z}

be the probability of Zt in C given Z0 = z ∈ Z . Let {Tt }t≥0 be the associated
semigroup of Markov process {Zt }t≥0 on Z defined by conditional expectations:

Tt h(z) = Ez
[
h(Zt )

] = E
[
h(Zt )|Z0 = z

]
,

for bounded and measurable function h : Z �→ R. Assumption A2 implies that the
Markov semigroup {Tt }t≥0 is Cb(Z)-Feller (Benaïm 2018), i.e., operator Tt takes
bounded continuous functions h on Z to bounded continuous functions Tt h on Z for
all t ≥ 0. A probability measure μ on Z is invariant for {Zt }t≥0 (or {Tt }t≥0) if

∫
Z
Tt h(z)μ(dz) =

∫
Z
h(z)μ(dz),

for all bounded andmeasurable functions h : Z �→ R and all t ≥ 0. An invariant prob-
ability measureμ is ergodic if it can not be written as a non-trivial convex combination
of other distinct invariant probability measures.

If Zt initially follows the distribution of an ergodic probability measure μ, then
Birkhoff’s ergodic theorem tells us that, in simple terms, the time average of a
function of the process along the trajectories exists with probability one and equals
the space average. More precisely, for all measurable functions h : Z �→ R with∫
Z |h(z)|μ(dz) < +∞,

lim
t→+∞

1

t

∫ t

0
h(Zs)ds =

∫
Z
h(z)μ(dz)

with probability one.
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2.3 Resident and resident system

From (2.1a) with initial value Z0 = z ∈ Z , a straightforward calculation shows that
the species xi tends to increase in its population size if

lim
t→+∞

1

t

∫ t

0
f (xi , es, θs)ds > 0,

and tends to decrease in its population size if

lim
t→+∞

1

t

∫ t

0
f (xi , es, θs)ds < 0,

provided that the limit exists. Let μ be an invariant probability measure for process
{Zt }t≥0. From Birkhoff’s ergodic theorem,

lim
t→+∞

1

t

∫ t

0
f (xi , es, θs)ds = λxi (μ)

with probability one and for μ-almost every z, where λxi (μ) is the per-capita growth
rate of species xi with respect to μ:

λxi (μ) =
∫
Z

f (xi , e, θ)μ(de, dθ).

We now introduce two notations for further analysis. We define the extinction set
of a population of strategies x1, . . . , xk

Z0 = {
z ∈ Z : min

i
ni = 0

}

is the set which at least one species is absent, and the η-neighborhood of the extinction
set

Zη = {
z ∈ Z : min

i
ni ≤ η

}

is the set which at least one species has a size less than η.
Next, we specify when a population of strategies x1, . . . , xk is a resident.

Definition 1 A population of strategies x1, . . . , xk with corresponding size
{n1,t , . . . , nk,t }t≥0 in the environment {et , θt }t≥0 is called a resident with respect to μ

if μ is an invariant probability measure for process {Zt }t≥0 satisfying μ(Z \Z0) = 1.
Meanwhile,

(i) (non-growing) λxi (μ) = 0 for every i ∈ {1, . . . , k}, and
(ii) (stochastically persistent) for all ε > 0, there exists a η > 0 such thatμ(Zη) ≤ ε.
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916 Y. Cai, S. A. H. Geritz

Fig. 1 Diagram of the interaction between the resident population and the feedback environment and the
one-directional impact on the invader population

Definition 2 Themulti-tuple (x1, . . . , xk, n1,t , . . . , nk,t , et , θt ) is called a resident sys-
tem with respect to μ if μ is an invariant probability measure for process {Zt }t≥0 with
properties satisfying Definition 1.

In Definition 1, the supports of required invariant probability measures should
exclude the extinction set Z0. The first reason is that it is the technical requirement to
guarantee the properties of non-growing and stochastically persistence. The second
reason is from a probabilistic perspective that if a population initially follows an
invariant probability measureμwithμ(Z0) 
= 0, then the extinction of the population
is a non-zero probabilistic event on the long-term. FromDefinition 1, a resident is non-
growing on the long-run and stochastically persistent, where the concept of persistence
asserts that the probability of population size being near the extinction state is very
small. In this paper, a resident (resp. a resident system) is characterized by an invariant
probability measure defined on the state space. Actually, there might be more than
one invariant probability measures, but we focus our attention on one of them. Each
adequate invariant probability measure corresponds to a resident (resp. a resident
system).

2.4 Invasion fitness

Assume that (x1, . . . , xk, n1,t , . . . , nk,t , et , θt ) is a resident system with an invariant
probability measureμ satisfying Definition 1, which further determines the ecological
environment for a mutant type y ∈ X with initially infinitesimal size mt ∈ N . Thus,
the population dynamics of a newly arrived and initially rare mutant y is described by
the following linear differential equation

ṁt = f (y, et , θt )mt . (2.2)

Notice that (2.2) holds as long as themutant population remains rare. The tuple (y,mt )

is referred to an invader. Figure 1 shows the relationship of the invader (y,mt ) and the
resident system (x1, . . . , xk, n1,t , . . . , nk,t , et , θt ) where arrows with special indexes
illustrate different impacts or contributions between them.
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Resident-invader dynamics of similar strategies… 917

Formally, the invasion fitness of mutant y in resident (x1, . . . , xk) is given by

Sx1,...,xk (y) := lim
t→+∞

logmt

t
= lim

t→+∞
1

t

∫ t

0
f (y, es, θs)ds = λy(μ) (2.3)

with probability one and for μ-almost every z and for every positive size m0 (Metz
et al. 1992; Ferriere and Gatto 1995). The invader y dies out if Sx1,...,xk (y) < 0 and
can spread if Sx1,...,xk (y) > 0. From Definition 1, if y = xi for any i ∈ {1, . . . , k},
then we have

Sx1,...,xk (xi ) = λxi (μ) = 0 (2.4)

which is so-called the principle of selective neutrality of residents in the framework
of adaptive dynamics.

2.5 Population dynamics of similar strategies

Consider now a population of two similar strategies (i.e., two close but distinct strate-
gies) x1, x2 ∈ X with corresponding sizes n1,t , n2,t ∈ N at time t . Without loss of
generality, let strategies

x1 = x + εξ1, x2 = x + εξ2,

where ξ1 
= ξ2 with ‖ξ2 − ξ1‖ < +∞ and where small ε > 0 (N.B., here ε is different
from the ε used in Definition 1) and where x is a reference strategy. Biologically, ε can
be viewed as the intensity of mutation, and ξi is the direction of mutation with respect
to the reference strategy x . Model (2.1) applied to the case of k = 2 we further have
a dimorphic population model. Obviously, n1,t , n2,t and et are functions of x1 and/or
x2. Thus they are functions of ε, which are denoted by nε

1,t , n
ε
2,t and eε

t , respectively.
To study the dimorphic population dynamics of x1 and x2 in fluctuating environ-

ments, following Meszéna et al. (2005) and Dercole and Geritz (2016), we introduce
the total population size N ε

t of x1 and x2 at time t and the relative population size Pε
t

of x2 at time t , i.e.,

N ε
t = nε

1,t + nε
2,t , Pε

t = nε
2,t

N ε
t

.

Under these assumptions, we arrive at the following equations:

Ṅ ε
t = (

f (x + εξ1, e
ε
t , θt )(1 − Pε

t ) + f (x + εξ2, e
ε
t , θt )P

ε
t

)
N ε
t , (2.5a)

Ṗε
t = Pε

t (1 − Pε
t )
(
f (x + εξ2, e

ε
t , θt ) − f (x + εξ1, e

ε
t , θt )

)
, (2.5b)

ėε
1,t = G1(e

ε
t , θt )

+ H1(x + εξ1, e
ε
t , θt )(1 − Pε

t )N ε
t + H1(x + εξ2, e

ε
t , θt )P

ε
t N

ε
t , (2.5c)

eε
2,t = G2(e

ε
t , θt )
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+ H2(x + εξ1, e
ε
t , θt )(1 − Pε

t )N ε
t + H2(x + εξ2, e

ε
t , θt )P

ε
t N

ε
t , (2.5d)

θ̇t = A(θt ) + B(θt )Ẇt . (2.5e)

Next, we unfold the dimorphic population dynamics of x1 and x2 based on the series
expansion of model (2.5) in powers of ε, and on time-scale separation. In the following
analysis, we will see that (N ε

t , eε
t , θt ) are fast variables with dynamics acted on t-

timescale and Pε
t is a slow variable with dynamics expounded on εi t-timescales for

i = 1, 2, . . . .

2.5.1 Fast dynamics

For ε = 0, we get

Ṅ 0
t = f (x, e0t , θt )N

0
t ,

Ṗ0
t = 0,

ė01,t = G1(e
0
t , θt ) + H1(x, e

0
t , θt )N

0
t ,

e02,t = G2(e
0
t , θt ) + H2(x, e

0
t , θt )N

0
t ,

θ̇t = A(θt ) + B(θt )Ẇt .

(2.6)

A comparison of (2.6) and the dynamics of the reference monomorphic system
(x, nt , et , θt ) shows that (N 0

t , e0t , θt ) has the same dynamics as (nt , et , θt ). Assume
that (x, nt , et , θt ) is a resident system with associated invariant probability measures
μ. Then, in the limit ε = 0, (N ε

t , eε
t , θt ) enter the dynamics of the observables through

μ, and Pε
t becomes irrelevant. Thus, (2.5) is a stochastic fast-slow system with fast

variables (N ε
t , eε

t , θt ) and slow variable Pε
t .

For positive but small ε, the trajectories of (N ε
t , Pε

t , eε
t , θt ) can be viewed as a small

variation of that of (N 0
t , P0

t , e0t , θt ) on t-timescale. Under some mild assumptions, the
dynamics of (2.6) are arbitrarily good approximation of the dynamics of (2.5) in terms
of conditional expectations when ε → 0 (ref to “Appendix B”).

2.5.2 Slow dynamics on�t-timescale

To study the dynamics of the relative population size on slow timescales, we have to
take account of the high-order terms in the series expansion.

Consider the first-order term in the series expansion of the right side of (2.5b) and
let t1 = εt , we have

Ṗε
t1 = Pε

t1(1 − Pε
t1) f

(1,0)(x, et1/ε, θt1/ε)
�(ξ2 − ξ1) + O(ε). (2.7)

Here the term e0t1/ε in the series expansion has been replaced by et1/ε because they
have the same dynamics on t-timescale (see the interpretation in Sect. 2.5.1). Notice
that f (1,0)(x, e, θ)� becomes a row vector if x is a multi-dimensional strategy. Since
(x, nt , et , θt ) is assumed to be a resident system with associated invariant probability
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measures μ satisfying μ(Z \ Z0) = 1, we can apply Birkhoff’s ergodic theorem to
an observation f (1,0) of (x, nt , et , θt ), i.e., we have

lim
T→+∞

1

T

∫ T

0
f (1,0)(x, es, θs)

�ds =
∫
Z\Z0

f (1,0)(x, e, θ)�μ(de, dθ)

= ∂ySx (y)|y=x

(2.8)

with probability one and for μ-almost every Z0 = z ∈ Z \ Z0. Here ∂ySx (y)|y=x

is so called the selection gradient at the reference strategy x . A strategy x is an
evolutionarily singular strategy if

∂ySx (y)|y=x = 0.

(ref to Metz et al. 1996; Geritz et al. 1997, 1998, 1999).
Throughout this section, assuming that

∂ySx (y)|y=x (ξ2 − ξ1) 
= 0.

Consider the following deterministic system

˙̄Pt1 = P̄t1(1 − P̄t1)∂ySx (y)|y=x (ξ2 − ξ1). (2.9)

From the averaging principle for fast-slow systems with stochastic and stationary fast
dynamics, solutions of (2.7) are well approximated by solutions of (2.9) on every finite
time interval when ε → 0, where (2.9) is so-called the averaged system with respect
to (2.7) (ref to Freidlin and Wentzell (2012, Theorem 1.3 of Chapter 2 and Theorem
2.1 of Chapter 7), or Khas’minskii 1966; Arnold 2001; Kifer 2001; Liu and Krstic
2012). In the averaged system (2.9), there are exactly two equilibria:

0, 1,

with stabilities dominated by the signs of ∂ySx (y)|y=x (ξ2 − ξ1). Figure 2a gives all
generic cases. Under the stability of the averaged system (2.9), we show the property
of solutions of (2.7) in arbitrarily long time intervals.

Lemma 1 Let Pε
0 = P̄0 = p and Z0 = z. Assume that for a small σ > 0,

∫
Z\Z0

∣∣ f (y, e, θ)
∣∣2μ(de, dθ) < +∞ for all y ∈ {

x̃ ∈ X : ‖x̃ − x‖ ≤ σ
}
,

and limt1→+∞ P̄t1 = p∗. Then for every δ ∈ (0, 1), there exists a constant Tδ > 0
such that the solution of (2.7) satisfies

P(p,z)

{
lim
ε→0

sup
t1≥Tδ

|Pε
t1 − p∗| ≤ δ

}
= 1 (2.10)
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for all p ∈ [0, 1] and for μ-almost every z ∈ Z \ Z0, where p∗ = 0 or 1.

