
Omega 67 (2017) 134–144

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository
Contents lists available at ScienceDirect
Omega
http://d
0305-04

☆This
n Corr
E-m
journal homepage: www.elsevier.com/locate/omega
Evaluating productive performance: A new approach based
on the product-mix problem consistent with Data
Envelopment Analysis$

Juan Aparicio a,n, Jesús T. Pastor a, Fernando Vidal b, José L. Zofío c

a Center of Operations Research (CIO), Miguel Hernandez University of Elche (UMH), 03202 Elche (Alicante), Spain
b Environmental Economics Department, Miguel Hernandez University of Elche (UMH), 03212 Orihuela (Alicante), Spain
c Departamento de Análisis Económico, Teoría Económica e Historia Económica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
a r t i c l e i n f o

Article history:
Received 5 May 2015
Accepted 23 April 2016
Available online 30 April 2016

Keywords:
Farms
Manufacturing firms
Technical coefficients
Data Envelopment Analysis
x.doi.org/10.1016/j.omega.2016.04.007
83/& 2016 The Authors. Published by Elsevier

manuscript was processed by Associate Edito
esponding author. Tel.: þ34 966658517; fax:
ail address: j.aparicio@umh.es (J. Aparicio).
a b s t r a c t

We propose a new approach to estimate technical coefficients from a set of Decision Making Units
(DMUs) under the assumption that their production plans are set by process engineers through Linear
Programming (LP) techniques. The idea behind this approach is that most manufacturing and agricultural
firms routinely resort to LP-based modeling in their decision making processes in order to plan output
production and, therefore, this particularity should be taken into account when estimating their tech-
nical efficiency. A usual model of LP for these sectors is the so-called product-mix problem, which we
relate to a standard Data Envelopment Analysis (DEA) model in terms of the Directional Distance
Function. In this paper, we finally show how to estimate the technical coefficients of a sample of
Andalusian farms in Spain and how this information can be seen as a complement to the usual by-
products associated with estimating technical efficiency by DEA.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Efficiency evaluation in production of whatever type of private
firm or public organization has been a relevant topic for managers
and policy makers, as well as an area of interest from a practical
and methodological point of view in both engineering and eco-
nomics [13,18]. The main aim of such assessment is to analyze the
efficiency of a set of observations: generally termed DMUs (Deci-
sion Making Units) that use several inputs to produce several
outputs, by comparing their performance with respect to the
boundary of a production possibility set, and using to that end a
sample of other observations operating in a similar technological
environment. In the case of producing only one output the interest
lies with the notion of production function, which represents the
maximum product obtainable from the input combination at the
existing state of technical knowledge. The usual methods for
measuring technical efficiency of production need explicitly or
implicitly to determine the boundary of the underlying technol-
ogy, which constitutes the reference benchmark. Its estimation
allows calculating the corresponding technical inefficiency value
for each DMU as the deviation of each activity or production plan
Ltd. This is an open access article u
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to the set of optimal ones, represented by the frontier of the
production possibility set or, if it is the case, by the industry pro-
duction function.

Regarding the determination of the technology in practice,
before Farrell's [17] seminal contribution, economists used to
specify parametrically the corresponding production functions,
e.g., a Cobb-Douglas function [12], relying on Ordinary Least
Squares (OLS) regression analysis to estimate an ‘average’ pro-
duction function, and assuming that disturbance terms had zero
mean. This was a patently unsatisfactory estimation, as it did not
follow the traditional (frontier) definition of production functions
in microeconomics as the maximal feasible output for each input
combination considered. Farrell [17] was the first in showing, for a
single output and multiple inputs, how to estimate an isoquant
enveloping all the observations. He based his significant con-
tribution on the construction of a production possibility set that
satisfied two usual axioms: convexity and monotonicity. In this
way, the most conservative estimation of the production possibi-
lity set may be obtained through the determination of the minimal
set that envelops the observations and, at the same time, meets
the two aforementioned axioms [16, p. 255]. Farrell's principle of
conservation, now known as ‘minimal extrapolation’, leads to the
estimation of a piece-wise linear isoquant in the input space. For
the application of his method to a dataset from the US agricul-
tural sector, Farrell resorted to finding out all the facets of the
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1 It is commonly adopted in the literature, either implicitly or explicitly, that all
firms share the same production possibility set and differ only with respect to their
degree of inefficiency (see, e.g., [38,19,31]).

2 It is also worth mentioning that linear production technologies and the
behavior of producers have long been linked in the literature. Owen [33] used
cooperative game theory to study a general class of linear production games in
which multiple producers using the same technology decide whether to pool their
available resources to produce some goods. Many researchers have extended this
approach in different directions (see, e.g., Timmer et al. [36] and more recently
Lozano [25], which mixes cooperative game theory and DEA).
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piece-wise linear frontier by applying more or less sophisticated
combinatorial methods. The work of Farrell represented an enor-
mous advance in the measurement of efficiency of production by
showing how to decompose cost efficiency into technical and
allocative counterparts. His contribution constitutes the first
implementation of Debreu's coefficient of resource utilization [14]
and Shephard's input distance function [35].

Although Farrell also dealt with the possibility of approximating a
Cobb–Douglas production function from the previously estimated
piece-wise linear isoquant, as a way of summarizing in a few para-
meters the main features of the underlying technology, Farrell's
approach can be categorized in the current area of non-parametric
techniques (see Diagrams 4, 5, 7 and 8 in [17]), since it is not
necessary to identify a priori the specific mathematical formulation
of the industry production function to be estimated. This line of
research, initiated by Farrell, was later taken up by Charnes et al. [9]
and Banker et al. [7], resulting in the development of the Data
Envelopment Analysis (DEA) approach, in which the determination
of the frontier is only restricted via its axiomatic foundation, mainly
convexity and minimal extrapolation. Another paper working in this
same line, is that by Afriat [2], showing how to determine a pro-
duction function with the property P (e.g., non-decreasing concavity)
that represents the set of observations to be as nearly efficient as
possible. Under the production of only one output, the estimated
production functions suggested by Afriat coincide with those asso-
ciated with what later was known as DEA. A more natural sequel
than the DEA literature of the previous work done by econome-
tricians, even before Farrell's contribution, would be Aigner and Chu
[1], who show how to apply a technique based on mathematical
programming to yield an envelope ‘parametric’ Cobb–Douglas pro-
duction function by controlling the sign of the disturbance terms and,
therefore, allowing to make the traditional interpretation of the
production function in microeconomics.

All the aforementioned methods for estimating the underlying
technology from a data sample can be applied to any set of profit
and not-for-profit organizations, from a farm to a university,
without considering the specific methodologies and techniques
that may have been used by managers to determine resource
allocation and output mixes in their production processes. Indeed,
these methods only depend on observing the inputs and outputs
quantities and prices of each sample unit, as these were originally
designed to overcome the lack of information (and the cost of
collecting it) on what happens within each organization; i.e., they
consider production processes as ‘black boxes’ where the inter-
mediate transformation of inputs into outputs is not specified.
However, some attempts to develop new methodologies for
opening the black box have been recently published, mainly in the
non-parametric field. Examples of these contributions are, on the
one hand, those based on network DEA, which considers each unit
as composed of distinct processes or stages, each one with its own
inputs and outputs and with intermediate flows among the stages
(Prieto and Zofio [34], Tone and Tsutsui [37] and Kao [23], to name
but a few) and, on the other hand, the recent approach by
Cherchye et al. [11], which explicitly includes information about
the allocation of the output-specific inputs to their outputs;
information that is collected from the activity-based costing (ABC)
system of the firms, when it is available.

