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Abstract

Evolve and resequencing (E&R) studies investigate the genomic responses of adaptation during experimental evolution. Because

replicate populations evolve in the same controlled environment, consistent responses to selection across replicates are frequently

used to identify reliable candidate regions that underlie adaptation to a new environment. However, recent work demonstrated that

selection signatures can be restricted to one or a few replicate(s) only. These selection signatures frequently have weak statistical

support, and given the difficulties of functional validation, additional evidence is needed before considering them as candidates for

functional analysis. Here, we introduce an experimental procedure to validate candidate lociwith weak or replicate-specific selection

signature(s). Crossing an evolved population from a primary E&R experiment to the ancestral founder population reduces the

frequency of candidate alleles that have reached a high frequency. We hypothesize that genuine selection targets will experience

a repeatable frequency increaseafter themixingwith theancestral founders if theyareexposed to the sameenvironment (secondary

E&Rexperiment).Using thisapproach,wesuccessfully validate two overlappingselection targets,whichshowedamutuallyexclusive

selection signature in a primary E&R experiment of Drosophila simulans adapting to a novel temperature regime. We conclude that

secondary E&R experiments provide a reliable confirmation of selection signatures that either are not replicated or show only a low

statistical significance in a primary E&R experiment unless epistatic interactions predominate. Such experiments are particularly

helpful to prioritize candidate loci for time-consuming functional follow-up investigations.
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Introduction

Experimental evolution provides the opportunity to study evo-

lutionary processes over time scales short enough to be fol-

lowed experimentally (Garland and Rose 2009; Kawecki et al.

2012). The combination of high-throughput sequencing with

experimental evolution (evolve and resequence) has been

widely used to identify adaptive alleles across multiple repli-

cates starting from the same reservoir of standing variation in

highly similar, well-controlled environments (Turner et al.

2011; Long et al. 2015; Schlötterer et al. 2015). Evolve and

resequencing (E&R) studies successfully characterized the

genomic responses during adaptation to novel selective pres-

sures usually on organisms with short generation times (e.g.,

Turner and Miller 2012; Burke et al. 2014; Lenski 2017;

Papkou et al. 2019; Remigi et al. 2019). Laboratory natural

selection experiments using the E&R framework studied

responses to thermal (Orozco-terWengel et al. 2012; Tobler

et al. 2014; Michalak et al. 2019) or desiccation stress (Schou

et al. 2014), starvation (Michalak et al. 2019), and salt- and

cadmium-enriched environments (Huang et al. 2014). The

advantage of E&R studies starting from natural variation is

that adaptation is possible without de novo mutations
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(Teot�onio et al. 2009). Hence, even organisms with moderate

experimental population sizes, such as Drosophila, are able to

adapt to novel conditions within experimentally feasible time

scales. Furthermore, when the starting variation is sampled

from a natural population, E&R studies provide direct infor-

mation about the frequency of the selected alleles in the wild

(Barghi et al. 2019).

Standard statistical tests applied to E&R data (e.g.,

Cochran–Mantel–Haenszel [CMH] test [Agresti 2002;

Spitzer et al. 2019] or Generalized Linear Modeling [Phillips

et al. 2018]) require parallel selection responses across repli-

cates. Two different, not mutually exclusive, factors can se-

verely compromise the detection of selection targets based on

these approaches. Polygenic adaptation to a new trait opti-

mum results in reduced genomic parallelism across replicates

relative to adaptation based on a few alleles of large effect

(Franssen et al. 2017; Barghi et al. 2019). Furthermore, se-

lected alleles with low starting frequencies are not only less

likely to reach a detectable selection signature but genetic

drifts, that is, chances, also result in lower repeatability across

replicates (Lenormand et al. 2016). One further complication

for the identification of selection targets with low starting

frequencies arises from hitchhiking of single-nucleotide poly-

morphisms (SNPs) shared with haplotypes carrying the favor-

able allele (Nuzhdin and Turner 2013; Tobler et al. 2014;

Franssen et al. 2015). In this case, the limited number of re-

combination events during the experiment results in large

genomic regions with selection signatures when selection

operates on low frequency alleles that make the identification

of individual candidate genes impossible.