In words, for ε > 0 sufficiently small and at some later time, the trajectories of Pε
t1 will

remain δ-close to the stable equilibrium of the averaged system (2.9) for arbitrarily
long time with probability one.

Remark 1 In the hypotheses of Lemma 1, the boundedness ensures that the invasion
fitness Sx (y) for a mutant strategy y close to the reference resident strategy x and
the selection gradient ∂ySx (y)|y=x are well defined, and it further guarantees the
approximation of solutions of (2.7) and (2.9) in arbitrarily long time intervales.

Expansions of invasion fitnesses Sx1(x2) and Sx2(x1) up to the first order terms in
ε give

Sx1(x2) = −Sx2(x1) = ε∂ySx (y)|y=x (ξ2 − ξ1). (2.11)

Using (2.11), a stochastic analogy of the invasion implies fixation theorem of Geritz
(2005, Proposition 1) immediately follows from Lemma 1, which is called as invasion
implies substitution theorem in the present paper.

Theorem 1 (“Invasion implies substitution theorem”) Assume that the hypotheses of
Lemma 1 are satisfied. Let the strategy pair (x1, x2) and the reference strategy x are
such that ∂ySx (y)|y=x (ξ2 − ξ1) 
= 0.

(i) If Sx1(x2) > 0 and Sx2(x1) < 0, then (2.10) holds for p∗ = 1.
(ii) If Sx1(x2) < 0 and Sx2(x1) > 0, then (2.10) holds for p∗ = 0.

For X ⊂ R, provided that ∂ySx (y)|y=x 
= 0 (i.e., x isn’t an evolutionarily singular
strategy), the dimorphic population dynamics of x1 and x2 is completely determined
by the invasion fitnesses. Since there are only two equilibria that are at the boundary
for the averaged system (2.9), invasion implies substitution in terms that the dynamics
of the relative population size satisfies (2.10). In other words, similar strategies cannot
coexist when both of them are away from an evolutionarily singular strategy.

For X ⊂ Rd with d ≥ 2, geometrically, the deviation ξ2 − ξ1 (which is equivalent
to x2 − x1) shall be away from the null-set of the linear form α → ∂ySx (y)|y=xα

for all α 
= 0 and ∂ySx (y)|y=x non-vanishes, so that (2.9) is non-degenerate (i.e., the
right side isn’t equal to zero). Consequently, in a multi-dimensional strategy space,
invasion implies substitution provided that not only the two strategies are away from
an evolutionarily singular strategy, but also their deviation isn’t orthogonal to the
selection gradient at the reference strategy.

The averaged system (2.9) gives a geometric interpretation of the population dynam-
ics of similar strategies in terms of their deviation and the selection gradient at a
reference strategy, which indicates the sufficient condition of substitution of similar
strategies. Thus, on t1-timescale, any invader that can spread in a given resident system
will ultimately oust the resident.
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2.5.3 Slow dynamics on�2t-timescale

Once ∂ySx (y)|y=x (ξ2 − ξ1) = 0, the right side of the averaged system (2.9) becomes
zero. Then the high-order term O(ε) in (2.7) plays a role on slower timescales.

Consider the second-order term in the series expansion of the right side of (2.5b)
and let t2 = ε2t , we have the associated averaged system:

˙̄Pt2 = P̄t2(1 − P̄t2)

(
(ξ2 + ξ1)

�(C22 + C21)(ξ2 − ξ1)

+
(1
2

− P̄t2
)
(ξ2 − ξ1)

�(C22 + C11)(ξ2 − ξ1)

)
(2.12)

with matrixes

C11 = C�
11 = 1

2
∂xxSx (y)|y=x , C12 = C�

21 = 1

2
∂xySx (y)|y=x ,

C21 = C�
12 = 1

2
∂yxSx (y)|y=x , C22 = C�

22 = 1

2
∂yySx (y)|y=x . (2.13)

For the reader’s convenience,wegive the detailed derivation of (2.12) in “AppendixD”.
Notice that {Ci j }i, j=1,2 are matrices if x is a multi-dimensional strategy.

Throughout this section, assuming that

(ξ2 + ξ1)
�(C22 + C21)(ξ2 − ξ1) and (ξ2 − ξ1)

�(C22 + C11)(ξ2 − ξ1)

don’t vanish at the same time. If (ξ2−ξ1)
�(C22+C11)(ξ2−ξ1) 
= 0, then the averaged

system (2.12) has an interior equilibrium. In case of (ξ2−ξ1)
�(C22+C11)(ξ2−ξ1) = 0,

only boundary equilibria exist. Figure 2b and c conclude all possible equilibria and
their stability.

From the series expansions of invasion fitnesses Sx1(x2) and Sx2(x1), the second-
order terms in ε give

Sx1(x2)(1 − P̄t2) − Sx2(x1)P̄t2

= ε2
(
ξ�
2 C22ξ2 − ξ�

1 C22ξ1 + 2
(
(1 − P̄t2)ξ1 + P̄t2ξ2

)�C21(ξ2 − ξ1)
)

= ε2
(

(ξ2 + ξ1)
�(C22 + C21)(ξ2 − ξ1)

+
(1
2

− P̄t2
)
(ξ2 − ξ1)

�(C22 + C11)(ξ2 − ξ1)

)
,

(2.14)

where the derivation of the last equality can be found in “Appendix D”. Using (2.14),
the averaged system (2.12) have at most three equilibria in [0, 1]:

0,
Sx1(x2)

Sx1(x2) + Sx2(x1)
, 1,
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(a)

(b)

(c)

Fig. 2 Equilibria and their stability of the associated averaged systems on different timescales, where “◦”
denotes an unstable equilibrium and “•” denotes a stable equilibrium

with stabilities dominated by the combination of signs of Sx1(x2) and Sx2(x1). Under
the stability of the averaged system (2.12), we have a similar consequence as Lemma 1.

Lemma 2 Let Pε
0 = P̄0 = p and Z0 = z. Assume that for a small σ > 0,

∫
Z\Z0

∣∣ f (y, e, θ)
∣∣2μ(de, dθ) < +∞ for all y ∈ {

x̃ ∈ X : ‖x̃ − x‖ ≤ σ
}
.

Then for every δ ∈ (0, 1), there exists a constant Tδ > 0 such that

(i) if the averaged system (2.12) has a unique stable equilibrium, then the solution
of (2.12) satisfies

P(p,z)

{
lim
ε→0

sup
t2≥Tδ

|Pε
t2 − p∗| ≤ δ

}
= 1 (2.15)

for all p ∈ [0, 1] and for μ-almost every z ∈ Z \ Z0, where p∗ = 0, or
Sx1 (x2)

Sx1 (x2)+Sx2 (x1)
or 1;

(ii) if the averaged system (2.12) has two stable equilibria (i.e., 0 and 1), then we
have

q0(p,z) + q1(p,z) = 1 (2.16)
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for all p ∈ [0, 1] and for μ-almost every z ∈ Z \ Z0, where probabilities

q0(p,z) = P(p,z)

{
lim
ε→0

sup
t2≥Tδ

|Pε
t2 − 0| ≤ δ

}
,

q1(p,z) = P(p,z)

{
lim
ε→0

sup
t2≥Tδ

|Pε
t2 − 1| ≤ δ

}
.

In words, for ε > 0 sufficiently small and at some later time, the trajectories of Pε
t2

will remain δ-close to the attractor (either a unique stable equilibrium or the bistable
equilibria) of the averaged system (2.12) for arbitrarily long time with probability one.

Remark 2 In the hypotheses of Lemma 2, the boundedness ensures that (2.13) are
well defined, and it further guarantees the approximation of solutions of Pε

t2 and P̄t2 in
arbitrarily long time intervals. The boundedness is a technical requirement for Lemmas
1 and 2, which meets by many models.

Let (ξ2 − ξ1)
�(C22 +C11)(ξ2 − ξ1) 
= 0. Under the stability of the averaged system

(2.12) with equivalent form (2.14), a stochastic analogy of the classification theorem
of Geritz (2005, Proposition 2) immediately follows from Lemma 2.

Theorem 2 (“Classification theorem”) Assume that the hypotheses of Lemma 2 are
satisfied. Let the strategy pair (x1, x2) and the reference strategy x are such that
∂ySx (y)|y=x (ξ2 − ξ1) = 0 but (ξ2 − ξ1)

�(C22 + C11)(ξ2 − ξ1) 
= 0.

(i) If Sx1(x2) > 0 and Sx2(x1) < 0, then (2.15) holds for p∗ = 1.
(ii) If Sx1(x2) < 0 and Sx2(x1) > 0, then (2.15) holds for p∗ = 0.

(iii) If Sx1(x2) > 0 and Sx2(x1) > 0, then (2.15) holds for p∗ = Sx1 (x2)
Sx1 (x2)+Sx2 (x1)

.

(iv) If Sx1(x2) < 0 and Sx2(x1) < 0, then (2.16) holds.

Let (ξ2 − ξ1)
�(C22 + C11)(ξ2 − ξ1) = 0. Then the averaged system (2.12) only has

boundary equilibria. From the assertion (i) of Lemma 2, we have a special invasion-
substitution theorem.

Theorem 3 (“Special invasion-substitution theorem”) Assume that the hypotheses of
Lemma 2 are satisfied. Let the strategy pair (x1, x2) and the reference strategy x are
such that ∂ySx (y)|y=x (ξ2 − ξ1) = 0 and (ξ2 − ξ1)

�(C22 + C11)(ξ2 − ξ1) = 0 but
(ξ2 + ξ1)

�(C22 + C21)(ξ2 − ξ1) 
= 0.

(i) If Sx1(x2) > 0 and Sx2(x1) < 0, then (2.15) for p∗ = 1.
(ii) If Sx1(x2) < 0 and Sx2(x1) > 0, then (2.15) for p∗ = 0.

For X ⊂ R, Theorem 2 corresponds to the invasion dynamics of similar strategies
close to a generic evolutionarily singular strategy that satisfies C22 + C11 
= 0, while
Theorem 3 corresponds to the invasion dynamics of similar strategies with ξ1 + ξ2 
=
0 close to an evolutionarily singular strategy satisfying C22 + C11 = 0 and C22 +
C21 
= 0. In the neighborhood of a generic evolutionarily singular strategy, the invasion
dynamics is essentially “Lotka-Volterra”—dominance of one strategy, coexistence
of two strategies, and mutual exclusion of two strategies—in sense that the relative
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Fig. 3 The geometric
interpretation of the coexistence
condition in a one-dimensional
(or a one-dimensional
parameterization of a
multi-dimensional) strategy
space. The “+” in the Pairwise
Invasibility Plot (PIP) indicates
the area where the mutant can
invade the resident, and the “−”
indicates the area where the
mutant cannot invade

population size remains δ-close to the attractor of the averaged system for arbitrarily
long time with probability one. In the neighborhood of an evolutionarily singular
strategy satisfying C22 +C11 = 0 and C22 +C21 
= 0, only substitution happens for the
invasion dynamics of any two similar but non-opposite strategies (i.e., ξ1 + ξ2 
= 0).
In Fig. 3, the dashed line indicates the scenario C22 + C11 = 0 associated with the
local configuration of the Pairwise Invasibility Plot (Matsuda 1985; van Tienderen
and de Jong 1986). Invasion implies substitution if (C11, C22) is on the dash line.
Coexistence of similar strategies may occur if (C11, C22) is away from the dash line.

For X ⊂ Rd with d ≥ 2, the hypothesis (ξ2 − ξ1)
�(C22 + C11)(ξ2 − ξ1) 
= 0

in Theorem 2 means that the deviation ξ2 − ξ1 shall be away from the null-
set of the quadratic form α �→ α�(C22 + C11)α for all α 
= 0. Apart from
∂ySx (y)|y=x (ξ2−ξ1) = 0, Theorem 3 requires that (ξ2−ξ1)

�(C22+C11)(ξ2−ξ1) = 0
and (ξ2 + ξ1)

�(C22 + C21)(ξ2 − ξ1) 
= 0. The correspondingly geometric interpre-
tation is complicate. However, if let ξ1 = 0 (i.e., x1 = x), the two hypotheses are
equivalent to ξ�

2 (C22 + C11)ξ2 = 0 and ξ�
2 (C22 + C21)ξ2 
= 0. From a conser-

vation law C11 + C22 + C21 + C12 = 0 (ref to (d.9) in “Appendix D”), we have
C22 + C21 = 1

2 (C22 − C11) + 1
2 (C21 − C12) where C22 − C11 is symmetric and

C21 − C12 is skew-symmetric. Then by the property of skew-symmetric matrices,
α�(C21 − C12)α = 0 for all α, we obtain that ξ�

2 (C22 + C21)ξ2 = 1
2ξ

�
2 (C22 − C11)ξ2.

Thus, if ξ2 
= 0 is such that ξ�
2 (C22 +C11)ξ2 = 0 but ξ�

2 C11ξ2 
= 0 and ξ�
2 C22ξ2 
= 0,

then ξ�
2 (C22 + C21)ξ2 
= 0 is readily satisfied.