Ultimately, the way the firm internally plans the output mix
has been usually neglected in the mainstream literature on pro-
duction theory, being an issue that merits further research. This
paper is devoted to making progress in this direction by showing
the link between the product-mix problem (PMP) and DEA. While
the former allows the characterization of the production tech-
nology within the firm at the individual level, the latter concerns
the estimation of the boundary of the reference technology by
comparing production plans between firms. In doing so, we
propose a new approach based on the PMP that will take into
account resources and technical coefficients. A recent survey
showed that most Fortune 500 companies regularly use linear
programming (LP) in their decision making [30]. A typical appli-
cation of LP is the formulation and resolution of the product-mix
problem. Process engineers worldwide have been trained to model
such problems through the application of techniques of Operations
Research.

A simplified example of a real-life situation of this type, repre-
sented by a firm producing leatherwork, taken from Winston [39], is
adopted in the following section to illustrate the starting point of the
new approach. Given output prices, input and output quantities, and
the technical coefficients relating them, the product-mix problem is
used to maximize revenue choosing the amount of output quantities
to produce, subject to the inputs constraints. The information used
for building these constraints are, on the one hand, resource
endowments and, on the other, the technical coefficients, which
represent the amount of each resource that are consumed in the
production of one unit of each output product. In this way, the
technology that is utilized for determining the firm's optimal output
mix is given by the constraints of the PMP model. We show that it is
possible to use the PMP to jointly determine a common technology1

for a set of observations and estimate the corresponding technical
coefficients.

Specifically, at a setting of manufacturing or agricultural pro-
duction, where LP is a usual tool for determining the optimal
output mix, and assuming that we observe a sample of DMUs
operating in a similar technological environment, it is our aim to
estimate a common set of technical coefficients for all the units
associated with the underlying technology. To that end, we invoke
Farrell's principle of conservation to determine the technical
coefficients that yield the minimal set associated with the ‘LP’
resource constraints that, at the same time, envelops all the
observations. In this way, a polyhedral production possibility set is
estimated based on exactly m constraints, denoting by m the
number of firm's resources (inputs). The geometrical shape of the
estimated technology justifies comparing the new approach to
DEA, since by this last technique a polyhedral production possi-
bility set is also estimated based on an a priori undetermined
number of hyperplanes (greater than the number of inputs with
high probability). The distinctive feature of the approach that we
introduce is that it contributes to opening the aforementioned
‘black box’ of efficiency measurement in two manners. First,
incorporating into the analysis the usual way in which process
engineers internally model the PMP. Second, estimating key
information of the firms; in particular how inputs and outputs are
linked to each other in the production process.2

Therefore, the proposed methodology represents a new
approach to assess the production performance of firms that
complements the results obtained with the standard DEA
approach, as both are closely related. The new approach can be
applied by process engineers in many industrial sectors, offering
an alternative way to assess productive performance that is
grounded on more familiar techniques, but without losing sight of
the existing DEA methods. To sum up, we extend the notion of
technical and economic efficiency to a wider audience who is
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routinely applying optimizing techniques based on the PMP and
similar programs, and can incorporate the proposed methodology
to their analytical toolbox.

The core of our investigation, contained in Section 2, is con-
cerned with the introduction of the new methodology for esti-
mating technologies in scenarios where it is usual to resort to LP in
order to model the PMP. In Section 3 we relate the new approach
to DEA, since this last technique also generates piece-wise linear
efficient frontiers. In Section 4 an illustration of the proposed
approach is undertaken and discussed. Section 5 summarizes and
concludes.
Fig. 1. The PMP output production set for the example of Leather Limited.
2. The product-mix problem, linear programming and pro-
ductive performance

In this section we introduce an innovative technique for esti-
mating a common set of technical coefficients associated to the
boundary of the underlying production possibility set of an
industry from a sample of data. This new approach is created with
the intention of adapting the way the frontier of a production
possibility set is estimated to the manner in which the product
mix is planned by a firm. In particular, the technique can be sen-
sibly applied to the manufacturing and agricultural sectors, where
mathematical programming is routinely used by engineers to
determine the optimal output mix (see, for example, [22]).

We now introduce the necessary notation. Let Rk
þ be the non-

negative Euclidean k-orthant, for z; z0ARk
þ we denote

zr z0 3 zprz0p, pA 1;…; k
� �

and zoz0 3 zpoz0p, pA 1;…; k
� �

.
We also denote 1k and 0k the column vectors belonging to Rk

þ with
all components equal to one and all components equal to zero,
respectively. Additionally, denote by n the number of observed
DMUs (producers). We assume, as it is customary, that all of them
operate in the same technological environment, are price takers,
and their goal is to maximize profit from the sale of products. Each
DMUj, j¼ 1;…;n, is endowed with m inputs, denoted by

xj ¼ xj1;…; xjm
� �T

40m, which are used for producing s outputs,

denoted by yj ¼ yj1;…; yjs
� �T

Z0s. As Timmer et al. [36], we assume
that markets clear so all outputs are sold at equilibrium prices.
Regarding the technical coefficients, each DMU requires airZ0
units of resource i to produce one unit of output r. These coeffi-
cients are independent on subscript j, since we assume that the
technology is the same for all the observations. As for the prices,
the marketing department of DMU j forecasts selling prices, so
after production each unit of output r will contribute p̂jr (e.g.,
euros) to profit. We assume that each DMUj has a private forecast
about the market prices for each product. In practice, all these
estimations are usually obtained by DMUs using whatever market
information and statistical tool at their disposal. Note also that our
setting can accommodate the possibility of imperfect competition,
incorporating the subscript j for prices. In this context, the profit
maximization problem that the engineer of DMU0 solves is

Max
y

R0 ¼ p̂0Ty

s:t:
Ayrx0;

yZ0s;

ð1Þ

where A denotes the matrix

a11 … a1s
⋮ ⋱ ⋮
am1 … ams

0
B@

1
CA and p̂0T ¼

� �

3 By construction, PPMP xð Þ in (2) is closed. Additionally, boundedness may be

assured from conditions on the technical coefficients. For example, a sufficient
condition would be the existence of air40 for some i, i¼ 1; :::;m, for each r,
r¼ 1; :::; s.
p̂01;…; p̂0s . Model (1) is known as the Product-Mix Problem.
Model (1) is used to maximize net revenue R0 by choosing the

amount of outputs subject to the input constraints. The pieces of
information used for building these constraints are the resource
endowments and the technical coefficients, which represent the
amount of each resource that is consumed in the production of
one unit of each output. Winston [39] exemplifies model (1) with a
simple process where a firm, Leather Limited, manufactures two
kinds of belts per week: y1¼number of deluxe belts produced, and
y2¼number of regular belts produced. Each type requires 1 square
yard of leather, a1r¼1, r¼ 1;2. A regular belt requires 1 hour of
skilled labor, a21¼1 and a deluxe belt requires 2 hours: a22¼2.
Each week, x1¼40 square yards of leather and x2¼60 hours of
skilled labor are available. The marketing department of the firm
estimates that at the equilibrium market prices each deluxe belt
contributes p̂1¼4 monetary units to profit and each regular belt
p̂2¼3.

