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Abstract A quasi-static mixed boundary value problem of incremental elasto-plasticity for a con-

tinuously inhomogeneous body is considered. Using the two-operator Green-Betti formula and the

fundamental solution of a reference homogeneous linear elasticity problem, with frozen initial or tan-

gent elastic coefficients, a boundary-domain integro-differential formulation of the elasto-plastic prob-

lem is presented, with respect to the displacement rates and their gradients. Using a cut-off function

approach, the corresponding localized parametrix of the reference problem is constructed to reduce

the elasto-plastic problem to a nonlinear localized boundary-domain integro-differential equation. Al-

gorithms of mesh-based and mesh-less discretizations are presented resulting in sparsely populated

systems of nonlinear algebraic equations for the displacement increments.

1 Introduction

It is well known, see e.g. [1–5], that using a fundamental solution of the reference linear elastic

problem, with the initial elastic coefficients, in the corresponding Green-Betty identity, an elasto-

plastic problem for a homogeneous body can be reduced to a non-linear boundary-domain integral

equation for increments, with singular domain integrals and hyper-singular boundary integrals. Using

an iteration procedure, one can further reduce the problem to a sequence of purely boundary integral

equations.

However, the reference fundamental solution is usually highly non-local, which leads after dis-

cretization to a system of algebraic equations with a dense matrix. Moreover, the fundamental solution

is generally not available in an explicit form if the material is inhomogeneous (functionally graded),
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i.e. the coefficients of the reference problem vary in space. In addition, an evaluation of the singular

volume integrals and hyper-singular domain integrals increases the complexity of the numerical code

and reduces its accuracy.

To prevent similar difficulties for linear scalar (heat transfer) equation in inhomogeneous medium,

some parametrices (Levi functions) localized by cut-off function multiplication were constructed and

implemented in [6]. This reduced the linear Boundary Value Problem (BVP) with variable coefficient

to a linear Localized Boundary-Domain Integral or Integro-Differential Equation (LBDIE or LBDIDE),

which leaded after a mesh-based or mesh-less discretization to a linear algebraic system with a sparse

matrix. Some mesh-based numerical implementations of the linear LBDIE were presented in [7, 8].

Somewhat different LBDI(D)E formulations and numerical realizations were presented in [9, 10].

Extending approach of [6], the mixed BVP for a second order scalar nonlinear (quasi-linear) elliptic

PDE with the variable coefficient dependent on the unknown solution was reduced in [11,12], to quasi-

linear LBDIDEs. For the case when the variable coefficient depends also on the BVP solution gradient,

some quasi-linear two-operator LBDIDEs were obtained in [12, 13]. The approach was extended

in [14, 15] to the mixed BVP for the system of quasi-linear partial differential equations of physically

nonlinear elasticity (with small deformation gradients) for continuously inhomogeneous body. Another

approach based on local parametrices that are Green functions for an auxiliary problem on local

spherical domains, was used in [16–19] reducing some linear and non-linear problems for a body

with a special inhomogeneity to local boundary-domain integral equations solved numerically by the

mesh-less methods.

In this paper, extending results of [20], we apply the localization approach of [6, 11–15] to the

mixed BVP for the system of incremental elasto-plasticity (with small deformation gradients) for

continuously inhomogeneous body. First, we present reduction of the BVP to either a united direct

two-operator nonlinear BDIDE of the second kind for the displacement rates (or increments) or to a

partly segregated direct two-operator nonlinear BDIDE of the third kind for the displacement rates

(or increments) and unknown boundary tractions. The equations include at most the first derivatives

of the unknown solution, weakly singular integrals over the domain and at most Cauchy-type singular

integrals over the boundary. Then we present a localized version of the BDIDEs and describe their

mesh-based and mesh-less discretizations.

2 Elements of Incremental Elasto-Plasticity

Let u(x) = ui(x) be the displacement vector in IRn, where n is either 2 or 3;

εij(x) = [ui,j(x) + uj,i(x)]/2 (1)
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be the strain tensor, σij(x) be the stress tensor. The comma in front of a superscript means derivative

with respect to the corresponding coordinate. Summation in repeated indices is further supposed from

1 to n unless stated otherwise.

Constitutive equations of the incremental elasto-plasticity can be written as

εij(x) = εe
ij(x) + εp

ij(x), (2)

σij(x) = ae
ijkl(x)εe

kl(x), (3)

ε̇p
ij(x) = Gij(ε(x), σ(x), x)Gkl(ε(x), σ(x), x)σ̇kl(x)H[Gpq(ε(x), σ(x), x)σ̇pq(x)] (4)

Here the over dot means derivative with respect to time; ae
ijkl(x) is a known function of the coordinates

x, such that ae
ijkl(x) = ae

jikl(x) = ae
ijlk(x) = ae

klij(x) and

εkla
e
ijkl(x)εkl ≥ 0 ∀εkl; (5)

the symmetric tensor Gij(ε, σ, x) is a known functional on the loading history, {ε} and {σ}, and of the

current state, ε and σ, at point x; the multiplier with the Heaviside function, H[z] :=





1, z ≥ 0;

0, z < 0
,

is employed in (4) to ensure that the plastic strain increment is zero during unloading, which follows

particularly from the Drucker principal in plasticity.