Remark 3 Once (ξ2−ξ1)
�(C22+C11)(ξ2−ξ1) = 0 and (ξ2+ξ1)

�(C22+C21)(ξ2−ξ1) =
0, the higher order terms in ε of the series expansion are imperative to reveal the
invasion dynamics of similar strategies. The degeneracy of a higher degree opens the
possibility of unprotected coexistence for two strategies (ref to Priklopil (2012) and
Dercole and Geritz (2016) for population models with point equilibria).

3 Structured populationmodels

In this section,we illustrate how to generalize the results of the unstructured population
models to a class of structured population models.
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Consider a structured population of strategies x1, . . . , xk ∈ X with corresponding
sizes n1,t , . . . , nk,t ∈ N at time t where ni,t = (n1i,t , . . . , n



i,t )

� for 
 ≥ 2 and for
i = 1, . . . , k. Under the same considerations in Sect. 2.1, our polymorphic structured
population model is

ṅi,t = F(xi , et , θt )ni,t , i = 1, . . . , k

ė1,t = G1(et , θt ) +
∑
j

H1(x j , et , θt )n j,t ,

e2,t = G2(et , θt ) +
∑
j

H2(x j , et , θt )n j,t ,

θ̇t = A(θt ) + B(θt )Ẇt ,

(3.1)

where F(xi , et , θt ) is a 
×
matrix whose entries are transition rates between different
states of individuals with strategy xi and depending on the current environmental
condition (et , θt ). Model (3.1) is an extension of the deterministic models used in
Durinx et al. (2008) and Priklopil and Lehmann (2019), but now with an explicit
formulation of environmental feedback and environmental stochasticity.

To place (3.1) into our framework, let ‖ni,t‖1 be the total population size of xi ,
and let vi,t be the proportion of each component in the population of xi , i.e., for
i = 1, . . . , k,

‖ni,t‖1 =
∑
j

n j
i,t , vi,t = (v1i,t , · · · , v


i,t )
� =

(
n1i,t

‖ni,t‖1 , · · · ,
n

i,t

‖ni,t‖1
)�

.

From (3.1), we obtain that for i = 1, . . . , k,

‖ni,t‖·
1 = 1�F(xi , et , θt )vi,t‖ni,t‖1,

v̇i,t = (
F(xi , et , θt ) − 1�F(xi , et , θt )vi,t I

)
vi,t ,

ė1,t = G1(et , θt ) +
∑
j

H1(x j , et , θt )v j,t‖n j,t‖1,

e2,t = G2(et , θt ) +
∑
j

H2(x j , et , θt )v j,t‖n j,t‖1,

θ̇t = A(θt ) + B(θt )Ẇt ,

(3.2)

where 1� = (1, . . . 1) and I is the identity matrix. Although (3.2) cannot be written
in the form of (2.1), the results in Sect. 2 still can be generalized to model (3.2)
where population structures v1,t , . . . , vk,t are viewed as auxiliary variables that lie
in the space Δ = {

v ∈ [0, 1]
 : ‖v‖1 = 1
}
. Throughout this section, denote Zt =(‖n1,t‖1, . . . , ‖nk,t‖1, v1,t , . . . , vk,t , et , θt). The state space of the dynamics of Zt is

Z = Rk+ × Δk × E × Θ , the extinction set is Z0 = {
z ∈ Z : mini ‖ni‖1 = 0

}
, and

the η-neighborhood of the extinction set is Zη = {
z ∈ Z : mini ‖ni‖1 ≤ η

}
. Like

AssumptionA2, the partial derivative F (i, j) requires to exit and to be locally Lipschitz
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continuous and measurable in (e, θ) for all strategies and for all nonnegative integers
i, j ≤ 2.

Next, we focus on the analysis of dimorphic population dynamics of similar strate-
gies. Like the discussion in Sect. 2.5, let x1 = x + εξ1, x2 = x + εξ2 ∈ X with
corresponding population sizes nε

1,t , n
ε
2,t ∈ N and population structures vε

1,t , v
ε
2,t ∈ Δ

at time t . Let
(
x, ‖nt‖1, vt , et , θt

)
is the reference monomorphic resident system with

invariant probability measure μ. We now are interested in the dynamics of the total
population size N ε

t of x1 and x2 and the relative population size Pε
t of x2, where

N ε
t = ‖nε

1,t‖1 + ‖nε
2,t‖1, Pε

t = ‖nε
2,t‖1
N ε
t

.

Expanding (3.2) around ε = 0 (i.e., x1 = x2 = x) and then taking ε = 0, we have

Ṅ 0
t = 1�F(x, e0t , θt )

(
v02,t P

0
t + v01,t (1 − P0

t )
)
N 0
t , (3.3a)

Ṗ0
t = P0

t (1 − P0
t )1�F(x, e0t , θt )(v

0
2,t − v01,t ). (3.3b)

Recalling the analysis in Sect. 2.5.1, the difference here is that P0
t is not longer a

constant on t-timescale. Instead, P0
t evolves with N 0

t on t-timescale. The following
we derive that (i) the dynamics of the monomorphic system

(‖nt‖1, vt , et , θt) still
represents the dynamics of (N ε

t , vε
i,t , e

ε
t , θt ) on t-timescale when ε = 0 for i = 1, 2,

and (ii) Pε
t evolves on t-timescale but eventually returns to its initial state when ε = 0.

Denote

v̄0t = v02,t P
0
t + v01,t (1 − P0

t ),

which is the averaged proportion of population structures v01,t and v02,t at time t . From

(3.3a) and the dynamics of (v01,t , v
0
2,t , e

0
t ), we have

Ṅ 0
t = 1�F(x, e0t , θt )v̄

0
t N

0
t ,

˙̄v0t = (
F(x, e0t , θt ) − 1�F(x, e0t , θt )v̄

0
t I
)
v̄0t ,

ė01,t = G1(e
0
t , θt ) + H1(x, e

0
t , θt )v̄

0
t N

0
t ,

e02,t = G2(e
0
t , θt ) + H2(x, e

0
t , θt )v̄

0
t N

0
t ,

θ̇t = A(θt ) + B(θt )Ẇt .

(3.4)

It shows that (N 0
t , v̄0t , e

0
t , θt ) satisfies the same equations as

(‖nt‖1, vt , et , θt). In
words, the dynamics of

(‖nt‖1, vt , et , θt) represents that of (N ε
t , v̄ε

t , e
ε
t , θt ) on t-

timescale when ε = 0. Turning to the dynamics of v01,t and v02,t ,

v̇0i,t = (
F(x, e0t , θt ) − 1�F(x, e0t , θt )v

0
i,t I

)
v0i,t , i = 1, 2

with e0t calculated from (3.4), we see that v01,t and v02,t satisfy the same equation as v̄0t

(or, equivalently, vt ). Then v01,t and v02,t have the same dynamics as v̄0t (or, equivalently,
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vt ). Thus, we claim that (N ε
t , vε

i,t , e
ε
t , θt ) has the same dynamics as

(‖nt‖1, vt , et , θt)
on t-timescale when ε = 0 for i = 1, 2.

Now we return to (3.3b), a straightforward calculation shows that

P0
t =

(
1 + 1 − p

p
exp

(∫ t

0
1�F(x, e0τ , θτ )(v

0
2,τ − v01,τ )dτ

))−1

provided that the initial state is (n, v1, v2, e, θ, p). Using Birkhoff’s ergodic theorem
and the principle of selective neutrality of residents (i.e., zero growth rate of the
reference resident x), we obtain

lim
t→+∞ P0

t = p

with probability one and for all p ∈ [0, 1] and for μ-almost every (n, v1, v2, e, θ)

(N.B., initial states v1 and v2 do not have to be identical). It means that P0
t will

sufficiently close to its initial state some time later with probability one. Thus, we
need consider the dynamics of Pε

t on slow timescales to revel the dimorphic population
dynamics of x1 and x2.

The remaining generalization of our theorems to model (3.2) can be done by using
of arguments similar to Sects. 2.5.2 and 2.5.3.

4 Applications

To illustrate the utility of our theorems, we apply them to four concrete examples. The
first example we consider the evolving bacteria in a chemostat model. We will see
that substitution is the unique outcome after an invasion event. The second example
we consider a Lotka-Volterra competition model. Theorems 1, 2 and 3 are applied
to predict the population dynamical outcomes of an invasion event when the strategy
pairs satisfy the corresponding hypotheses of these theorems. The third example we
consider a structured SIRS epidemic model, which is designed to illustrate how a
concrete structured population model can be reformulated into our framework. In the
last example,we consider the evolution of timidity of the prey in a predator-preymodel,
which is designed to demonstrate that our results are applicable to the evolution with
the non-equilibrium resident dynamics.

In these four examples, we start from a monomorphic population with a certain
strategy. To verify the existence of an invariant probability measure for a resident
system, one might consider the tightness of one of the following two families of
measures:

(a) the statistics associated with a single realization of process {Zt }t≥0, i.e. measure

Π z
t (·) = 1

t

∫ t

0
δZs (·)ds
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with a Dirac measure δZs at Zs (ref to the argument presented in Schreiber et al.
(2011) or Benaïm (2018));

(b) the statistics associated with transition probabilities {Pt }t≥0 of process {Zt }t≥0,
i.e. measure

π z
t (·) = 1

t

∫ t

0
Ps(z, ·)ds

which is a common tool in the literature on Markov process (see e.g. Arnold and
Kliemann 1983, Proposition 3.15).

Different ways to study the existence of invariant probability measures give differ-
ent interpretations for the asymptotic behavior of process {Zt }t≥0. Assume that the
limit exists as time goes to infinity, the (a) gives the long-term frequency of a typical
realization of process {Zt }t≥0 visiting a particular configuration. Since a transition
probability corresponds to the frequency of observing a particular event across many
realizations of process {Zt }t≥0, the (b) gives the long-term frequency of probabilities
for process visiting a particular configuration. Following the strategies of proofs of
Benaïm (2018, Theorem 4.4), Schreiber et al. (2011) and Arnold and Kliemann (1983,
Proposition 3.15), one can show that all weak� limit points ofΠ z

t and π z
t are candidate

μ of Definition 1.
In each example, we present the simulated trajectories of (i) the resident and invader

population in the corresponding phase plane, (ii) the total population size Nt , and (iii)
the relative population size Pt of the invader. The numerical analysis shows that Nt

varies stochastically and dramatically in time, while Pt changes slowly and asymptot-
ically in time. Since we don’t perform the complete time-scale separation in numerical
simulations, one can find that there are some small fluctuations remain in the simu-
lated trajectories of Pt in Figs. 4, 6, 8, and 10 for different examples, respectively.With
complete time-scale separation (i.e., ε → 0), the trajectories of Pt will be smooth.

4.1 Chemostat model

Consider the evolving bacteria with strategy x = (β, γ, δ) ∈ R3+ := X and concen-
tration nt at time t in a chemostat model, in which the dynamics is given by

Ṙt = D(Rin
t − Rt ) − βRtnt ,

ṅt = γβRtnt − (δ + D)nt ,
(4.1)

where Rt is the concentration of nutrient at time t . Let Rin
t be the time-varying con-

centration of nutrient at the input. Positive constants D, β, γ and δ are dilution rate,
nutrient uptake rate, conversion efficiency and death rate of bacteria, respectively. In
this model, we assume

Rin
t = ρ1 − ρ2

2θt
1 + θ2t
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with constants ρ1 > ρ2 > 0 and {θt }t≥0 is the stationary Ornstein-Uhlenbeck process
generated by a linear stochastic differential equation

θ̇t = − aθt + bẆt , θ0 = 0, (4.2)

with positive constants a and b. Then Rin
t takes value in the interval [ρ1 − ρ2, ρ1 +

ρ2] for all time t and tends to peaks around ρ1 ± ρ2, which is a random switching
scenario. Different ways that an unbounded noise induces bounded fluctuations on
model parameters refer to d’Onofrio (2013) and Caraballo and Han (2016).

Denote

et = (e1,t , e2,t ) = (Rt , 0),

f (x, et , θt ) = γβe1,t − δ − D,

G1(et , θt ) = D(Rin
t − e1,t ),

H1(x, et , θt ) = βe1,t .

Then (4.1) can be written as the general form (2.1). From the boundedness of Rin
t , one

can show that Rt ≤ ρ1 +ρ2 and nt ≤ γβ(ρ1+ρ2)
δ+D for t sufficiently large. Thus, the state

space of the dynamics of (nt , et , θt ) is Z = [
0, γβ(ρ1+ρ2)

δ+D

]× [0, ρ1 + ρ2] × {0} × R.

The partial derivatives f (i, j), G(i, j)
1 and H (i, j)

1 exist for all strategies x ∈ X and for
all nonnegative integers i, j ≤ 2, which satisfy Assumption A2.

For bacteria x , its virgin environment Rvir
t is generated by

Ṙvir
t = D(Rin

t − Rvir
t ).