Given the vector of endowments x40m and assuming that the
technical coefficients are known, the set of feasible (producible)
outputs associated with the PMP, called PMP output production
set, is defined as follows:

PPMP xð Þ ¼ yARs
þ : Ayrx

� �
: ð2Þ

Fig. 1 illustrates the PMP output production set corresponding
to the example of Leather Limited. In this case, PPMP 40;60ð Þ ¼

y1; y2
� �

AR2
þ : y1þy2r40; 2y1þy2r60

n o
. By construction, PPMP

40;60ð Þ is a polyhedral set (the lined region in Fig. 1).
PPMP xð Þ is convex and, additionally, 0sAPPMP xð Þ since x40m, i.e.,

inaction is possible. Moreover, we assume that the PMP output
production sets are bounded3 and closed. In other words, PPMP xð Þ
must be a compact set. This means that sets as, for example

PPMP xð Þ ¼ yAR2
þ : y1r4

n o
, do not represent a suitable PMP out-

put production set in our context. Compactness is a usual axiom in
multi-output production theory (see [15]).



Table 1
Simple numerical example.

DMU x1 x2 y1 y2

A 5 11 2 4
B 5 11 4 3
C 5 11 5 1
D 5 11 1 3.5
E 5 11 4 2
F 7 15 3 3
G 7 15 6 3
H 7 15 2 6
I 7 15 5.5 3
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2.1. How to estimate the technical coefficients: The Hölder distance
function Dℓ1

In order to determine the technical coefficients in the context
of the product-mix problem we need to isolate a reference subset
of PPMP xð Þ. We are referring to the boundary of the PMP output
production set, which we denote and define as follows:

∂ PPMP xð Þð Þ ¼ yAPPMP xð Þ : yo ~y ) ~y =2PPMP xð Þ� �
: ð3Þ

In Fig. 1 the subset corresponding to the PMP boundary consists
of the two facets of the polyhedron associated with the PMP
output production set – depicted by bold lines. Therefore, while
the lined region corresponds to the PMP output production set,
the PMP boundary is the frontier of that region. From the con-
straints y1þy2r40 (leather constraint) and 2y1þy2r60 (labor
constraint), it is possible to derive y1þy2 ¼ 40 and 2y1þy2 ¼ 60;
i.e., the supporting hyperplanes for the two aforementioned facets.

In the last example the technical coefficients are known.
However, in practice, this is not the usual scenario. So, the main
objective of this paper is to determine the unknown technical
coefficients from a sample of observations. In the new approach,
we suggest estimating the values of the technical coefficients air ,
i¼ 1;…;m, r¼ 1;…; s, by minimizing the sum of the ℓ1-distances4

from the observations, yj, to the corresponding PMP boundary for
each DMU, j¼ 1;…;n; i.e.,

Min
air ;z

j
r Z0

Xn
j ¼ 1

ϵj; where

ϵj : ¼Dℓ1 yj; ∂ PPMP xj
� �� �� �

¼min
zj

max
r ¼ 1;:::;s

zjr�yjr
�� ��n o

: zjA∂ PPMP xj
� �� �	 


: ð4Þ

Let Â; Ẑ
� �

be an optimal solution of (4) with Â¼

0 1 0 1

â11 … â1s
⋮ ⋱ ⋮
âm1 … âms

B@ CA and Ẑ ¼
ẑ11 … ẑn1
⋮ ⋱ ⋮
ẑ1s … ẑns

BB@ CCA, then we suggest to use
Fig. 2. Illustration of model (4), first feasible solution.
âir , i¼ 1;…;m, r¼ 1;…; s, as estimations of the technical coeffi-
cients air , i¼ 1;…;m, r ¼ 1;…; s. Accordingly, we define the esti-
mation of the PMP output production set as
P̂PMP xð Þ ¼ yARs

þ : Âyrx
n o

. In this way, the optimal value of εj is

ε̂j ¼Dℓ1 yj; ∂ P̂PMP xj
� �� �� �

.

Why do we select the ℓ1 norm to calculate the distance from yj

to the PMP boundary in our setting? In the DEA literature we find
many possible measures representing the distance from a DMU to
the efficient frontier in the output space: radial measures, the
Russell output measure, output-oriented weighted additive mod-
els, and the output directional distance function, among others.
Obviously, the ℓ1-distance is a priori as good as any. Nevertheless,
this measure satisfies an interesting property given the char-
acteristics of our problem. In particular, it is a mathematical dis-
tance in contrast to most approaches and, therefore, the estimated
ℓ1-distances will indicate the smallest required modifications in
outputs to reach the PMP boundary for each DMU.

Next, we illustrate model (4) by means of a simple numerical
example. In Table 1 there are nine observations, labeled from A to
I, which consume two inputs to produce two outputs. There are
two different levels of inputs. While DMUs A, B, C D and E
4 The ℓ1 norm is not units invariant. Nevertheless, in order to impose this
property, Briec [8, p. 125] introduced the weighted Hölder distance functions. In our
case, this means that it is possible to resort in model (4) to a weighted ℓ1 norm
with weights related to the data and satisfying units invariance.
consume 5 units of input 1 and 11 units of input 2, DMUs F, G, H
and I consume 7 units of input 1 and 15 units of input 2. In this
way, it is possible to estimate the boundaries of two PMP output
production sets. In particular, we draw two feasible solutions of
Fig. 3. Illustration of model (4), second feasible solution.
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model (4) for this example. On the one hand, a11 ¼ 1
2, a12 ¼ 1, a21

¼ 2 and a22 ¼ 1, represented in Fig. 2. On the other, a11 ¼ 3
4, a12 ¼ 1,

a21 ¼ 2 and a22 ¼ 1, in Fig. 3.
In both figures, we graphically represent the ball of radius d

with respect of the norm ℓ1 for all DMUs. These distances are
calculated using as a reference the boundary of PPMP 5;11ð Þ ¼

y1; y2
� �

AR2
þ : a11y1þa12r5; a21y1þa22y2r11

n o
for units A, B,

C, D and E, and with respect to PPMP 7;15ð Þ ¼
y1; y2
� �

AR2
þ : a11y1þa12r7; a21y1þa22y2r15

n o
for units F, G,

H and I. Using as optimizing criterion the minimization of the sum
of the distances in model (4), the first feasible solution, with an
objective function value equal to 3, is better than the second fea-
sible solution, which presents an associated objective function
value equal to 3.12. Overall, model (4) seeks the value of the
technical coefficients that minimizes the sum of all the distances.

As a by-product of the solution, we determine for each observation
a projection located on the boundary of the PMP output production
set associated with the product-mix problem. These projections may
be defined from the optimal solution of (4). Let Â; Ẑ

� �
be an optimal

solution of model (4). Then, the corresponding PMP projection plan for
DMUj, j¼ 1;…;n, is ẑj. In Fig. 2, point Dʹ corresponds to the PMP
projection plan of unit D in the sample.5

As the next proposition establishes, the PMP projection plan
generated by the ℓp norm dominates, in the sense of Pareto, the
observed output vector that is being evaluated.