The functional characterization of selected alleles in E&R

studies is an important next step for a better understanding of

adaptation processes, but despite the recent advances based

on the CRISPR/Cas9 technology (Bassett et al. 2013), the func-

tional characterization of different alleles in a standardized

genetic background is still a challenging and time-

consuming task. This implies that investigators are well ad-

vised to have high confidence in alleles that are going to be

functionally tested.

We propose a simple experimental procedure to validate

candidate regions with weak statistical support, due to either

a weak selection signature across replicates or replicate-specific

selection signatures. The basic idea of this approach is that an

evolved population is “diluted” with ancestral genotypes. This

reduces the frequency of putatively selected alleles and the

reproducible increase in frequency of selected alleles in multiple

replicates evolving under the same selection regime (secondary

E&R) serves as a validation of candidate regions. Because sec-

ondary E&R experiments provide the opportunity for additional

recombination events, we also evaluated whether this ap-

proach increases the mapping resolution, which is particularly

important for low frequency beneficial alleles.

Applying secondary E&R to a candidate region identified in

Drosophila simulans populations that have been exposed to a

novel constant hot environment at 23 �C for 70 generations,

we demonstrate that candidate selection targets can be ex-

perimentally confirmed.

Materials and Methods

The Primary E&R Experiment

Experimental Population and Selection Regime

We collected a natural D. simulans population 10 km North of

Stellenbosch, South Africa, in February and March 2013 and

established isofemale lines that were maintained in the labo-

ratory for approximately eight generations. For starting the

primary E&R experiment, 3 mated females from each of

426 isofemale lines were combined 3 times to generate 3

replicates of the ancestral population (replicates x, y, and z)

in F0. They were subsequently maintained as independent

populations with a census population size of 1,250 and non-

overlapping generations under a constant 23 �C temperature

regime with a 12-h light/12-h dark cycle (LD 12:12) for 70

generations (F70). The 426 lines used for constituting the

ancestral population were maintained as isofemale lines.

Creation of a Bona Fide SNP Catalog for the Primary E&R
Study

We generated Pool-Seq data for the three replicates of F0

from females only and for the three replicates in F70 (sex ratio

� 50:50). DNA extraction, barcoded library preparation, and

sequencing followed standard procedures and are given in

supplementary table SI 1, Supplementary Material online.

We followed standard approaches for quality control, read

mapping, read filtering, trimming as well as SNP calling and

SNP filtering.

We used libraries with different insert sizes, which can re-

sult in false positives (Kofler et al. 2016). To account for this,

we expanded the double-mapping procedure suggested in

Kofler et al. (2016) and used three different mappers

NovoAlign (http://novocraft.com, last accessed December,

2015), Bowtie2 (Langmead and Salzberg 2012), and BWA-

MEM (Li and Durbin 2009). We filtered for biallelic SNPs out-

side repeat regions and removed SNPs from positions outside

the 99% quantile in terms of genome-wide coverage. From

this set of prefiltered SNPs, we keep only those for which the

SNP frequency did not differ between all three mappers

(P> 0.01, after False Discovery Rate [FDR] correction). We

call this procedure triple-mapping. This resulted in a set of

2,560,538 high-quality SNPs. Details are given in supplemen-

tary material I, Supplementary Material online.

Identifying Regions under Selection in the Primary E&R

We performed Fisher’s exact tests (FET) between the ancestral

F0 and the evolved F70 generation within each replicate and

CMH tests (Agresti 2002) across replicates. As coverage
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variability (see supplementary table SI 2, Supplementary

Material online) affects the power of FET and CMH tests,

we used the independent hypothesis weighting (IHW) proce-

dure (Ignatiadis et al. 2016) to weight the empirical P values

using the mean coverage at each SNP calculated from all

replicates included in any particular test, as a covariate.