The boundedness of Rin
t and the Feller property ensure the existence of invariant

probabilitymeasures for process {Rvir
t , θt }t≥0 with support [ρ1−ρ2, ρ1+ρ2]×R ⊂ Z0

and expectationE[Rvir ] = E[Rin] = ρ1. Bacteria x can invade the virgin environment
Rvir if

γβE[Rvir ] − δ − D = γβρ1 − δ − D > 0. (4.3)

Likewise, the boundedness of (nt , Rt ) and the Feller property ensure the existence of
invariant probability measures for process {nt , Rt , θt }t≥0, denoted byμ. One hand, by
Poincaré recurrence theorem and the boundedness of nt , we obtain that λx (μ) = 0 for
all μ with μ(Z \ Z0) = 1 (ref to Schreiber et al. 2011, assertion (iii) of Proposition
1). On the other hand, since Z \ Z0 and Z0 are invariant, there exists α ∈ (0, 1]
such that μ = (1 − α)μ0 + αμ1 where μ0 is an invariant probability measure with
μ0(Z0) = 1 and μ1 is an invariant probability measure with μ1(Z \Z0) = 1. Notice
that λx (μ) ≤ 0 due to the boundedness of nt . From this fact and λx (μ1) = 0, it follows
that (1 − α)λx (μ0) ≤ 0. By (4.3) (i.e., λx (μ0) > 0), we obtain that α = 1. Thus,
all μ satisfy μ(Z \ Z0) = 1, provided that (4.3) holds. Using (4.3) and arguments
similar to the proof of Benaïm (2018, Theorem 4.4), we further can show that for all
ε > 0, there exists a η > 0 such that μ(Zη) ≤ ε for every μ with μ(Z \ Z0) = 1.
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Fig. 4 A simulated population trajectory in the phase plane and associated dynamics of total concentration
Nt = nres,t + ninv,t and relative concentration Pt = ninv,t/Nt for a resident bacteria with strategy
x = (2, 0.8, 0.095) and an invader bacteria with strategy y = (1.99, 0.85, 0.09). The corresponding
invasion fitnesses Sx (y) = 0.0161516 > 0 and Sy(x) = − 0.0102779 < 0. Parameter values D = 0.1,
ρ1 = 1, ρ2 = 0.5, a = b = 1

From Definition 1, we thus claim that bacteria x is non-growing on the long-run and
stochastically persistent.

Once bacteria x becomes a resident, the invasion fitness of an initially rare mutant
y = (β ′, γ ′, δ′) in resident x is

Sx (y) = γ ′β ′E[R] − δ′ − D.

For similar strategies (x, y) satisfying ∂ySx (y)|y=x (y − x) 
= 0, Theorem 1 can
be employed to predict the invasion dynamics. Instead we apply Theorems 2 or 3
if ∂ySx (y)|y=x (y − x) = 0. However, we will see that substitution is the unique
outcome after an invasion event whatever strategy pairs are. In fact, from (2.4), we
get that E[R] = δ+D

γβ
. Hence, invasion happens if and only if δ′+D

γ ′β ′ < δ+D
γβ

. It further
implies that for all x , y ∈ X , Sy(x) < 0 if Sx (y) > 0.

Figure 4 shows how a specific population trajectory develops from nres -axis to ninv-
axis in the phase plane provided that x = (2, 0.8, 0.095) and y = (1.99, 0.85, 0.09)
with Sx (y) > 0 and Sy(x) < 0. The initially rare bacteria y will actually take over the
bacteria x and becomes the new resident. The total concentration Nt of the resident x
and the invader y varies stochastically and dramatically in time. However, the relative
concentration Pt of the invader y changes slowly in time and asymptotically closes
to 1. The dynamics of Pt illustrates that the resident x is substituted by the invader y
eventually.
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4.2 Lotka–Volterra competitionmodel

Consider a stochastic Lotka-Volterra competition model

ṅi,t = r̃t (xi )ni,t

(
1 −

∑
j α(xi , x j )n j,t

K̃t (xi )

)
, i = 1, . . . , k (4.4)

where ni,t is the population size of strategy xi ∈ R := X . Assume that the intrinsic
growth rate and the carrying capacity of the i-th species are influenced by an external
factor θt such that they fluctuate around strategy-related values. For simplicity, let

r̃t (xi ) = r(xi ) exp(ρ1θt ) = exp(−d1x
2
i + ρ1θt ),

K̃t (xi ) = K (xi ) exp(ρ2θt ) = exp(−d2x
2
i + ρ2θt )

where d1, d2, ρ1 and ρ2 are scaling parameters and where the {θt }t≥0 is a sta-
tionary Ornstein-Uhlenbeck process generated by (4.2). Then the expected growth

rate and the expected carrying capacity of the i-th species are r(xi ) exp
(ρ2

1b
2

2a

)
and

K (xi ) exp
(ρ2

2b
2

2a

)
, respectively. Let the competitive coefficient between strategy xi

and x j be of the form

α(xi , x j )

= (
1 − (x j − xi )(c0 + c1x

2
i + c2xi x j + c3x

2
j ) exp(c4x

2
j )
)
exp

(
c5(x

2
i − x2j )

)
,

where α(xi , xi ) = 1 for all i .
Let E be the set of all functions e : X �→ R2 of the form

et (·) = (e1,t , e2,t )(·) =
(
0,

∑
j

α(·, x j )n j,t

)

for n j,t ≥ 0 and x j ∈ X . Since the competition is modelled as a direct interaction, we
can define the per-capita environmental impact H2 : X × E × R �→ R by

H2(x j , et , θ)(·) = α(·, x j )

which is the competitive impact of a single individualwith strategy x j on its competitor
with any strategy. Since the competitor’s strategy has infinitely many choices, e2,t has
infinite dimensions. In addition, define the map G2 : E × R �→ R by

G2(et , θ) = 0.

Further, define the map f : X × E × R �→ R by

f
(
xi , et (xi ), θ

) = r̃(xi )

(
1 − e2,t (xi )

K̃ (xi )

)
.
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(a)

(b)

Fig. 5 Pairwise invasibility plot (PIP) and corresponding Mutual invasibility plot (MIP) for the inva-
sion fitness (4.5) with parameter values d1 = 1, d2 = 0.5, ρ1 = 1, ρ2 = 0.8, a = b = 1, and
(c0, c1, c2, c3, c4, c5) = (a) (1, −11, 11,−4, 1, 0.5) and (b) (1,−2, 0, −2, 1, 0.5). White area in PIP:
y cannot invade x ; light gray area in PIP: y can invade x ; white area in MIP: x1 and x2 cannot invade each
other; light gray area in MIP: one of x1 and x2 can invader the other but not vice versa; gray area in MIP:
x1 and x2 can invade each other; “+” and “−”: signs of the invasion fitness for given strategy pairs; arrows:
the direction of monomorphic evolution

Thus, (4.4) can be written as the general form (2.1). Furthermore, the state space of the
dynamics of (n1,t , . . . , nk,t , et , θt ) is Z = Rk+ × E ×R. The partial derivatives f (i, j),

G(i, j)
2 and H (i, j)

2 exist for all strategies and for all nonnegative integers i, j ≤ 2, which
satisfy Assumption A2.

We now start from a monomorphic population of strategy x with size nt at time t .
Similar to the previous example, one can show that species x successfully establishes
with population dynamics satisfying Definition 1. The only difference that should be
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pointed out is that the population is unbounded in this example. Instead the population
is ultimately bounded in mean (Miyahara 1972, 1973), i.e., lim supt→+∞ E[nt ] ≤
E
[
lim supt→+∞ nt

] = K (x)E
[
lim supt→+∞ exp(ρ2θt )

] = K (x) < +∞ for all x ∈
X . Further, this stochastic boundedness combined with the Feller property guarantees
the existence of invariant probability measures for process {nt , θt }t≥0. Now, from
(4.4), the invasion fitness of an initially rare mutant y in resident x is given by

Sx (y) = r(y) exp

(
ρ2
1σ

2

2a

)(
1 − α(y, x)K (x)

K (y)

)
. (4.5)

Here we have used the principle of selective neutrality of residents (i.e., Sx (x) = 0
for all x ∈ X ) to derive (4.5).

Figure 5a shows the PIP and the MIP corresponding to (4.5) with parameters
(c0, c1, c2, c3, c4, c5) = (1,−11, 11,−4, 1, 0.5). The features of these two plots are
similar to that ofKisdi et al. (2001)which also studies the evolutionary of strategy x but
for a deterministic Lotka-Volterramodel with r̃t (x) = K̃t (x) = 1 for all x ∈ X and for
all t ≥ 0. Away from evolutionarily singular strategies x∗

er (evolutionary repeller) and
x∗
bp (evolutionary branching point), it follows from Theorem 1 that every successful
invasion of mutant y in a sufficiently small neighborhood of resident x will takeover
the population. Further, directional evolution proceeding by successive invasions and
substitutions with small phenotypic effect leads to an evolutionary branching point
x∗
bp provided that the initial strategy value is above x∗

er , otherwise is towards low-
valued strategies if the initial strategy value is below x∗

er . Both x∗
er and x∗

bp satisfy
C22 + C11 
= 0, so that we can apply Theorem 2 to all strategies in a neighborhood
of x∗

er or x
∗
bp. Having approached x∗

bp, the population undergoes evolutionary branch-
ing that gives rise to two district strategies coexistence. Figure 6a gives a simulated
population trajectory in the phase plane for the coexistence of strategies x = 0.48
and y = 0.51 with corresponding invasion fitnesses Sx (y) > 0 and Sy(x) > 0. The
dynamics of Pt shows that the relative population size of the invader y asymptotically
tends to an interior value of (0, 1).

To find the case of mutual exclusion, we choose two strategies lie in the white area
of the MIP in Fig. 5a and close to the x∗

er . Figure 6b gives two simulated population
trajectories in the phase plane for strategies x = − 0.53 and y = − 0.47 with corre-
sponding invasion fitnesses Sx (y) < 0 and Sy(x) < 0, provided that initial population
states are identical. In the phase plane, we see that one simulated population trajectory
eventually reaches nres-axis, while the other trajectory eventually reaches ninv-axis.
The corresponding dynamics of Pt shows a simulated trajectory asymptotically tends
to 0 but the other one asymptotically tends to 1.

Figure 5b shows the PIP and the MIP corresponding to (4.5) with parameters
(c0, c1, c2, c3, c4, c5) = (1,−2, 0,−2, 1, 0.5). Now the lower singularity is still an
evolutionary repeller, while the upper singularity becomes an evolutionarily stable
strategy. What’s more, the associated C22 + C11 = 0 but C22 
= 0 and C11 
= 0 for
both two evolutionarily singular strategies x∗

er and x
∗
ess . Therefore, we apply Theorem

3 to all strategies in a neighborhood of x∗
er or x

∗
ess , in which substitution is the unique

outcome of an invasion event. Figure 6c gives a simulated population trajectory in
the phase plane for strategies x = 0.55 and y = 0.51 with corresponding invasion
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(b) Mutual exclusion
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(c) Substitution
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Fig. 6 Simulated population trajectories in the phase plane and associated dynamics of the total population
size Nt = nres,t + ninv,t and the relative population size Pt = ninv,t/Nt for strategy pairs (a) (x, y) =
(0.48, 0.51) with corresponding invasion fitnesses Sx (y) = 0.00454545 > 0 and Sy(x) = 0.00346302 >

0, (b) (x, y) = (−0.53,−0.47) with corresponding invasion fitnesses Sx (y) = − 0.0179815 < 0 and
Sy(x) = − 0.0143759 < 0, and (c) (x, y) = (0.55, 0.51) with corresponding invasion fitnesses Sx (y) =
0.0064304 > 0 and Sy(x) = − 0.0064304 < 0, where other parameter values see Fig. 5
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finesses Sx (y) > 0 and Sy(x) < 0. The dynamics of Pt verifies that the invader y
substitutes the resident x eventually.

4.3 A structured SIRS epidemic model

Consider a structured SIRS epidemic model for the evolution of viral type. For a given
moment t and i = 1, . . . , k, let St be the numbers of susceptible individuals, Ii,t be
the numbers of individual infected by a virus xi ∈ R+ := X , and Ri,t be the number
of recovered individual whose is infected by the virus xi . Let Mt be the total number
of susceptible, infected and recovered individuals at time t , i.e.,

Mt = St +
∑
j

I j,t +
∑
j

R j,t .

Assume that all individuals are born free of the disease at a constant rate Λ > 0, and
all individuals naturally die at a density-dependent rate δMt with constant δ > 0. In a
well-mixed population, the probability of a contact being with an infected individual
of xi is given by

Ii,t
Mt

. The probability of that contact giving rise to an infection of xi is

given by β̃t (xi ), which is commonly called transmission rate. Infectious individuals of
xi recover at a rate γ̃t (xi ) and disease-caused die at a rate α̃t (xi ). Recovered individuals
of xi lose their protection against a reinfection and become susceptible again at a rate
ζ̃t (xi ). Here β̃t (xi ), γ̃t (xi ), α̃t (xi ) and ζ̃t (xi ) are all positive, time-varying and virus-
dependent. For simplicity, we assume that the transmission rate fluctuates around a
virus-dependent value in the way: β̃t (xi ) = β(xi ) exp(ρ1θt ) with β(xi ) > 0 for all
xi ∈ X , where the {θt }t≥0 is a stationary Ornstein-Uhlenbeck process generated by
(4.2) and ρ1 is a scaling parameter to measure the effect of θt on the transmission
rate. Likewise, γ̃t (xi ), α̃t (xi ) and ζ̃t (xi ) fluctuate in time in the same way as β̃t (xi )
but the scaling parameters are different, i.e., γ̃t (xi ) = γ (xi ) exp(ρ2θt ), α̃t (xi ) =
α(xi ) exp(ρ3θt ) and ζ̃t (xi ) = ζ(xi ) exp(ρ4θt ) with γ (xi ), α(xi ), ζ(xi ) > 0 for all
xi ∈ X . Assume further that one disease-free individual is infected with a certain
virus, it cannot be infected by any other virus. Under these assumptions, a structured
SIRS epidemic model is given by the following differential equations:

Ṡt = ΛMt −
∑
j

β̃t (x j )
I j,t
Mt

St − δMt St +
∑
j

ζ̃t (x j )R j,t ,

(
İi,t
Ṙi,t

)
=
(

β̃t (xi )
St
Mt

− γ̃t (xi ) − α̃t (xi ) − δMt 0

γ̃t (xi ) − ζ̃t (xi ) − δMt

)
︸ ︷︷ ︸

:= F(xi , St , Mt , θt )

×
(

Ii,t
Ri,t

)
, i = 1, . . . , k.