Proposition 1. Let Â; Ẑ
� �

be an optimal solution to the minimization
problem in (4), then ẑjZyj; j¼ 1;…;n.

Proof. The result may be proved by following the same steps as
Briec [8, p. 115] for proving Lemma 1(2).□

On the other hand, by (4), we are calculating the least distance
measure from the assessed points to the boundary of the PMP
output production set. This is related to a stream of the literature
devoted to the application of the Principle of Least Action (see, for
example, [3–5]). PMP projection plans in this way are the closest
points on the boundary of the PMP output production set. In this
way, the coordinates of the projected output vector are as similar
as possible to the observed ones.

Nevertheless, there are a lot of possibilities for selecting a least
distance measure (see [8]). The family of Hölder norms is wide. One
member of this family is the ℓ1 distance that we use. Elaborating
further on the justification of this particular choice, among all Hölder
norms there are two that are known as polyhedral metrics: ℓ1 and ℓ1.
In both cases, the corresponding balls of radius d are polyhedral
convex sets. This is an advantage from a computational point of view if
we compare ℓ1 and ℓ1 metrics with respect to the other Hölder
norms (Euclidean, etc.) because of the existence of corner points that
facilitates its implementation by means of mathematical program-
ming. In particular, as we will show later, using ℓ1 allows us to solve
(4) by applying Mixed Integer Linear Programming (MILP).

We now compare the new approach with a standard Data Envel-
opment Analysis measure. In this respect, the output directional dis-

tance function6 [10] is defined in DEA as D
!

y0; g0; PDEA x0
� �� �¼
5 While in DEA the notions of peers and targets are clear and well-known, this
does not happen in the case of the new approach. The PMP projection plans might
not match a convex or conical combination of observations located on the frontier.

6 Luenberger [26] introduced the concept of benefit function as a representa-
tion of the amount that an individual is willing to trade, in terms of a specific
reference commodity bundle g, for the opportunity to move from a consumption
bundle to a utility threshold. Luenberger also defined a so-called shortage function,
which basically measures the distance in the direction of a vector g of a production
plan from the boundary of the production possibility set. In other words, the
shortage function measures the amount by which a specific plan is short of
max
β

β : y0þβg0APDEA x0
� �� �

; where g0 ¼ g01; :::; g
0
s

� �T
ARs

þ with g0

a0s is the so-called reference direction for the evaluated point y0 and
PDEA x0

� �
denotes the set of producible outputs under the usual

assumptions of DEA. Specifically, PDEA xð Þ ¼ yARs
þ : x; yð ÞATDEA

� �
,

where TDEA ¼ x; yð ÞARmþ s
þ : Xλr

�
x;YλZy; λZ0ng with X ¼

x1;…; xn
� �

ARm�n and Y ¼ y1;…; yn
� �

ARs�n. In this way, the output
directional distance function can be implemented in DEA by way of
the following linear program:

Max
β;λ

β

s:t:
Xλrx0;

YλZy0þβg0;
λZ0n;

βZ0:

ð5Þ

For a recent revision of the main properties of the directional
distance function, see Aparicio et al. [6].

The new approach, based on the ℓ1 metric, is related to the
directional distance function since it coincides with the directional
output distance function for g0 ¼ 1s, as the next proposition establishes.

Proposition 2. Let Â; Ẑ
� �

be an optimal solution to the minimization

problem in (4). The following relationship holds:

ε̂j ¼ D
!

yj;1s; P̂PMP xj
� �� �

¼max
β

β : yjþβ1sA P̂PMP xj
� �n o

; 8 j¼ 1;…;n:

ð6Þ

Proof. See a similar proof in Briec [8], Lemma 2(1).□

Proposition 2 implies that the new approach can be compared
with the Directional Distance Function in DEA in a natural way.
That is what we do in the empirical application.
2.2. Determining Dℓ1 in the product-mix problem

We now characterize the boundary of the estimated PMP out-

put production set, ∂ P̂PMP xj
� �� �

, in terms of the next proposition.

An output vector ~y is located on ∂ P̂PMP xj
� �� �

if and only if it is a

feasible output vector given xj and there also exists at least a
resource constraint that supports ~y.

Proposition 3. Let Â; Ẑ
� �

be an optimal solution to the minimization

problem in (4). Let also
Ps
r ¼ 1

âir40 for i¼ 1;…;m. Then, ~yA∂

P̂PMP xj
� �� �

if and only if ~yA P̂PMP xj
� �

and ( i0 ¼ 1;…;m such that

Ps
r ¼ 1

âi0r ~yr ¼ xji0 .

Proof. See Appendix A.

Given the possibility of rewriting the boundary of the PMP
output production set through the hyperplanes associated with
the constraints of (2), one may calculate each ε̂j, with j¼ 1;…;n, by
resorting to Ascoli's formula, as the following proposition states.
(footnote continued)
reaching the frontier of the technology. Chambers et al. [10] redefined the benefit
function and the shortage function as efficiency measures, introducing to this end
the so-called directional distance function.
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Proposition 4. Let Â; Ẑ
� �

be an optimal solution to the minimization

problem in (4) with
Ps
r ¼ 1

âir40 for i¼ 1;…;m. Then

ε̂j ¼ min
i ¼ 1;…;m

xji �
Ps
r ¼ 1

âiry
j
r

Ps
r ¼ 1

âir

8><
>:

9>=
>;.

Proof. It is a direct consequence of Ascoli's formula (see, for
example [29]).□

As we suggested, a way of estimating the values of the technical
coefficients air , i¼ 1;…;m, r¼ 1;…; s, is by minimizing the sum of
the ℓ1-distances from the observations, yj, to the corresponding

PMP boundary, i.e., Min
Pn
j ¼ 1

ϵj. By Proposition 4, the problem to

be solved in order to estimate air , i¼ 1;…;m, r¼ 1;…; s, from a
dataset of n DMUs is as follows7:

Min
air

Xn
j ¼ 1

min
i ¼ 1;…;m

xji�
Xs

r ¼ 1

airyjr

Xs

r ¼ 1

air

8>>>><
>>>>:

9>>>>=
>>>>;

s:t:
Ayjrxj; j¼ 1;…;n ð7:1Þ
A1s40m; ð7:2Þ
airZ0; i¼ 1;…;m; r¼ 1;…; s ð7:3Þ

ð7Þ

In (7), constraint (7.2) has been added to assure that each
resource has a technological relationship with at least one output
of the production process. Otherwise, a resource of this type could
be deleted from the approach. Additionally, model (7) is not a
standard “linear” program, making its implementation difficult in
practice. Fortunately, as the next proposition establishes, model
(7) may be solved through a Mixed Integer Linear Programming
model.

Proposition 5. Let α�;B�; δ�;hj�; dj�
n o

be an optimal solution of (8)
with α�40m. Then the optimal value of (8) coincides with the opti-
mal value of (7) and âir ¼ b�ir=α

�
i , 8 i; r, is an optimal solution to (7).