To determine the list of candidate SNPs, we ran neutral

forward Wright–Fisher simulations for each replicate based

on replicate-specific Ne estimates (table 1) that we obtained

for autosomes and the X chromosome using the poolSeq

package (Taus et al. 2017) and mimicking the starting fre-

quencies and empirical coverages at each SNP. Neutral P val-

ues were also submitted to the IHW procedure. Candidate

SNPs from either FET or CMH tests were declared at a 1% FDR

cutoff, applying a conservative nonparametric empirical FDR

estimator (Strimmer 2008) using the weighted P values from

our simulations and the weighted P values from our observed

data.

Selection coefficients were determined for each SNP in

each replicate on pseudo-count data (detailed in supplemen-

tary material I, Supplementary Material online) using the

poolSeq package assuming a dominance coefficient of 0.5.

The Secondary E&R Experiment

Experimental Population, Selection Regime, and
Sequencing

Based on the primary E&R selection signature screen, we

picked a candidate region on 3R (region details in supplemen-

tary fig. 1, Supplementary Material online) for further investi-

gation. This region showed a very strong signal of positive

selection in a CMH test across replicates x, y, and z. We

used evolved flies from replicates x and z after 77 generations

of evolution in the primary E&R experiment (F77) to set up a

secondary E&R experiment in which the evolved flies were

mixed with flies from a reconstituted ancestral population

(Nouhaud et al. 2016, supplementary fig. 2, Supplementary

Material online). We call this generation D0. Selection targets

are expected to increase in frequency again in the secondary

E&R experiment, which used the same culturing conditions as

the primary E&R experiment.

Mixing proportions of ancestral and evolved populations to

create D0 were chosen such that selected SNPs in our candi-

date region had allele frequencies falling in a deterministic

range between 0.25 and 0.75 in D0: for replicate x, a 30:70

ratio between evolved and reconstituted ancestral flies, and

for replicate z, a 50:50 ratio, respectively. We created two

replicates for D0 for replicate x (x.1 and x.2), and three repli-

cates for D0 for replicate z (z.1, z.2, and z.3). Replicates for D0

and D30 were subjected to Pool-Seq.

Validation of Signatures of Selection in the Secondary E&R

Selection coefficients and neutrality tests were performed ex-

actly as described for the primary E&R experiment.

Results

Discovery of Candidate SNPs: Primary E&R

Three replicates of a D. simulans founder population were

maintained in a constant hot environment (23 �C) for 70 non-

overlapping generations. Sequencing pools of 1,250 individ-

uals (Pool-Seq, Kofler and Schlötterer 2014; Schlötterer et al.

2014; supplementary table SI 1, Supplementary Material on-

line) resulted in a catalog of 2,560,538 polymorphic SNPs (see

Materials and Methods, supplementary table SI 2,

Supplementary Material online). We identified candidate

SNPs by contrasting allele frequency changes (AFCs) between

ancestral and evolved populations with a CMH test after ac-

counting for drift using a 1% empirical FDR threshold (see

Materials and Methods). Because P values obtained from con-

tingency tables tests are affected by coverage, we also

accounted for coverage heterogeneity among samples

(56x–261x, supplementary table SI 3, Supplementary

Material online) by weighting P values following the IHW pro-

cedure (Ignatiadis et al. 2016) (see Materials and Methods).

The genome-wide analysis identified a candidate region of

1.628 Mb on chromosome arm 3R with a pronounced AFC

between ancestral and evolved populations (fig. 1, top left,

the full genomic analysis will be published elsewhere).