(4.6)
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Fig. 7 Pairwise Invasibility Plot (PIP) and corresponding Mutual Invasibility Plot (MIP) for the small-

noise approximation of the invasion fitness (4.9) for α(x) = x , β(x) = 5.65 + 2x2

6+0.1x2
, γ (x) = 0.3

and ζ(x) = exp(−0.5x2). We further have Sx (y) = (
β(y) − β(x)

)( Ŝ
M̂

+ 1
2 g(Ŝ, M̂, θ̂ )Cov(S,M,θ)(0)

)
−(

α(y)−α(x)
)+O(ρ21 ), where Ŝ and M̂ are positive equilibrium values of the deterministic resident system,

and θ̂ is the expectation of the process {θt }t≥0, and g(Ŝ, M̂, θ̂ ) is the second derivative of exp(ρ1θ) S
M with

respect to (S, M, θ) evaluated at (Ŝ, M̂, θ̂ ), and Cov(S,M,θ)(0) is the covariance matrix in the components
of (S, M, θ) at the stationary distribution of the monomorphic resident system. Notice that Ŝ, M̂ and
Cov(S,M,θ)(0) are functions of the resident strategy x . For the interpretations of local areas, markers and
arrows in the PIP and the MIP see Fig. 5. Parameter values Λ = 3, δ = 0.2, a = 2, b = 1, ρ1 = 0.1 and
ρ2 = ρ3 = ρ4 = 0

Following Sect. 3, let

ni,t = (n1i,t , n
2
i,t )

� = (Ii,t , Ri,t )
�, vi,t = (v1i,t , v

2
i,t )

� =
(

n1i,t
‖ni,t‖1 ,

n2i,t
‖ni,t‖1

)�
,

where the state space of vi,t is Δ = {
v ∈ [0, 1]2 : ‖v‖1 = 1

}
. Then the dynamics of

(4.6) are equivalent to

‖ni,t‖·
1 = 1�F(xi , St , Mt , θt )vi,t‖ni,t‖1,

v̇i,t = (
F(xi , St , Mt , θt ) − 1�F(xi , St , Mt , θt )vi,t I

)
vi,t ,

Ṡt = ΛMt −
∑
j

β̃t (x j )
St
Mt

v1j,t‖n j,t‖1 − δMt St +
∑
j

ζ̃t (x j )v
2
j,t‖n j,t‖1,

Mt = St +
∑
j

‖n j,t‖1,
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which can be written as the form specified in (3.2) with

et = (e1,t , e2,t ) = (St , Mt ),

G1(et , θt ) = (Λ − δe1,t )e2,t ,

H1(x j , et , θt ) =
(

− β̃t (x j )
e1,t
e2,t

, ζ̃t (x j )
)
,

G2(et , θt ) = e1,t ,

H2(x j , et , θt ) = 1.

It is easy to show that Mt ≤ Λ
δ
for t sufficiently large. Thus, the state space of

the dynamics of Zt = (‖n1,t‖1, . . . , ‖nk,t‖1, v1,t , . . . , vk,t , et , θt) is Z = [
0, Λ

δ

]k ×
Δk × [

0, Λ
δ

]2 × R, the extinction set Z0 = {
z ∈ Z : mini ‖ni‖1 = 0

}
, and the

η-neighborhood of the extinction set Zη = {
z ∈ Z : mini ‖ni‖1 ≤ η

}
. The partial

derivatives F (i, j), G(i, j)
1 , H (i, j)

1 , G(i, j)
2 and H (i, j)

2 exist and are locally Lipschitz
continuous and measurable in (e, θ) for all strategies and for all nonnegative integers
i, j ≤ 2.

We now start from a monomorphic population of viral type x with the total
population size ‖nt‖1 and the population structure vt . To proceeding the further
analysis, we need to know when a given viral type x becomes a resident, i.e., it
successfully establishes in the virgin environment. The dynamics on the boundary
of
(‖nt‖1, St , Mt

)
-space globally converges to a unique stable equilibrium

(
0, Λ

δ
, Λ

δ

)
,

provided that S0 
= 0. Hence, the ergodic measure on the boundary of
(‖nt‖1, St , Mt

)
-

space is the Dirac measure at
(
0, Λ

δ
, Λ

δ

)
. Substitution of this stable equilibrium into

the equation vt gives

v̇1t =
(
β̃t (x) − γ̃t (x) − α̃t (x) − Λ − (

β̃t (x) − α̃t (x) − Λ
)
v1t + (

ζ̃t (x) + Λ
)
v2t

)
︸ ︷︷ ︸

:= h(v1t , v
2
t , θt )

v1t

v2t = 1 − v1t . (4.7)

Providing that the expectation

E
[
β̃(x) − γ̃ (x) − α̃(x) − Λ

]
> 0, (4.8)

the dynamics of (4.7) consist of a Dirac measure at the unstable equilibrium v =
(0, 1) and invariant probability measures v̂ supported on Δ \ {(0, 1)}. Let μ be the
product of the Dirac measure at

(‖n‖1, S, M
) = (

0, Λ
δ
, Λ

δ

)
and the v̂. Then λx (μ) =

E
[(

β̃(x) S
M − α̃(x) − δM

)
v1 − (

ζ̃ (x) + δM
)
v2
]
corresponds to the per-capita growth

rate of ‖nt‖1 with respect toμ. From the dynamics of v1t we have that with probability
one limt→+∞ 1

t log v1t = limt→+∞ 1
t

∫ t
0 h(v1s , v

2
s , θs)ds = E

[
h(v1, v2, θ)

] = 0 for
(v10, v

2
0) ∈ Δ \ {(0, 1)}, which implies that λx (μ) = E

[
β̃(x) − γ̃ (x) − α̃(x) − Λ

]
.

Thus, if (4.8) holds, a similar argument as the first example implies that the population
of viral type x is non-growing on the long-run and stochastically persistent.
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(a)

(b)

Fig. 8 Simulated population trajectories in the phase plane and associated dynamics of the total population
size Nt = (Ires,t + Rres,t ) + (Iinv,t + Rinv,t ) and the relative population size Pt = (Iinv,t + Rinv,t )/Nt
for strategy pairs (a) (x, y) = (8.7, 8.68) with corresponding invasion fitnesses Sx (y) ≈ 0.00708633 > 0
and Sy(x) ≈ −0.00709391 < 0, and (b) (x, y) = (4.1158, 4.1238) with corresponding invasion fitnesses
Sx (y) ≈ 2.27275× 10−6 > 0 and Sy(x) ≈ 2.27315× 10−6 > 0, where parameter values refer to Fig. 7

Once virus x becomes a resident, the invasion fitness of an initially rare mutant y
in resident x is given by

Sx (y) = E
[(

β̃(y) − β̃(x)
) S
M − (

γ̃ (y) − γ̃ (x)
) − (

α̃(y) − α̃(x)
)]

. (4.9)

Here we have used the principle of selective neutrality of residents (i.e., Sx (x) = 0
for all x ∈ X ) to derive (4.9). Generally, there isn’t an explicit expression of (4.9) in
terms of strategies x and y. Thus the numerical PIP andMIP are based on a small-noise
approximation of (4.9) (see e.g., Vilar and Rubi 2018).
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Figure 7 shows the PIP and the MIP corresponding to a small-noise approximation
of (4.9) (ref to the legend). Away from the two evolutionarily singular strategies x∗

er
and x∗

bp, every successful invasion of mutant y in a sufficiently small neighborhood
of resident x will takeover the population. Figure 8a gives a simulated population
trajectory in the phase plane for strategies x = 8.7 and y = 8.68 with corresponding
invasionfitnessesSx (y) > 0 andSy(x) < 0.Thedynamics of Pt shows that the invader
y will eventually oust the resident x and become the new resident. Close to the two
evolutionarily singular strategies, Figure 8b gives a simulated population trajectory
in the phase plane for strategies x = 4.1158 and y = 4.1238 with corresponding
invasion fitnesses Sx (y) > 0 and Sy(x) > 0. The dynamics of Pt shows that the
relative population size asymptotically tends to an interior value of (0, 1), which
implies that the two viral types can coexist.

4.4 A prey-predator model: continuation of Example 1

In order to show that the deterministic model of Example 1 belongs to the general
class of models considered in this paper, let

G1(et ) = − δe1,t ,

H1(x j , et ) =
γ
(
1 + βhe2,t

) βe1,t
(1+βhe2,t )(1+x j e1,t )

T
(
σ(1 + βhe2,t ) + (1 − λ)αe1,t

) ,
G2(et ) = 0,

H2(x j , et ) = 1

1 + x j e1,t
,

then the deterministic model of Example 1 can be written as the general form (2.1).
The partial derivatives f (i, j), G(i, j)

1 , H (i, j)
1 , G(i, j)

2 and H (i, j)
2 exist for all strategies

and for all nonnegative integers i, j ≤ 2, which satisfy Assumption A2.
The evolutionary dynamics of the deterministic model of Example 1 has been well

studied byLehtinen andGeritz (2019).We are interesting in the evolution of timidity of
the preywith the non-equilibrium resident dynamics.When only a single prey type x is
present, the system has a stable interior equilibrium at x = 1.Decreasing x destabilises
the equilibrium through a supercriticalHopf bifurcation at xHopf = 0.6289, afterwhich
periodic attractors are present (ref to Lehtinen andGeritz (2019, Fig. 3B)). In a periodic
resident environment set by a single resident type x , the invasion fitness of an initially
rare mutant y is given by

Sx (y) = 1

τ(x)

∫ τ(x)

0
f (y, et )dt, (4.10)

where τ(x) is the period (ref to Metz et al. 1992).
Figure 9 shows the PIP and the MIP corresponding to (4.10) with the same param-

eters as Lehtinen and Geritz (2019, Fig. 4), in which the monomorphic resident
environment is an equilibrium environment if x ≥ xHopf and becomes a periodic
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Fig. 9 Pairwise Invasibility Plot (PIP) and corresponding Mutual Invasibility Plot (MIP) of the invasion
fitness (4.10). For the interpretations of local areas, markers and arrows in the PIP and the MIP see Fig. 5.
Parameter values a = c = 2, μ = δ = h = T = 1, γ = 3, λ = 0.6, σ = 0.7, α = 0, and β = 6. Further,
the Hopf bifurcation point xHopf = 0.6289

environment if x < xHopf. In the periodically resident environment, away from the
evolutionarily singular strategy x∗

ess , it follows from Theorem 1 that successful inva-
sion ofmutant y in resident x will takeover the population. Figure 10a gives a simulated
population trajectory in the phase plane for strategies x = 0.27 and y = 0.3 with cor-
responding invasion fitnesses Sx (y) > 0 and Sy(x) < 0. The total population size
of Nt = nres,t + ninv,t varies significantly in time. However, the relative population
size Pt = ninv,t

Nt
changes slowly in time and asymptotically increases from 0 to 1. The

dynamics of Pt implies that the invader y will oust the resident x and becomes a new
resident. Figure 10c shows the periodic attractor of the monomorphic model with the
new resident strategy x = 0.3. In the neighborhood of x∗

ess , we can apply Theorem 2 to
predict the population dynamical outcomes of an invasion event. If both strategies of
the resident and the mutant are in the gray area of MIP, it follows from Theorem 2 that
the resident and themutant can coexist eventually (notice that all coexistence strategies
are not evolutionarily stable). Figure 10b gives a simulated population trajectory in the
phase plane for the coexistence strategies (x, y) = (0.3764, 0.4314)with correspond-
ing invasion fitnesses Sx (y) > 0 and Sy(x) > 0. The total population size Nt still
fluctuates significantly in time. but the relative population size Pt slowly and asymp-
totically tends to an interior value of (0, 1). The dynamics of Pt verifies that the invader
y eventually coexists with the resident x . Figure 10d shows the periodic attractor of
the dimorphic model with coexistence strategies (x1, x2) = (0.3764, 0.4314).