Min
α;b;δ;hj ;dj

1T
nδ

s:t:
Byjþδþhj ¼ αTxj; j¼ 1;…;n ð8:1Þ
B1s ¼ 1m; ð8:2Þ
hjrMdj; j¼ 1;…;n ð8:3Þ
1T
md

jrm�1; j¼ 1;…;n ð8:4Þ
αZ0m; ð8:5Þ
birZ0; i¼ 1;…;m; r¼ 1;…; s ð8:6Þ
δZ0n; ð8:7Þ
hjZ0m; j¼ 1;…;n ð8:8Þ
djiA 0;1f g; i¼ 1;…;m; j¼ 1;…;n ð8:9Þ

ð8Þ

where α¼ α1; :::;αmð ÞT , B¼
b11 … b1s
⋮ ⋱ ⋮
bm1 … bms

0
B@

1
CA, δ¼ δ1; :::; δn

� �T ,
hj ¼ hj
1; :::;h

j
m

� �T
, dj ¼ dj1; :::;d

j
m

� �T
and MARþ is a large positive

number.
7 The constraints ((7.1)–(7.3)) and, in particular, constraint (7.2), yield an
associated set for the decision variables in (7) that is, in general, neither open nor
closed.
Proof. See Appendix A.

The hypothesis that α�40m in Proposition 5 is not really
demanding. Indeed, if yj40s for all j¼ 1;…;n, we have that by
(8.1), (8.2) and the non-negativity of δ and hj, αi has to be strictly
greater than zero for all i¼ 1;…;m.

Model (8) yields directly the estimations of the technical
coefficients air and the optimal value of model (7). In addition, the
optimal solution of model (8) generates the value of each ε̂j

through the variables δ�j : ε̂j ¼ min
i ¼ 1;…;m

xji �
Ps
r ¼ 1

âiry
j
r

Ps
r ¼ 1

âir

8><
>:

9>=
>;¼ δ�j þ min

i ¼ 1;…;m

n o

hj�i ¼ δ�j since, by (8.4) and (8.3), we know that ( i0 ¼ 1;…;m

such that hj�
i0 ¼ 0 and, therefore, min

i ¼ 1;…;m
hj�
i

n o
¼ 0.

In the next section we compare the output production set
generated from the PMP and that associated with the standard
Data Envelopment Analysis.
3. A comparison with respect to Data Envelopment Analysis

In a context of engineering production processes such as
manufacturing or agriculture, where the production-mix problem
is frequently used to plan optimal outputs through LP, we intro-
duced in the previous section an approach to estimate a common
set of technical coefficients for all the units characterized by the
same underlying technology. To that end, we invoked Farrell's
principle of conservation to determine the minimal production set
associated with the linear resource constraints that envelops all
the observations. As implication, a polyhedral output production
set is estimated based on exactly m hyperplanes, being m the
number of firm's different inputs. In this way, the geometrical
shape of the estimated technology justifies the comparison
between DEA, which also generates polyhedral production possi-
bility sets, and the new approach. Accordingly, in this section we
develop the existing relationship between these two techniques,
which complements the previous equivalence between Hölder's
Dℓ1 distance and the directional distance function in the approach
based on the PMP.

In the following we particularly show that the output produc-
tion set generated by DEA is a subset of the estimated PMP output
production set P̂PMP xð Þ. Given the input vector x, as we afore-
mentioned, PDEA xð Þ denotes the set of producible outputs
under the assumptions of DEA. Specifically, PDEA xð Þ ¼
yARs

þ : x; yð ÞATDEA
� �

, where TDEA is estimated from a sample of
observations assuming the postulates of convexity, inefficiency,
ray unboundedness and minimal extrapolation (see [7, p. 1081]).
Proposition 6 states the relationship between PDEA xð Þ and P̂PMP xð Þ.

Proposition 6. PDEA xð ÞD P̂PMP xð Þ.

Proof. See Appendix A.

From Proposition 6, we know that P̂PMP xð Þ is an outer approx-
imation of PDEA xð Þ in the sense of Färe and Li [16] or, alternatively,
PDEA xð Þ may be seen as an inner approximation of P̂PMP xð Þ. More-
over, by Proposition 6, it is likely in empirical applications that
some technical efficient DMUs under DEA is no longer on the
boundary under the new methodology. This fact will be illustrated
in Section 4.

The following corollary is a direct implication of Proposition 6,
using as reference direction that corresponding to the Tshebishev
metric (see [8]).



Fig. 4. DEA vs. the new approach.

Table 2
Descriptive statistics (inputs and outputs).

SAWU FAWU Citrus (ha) T&S fruit trees (ha)

Mean 1429.4 909.4 612.4 374.0
Median 497.5 700.0 196.5 200.0
Min 8.0 125.0 1.0 6.0
Max 12,600.0 2750.0 5000.0 5200.0
Stand. dev. 2724.8 698.1 947.4 650.2
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Corollary 1. For all j¼ 1;…;n, the following inequality holds:

D
!

yj;1s; PDEA xj
� �� �

r D
!

yj;1s; P̂PMP xj
� �� �

:

Corollary 1 states that the DEA technical inefficiency is never
greater than the distance to the PMP boundary calculated with the
new approach. Additionally, whereas DEA spans the production
frontier on a “few” influential DMUs, those associated with Pareto-
Koopmans efficient points, the introduced methodology uses the
information of all observations in the sample for calculating the
boundary of the PMP output production set. This is obviously
consequence of the way in which the frontier is determined under
the new approach: minimizing the sum of the technical ineffi-

ciencies, i.e. Min
Pn
j ¼ 1

ϵj.

We illustrate these ideas in Fig. 4(a). Let us suppose that we have
observed the data corresponding to four firms: A, B, C and D, which
use two inputs to produce two outputs. Seeking simplicity, let us
assume that all firms consume the same quantities of resources
(inputs). In this scenario, the efficient frontier estimated by DEA
would consist of two bold segments (AB and BC) and the dashed
lines. In contrast, the new approach with the parameter m¼2 (the
number of inputs), yields the bold solid lines as boundary of the PMP
output production set. Now, if we assume that three new firms are
observed (E, F and G), improving the information of the sample
(larger samples are always preferred in statistics), we obtain the
same efficient frontier for DEA than with the initial four DMUs. This
is because the three new firms are dominated in the sense of Pareto
by a combination of A, B and C, constituting the Pareto-Koopmans
DMUs in this example. In contrast, all the observations (even the
technically inefficient E, F and G) reshape the frontier estimated with
the new approach (see Fig. 4(b), where the bold solid lines change).
This feature is shared with other modern techniques as, for example,
the C2NLS approach by Kuosmanen and Johnson [24] in comparison
with DEA.
4. Empirical illustration

This section includes an empirical illustration of the use of the
methodology proposed in this paper. In particular, we are inter-
ested in determining technical coefficients as a complementary
information to that provided usually by DEA. Additionally, we are
interested in showing that the output production sets determined
by both methodologies are different in practice.

Kaiser and Messer [22] point out that agriculture is one of the
main economic sectors using LP modeling and, particularly, the
product-mix problem. Many land-grant universities, through their
cooperative extension programs, offer numerous types of LP
models to assist farmers in their decision-making process. Speci-
fically, we estimate technical inefficiencies for a set of Spanish
farms. Following Kaiser and Messer’s [21, p. 137] agricultural
example, and the specific set of inputs and outputs that they
consider, we select data on the fixed number of hectares of land
that each farm needs to best allocate to two types of trees (the
outputs): citrus fruit, and temperate and subtropical (t&s) fruit
trees. The inputs in this case are hired labor and family labor, both
measured in full time equivalents. The data was taken from the
Agricultural Census and the Survey on Agricultural Production
Methods (Spanish National Statistics Institute [20]).