The power of the CMH test relies on the experimental

replicates to detect putative targets of selection. However,

its utility is limited when candidates are not shared across

replicates. Analyzing this genomic region separately for each

of the replicates using a FET indicated considerable heteroge-

neity among them: Among the SNPs with the most significant

CMH P values across all three replicates, the top 20 SNPs in

the FET of replicate x were only significant in replicate x (FETx,

fig. 1, bottom left, top center, top right, red), with 16 SNPs

being close to fixation. Removing replicate x from the CMH

analysis and using only replicates y and z, we obtained a much

weaker selection signature in the CMH test (CMHy,z, fig. 1,

bottom right). Only 3 of the 20 most significant SNPs of this

analysis (CMHy,z) were overlapping with the most significant

SNPs of the analysis including x (CMHx,y,z). Instead, the 20

most significant SNPs of CMHy,z changed in both replicates

y and z with a mean AFC of 0.55. This AFC is less pronounced

than the one observed for the significant SNPs of replicate x

(0.96). This heterogeneity among replicates suggested that at

least two distinct classes of haplotypes were selected.

Table 1

Autosomal Ne Estimates of the Primary and Secondary E&R Experiments

Replicate x Replicate y Replicate z

Primary E&R 206 263 226

Secondary E&R 134; 144 — 216; 193; 167

Secondary E&R: An Experimental Confirmation GBE
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We further scrutinized the hypothesis of at least two dis-

tinct selected haplotypes and plotted the AFC of the two sets

of top 20 SNPs in the candidate region on chromosome arm

3R (fig. 2): 20 SNPs from FETx and 20 SNPs from the joint

analysis of replicates y and z, that is, CMHy,z. The two sets of

candidate SNPs displayed group-specific AFC; one set showed

a pronounced AFC in replicate x and the other one in replicate

z, but almost no change in the other (fig. 2 and supplemen-

tary fig. SI 1, Supplementary Material online).

Validation of Candidate SNPs: Secondary E&R

The primary E&R study provided two sets of candidate SNPs.

One set of candidates increased strongly in replicate x only,

whereas the other set of candidates increased weakly in the

two replicates y and z. To demonstrate that both sets of SNPs

are associated with a selection target, we aimed to validate

both selection signatures experimentally. Reasoning that

fewer replicates are needed to confirm strong selection,

only two diluted replicates were generated from evolved rep-

licate x (x.1 and x.2), whereas three diluted replicates were

generated from evolved replicate z (z.1, z.2, and z.3) which

showed the weakest response in the initial E&R experiment.

For both secondary E&R experiments, we added flies from a

reconstituted founder population (Nouhaud et al. 2016) aim-

ing for a starting frequency around 0.5 for the most promi-

nent candidate SNPs (see supplementary fig. SI 2,

Supplementary Material online). This starting frequency of

the candidate SNPs in the secondary E&R ensures a determin-

istic selection response and still provides sufficient opportunity

for frequency increase.

After 30 generations of evolution at the same culture con-

ditions, we sequenced the founders (D0) and evolved repli-

cates (D30) of the secondary E&R experiments (see fig. 3 for

an overview). We contrasted the dynamics of the two groups

of top candidate SNPs in each of the replicates in the primary

and secondary E&R experiments over four time points (F0,

F70, D0, and D30). A very pronounced frequency increase

FIG. 1.—Replicate-specific selection signatures in the primary E&R study. Manhattan plots of chromosome arm 3R displaying the negative log 10-

transformed weighted P values of 680,937 SNPs for different statistical tests. (A) CMHx,y,z (175/443), (B) FETy (0/122), (C) FETz (0/0), (D) FETx (660/1,776), and

(E) CMHy,z (9/85). The number of candidates at 1%/5% empirical FDR thresholds for each test is given in parentheses. The gray dotted line shows the 1%

(upper) and 5% (lower) empirical FDR thresholds of the corresponding test, computed over the autosomes from neutral simulations assuming no linkage. At

the 1% empirical FDR threshold, CMHx,y,z and FETx identify a candidate peak region of 169 (9,042,023–10,670,451bp, 1.628Mb) and 660 (9,000,008–

10,384,933bp, 1.385 Mb) SNPs. The overlap between these 2 tests is 92 significant SNPs spanning 1.343 Mb (see supplementary fig. SI 1, Supplementary

Material online, for a close up of this genomic region). In all panels, the top 20 SNPs from FETx and CMHy,z are highlighted in red and blue.
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can be noted in both the primary and secondary E&R experi-

ments in the focal replicate from which the candidates were

obtained (fig. 2 and supplementary fig. SI 3, Supplementary

Material online). From an average starting allele frequency of

0.52 and 0.31, the candidate SNPs reach a mean final fre-

quency of 0.98 (x) and 0.73 (z) in the replicates of the sec-

ondary E&R. The consistent AFC in the primary and secondary

E&R experiments confirms a high repeatability of selection.