5 Discussion

Our main result is the complete classification of generic population dynamical out-
comes of resident-invader dynamics in fluctuating environments when the invader and
the resident have similar strategies. The outcomes are essentially “Lotka-Volterra”: (i)
one strategy ousts the other if the one can invade a population of the other but not the
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(a)

(b)

(c) (d)

Fig. 10 Simulated population trajectories in the phase plane and associated dynamics of the total population
size Nt = nres,t + ninv,t and the relative population size Pt = ninv,t/Nt for strategy pairs (a) (x, y) =
(0.27, 0.3) with corresponding invasion fitnesses Sx (y) ≈ 0.002141 > 0 and Sy(x) ≈ −0.001671 < 0,
and (b) (x, y) = (0.3764, 0.4314) with corresponding invasion fitnesses Sx (y) ≈ 0.000277 > 0 and
Sy(x) ≈ 0.001496 > 0. (c) the periodic attractor of themonomorphicmodel with resident strategy x = 0.3.
(d) the periodic attractor of the dimorphic model with coexistence strategies (x1, x2) = (0.3764, 0.4314).
Parameter values are the same as Fig. 9
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other way around, i.e., invasion implies substitution; (ii) the two strategies coexist if
they can mutual invade; (iii) they mutually exclude one another if neither can invade
a population of the other. Which of the four Lotka-Volterra-type outcomes occurs
depends only on the signs of the invasion fitnesses. In a one-dimensional strategy
space or a one-dimensional parameterization of a multi-dimensional strategy space
(see e.g., Kisdi 2015), invasion implies substitution away from an evolutionarily sin-
gular strategy, while all four Lotka-Volterra-type outcomes are possible close to an
evolutionarily singular strategy. In a multi-dimensional strategy space, however, the
situation is generally complicated because all four Lotka-Volterra-type outcomes may
occur also away from an evolutionarily singular strategy.

We extend and generalize previous results of resident-invader dynamics of similar
strategies to models incorporating (i) explicit feedback environments with their own
dynamics, (ii) scalar-valued as well as vector-valued strategies, (iii) unstructured as
well as structured populations, (iv) monomorphic as well as polymorphic resident
populations, and (v) non-equilibrium resident population dynamics as well as resident
dynamics with stochastic (or deterministic) drivers. Although we show all results for
models with a monomorphic resident population (i.e., single resident phenotype), the
generalization of them to polymorphic resident populations (i.e., multiple resident
phenotypes) is straight forward because of the way we modelled the environment
feedback loop. Arbitrarily polymorphic resident populations can be accounted for
by treating the corresponding population sizes of the extra resident phenotypes as
environmental feedback variables. In the next paragraphs we focus on the differences
between our work and previous studies.

For a class of unstructured population models with point equilibria, Geritz (2005)
has shown that the resident-invader dynamics generically behaves like the Lotka-
Volterra competition model by using of the Poincaré-Bendixson theorem. The results
hold for vector-valued strategies but were proved only for a feedback environment
that is given as an explicit linear function of the resident and invader population
sizes. However, environmental feedback variables such as resources, predators, or
competitors are often given implicitly (e.g., by differential equations) as opposed
to explicitly. Our implicit representation is more general than the explicit and liner
environmental feedback used in Geritz (2005).

Dercole and Geritz (2016) has the same aims and results as Geritz (2005), but it
is more general in some aspects but less general in others, and it uses a basically
different mathematical approach, i.e., time-scale arguments. The results only apply
to unstructured population models with point equilibria and scalar-valued strategies,
but the formulation of environmental feedback is very general—probably as general
as in our approach (in their formulation, they allow the resident and the invader to
interact with finitely many other populations whose corresponding sizes are packed
in the feedback variable et . The dynamics of et is govern by a differential equation,
in which the growth rate is an implicit function of the resident, the invader, and the
environmental variable itself. Given four structural properties of the growth rate of
the et as well as the per-capita growth rates of the resident and the invader, their
formulation generalizes the law of mass action (see Dercole 2016). The generalization
takes into account that pairwise interactions can depend on the concomitant activities
of the encountered individuals, which leads a nonlinear density dependence in the
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per-capita growth rates of the resident and the invader). The paper also studies some
mathematically degenerate cases which confirm the results of Priklopil (2012) on
unprotected coexistence of two strategies near an evolutionarily singular strategy.

The “invasion implies substitution” outcome for unstructured population models
with point equilibria also can be found in Dercole and Rinaldi (2008, Section 3.4) and
Oba and Kigami (2018).

Our paper is thefirst to study resident-invader dynamics influctuating environments.
We study the resident-invader dynamics as a stochastic fast-slow system where the
total population size of the resident and the invader is the fast variable and the relative
population size of the invader is the slow variable.We show that trajectories of the slow
variable on slow timescale are well approximated by that of an associated averaged
system, and the stability of the averaged system depends on invasion criteria alone.
From these results, Theorems 1, 2 and 3 give the complete classification of generic
population dynamical outcomes of an invasion event.

For a class of structured population models with point equilibria, recently, Prik-
lopil and Lehmann (2019) have shown that invasion implies substitution for ecological
communities with finite-class-structured populations of scalar-valued strategies. Their
approach is based on the analysis of a weighted average of the relative invader
population sizes in each class, where the weighting coefficient is the class-specific
reproductive value (see also Lion 2018a). However, it is not clear how their method
can be used to give a full classification of the generic population dynamical outcomes
of an invasion event. Moreover, it is not clear how their approach can be applied to
fluctuating environments.

Cantrell et al. (2017) has extended the tube theorem of Geritz et al. (2002) and
the invasion implies fixation theorem of Geritz (2005) to a class of reaction-diffusion
models for understanding evolution of dispersal in space. Their focus is on a dimor-
phic system (i.e., one resident and one invader) of infinite-dimensional structured
populations of scalar-valued strategies.

When populations are in a fluctuating environment, we illustrate how to general-
ize the results of unstructured population models to a class of structured population
models, but only for finite-class-structured populations. The extension of our results
to populations with a more general structure (e.g., size distributions, continuous age
and spatial diffusion) we leave for future work.

As mentioned in the Introduction, there are serval different (not necessarily equiv-
alent) definitions of stochastic persistence for a resident population. Most of them can
be summed up from the “ensemble” perspective in terms of transition probabilities
(see e.g., Chesson 1982; Chesson and Ellner 1989; Li and Mao 2009) or the “typical
trajectory” perspective in terms of empirical measures (i.e., how typical sample trajec-
tories of the population process are distributed in time, see e.g., Benaïm and Schreiber
2009, 2019; Schreiber et al. 2011; Roth and Schreiber 2014; Benaïm 2018) for the
long-term population dynamics. Different definitions often give different interpreta-
tions of the population dynamics. Extending our results to models with different kinds
of resident dynamics would be useful for the applicability of the theory of adaptive
dynamics. Our definition of resident persistence follows Schreiber et al. (2011) and
Benaïm (2018) is a rather weak one. This means that our results also apply to more
restrictive definitions.
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Appendix A Rewrite the environmental variable of Example 2 as the
general form (2.1b)

Still denote the environmental variable by et . Let E be the set of all functions e : X �→
R2+ of the form

et (·) = (e1,t , e2,t )(·)
= (

e1,t , (e21,t , e22,t , e23,t , e24,t )
)
(·)

=
(
0,

(∑
j

a(·, x j )n j,t ,
∑
j

h(·)a(·, x j )n j,t ,

∑
j

a(x j , ·)
1 + h0(x j )a0(x j )n0 + e22,t (x j )

n j,t ,
∑
j

cn j,t

))

for n j,t ≥ 0 and x j ∈ X . Then we can define the per-capita environmental impact
H2 : X × E �→ R by

H2(x j , et )(·) =
(
a(·, x j ), h(·)a(·, x j ), a(x j , ·)

1 + h0(x j )a0(x j )n0 + e22,t (x j )
, c

)
.

Since the strategy of sub-population i has infinitely many choices, e2,t has infinite
dimensions. In addition, define the map G2 : E × R �→ R by

G2(et , θ) = (0, 0, 0, 0).

Hence, et gets the general form (2.1b).
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Appendix B Approximation on t-timescale when � → 0

Writing (2.5) into the following form:

˙̃Z ε
t = Φ(x + εξ1, x + εξ2, Z̃

ε
t ),

where

Z̃ ε
t = (N ε

t , Pε
t , eε

t , θt ) ∈ N × [0, 1] × E × Θ := Z̃.

For ε = 0, we have Z̃0
t = (N 0

t , P0
t , e0t , θt ) ∈ Z̃ . Then (2.6) can be written as the same

form, i.e.,

˙̃Z0
t = Φ(x, x, Z̃0

t ).

From AssumptionA1, {Z̃ ε
t }t≥0 is a Markov process for any given ε (ref to Arnold and

Kliemann (1983, Lemma 2.1)). Let {T̃ ε
t }t≥0 and {T̃ 0

t }t≥0 are the associated semigroup
for Markov process {Z̃ ε

t }t≥0 with ε > 0 and for Markov process {Z̃0
t }t≥0 when ε = 0,

respectively. In addition, the function Φ requires to satisfy the following assumption:

A3 The partial derivatives Φ(i, j,k) exit and are locally Lipschitz continuous and mea-
surable in z for all strategies and all ε and for all i, j, k ∈ {0, 1}.
For positive but small ε, Z̃ ε

t is sufficiently closed to Z̃0
t in terms of conditional

expectations as the following lemma shows.

Lemma 3 Let Z̃ ε
0 = Z̃0

0 = z. Then, for all bounded and measurable function h : Z̃ �→
R, we have

lim
ε→0

T̃ ε
t h(z) = T̃ 0

t h(z)

for all t ≥ 0, and is uniformly in z ∈ Z̃ .

Proof For all t ≥ 0

Z̃ ε
t − Z̃0

t =
∫ t

0

(
Φ(x + εξ1, x + εξ2, Z̃

ε
s ) − Φ(x + εξ1, x + εξ2, Z̃

0
s )
)
ds

+
∫ t

0

(
Φ(x + εξ1, x + εξ2, Z̃

0
s ) − Φ(x + εξ1, x, Z̃

0
s )
)
ds

+
∫ t

0

(
Φ(x + εξ1, x, Z̃

0
s ) − Φ(x, x, Z̃0

s )
)
ds.

Let

ϕz(t) = Ez
[‖Z̃ ε

t − Z̃0
t ‖2

]
.
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Using the Cauchy–Schwartz inequality we have

ϕz(t) ≤ 3Ez

[∥∥∥∥
∫ t

0

(
Φ(x + εξ1, x + εξ2, Z̃

ε
s ) − Φ(x + εξ1, x + εξ2, Z̃

0
s )
)
ds

∥∥∥∥
2

+
∥∥∥∥
∫ t

0

(
Φ(x + εξ1, x + εξ2, Z̃

0
s ) − Φ(x + εξ1, x, Z̃

0
s )
)
ds

∥∥∥∥
2

+
∥∥∥∥
∫ t

0

(
Φ(x + εξ1, x, Z̃

0
s ) − Φ(x, x, Z̃0

s )
)
ds

∥∥∥∥
2]

≤ 3t
∫ t

0
Ez

[∥∥Φ(x + εξ1, x + εξ2, Z̃
ε
s ) − Φ(x + εξ1, x + εξ2, Z̃

0
s )
∥∥2]ds

+ 3t
∫ t

0
Ez

[∥∥Φ(x + εξ1, x + εξ2, Z̃
0
s ) − Φ(x + εξ1, x, Z̃

0
s )
∥∥2]ds

+ 3t
∫ t

0
Ez

[∥∥Φ(x + εξ1, x, Z̃
0
s ) − Φ(x, x, Z̃0

s )
∥∥2]ds.

By Assumption A3, there exist some positive constants K0, K1 and K2 such that

ϕz(t) ≤ 3t K0

∫ t

0
ϕz(s)ds + 3t2(K1ξ1 + K2ξ2)ε

2.

Then, by the Gronwall’s lemma, it follows that for all t ∈ [0, T ]

ϕz(t) ≤ ε2 K̃1 exp(t K̃0),

where K̃0 = 3T K0 and K̃1 = 3T 2(K1ξ1 + K2ξ2).
Let h : Z̃ �→ R is a bounded and measurable function. By uniform continuity, there

exists δ > 0 such that for all z1, z2 ∈ Z̃ with ‖z1−z2‖ ≤ δ, we have |h(z1)−h(z2)| ≤
ε. Using the Markov’s inequality, we obtain that for t ∈ [0, T ]

∣∣∣T̃ ε
t h(z) − T̃ 0

t h(z)
∣∣∣ =

∣∣∣Ez
[
h(Z̃ ε

t )
] − Ez

[
h(Z̃0

t )
]∣∣∣

≤ 2‖h‖Pz
{‖Z̃ ε

t − Z̃0
t ‖ ≥ δ

} + ε

≤ 2‖h‖δ−1Ez
[‖Z̃ ε

t − Z̃0
t ‖
] + ε

≤ 2‖h‖δ−1
√

ϕz(t) + ε

≤ ε
(
2|h|δ−1

√
K̃1 exp(t K̃0) + 1

)
.

This inequality holds for any T > 0, we thus get the desired result for all t ≥ 0.
The proof is complete. ��
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Appendix C Proof of Lemma 1

From now on, we fix initial values Pε
0 = P̄0 = p and Z0 = z. The proof of Lemma 1

will be separated into the following three steps.
Firstly, we show that the trajectory of P̄t1 is sufficiently close to that of P

ε
t1 for ε > 0

small in every finite time interval.