Farms cultivating jointly and solely citrus and t&s fruit trees
have been considered. In addition, all of them are farms with
irrigation systems, in an attempt to increase technological homo-
geneity. Farms are located in the southern Spanish region of
Andalusia, where it is possible to find the highest number of farms
that share both kinds of fruit trees. Andalusia, with more than
104,500 ha, accounts for more than 20% of the Spanish irrigated
area devoted to citrus and t&s fruit trees, citrus accounting for
75,249 ha (72%) while t&s fruit trees cover 29,314 ha (28%). It
should finally be noted that according to the Spanish Agricultural
Census [20], there were 86 fruit trees farms in Andalusia that met
the above-mentioned conditions, constituting the studied pro-
duction units. In the last years this region has experienced a
remarkable growth in productivity as a result of technological
progress [27].



Table 3
Estimated distances to the frontier with the new methodology and DEA.

PMP model
(8)

DEA model
(5)

PMP model
(8)

DEA model
(5)

Farm 1 475.6 61.6 Farm 44 2389.7 300.8
Farm 2 2411.8 321.0 Farm 45 254.8 35.4
Farm 3 7117.3 932.8 Farm 46 269.4 38.0
Farm 4 6727.9 774.3 Farm 47 517.5 67.4
Farm 5 7887.4 966.0 Farm 48 848.1 102.5
Farm 6 533.0 63.7 Farm 49 29.4 3.1
Farm 7 5689.6 748.5 Farm 50 0.0 0.0
Farm 8 5626.8 617.6 Farm 51 1790.4 223.6
Farm 9 7531.9 929.0 Farm 52 5667.7 701.2
Farm 10 4192.2 567.9 Farm 53 262.5 35.2
Farm 11 541.0 34.9 Farm 54 580.1 79.0
Farm 12 1213.1 0.0 Farm 55 361.8 0.0
Farm 13 7556.2 901.9 Farm 56 1365.7 181.3
Farm 14 7441.1 924.3 Farm 57 673.5 42.6
Farm 15 0.0 0.0 Farm 58 694.6 89.5
Farm 16 42.2 6.0 Farm 59 526.1 67.8
Farm 17 1506.9 191.4 Farm 60 600.8 84.8
Farm 18 2310.2 283.9 Farm 61 493.4 49.8
Farm 19 6812.0 777.7 Farm 62 12,423.8 1518.9
Farm 20 11,772.5 1279.5 Farm 63 1608.1 35.6
Farm 21 3036.9 368.0 Farm 64 509.0 64.4
Farm 22 723.9 93.3 Farm 65 8525.3 1147.0
Farm 23 1446.1 167.4 Farm 66 515.5 66.5
Farm 24 3044.3 400.4 Farm 67 565.1 79.8
Farm 25 811.9 112.1 Farm 68 706.7 95.4
Farm 26 5736.3 757.2 Farm 69 9.3 1.3
Farm 27 8220.1 996.2 Farm 70 0.0 0.0
Farm 28 1.4 0.2 Farm 71 13,151.2 1344.3
Farm 29 909.6 110.7 Farm 72 6349.5 662.8
Farm 30 933.6 114.6 Farm 73 7292.5 939.8
Farm 31 20.9 2.9 Farm 74 6448.4 788.9
Farm 32 819.8 101.5 Farm 75 484.1 0.0
Farm 33 1518.4 181.4 Farm 76 667.3 5.9
Farm 34 751.0 95.7 Farm 77 2773.1 363.0
Farm 35 775.4 95.1 Farm 78 11,693.1 1362.5
Farm 36 2836.3 381.2 Farm 79 12,422.3 1535.7
Farm 37 749.7 96.3 Farm 80 1827.3 221.9
Farm 38 3634.8 491.1 Farm 81 2267.4 297.0
Farm 39 1642.5 196.4 Farm 82 2499.3 282.8
Farm 40 1405.0 172.6 Farm 83 5788.8 685.7
Farm 41 817.6 99.7 Farm 84 1060.2 114.6
Farm 42 230.7 15.2 Farm 85 3487.0 469.6
Farm 43 5064.3 655.5 Farm 86 2243.3 264.7

Table 4
Hyperplanes defining the standard DEA technology.

DEA hyperplane p1 p2 c1 c2 Ratio

1 11.083 1.534 1.000 71.102 0.138
2 13.201 1.000 40.679 8.559 0.076
3 36.751 1.000 165.408 1.886 0.027
4 8.169 7.663 1.000 79.354 0.938
5 0.149 0.000 0.050 0.801 –

6 0.135 0.000 0.010 0.856 –

7 0.000 0.007 0.993 0.000 –

8 0.000 0.089 0.000 0.911 –

9 0.138 0.000 0.862 0.000 –

10 0.218 0.000 0.626 0.156 –

11 0.101 0.000 0.000 0.899 –
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Descriptive data for the selected farms are shown in Table 2.
Inputs are: (1) Salaried Annual Working Units (SAWU). Data for
this variable have been compiled considering the number of
agricultural working days during the campaign comprised
between 1 October 2008 and 30 September 2009. Usual working
day refers either to at least one full day or full time equivalent
(“eight-hour day”, i.e., the sum of several part time days until an
8 h day is reached); and (2) Family Annual Working Units (FAWU).
The same that in the former case but considering family AWU
instead of salaried one. Outputs are: (1) Citrus fruit area (hectares)
and (2) Temperate and subtropical (t&s) fruit trees area (ha)

Using model (8), we obtain the following estimated technical
coefficients: â11 ¼ 0:159; â12 ¼ 0:005; â21 ¼ 0:051 and â22 ¼ 0:097.
These values lead to the following constraints:

0:159y1þ0:005y2rx1 SAWU½ � ð9:1Þ
0:051y1þ0:097y2rx2 FAWU½ � ð9:2Þ ð9Þ

These coefficients show, on one hand, that each hectare devo-
ted to citrus employs 0.159 SAWU and 0.051 FAWU, while each t&s
fruit trees hectare needs 0.005 SAWU and 0.097 FAWU. These
results are coherent with the agronomic reality; especially in
Andalusia, where the citrus crops has shown a strong growth over
the past few years, with the average farm size increasing and
experiencing a significant improvement in management practices.
This means a considerable weight of the salaried labor (pruning,
picking, fertilization, etc.), while t&s fruit trees are cultivated in
more traditional family farms, with a relatively minor dimension,
and where the externalization of agricultural works is lower
[21,28].

These coefficients constitute a useful management tool for
farmers, when quantifying for each kind of fruit trees the optimal
labor input, while this allocation provides guidelines for public
authorities in setting subsidies or adequate unemployment bene-
fits policies for farmers and farm workers.

Table 3 reports the optimal values of model (5), with g0 ¼ 1s,
and model (8), which represent the distances from the analyzed
86 DMUs to the corresponding boundary. As seen from this table,
under DEA there are six efficient DMUs, while under the new
approach half of them do not belong to the PMP boundary. Besides
the mean distance is 2967 for the product-mix problem against a
mean value of 355.1 in DEA. Indeed, we find statistically significant
differences between the two methods running a Wilcoxon signed
rank test on two paired samples (p-value¼2:55U10�15).