Relations (1)-(4) and condition (5) allow to express the stress rate in terms of the displacement

rate gradients,

σ̇ij(x) = aijkl(σ(x), ε(x),∇u̇(x), x)u̇k,l(x), (6)

where aijkl(σ, ε,∇u̇, x) is the current tangent moduli tensor, given by the formula

aijkl(σ, ε,∇u̇, x) := ae
ijkl(x)− gij(σ, ε, x)gkl(σ, ε, x)H[gpq(σ, ε, x)u̇p,q(x)], (7)

gij(σ, ε, x) :=
ae

ijkl(x)Gkl(σ, ε, x)√
1 + Gpq(σ, ε, x)ae

pqrs(x)Grs(σ, ε, x)
(8)

The counterparts of relation (7) without the Heaviside function multiplier, commonly used in the

boundary(-domain) integral equations (see e.g. [2]), are justified, strictly speaking, only for plastic

processes without unloading. Note that this multiplier makes relation (6) and consequently all the

formulations below, nonlinear with respect to the displacement rate.

Substituting (6) in the time derivative of the equilibrium equation,

σ̇ij,j = ḟi, (9)

where fi(x) is a known volume force vector (taken with the opposite sign), and in the traction boundary

conditions, we arrive at the following mixed boundary–value problem of incremental elasto-plasticity
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for a bounded inhomogeneous body Ω ∈ IRn,

[Lik(σ, ε, u̇)u̇k](x) :=
∂

∂xj

[
aijkl(σ(x), ε(x),∇u̇(x), x)

∂u̇k(x)
∂xl

]
= ḟi(x), x ∈ Ω, (10)

u̇i(x) = ǔi(x), x ∈ ∂DΩ, (11)

[Tik(σ, ε, u̇)u̇k](x) := aijkl(σ(x), ε(x),∇u̇(x), x)
∂u̇k(x)

∂xl
nj(x) = ťi(x), x ∈ ∂NΩ. (12)

Here ni(x) is an outward normal vector to the boundary ∂Ω; [T (σ, ε, u̇)u̇](x) = [Tik(σ, ε, u̇)u̇k](x) is

the traction rate vector at a boundary point x, while T (σ, ε, u̇) = Tik(σ, ε, u̇) is the nonlinear traction

differential operator; ǔ(x) and ť(x) are known displacement rate and traction rate vectors on the parts

∂DΩ and ∂NΩ of the boundary, respectively. The left hand sides of elasto-plasticity BVP (10)-(12) do

not include time explicitly and one may replace there the rates u̇k by the differentials Duk = u̇kDt.

If n = 2, BVP (10)-(12) describes the 2D elasto-plasticity problems in the plane strain state. In the

plane stress state, the tensor aijkl is to be replaced by a corresponding combination of its components.

For brevity, we will drop the arguments σ and ε of the functionals gkl(σ(x), ε(x), x),

aijkl(σ(x), ε(x),∇u̇(x), x) and operators L(σ, ε, u̇), T (σ, ε, u̇) in the equations below but their de-

pendence on the process history and the actual stress and strain tensors will be meant nevertheless.

3 Two-Operator Green-Betti Identities and Direct BDIDEs

of Incremental Elasto-Plasticity

Let us fix a point y and consider the following reference differential operators of linear elasticity with

some constant (frozen at the point y) coefficients, a∗ijkl(y),

[L(y)∗
ik vk](x) :=

∂

∂xj

[
a∗ijkl(y)

∂vk(x)
∂xl

]
, [T (y)∗

ik vk](x) := a∗ijkl(y)
∂vk(x)

∂xl
nj(x).

Under the reference elastic coefficients a∗ijkl(y) = a∗ijkl(∇u̇(y), y), one can understand either the initial

elastic moduli ae
ijkl(y) independent of the strain-stress history and the current strain rate, or the

current tangent moduli aijkl(∇u̇(y), y) dependent on both the strain-stress history and the current

strain rate. The same character of dependence on (or independence of) the strain-stress history and

the current strain rate will then remain for all asterisk variables and operators below. The particular

choice of a∗ijkl(∇u̇(y), y) leads to two different versions of the integro-differential equations.