FIG. 2.—AFCs of the 20 most significant SNPs from FETx (red) and CMHy,z (blue) for the primary E&R (generation F0–F70) and secondary E&R (D0–D30).

Different types of lines are used to better distinguish the AFCs from each SNP. The left panel shows experiment x and the right panel experiment z. Only the

first replicate from the secondary E&R is shown for each experiment, for the other replicates, see supplementary fig. SI 3, Supplementary Material online.

FIG. 3.—Schematic outline of the experimental design. Three replicated populations of flies starting from the same founders evolved in parallel during 70

generations (primary E&R) and sequenced at time points t. The darkness of the flies symbolizes the level of adaptation to the new environment. For a given

evolved replicate k, the evolved flies are “diluted” with ancestral genotypes and independent replicates evolving for an additional 30 generations under the

identical environmental conditions as in the primary E&R (secondary E&R, indicated in black). The bottom panel indicates the replicate-specific AFCs of

candidate SNPs during the experiments. In the primary E&R, the allele frequency increases (blue). By adding ancestral genotypes, the frequency of the

candidate SNPs is decreased (black dotted lines). Thirty generations of the secondary E&R result in a repeated frequency increase of the candidate SNPs,

confirming nonneutral evolution.

Secondary E&R: An Experimental Confirmation GBE
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This suggests that the AFCs are very consistent in primary and

secondary E&R experiments, and selection in the primary E&R

study is a reasonable predictor of the secondary E&R.

Also, the candidate SNPs from the nonfocal replicate con-

sistently failed to show selection signatures (fig. 2 and supple-

mentary fig. SI 3, Supplementary Material online). The only

exception are four SNPs from the candidate set of replicate z,

which also increased in frequency in the primary and second-

ary E&R of replicate x (fig. 2 and supplementary figs. SI 3 and

SI 6, Supplementary Material online). Because the AFC was

less pronounced than the one of the focal candidate SNPs of

replicate x, we conclude that these SNPs may be shared be-

tween the two alternatively selected haplotype classes.

For a more complete picture, we expanded our analysis of

the 20 most significant SNPs to all significant SNPs

(FDR< 0.01) of the primary E&R. We jointly plotted the

distribution of selection coefficients obtained from the pri-

mary and secondary E&R experiments (see Materials and

Methods). Consistent with the previous analyses, all candidate

SNPs had a selection coefficient larger than 0 in their focal

replicate—independently of whether primary or secondary

E&R experiments were analyzed (fig. 4a and supplementary

fig. SI 4, Supplementary Material online). The inferred selec-

tion coefficients for replicate x are about twice as high as the

ones for replicate y. The mean selection coefficients from the

20 candidate SNPs are 0.26 and 0.27 for diluted replicates

from x (0.26 in the primary E&R) and 0.08, 0.09, and 0.12 for

diluted replicates from z (0.09 in the primary E&R). As

expected, the selection coefficients of the nonfocal top 20

candidate SNPs were distributed around 0.

Finally, to evaluate the influence of genetic drift, we simu-

lated the dynamics of the significant SNPs (FDR< 0.01) in the

FIG. 4.—Repeatability of selection signatures in primary and secondary E&R. (A, B) Selection coefficients (s) are very similar in primary and secondary E&R.