These differences are due, in part, to the different number of
facets estimated with each method. While in DEA this number is
not a priori restricted, under the new approach this quantity
coincides with the number of inputs. In this way, in order to
compute the number of facets that determine the standard DEA
production possibility set, we resort to Qhull (see [32]). Accord-
ingly, we find four hyperplanes associated with strongly efficient
facets (all coefficients are strictly positive) and seven hyperplanes
related to weakly efficient facets (some coefficient is zero). The
general mathematical expression for any of these hyperplanes is
p1y1þp2y2�c1x1�c2x2 ¼ 0. Table 4 shows the corresponding
coefficients. Additionally, we have reported in this same table the
ratio between the output coefficients (see the last column) for the
strongly efficient facets, in order to compare the DEA hyperplanes
with those determined by the PMP approach. In this way, for (9.1)
we have that this ratio equals 0.031 (¼0.005/0.159), while for (9.2)
we have a value of 1.902 (¼0.097/0.051). Consequently, we
observe that the first PMP facet has a similar ‘slope’ than the third
DEA hyperplane, while we cannot conclude the same for the
second PMP facet.

To understand in more detail what the gaps between the two
frontiers mean, and inspired by Fig. 4(b) where a group of units is
attracting down one of the PMP facets of the example, we carried
out a K-Means Cluster Analysis. Accordingly, we determined seven
clusters of farms (see Table 5). Additionally, we calculated the PMP
facet where each unit is projected by solving model (8) (see the
last column in Table 5). Note, however, that the determination of
the facet where each unit is projected through model (8) is inde-
pendent of the clusters computed. Each farm is associated with a
PMP facet regardless of the cluster to which it belongs and the



Table 5
Clusters and PMP projection facets.

Farm Cluster PMP projection
facet

Farm Cluster PMP projection
facet

21 1 2 64 3 1
34 1 2 67 3 1
37 1 2 81 3 1
44 1 2 82 3 1
52 1 2 84 3 1
58 1 2 86 3 1
59 1 2 15 4 2
66 1 2 2 5 1
80 1 2 6 5 1
8 2 1 7 5 1

12 2 2 10 5 1
55 2 1 11 5 1
57 2 1 23 5 1
63 2 1 24 5 1
75 2 2 26 5 1
76 2 1 36 5 1
1 3 1 38 5 1

16 3 1 43 5 1
17 3 1 60 5 1
18 3 1 68 5 1
25 3 1 69 5 1
28 3 1 77 5 1
29 3 2 85 5 1
30 3 2 20 6 2
31 3 1 22 6 2
32 3 2 70 6 2
33 3 2 71 6 2
35 3 2 72 6 2
39 3 2 74 6 2
40 3 2 83 6 2
41 3 1 3 7 1
42 3 1 4 7 1
45 3 1 5 7 2
46 3 1 9 7 1
47 3 1 13 7 2
48 3 2 14 7 1
49 3 1 19 7 1
50 3 1 27 7 2
51 3 1 62 7 2
53 3 1 65 7 1
54 3 1 73 7 1
56 3 1 78 7 1
61 3 1 79 7 2

Table 6
Descriptive statistics of the results.

PMP model (8) DEA model (5)

Mean 2967.0 355.1
Median 1425.5 170.0
Min 0.0 0.0
Max 13,151.2 1535.7
Stand. dev. 3403.9 408.4
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number of groups determined by the cluster analysis technique.
From the results, we conclude that 54 out of 86 farms are pro-
jected onto the first PMP facet (9.1), while 32 units have the sec-
ond PMP facet (9.2) as reference. Regarding the clusters, on the
one hand, there is a group of units that exert an effect of attraction
exclusively on the first PMP facet (cluster 5, consisting of 16
farms). On the other hand, two clusters pull down the second PMP
facet in an exclusive way: cluster 1 (with 9 units) and cluster 6
(with 7 units). However, we observe a mix of facets for the
remaining clusters (except for the case of cluster 4, which only
consists of one farm).

Finally, descriptive statistics for the results of Table 3 are shown
in Table 6. Even though results are different both statistically and
in one order of magnitude, they are nevertheless correlated as
Pearson's coefficient is 0.993, and Spearman's rank-order coeffi-
cient is 0.967.
5. Conclusions

We introduced a new methodology based on the product-mix
problem to assess the production performance of firms, which is
related to the well-known Data Envelopment Analysis approach,
thereby complementing its results with information about the value of
technical coefficients. As in DEA the new approach assumes a common
technology, offering novel analytical possibilities to researchers inter-
ested in this field by introducing the ability of performing efficiency
evaluation. An outstanding feature of the new approach is, therefore,
the possibility of estimating the technical coefficients in the evaluation
process, thereby determining the underlying relationship between
each pair of inputs and outputs.

The new approach can be readily implemented as it departs
from the product-mix problem used by process engineers in many
industrial and primary sectors, particularly manufacturing and
agriculture. The derived piece-wise linear output production set,
based on the Tshebishev metric, is compared with the Directional
Distance Function in the context of Data Envelopment Analysis. As
a result of this comparison we prove that the new approach yields
a production possibility set representing an outer approximation
of that corresponding to DEA (vice versa, DEA is an inner
approximation of the former), which extends to their efficient
subsets.

In this respect, we have found statistically significant differ-
ences between the two methodologies in an empirical application
using data from Andalusian farms in Spain, reflecting the differ-
ence that exists between the geometry of the estimated boundary
corresponding to each technique. Research exploring the rela-
tionship between the new approach and several DEA models,
thereby considering more complex applications and larger data-
bases, represents a good avenue for further follow-up research.
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Appendix A
Proof of Proposition 3. Without loss of generality, we may
assume that ~ya0s.
(1) If ~yA∂ PPMP xj

� �� �
then ~yAPPMP xj

� �
since ∂ PPMP xj

� �� ��
PPMP xj

� �
. Let us assume that Â ~yoxj. Under this assumption,

we will use D
!

~y;1s; PPMP xj
� �� �¼ max β : ~yþβ1sAPPMP xj

� �� �
;

which coincides with the definition of the directional output
distance function considering g ¼ 1s. By (2), this optimization

program is equivalent to max β : Â ~yþβ1s
� �

rxj
n o

. From the

set of constraints, we obtain that βr min
i ¼ 1;…;m

xji �
Ps
r ¼ 1

âir ~yr

Ps
r ¼ 1

âir

8><
>:

9>=
>;. In
this way, β�, the optimal solution of the optimization program,
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is β� ¼ min
i ¼ 1;…;m

xji �
Ps
r ¼ 1

âir ~yr

Ps
r ¼ 1

âir

8><
>:

9>=
>;. Therefore, D

!
~y;1s; PPMP xj

� �� �¼
� �� �
β�a0, implying that ~y =2∂ PPMP xj (see [10]). This is a contra-

diction. Consequently, ( i0 ¼ 1;…;m such that
Ps
r ¼ 1

âi0r ~yr ¼ xji0 .
(2) Let ~yAPPMP xj

� �
such that ( i0 ¼ 1;…;m with

Ps
r ¼ 1

âi0r ~yr ¼ xji0 . We

prove that ~yA∂ PPMP xj
� �� �

. Let us assume that ( ~β40 such that

~yþ ~β1sAPPMP xj
� �

, which is equivalent to say that D
!