Lemma 4 Assume that for a small σ > 0,
∫
Z\Z0

| f (y, e, θ)|2μ(de, dθ) < +∞ for

all y ∈ {
x̃ ∈ X : ‖x̃ − x‖ ≤ σ

}
. Then for every T > 0, the solutions of (2.7) and

(2.9) satisfy

P(p,z)

{
lim
ε→0

sup
0≤t1≤T

|Pε
t1 − P̄t1 | = 0

}
= 1 (c.1)

for all p ∈ [0, 1] and for μ-almost every z ∈ Z \ Z0.

Proof Denote

h(z) = f (1,0)(x, e, θ)�(ξ2 − ξ1)

where z = (n, e, θ). Let h̄ be the expectation of h(z) with respect to μ, i.e.,

h̄ =
∫
Z\Z0

h(z)μ(dz) = ∂ySx (y)|y=x (ξ2 − ξ1).

For all t1 ≥ 0, ignoring the term O(ε) in (2.7),

Pε
t1 − P̄t1 =

∫ t1

0

(
Pε
s (1 − Pε

s )h(Zs/ε) − P̄s(1 − P̄s)h̄
)
ds

=
∫ t1

0

(
Pε
s (1 − Pε

s )h(Zs/ε) − P̄s(1 − P̄s)h(Zs/ε)
)
ds

+
∫ t1

0

(
P̄s(1 − P̄s)h(Zs/ε) − P̄s(1 − P̄s)h̄

)
ds.

Fixed T > 0, using the Cauchy–Schwartz inequality we have

sup
0≤t1≤T

|Pε
t1 − P̄t1 |2 ≤ sup

0≤t1≤T
2

∣∣∣∣
∫ t1

0
(Pε

s − P̄s)(1 − Pε
s − P̄s)h(Zs/ε)ds

∣∣∣∣
2

+ sup
0≤t1≤T

2

∣∣∣∣
∫ t1

0
P̄s(1 − P̄s)

(
h(Zs/ε) − h̄

)
ds

∣∣∣∣
2

≤ sup
0≤t1≤T

2
∫ t1

0
|Pε

s − P̄s |2ds
∫ T

0

∣∣h(Zs/ε)
∣∣2ds

+ sup
0≤t1≤T

2

∣∣∣∣
∫ t1

0
P̄s(1 − P̄s)

(
h(Zs/ε) − h̄

)
ds

∣∣∣∣
2

.
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Denote

αε = 2
∫ T

0

∣∣h(Zs/ε)
∣∣2ds = 2T

1

T /ε

∫ T /ε

0

∣∣h(Zs)
∣∣2ds,

βε = sup
0≤t1≤T

2

∣∣∣∣
∫ t1

0
P̄s(1 − P̄s)

(
h(Zs/ε) − h̄

)
ds

∣∣∣∣
2

.

By the Gronwall’s lemma, it follows that

sup
0≤t1≤T

|Pε
t1 − P̄t1 |2 ≤ βε exp(αε).

We now focus on the limit of αε and βε as ε → 0, respectively. By Birkhoff’s
ergodic theorem, we obtain that for all p ∈ [0, 1] and for μ-almost every z ∈ Z \Z0

P(p,z)

{
lim
ε→0

αε = 2T
∫
Z\Z0

∣∣h(z)
∣∣2μ(dz) < +∞

}
= 1. (c.2)

Here, we have used that
∫
Z\Z0

| f (1,0)(x, e, θ)�(ξ2 − ξ1)|2μ(de, dθ) < +∞ due to
the hypothesis of the lemma and

∣∣ f (1,0)(x, e, θ)�(ξ2 − ξ1)
∣∣2 ≤ Kσ

∣∣ f (1,0)(x, e, θ)�(y − x)
∣∣2

= Kσ

∣∣ f (y, e, θ) − f (x, e, θ) − O(‖y − x‖2)∣∣2
≤ 3Kσ | f (y, e, θ)|2 + 3Kσ | f (x, e, θ)|2 + O(‖y − x‖4)

where the positive constant Kσ satisfies ξ2 − ξ1 = √
Kσ (y − x) for y ∈ {

x̃ ∈ X :
‖x̃ − x‖ ≤ σ

}
. In fact, for given ξ1, ξ2 and x , we can find a σ to be such that the

hypothesis of the lemma is satisfied, and then determine y and Kσ .
To estimate the term βε , we divide [0, s] into some intervals depending of a given

size � and define a function P̄�
s by

P̄�
s = P̄[ s

� ]�

where
[ s

�
]
is the integer part of s

� . Then, using the Cauchy–Schwartz inequality we
have

βε = sup
0≤t1≤T

2

∣∣∣∣
∫ t1

0

(
P̄s(1 − P̄s)h(Zs/ε) − P̄�

s (1 − P̄�
s )h(Zs/ε)

+P̄�
s (1 − P̄�

s )h(Zs/ε) − P̄�
s (1 − P̄�

s )h̄

+P̄�
s (1 − P̄�

s )h̄ − P̄s(1 − P̄s)h̄
)
ds

∣∣∣∣
2

≤ sup
0≤t1≤T

6

∣∣∣∣
∫ t1

0

(
P̄s(1 − P̄s)h(Zs/ε) − P̄�

s (1 − P̄�
s )h(Zs/ε)

)
ds

∣∣∣∣
2
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+ sup
0≤t1≤T

6

∣∣∣∣
∫ t1

0

(
P̄�
s (1 − P̄�

s )h(Zs/ε) − P̄�
s (1 − P̄�

s )h̄
)
ds

∣∣∣∣
2

+ sup
0≤t1≤T

6

∣∣∣∣
∫ t1

0

(
P̄�
s (1 − P̄�

s )h̄ − P̄s(1 − P̄s)h̄
)
ds

∣∣∣∣
2

≤ sup
0≤t1≤T

6
∫ t1

0

∣∣(P̄s − P̄�
s )(1 − P̄s − P̄�

s )
∣∣2ds

∫ T

0

∣∣h(Zs/ε)
∣∣2ds

+ sup
0≤t1≤T

6

∣∣∣∣
∫ t1

0
P̄�
s (1 − P̄�

s )
(
h(Zs/ε) − h̄

)
ds

∣∣∣∣
2

+ sup
0≤t1≤T

6h̄2T
∫ T

0

∣∣(P̄�
s − P̄s)(1 − P̄�

s − P̄s)
∣∣2ds

≤ sup
0≤t1≤T

6
∫ t1

0
|P̄s − P̄�

s |2ds
∫ T

0

∣∣h(Zs/ε)
∣∣2ds

+ sup
0≤t1≤T

6

∣∣∣∣
∫ t1

0
P̄�
s (1 − P̄�

s )
(
h(Zs/ε) − h̄

)
ds

∣∣∣∣
2

+ sup
0≤t1≤T

6h̄2T
∫ T

0
|P̄�

s − P̄s |2ds

≤ (3αεT + 6h̄2T 2) sup
0≤s≤T

|P̄s − P̄�
s |2

+ sup
0≤t1≤T

6

∣∣∣∣
∫ t1

0
P̄�
s (1 − P̄�

s )
(
h(Zs/ε) − h̄

)
ds

∣∣∣∣
2

.

Following the proof of Liu and Krstic (2012, (4.110) and (4.111) in pp. 73–74), we
immediately have, for all p ∈ [0, 1] and for μ-almost every z ∈ Z \ Z0,

P(p,z)

{
lim
ε→0

sup
0≤t1≤T

6

∣∣∣∣
∫ t1

0
P̄�
s (1 − P̄�

s )
(
h(Zs/ε) − h̄

)
ds

∣∣∣∣
2

= 0

}
= 1.

By this limit and

lim
�→0

sup
0≤s≤T

|P̄s − P̄�
s |2 = 0,

we obtain that for all p ∈ [0, 1] and for μ-almost every z ∈ Z \ Z0

P(p,z)

{
lim
ε→0

βε = 0
}

= 1. (c.3)

Hence, by (c.2) and (c.3), for all p ∈ [0, 1] and for μ-almost every z ∈ Z \ Z0

P(p,z)

{
lim
ε→0

sup
0≤t1≤T

|Pε
t1 − P̄t1 |2 = 0

}
= 1
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which implies the desired result of the lemma.
The proof is complete. ��
Secondly, following the proof of Liu and Krstic (2012, the assertion (i) of Theorem

4.1, see pp. 65–66), the finite-time approximation (c.1) can be extended to arbitrarily
long time intervals as the following lemma shows. For the sake of self-containedness,
we give the proof.

Lemma 5 Assume that the hypothesis of Lemma 4 is satisfied. Then for all δ ∈ (0, 1),
the solutions of (2.7) and (2.9) satisfy

P(p,z)

{
lim
ε→0

inf
{
t1 ≥ 0 : |Pε

t1 − P̄t1 | > δ
} = +∞

}
= 1 (c.4)

for all p ∈ [0, 1] and for μ-almost every z ∈ Z \ Z0.

Proof Define a set Ω̃ = {
ω : limε→0 sup0≤t1≤T |Pε

t1(ω) − P̄t1 | = 0, ∀ T ∈ N
}
. From

Lemma 4, it follows that P{Ω̃} = 1. Let stoping time τ ε
δ = inf

{
t1 ≥ 0 : |Pε

t1 − P̄t1 | >

δ
}
for δ ∈ (0, 1) and ε > 0. Notice that Pε

0 − P̄0 = 0. By the continuity of the
trajectories, τ ε

δ ∈ (0,+∞] for all δ and ε. Typically, |Pε
τ ε
δ

− P̄τ ε
δ
| = δ provided that

τ ε
δ < +∞.
For fixed δ ∈ (0, 1) and any ω ∈ Ω̃ , we get that for any T > 0, there exists

ε̃(ω, δ, T ) > 0 such that τ ε
δ (ω) > T for any 0 < ε < ε̃(ω, δ, T ). It further implies

that limε→0 τ ε
δ (ω) = +∞. From the fact P(Ω̃) = 1, it follows that P

{
limε→0 τ ε

δ =
+∞} = 1.

The proof is complete. ��
Finally, from the averaged system (2.9), we have

lim
t1→+∞ P̄t1 = p∗

with p∗ = 0 or 1, which is determined by the sign of ∂ySx (y)|y=x (ξ2 − ξ1). It means
that for every δ ∈ (0, 1), there exists a constant Tδ > 0 such that

sup
t1≥Tδ

|P̄t1 − p∗| <
δ

2
.

From this, the event

{
sup
t1≥Tδ

|Pε
t1 − p∗| > δ

}
=

⋃
t1≥Tδ

{|Pε
t1 − P̄t1 + P̄t1 − p∗| > δ

}

⊆
⋃
t1≥Tδ

{
|Pε

t1 − P̄t1 | >
δ

2

}

⊆
⋃
t1≥0

{
|Pε

t1 − P̄t1 | >
δ

2

}
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=
{
sup
t1≥0

|Pε
t1 − P̄t1 | >

δ

2

}
,

and then the stopping time

inf
{
t1 ≥ Tδ : |Pε

t1 − p∗| > δ
} ≥ inf

{
t1 ≥ 0 : |Pε

t1 − P̄t1 | >
δ

2

}
.

Thus, it follows from (c.4) that

P(p,z)

{
lim
ε→0

inf
{
t1 ≥ Tδ : |Pε

t1 − p∗| > δ
} = +∞

}
= 1

which is equivalent to (2.10).
The proof of Lemma 1 is complete.

Appendix D Derivation of (2.12)

On t2-timescale, (2.7) becomes

Ṗε
t2 = 1

2
Pε
t2(1 − Pε

t2)
(
ξ�
2 f (2,0)(x, et2/ε2 , θt2/ε2)ξ2 − ξ�

1 f (2,0)(x, et2/ε2 , θt2/ε2)ξ1

+2e(1)�
t2/ε2

f (1,1)(x, et2/ε2 , θt2/ε2)(ξ2 − ξ1)
) + O(ε) (d.1)

:= Pε
t2(1 − Pε

t2)φ(x, et2/ε2 , θt2/ε2 , e
(1)
t2/ε2

) + O(ε).

The displacement of the trajectory Pε
t2 starting from p over a small time � is

Pε
� − p =

∫ �

0

(
Pε
s (1 − Pε

s )φ(x, es/ε2 , θs/ε2 , e
(1)
s/ε2

) + O(ε)
)
ds

=
∫ �

0

(
p(1 − p)φ(x, es/ε2 , θs/ε2 , e

(1)
s/ε2

) + O(ε)
)
ds

+
∫ �

0

(
Pε
s (1 − Pε

s ) − p(1 − p)
)
φ(x, es/ε2 , θs/ε2 , e

(1)
s/ε2

)ds

= �
(

ε2

�

∫ �
ε2

0
p(1 − p)φ(x, es, θs, e

(1)
s )ds

)
+ O(ε,�),

where the high order termO(ε,�) converges to zero as �→ 0 and ε → 0. Following
from a standard argument as Freidlin and Wentzell (2012, Chapter 7), we claim that
the solutions of Pε

t2 converges to that of P̄t2 of the following averaged system

˙̄Pt2 = P̄t2(1 − P̄t2)〈φ(x, es, θs, e
(1)
s )〉+∞, P̄0 = p, (d.2)
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on every finite time interval as ε → 0, where 〈·〉+∞ means the time average for
t2/ε2 → +∞ as ε → 0. This result further can be extended to arbitrarily long time
intervals in the same manner as in Lemmas 4 and 5.