Symmetrical violin plots of the selection coefficients from primary E&R (dark gray) and the first replicate of the secondary E&R experiment (light gray) for

candidate SNPs (empirical FDR< 1%) in the region of interest. Black horizontal bars represent the median s for primary and secondary E&R. The dotted line

shows the median s across both E&R experiments. (A, C) Experiment x. (B, D) Experiment z. The 20 most significant SNPs from FETx (red) and CMHy,z (blue)

are shown in color across all panels. (C, D) Parallel changes in allele frequencies. Observed AFCs in the primary E&R (x axis) and in the first replicate of the

secondary E&R (y axis) for candidate SNPs (empirical FDR < 1%) measured in replicate x (C) and z (D) are shown in gray, with the 20 most significant SNPs

highlighted in red/blue. Because, for replicate z, no SNP exceeded the empirical FDR of 1% in the primary E&R, the top 20 SNPs are shown (right panel).

Ellipses around the empirical focal SNPs indicate the 99% probability range. For comparison, the expected neutral AFCs for candidate SNPs are shown in

orange. A single neutral simulation was performed to obtain the expected neutral AFC using the same starting frequency and coverage for the candidate

SNPs as in the empirical data. All SNPs were assumed to be unlinked.
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primary E&R under neutrality and compared them with their

observed dynamics (fig. 4b and supplementary fig. SI 5,

Supplementary Material online, and Materials and

Methods). Plotting the pairwise observed and simulated neu-

tral AFC of the primary E&R against the AFC of the secondary

E&R experiment, we find that the simulated data are clearly

distinct from the experimental ones. The significant SNPs of

the experimental data cluster together in the upper right

quadrant and do not overlap with neutral simulations, show-

ing that genetic drift cannot explain the concordant signa-

tures of the significant SNPs. As expected, the separation of

neutral and selected SNPs was clearer for the replicate x,

where selection was stronger (fig. 4a).

No Increased Mapping Resolution for the Selection Target

Given that the dilution reduced the frequency of the selection

target, we anticipated that additional recombination events

occurring during the repeated spread of the selection targets

would also increase the mapping resolution. Nevertheless, we

noted that the selection signature was broader in the second-

ary E&R experiment than in the primary one (supplementary

fig. SI 6, Supplementary Material online). Hence, despite the

highly repeatable selection signature of candidate SNPs, the

secondary E&R experiment did not yield more confidence

about the focal target of selection than the primary E&R

experiment.

Discussion

One of the undisputed advantages of experimental evolution

is that the precise experimental conditions are known, which

allows to impose the same selection pressure on different

populations and time points in a replicated manner.

Independent detection of candidate loci is widely considered

strong empirical support for selection, rather than genetic

drift.

In this report, we expand this concept by testing for repeat-

able genomic selection signatures by a simple manipulation of

the evolved populations. By adding unevolved genotypes, we

reduce the frequency of the selection target, which provides

the opportunity to monitor a repeatable frequency increase of

selected alleles in replicated populations. However, this pro-

cedure changes allele frequencies genome wide and provides

the opportunity of new epistatic interactions that were not

possible in the founder or the populations in the primary E&R

study. Such new epistatic interactions may result in novel se-

lection targets that were not uncovered in the primary E&R. It

will be extremely challenging to distinguish between new se-

lection targets created by epistatic interactions and the het-

erogeneity of polygenic adaptation (Yeaman et al. 2018).

Similarly, epistatic interactions may also affect the spread of

the focal selection target in E&R experiments. Nevertheless,

unless epistatic interactions predominate, it should be possible

to confirm selected variants by experimentally manipulating

allele frequencies in the population in which a favorable var-

iant spread. Indeed, we confirm this by demonstrating that

this novel approach accurately recovers the selection signa-

ture of candidate SNPs.

Despite the mapping resolution of the primary E&R exper-

iment could not be improved, it is striking how consistent the

selection coefficients of the top candidate SNPs were repli-

cated in the secondary E&R experiments.