~y;1s;ð
PPMP xj

� �Þ40, i.e. ~y =2∂ PPMP xj
� �� �

(see [10]). Then, by (2),

A ~yþ ~β1s

� �
rxj. In particular, for i0 we have that

Ps
r ¼ 1

âi0r ~yro
Ps
r ¼ 1

âi0r ~yrþ ~β
� �

rxji0 , which is a contradiction. Note

that
Ps
r ¼ 1

âi0r ~yra0 since
Ps
r ¼ 1

âi0r ~yr ¼ xi0 j and we assume that

xj40m. Therefore, ~yA∂ PPMP xj
� �� �

.□

Proof of Proposition 5. First, let us check whether âir ¼ b�ir=α
�
i is a

feasible solution of model (7). For each i¼ 1;…;m and j¼ 1;…;n,

we have that
Ps
r ¼ 1

âiry
j
r ¼

Ps
r ¼ 1

b�ir=α
�
i

� �
yjr ¼ 1

α�
i

Ps
r ¼ 1

b�iry
j
rrxji�

δ�j
α�
i
�hj�i

α�
i
r

xji as a consequence of (8.1) and the non-negativity of δ and hj.

Additionally,
Ps
r ¼ 1

âir ¼
Ps
r ¼ 1

b�ir=α
�
i

� �¼
Ps
r ¼ 1

b�ir

α�
i

¼ 1
α�
i
40 by (8.2) and âir

¼ b�ir=α
�
i Z0 by (8.6) and α�

i 40. Regarding the corresponding

objective value in (7), we have that
Pn
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i ¼ 1;…;m
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Ps
r ¼ 1

âiry
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i x
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¼ Pn

j ¼ 1
δ�j þ

Pn
j ¼ 1

min
i ¼ 1;…;m

hj�i
n o

by (8.1).

Now, by (8.4) and (8.3), we know that for each j, j¼ 1;…;n, ( i0 ¼
1;…;m such that hj�

i0 ¼ 0. Therefore,
Pn
j ¼ 1

min
i ¼ 1;…;m

hj�i
n o

¼ 0 and

Pn
j ¼ 1

min
i ¼ 1;…;m

xji �
Ps
r ¼ 1

âiry
j
r

Ps
r ¼ 1

âir

8><
>:

9>=
>;¼ Pn

j ¼ 1
δ�j , which coincides with the opti-
mal value of (8). Let us now suppose that there exists air ,
i¼ 1;…;m, r¼ 1;…; s, as feasible solution to (7), with

Pn
j ¼ 1

min
i ¼ 1;…;m

xji �
Ps
r ¼ 1

airy
j
r

Ps
r ¼ 1

air

8><
>:

9>=
>;o Pn

j ¼ 1
δ�j . From air , i¼ 1;…;m, r¼ 1;…; s,
we define αi : ¼ Ps
r ¼ 1

air

� ��1

, i¼ 1;…;m, and bir : ¼ airαi,

i¼ 1;…;m, r¼ 1;…; s, δj : ¼ min
i ¼ 1;…;m

αi xji�
Ps
r ¼ 1

airy
j
r

� �	 

,

j¼ 1;…;n. Let M jð Þ be the set of input indices where the minimum

min
i ¼ 1;…;m

αi xji�
Ps
r ¼ 1

airy
j
r

� �	 

is achieved. In this way, we define the

set of binary decision variables dij, i¼ 1;…;m, j¼ 1;…;n, as

dij ¼
0 if iAM jð Þ
1 otherwise

	

Additionally, we define h
j
i, i¼ 1;…;m, j¼ 1;…;n, as follows:

h
j
i ¼

0 if iAM jð Þ

α ix
j
i�

Xs

r ¼ 1

biryjr�δ j otherwise

8><
>:
Next, we show that α;B; δ;h
j
; d

jn o
is a feasible solution of

model (8). Regarding (8.1), we have that if iAM jð Þ, then Ps
r ¼ 1

biry
j
r

þδjþh
j
i ¼ αi

Ps
r ¼ 1

airy
j
rþ min

i ¼ 1;…;m
xji�

Ps
r ¼ 1
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j
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� �
¼ αix

j
i since

min
l ¼ 1;…;m

αl xjl�
Ps
r ¼ 1
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j
r

� �	 

¼ αi xji�

Ps
r ¼ 1
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j
r

� �
by the definition

of M jð Þ, and if i=2M jð Þ, then Ps
r ¼ 1

biry
j
rþδjþh

j
i ¼ αix

j
i by the definition

of h
j
i. Compliance of (8.2) is evident by the definition of bir ,

i¼ 1;…;m, r¼ 1;…; s. As for (8.3), by the definitions of h
j
i and d

j
i,

this constraint is satisfied as long as M was a positive number
sufficiently large. Constraint (8.4) is satisfied because M jð Þa∅ for
all j¼ 1;…;n. Finally, ((8.5)–(8.9)) are evident. Consequently,

α;B; δ;h
j
; d

jn o
is a feasible solution to (8) with an objective func-

tion equaling 1T
nδ¼

Pn
j ¼ 1

min
i ¼ 1;…;m

xji �
Ps
r ¼ 1

airy
j
r

Ps
r ¼ 1

air

8><
>:

9>=
>;, which is strictly less
than 1T
nδ

�. This last result contradicts the fact that
α�;B�;δ�;hj�; dj�

n o
is an optimal solution of (8). Hence, âir ¼ b�ir=α

�
i ,

i¼ 1;…;m, r¼ 1;…; s, is an optimal solution of (7). □

Proof of Proposition 6. By minimal extrapolation [7], TDEA is the

intersection set of all T̂ satisfying convexity, inefficiency and ray
unboundedness, and subject to the condition that each observa-

tion belongs to T̂ . On the other hand, P̂PMP xð Þ may be rewritten

as P̂PMP xð Þ ¼ yARs
þ : x; yð ÞA T̂PMP

n o
, where T̂PMP ¼ x; yð ÞARmþ s

þ :
�

Âyrxg. Now, we prove that the set T̂PMP satisfies convexity, inef-
ficiency and ray unboundedness and, additionally, any observation

belongs to T̂PMP . First, T̂PMP is convex because it is the intersection

of m semi-spaces. Second, let x; yð Þ belong to T̂PMP and let xZx and

yry. Then, Âyr Âyrxrx, which implies that x; yð ÞA T̂PMP . Con-

sequently, T̂PMP meets the axiom of inefficiency. Third, for the

same x; yð Þ, we have that Â θy
� �

rθx, is equivalent to Âyrx, for all

θ40, which means that θx;θy
� �

A T̂PMP . Therefore, T̂PMP satisfies

ray unboundedness. Finally, by (7.1) we have that Âyjrxj,

j¼ 1;…;n, which by the definition of set T̂PMP means that xj; yj
� �

A T̂PMP for all j¼ 1;…;n. As a consequence of all these steps, we

have that TDEAD T̂PMP . Finally, this implies that PDEA xð ÞD P̂PMP xð Þ.□
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