To arrive the averaged system (2.12), we need the time evolution of e(1)
t in fast time

t . From now on, we will use the simplified symbols (Nt , et ) to replace (N 0
t , e0t ) used

in Sect. 2.5.1. Consider the series expansion of model (2.5) with Pt = p for all t , the
first-order terms in ε of (2.5a), (2.5c) and (2.5d) are

Ṅ (1)
t = f N (1)

t + (
e(1)�
t f (0,1) + (

(1 − p)ξ1 + pξ2
)�

f (1,0))Nt ,

ė(1)
1,t = e(1)�

t G(1)
1 + H1N

(1)
t + (

e(1)�
t H (0,1)

1 + (
(1 − p)ξ1 + pξ2

)�
H (1,0)
1

)
Nt ,

e(1)
2,t = e(1)�

t G(1)
2 + H2N

(1)
t + (

e(1)�
t H (0,1)

2 + (
(1 − p)ξ1 + pξ2

)�
H (1,0)
2

)
Nt ,

θ̇t = A(θt ) + B(θt )Ẇt ,

where functions f , f (0,1), f (1,0), G(1)
i , Hi , H

(0,1)
i and H (1,0)

i are all evaluated at
(x, et , θt ), and where (Nt , et , θt ) are calculated from (2.6) that is independent of p.
Generally, it is impossible to obtain an explicit expression for e(1)

t by solving the
above equations. Instead, we focus on an equivalent relation which will be employed
to derive the averaged system (2.12).

Consider the second-order terms in ε of the series expansions of Sx1(x2) and
Sx1(x1), we have

lim
ε→0

Sx1(x2)

ε2
= lim

ε→0

Sx+εξ1(x + εξ2) − Sx+εξ1(x + εξ1)

ε2

= 1

2

〈
ξ�
2 f (2,0)ξ2 − ξ�

1 f (2,0)ξ1 + 2ê(1)�
t f (1,1)(ξ2 − ξ1)

〉
+∞

(d.3)

where ê(1)
t is calculated from

˙̂N (1)
t = f N̂ (1)

t + (
ê(1)�
t f (0,1) + ξ�

2 f (1,0))Nt ,

˙̂e(1)
1,t = ê(1)�

t G(1)
1 + H1 N̂

(1)
t + (

ê(1)�
t H (0,1)

1 + ξ�
2 H (1,0)

1

)
Nt ,

ê(1)
2,t = ê(1)�

t G(1)
2 + H2 N̂

(1)
t + (

ê(1)�
t H (0,1)

2 + ξ�
2 H (1,0)

2

)
Nt ,

θ̇t = A(θt ) + B(θt )Ẇt .

(d.4)

Similarly, consider the second-order terms in ε of the series expansions of Sx2(x1) and
Sx2(x2), we have

lim
ε→0

Sx2(x1)

ε2
= lim

ε→0

Sx+εξ2(x + εξ1) − Sx+εξ2(x + εξ2)

ε2

= − 1

2

〈
ξ�
2 f (2,0)ξ2 − ξ�

1 f (2,0)ξ1 + 2ě(1)�
t f (1,1)(ξ2 − ξ1)

〉
+∞

(d.5)

123



Resident-invader dynamics of similar strategies… 953

where ě(1)
t is calculated from

˙̌N (1)
t = f Ň (1)

t + (
ě(1)�
t f (0,1) + ξ�

1 f (1,0))Nt ,

˙̌e(1)
1,t = ě(1)�

t G(1)
1 + H1 Ň

(1)
t + (

ě(1)�
t H (0,1)

1 + ξ�
1 H (1,0)

1

)
Nt ,

ě(1)
2,t = ě(1)�

t G(1)
2 + H2 Ň

(1)
t + (

ě(1)�
t H (0,1)

2 + ξ�
1 H (1,0)

2

)
Nt ,

θ̇t = A(θt ) + B(θt )Ẇt .

(d.6)

Denote

Ñ (1)
t = (1 − p)N̂ (1)

t + pŇ (1)
t , ẽ(1)

t = (1 − p)ê(1)
t + pě(1)

t .

By (d.3) and (d.5), we get

lim
ε→0

(1 − p)Sx1(x2) − pSx2(x1)

ε2

= 1

2

〈
ξ�
2 f (2,0)ξ2 − ξ�

1 f (2,0)ξ1 + 2ẽ(1)�
t f (1,1)(ξ2 − ξ1)

〉
+∞.

(d.7)

It follows from (d.4) and (d.6) that the dynamics of Ñ (1)
t and ẽ(1)

t are given by

˙̃
N (1)
t = f Ñ (1)

t +
(
ẽ(1)�
t f (0,1) + (

(1 − p)ξ1 + pξ2
)�

f (1,0)
)
Nt ,

˙̃e(1)
1,t = ẽ(1)�

t G(1)
1 + H1 Ñ

(1)
t +

(
ẽ(1)�
t H (0,1)

1 + (
(1 − p)ξ1 + pξ2

)�
H (1,0)
1

)
Nt ,

ẽ(1)
2,t = ẽ(1)�

t G(1)
2 + H2 Ñ

(1)
t +

(
ẽ(1)�
t H (0,1)

2 + (
(1 − p)ξ1 + pξ2

)�
H (1,0)
2

)
Nt ,

θ̇t = A(θt ) + B(θt )Ẇt ,

which shows that (Ñ (1)
t , ẽ(1)

t ) has the same dynamics as (N (1)
t , e(1)

t ).
Since by (d.1), (d.2) and (d.7) we obtain that

˙̄Pt2
P̄t2(1 − P̄t2)

= lim
ε→0

(1 − P̄t2)Sx1(x2) − P̄t2Sx2(x1)

ε2
, (d.8)

indicating that now we can express the dynamics of P̄t2 in terms of the expansions of
the two invasion fitnesses. From Sx (x) = 0 applied to the second-order terms in its
series expansion we have

C11 + C22 + C12 + C21 = 0, (d.9)

where {Ci j }i, j∈{1,2} are the second derivatives of invasion fitness (ref to (2.13)). Using
the second-order terms in ε of the series expansions of Sx1(x2) and Sx2(x1) and
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perusing (d.9), (d.8) is equivalent to

˙̄Pt2
P̄t2(1 − P̄t2)

= (1 − P̄t2)(ξ
�
1 C11ξ1 + ξ�

2 C22ξ2 + 2ξ�
1 C21ξ2)

− P̄t2(ξ
�
2 C11ξ2 + ξ�

1 C22ξ1 + 2ξ�
2 C21ξ1)

= (1 − P̄t2)
(
ξ�
2 C22ξ2 − ξ�

1 C22ξ1 + 2ξ�
1 C21(ξ2 − ξ1)

)
− P̄t2

( − ξ�
2 C22ξ2 + ξ�

1 C22ξ1 − 2ξ�
2 C21(ξ2 − ξ1)

)
= ξ�

2 C22ξ2 − ξ�
1 C22ξ1 + 2

(
(1 − P̄t2)ξ1 + P̄t2ξ2

)�C21(ξ2 − ξ1).

To complete the derivation of (2.12), the right side of the last equality needs to be
simplified via the following three steps: firstly,

ξ�
2 C22ξ2 − ξ�

1 C22ξ1 = (ξ2 + ξ1)
�C22(ξ2 − ξ1);

secondly,

2
(
(1 − P̄t2)ξ1 + P̄t2ξ2

)�C21(ξ2 − ξ1)

= (
(1 − P̄t2)ξ1 + P̄t2ξ2

)�C21(ξ2 − ξ1) + (ξ2 − ξ1)
�C12

(
(1 − P̄t2)ξ1 + P̄t2ξ2

)
= ξ�

1 C21(ξ2 − ξ1) + (ξ2 − ξ1)
�C12ξ1 − P̄t2(ξ2 − ξ1)

�(C22 + C11)(ξ2 − ξ1);

finally,

ξ�
1 C21(ξ2 − ξ1) + (ξ2 − ξ1)

�C12ξ1
= (ξ2 + ξ1)

�C21(ξ2 − ξ1) − (ξ2 − ξ1)
�C21(ξ2 − ξ1)

= (ξ2 + ξ1)
�C21(ξ2 − ξ1) + 1

2
(ξ2 − ξ1)

�(C22 + C11)(ξ2 − ξ1).

Therefore,

˙̄Pt2
P̄t2(1 − P̄t2)

= (ξ2 + ξ1)
�(C22 + C21)(ξ2 − ξ1)

+
(1
2

− P̄t2
)
(ξ2 − ξ1)

�(C22 + C11)(ξ2 − ξ1)

which is the desired result.

Appendix E Proof of Lemma 2

The first assertion can be proven in the same manner as in Lemma 1, in which the
associated averaged system becomes (2.12). The details are left to the reader.
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Next, we focus on the proof of the second assertion. Let Pε
0 = P̄0 = p and Z0 = z.

Denote

p∗
0 = 0, p∗

1/2 = Sx1(x2)

Sx1(x2) + Sx2(x1)
, p∗

1 = 1.

One hand, from the averaged system (2.12), the bistability indicates that p∗
1/2 ∈ (0, 1)

is a saddle node such that

lim
t2→+∞ P̄t2 = p∗

0 for all p ∈ [0, p∗
1/2),

and

lim
t2→+∞ P̄t2 = p∗

1 for all p ∈ (p∗
1/2, 1].

On the other hand, on t2-timescale, we also have the similar result as Lemma 5, i.e.,
for all δ ∈ (0, 1)

P(p,z)

{
lim
ε→0

inf
{
t2 ≥ 0 : |Pε

t2 − P̄t2 | > δ
} = +∞

}
= 1 (e.1)

for all p ∈ [0, 1] \ {p∗
1/2} and for μ-almost every z ∈ Z \ Z0.

Let stopping times

τ ε
0,δ := inf

{
t2 ≥ Tδ : |Pε

t2 − p∗
0 | > δ

}
,

τ ε
1,δ := inf

{
t2 ≥ Tδ : |Pε

t2 − p∗
1 | > δ

}
.

For any ε > 0, by (e.1), the continuity of trajectories and the Markov property, there
is δ̃ ∈ (

0,min{p∗
1/2, 1− p∗

1/2}
)
such that for every δ ∈ (0, δ̃), there exists Tδ > 0 such

that

q̃0(p,z) := P(p,z)

{
lim
ε→0

τ ε
0,δ = +∞

}
≥ 1 − ε for all p ∈ [0, δ)

and

q̃1(p,z) := P(p,z)

{
lim
ε→0

τ ε
1,δ = +∞

}
≥ 1 − ε for all p ∈ (1 − δ, 1].

We now show that q̃0(p,z) + q̃1(p,z) = 1 for all p ∈ [0, 1] \ {p∗
1/2} and for μ-almost

every Z \ Z0. For this we only need to prove that the interval [δ, 1 − δ] is transient,
i.e., almost every trajectory of Pε

t2 will escape from [δ, 1 − δ] after some finite times
later. In fact, by (e.1), there exist T̃δ > 0 and ε̃ > 0 such that P(p,z)

{|Pε
t2 − P̄t2 | ≤

δ
2 for all 0 < ε ≤ ε̃ and t2 ≥ T̃δ

} ≥ 1− ε. Hence, for any t2 ≥ T̃δ and p ∈ (δ, 1− δ),
the event

{
Pε
t2 /∈ [δ, 1 − δ]} = {

Pε
t2 − P̄t2 + P̄t2 /∈ [δ, 1 − δ]}
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= {
P̄t2 /∈ [

δ − (Pε
t2 − P̄t2), 1 − δ − (Pε

t2 − P̄t2)
]}

⊇
{
P̄t2 /∈

[
δ

2
, 1 − δ

2

]}
,

and then the stopping time

inf
{
t2 ≥ 0 : Pε

t2 /∈ [δ, 1 − δ]} ≤ inf
{
t2 ≥ T̃δ : Pε

t2 /∈ [δ, 1 − δ]}

≤ inf

{
t2 ≥ T̃δ : P̄t2 /∈

[
δ

2
, 1 − δ

2

]}
,

which implies that

P(p,z)
{
lim
ε→0

inf
{
t2 ≥ 0 : Pε

t2 /∈ [δ, 1 − δ]} < +∞} ≥ 1 − ε.

It follows from the Markov property that

P(p,z)

{
lim
ε→0

τ ε
0,δ = +∞ or lim

ε→0
τ ε
1,δ = +∞

}
≥ 1 − ε

for all p ∈ [0, 1]\{p∗
1/2} and forμ-almost everyZ \Z0. Since the ε is taken arbitrarily,

we claim that q̃0(p,z) + q̃1(p,z) = 1.
For the case of p = p∗

1/2, we have P
ε
t2 
= p∗

1/2 some time later due to the continuity

of solutions. Thus, the above analysis is still valid so that q̃0(p,z) + q̃1(p,z) = 1 for all
p ∈ [0, 1].

By the definitions of τ ε
0,δ and τ ε

1,δ , q̃
0
(p,z) + q̃1(p,z) = 1 is equivalent to (2.16). This

proves the second assertion of Lemma 2.
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