Previously, experimental evolution studies exposed labora-

tory-evolved populations to selection regimes in the opposite

direction (reverse evolution) (Teot�onio and Rose 2001; Porter

and Crandall 2003; Teot�onio et al. 2009). The secondary E&R

design introduced here also relies on already laboratory se-

lected populations, but rather than changing the selection

regime, the same selection regime is applied after manipulat-

ing the evolved population. Secondary E&R is designed to

provide researchers additional confidence about selection tar-

gets by repeating a genomic selection signature in replicate

populations after adding genotypes from the founder popu-

lation, which reduces the frequency of selected alleles. We

propose that secondary E&R experiments with unevolved

genotypes provide an attractive approach to experimentally

validate selection signatures. This is particularly important for

either nonreplicated or small AFCs—both signatures of poly-

genic adaptation.

The strength of secondary E&R experiments is well illus-

trated in our proof of principle study, in which no single SNP

passed the genome-wide significance threshold in this geno-

mic region in the primary E&R experiment in replicate z. Only

by combining two replicates, y and z, we identified significant

candidates, which could be confirmed in the secondary E&R

experiment. Thus, we demonstrated that even populations

with weak selection signatures can be used to confirm the

presence of selection, which could not be recognized before.

What is the conceptual advantage of secondary E&R com-

pared with a larger primary E&R experiment? Polygenic adap-

tation from a founder population with high genetic

redundancy typically results in heterogeneous selection

responses, thus challenging the typical confirmation strategy

of parallel selection responses. A good demonstration of this

is provided by Barghi et al. (2019). Despite a powerful exper-

imental design with 60 generations and 10 replicated popu-

lations, several selection targets were detected only in 1 or 2

replicates. Because the redundancy in the founder population

becomes only apparent after the primary E&R experiments, it

is not possible to determine the number of replicates needed

to achieve parallel selection responses in a sufficiently large

number of replicates. Hence, secondary E&R experiments pro-

vide a viable confirmation strategy for candidates detected in

one or a few replicates only.

Secondary E&R experiments are not fast, the 30 genera-

tions of this experiment took about 14 months, but the main-

tenance of replicate populations does not require many
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resources and no experimental phenotyping is required for

laboratory natural selection experiments, such as the one of

this study. Secondary E&R provides therefore a very good

approach to experimentally validate genomic regions

experiencing selection. Mapping of causative variants could

not be achieved in this pilot study and requires alternative

approaches to do so. In fact, our data suggest that the map-

ping accuracy of secondary E&R may be lower than by adding

additional primary E&R replicates—if the selection target

increases in sufficiently many replicates. Consistent with

this, we do not define repeatability based on the signature

of an individual SNP, but based on the collective selection

signature of SNPs linked to the selection target. Note, that

the correlation structure of SNPs linked to the selection target

obviates the need to genotype the actual selection target in a

secondary E&R experiment.

Nevertheless, the dynamics of selected genomic regions

are highly informative of the underlying genetic architecture

of beneficial mutations. Polygenic adaptation to a novel trait

optimum displays characteristic dynamics (Franssen et al.

2017), which are best detected in multiple replicates. We

anticipate that the analysis of multiple replicates in secondary

E&R experiments will provide an unprecedented opportunity

to study replicated dynamics of selection targets in order to

understand the architecture of adaptation. It is also conceiv-

able to use this experimental setup to study the dynamics of a

given selected region in an alternative selection regime.

A particularly interesting pattern could be confirmed in this

study: Two different haplotype classes are carrying adaptive

variants that increase fitness of the populations in a novel hot

environment. It is particularly remarkable that the two groups

of haplotypes seem to be mutually exclusive—we see either

one or the other increasing in frequency in the primary E&R

experiment. Also in the secondary E&R experiments, we see

no evidence of parallel selection of both haplotype classes, but

their different starting frequencies in the secondary E&R con-

siderably decrease the opportunity for a strong frequency in-

crease of the haplotype with the lower starting frequency.

The mapping resolution is not high enough to determine

whether the same gene is carrying a beneficial mutation in

both haplotype classes or different genes are selected. Thus,

similar to many other E&R studies, a good strategy for fine

mapping is needed to answer these questions.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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