Integrating by parts, we have the first Green identities for the differential operators [L(u̇)u̇](x) =
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[Lik(u̇)u̇k](x) and [L(y)∗v](x) = [L(y)∗
ik vk](x),

∫

Ω
vi(x)[Lik(u̇)u̇k](x)dΩ(x) =

∫

∂Ω
vi(x)[Tik(u̇)u̇k](x)dΓ(x)

−
∫

Ω

∂vi(x)
∂xj

aijkl(∇u̇(x), x)
∂u̇k(x)

∂xl
dΩ(x),

∫

Ω
u̇i(x)[L(y)∗

ik vk](x)dΩ(x) =
∫

∂Ω
u̇i(x)[T (y)∗

ik vk](x)dΓ(x)

−
∫

Ω

∂u̇i(x)
∂xj

a∗ijkl(∇u̇(y), y)
∂vk(x)

∂xl
dΩ(x),

where u̇(x) and v(x) are arbitrary vector-functions for that the operators and integrals in the above ex-

pressions have sense. Subtracting the identities from each other and taking into account the symmetry

of the tensor aijkl, we derive the two-operator second Green-Betti identity,

∫

Ω

{
u̇(x)[L(y)∗v](x)− v(x)[L(u̇)u̇](x)

}
dΩ(x) =

∫

∂Ω

{
u̇(x)[T (y)∗v](x)− v(x)[T (u̇)u̇](x)

}
dΓ(x)

+
∫

Ω
[∇v(x)]ã(∇u̇; x, y)∇u̇(x)dΩ(x), (13)

where

ã(∇u̇; x, y) = ãijkl(∇u̇(x),∇u̇(y), x, y) :=

aijkl(∇u̇(x), x)− a∗ijkl(∇u̇(y), y) =

ae
ijkl(x)− a∗ijkl(∇u̇(y), y)− gij(x)gkl(x)H[gpq(x)u̇p,q(x)].

Note that for a homogeneous material ae
ijkl(x) = ae

ijkl(y), which implies ã(∇u̇; x, y) is non-zero only

when x [and/or y if a∗ijkl(y) = aijkl(y)] is in the plasticity zone with active loading. If moreover

L(u̇) = L(y)∗, i.e. L(u̇) is a linear homogeneous elasticity operator, then the last domain integral

disappears in (13), which thus degenerates into the classical second Green-Betti identity.

For a fixed y, let F (y)∗(x, y) = F
(y)∗
km (x, y) be a fundamental solution for the linear differential

operator [L(y)∗
ik vk](x) with constant coefficients, i.e.,

[L(y)∗
ik F

(y)∗
km (·, y)](x) := a∗ijkl(y)

∂2F
(y)∗
km (x, y)

∂xj∂xl
= δimδ(x− y),

where δim is the Kronecker symbol and δ(x− y) is the Dirac delta-function.

If the material is isotropic and a∗ijkl(x) = ae
ijkl(y), then

a∗ijkl(y) = λ∗(y)δijδkl + µ∗(y)(δikδjl + δilδjk). (14)

In this case, F
(y)∗
im (x, y) is the Kelvin-Somigliana solution,

F
(y)∗
im (x, y) =

−1
4π

{−δim ln r − r,ir,m

λ∗(y) + 2µ∗(y)
+
−δim ln r + r,ir,m

µ∗(y)

}
(15)
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for the plane strain state; for the plane stress, λ∗ in (14) and (15) should be replaced by 2λ∗µ∗/(λ∗ +

2µ∗). In the 3D case,

F
(y)∗
im (x, y) =

−1
8πr

{
δim − r,ir,m

λ∗(y) + 2µ∗(y)
+

δim + r,ir,m

µ∗(y)

}
(16)

Here r :=
√

(xi − yi)(xi − yi), r,i := ∂r/∂xi = (xi − yi)/r. For a∗ijkl(x) = aijkl(y) or for an initially

anisotropic material, the fundamental solution can be written down in an analytical form for arbitrary

anisotropy in the 2D case and for some particular anisotropy in the 3D case; otherwise, it can be

expressed, e.g., as a linear integral over a circle [21–23].

Assuming u̇(x) is a solution of nonlinear system (10) and using the fundamental solution F (y)∗(x, y)

as v(x) in the Green identity (13), we obtain, similar to the linear homogeneous elasticity (see e.g. [1–5])

or partial differential equations with variable coefficients [24], the following non-linear two-operator

third Green identity,

c(y)u̇(y) −
∫

∂Ω
u̇(x)[T (y)∗F (y)∗(·, y)](x)dΓ(x)

+
∫

∂Ω
F (y)∗(x, y)[T (u̇)u̇](x)dΓ(x)

−
∫

Ω
[∇(x)F (y)∗(x, y)]ã(∇u̇;x, y)∇u̇(x)dΩ(x)

=
∫

Ω
F (y)∗(x, y)f(x)dΩ(x), (17)

where the coefficient tensor c(y) = cim(y) is such that cim(y) = δim if y ∈ Ω; cim(y) = 0 if y /∈ Ω̄;

cim(y) = 1
2δim if y is a smooth point of the boundary ∂Ω; and cim(y) = cim(a∗(y), α(y)) is a function

of the reference tensor a∗(y) and the interior space angle α(y) at a corner point y of the boundary ∂Ω.

United nonlinear two-operator BDIDE. Substituting boundary conditions (11), (12) into the

integrands of identity (17) and using it at y ∈ Ω, we arrive at a united nonlinear two-operator

Boundary-Domain Integro-Differential Equation, BDIDE, of the second kind for u̇(x) at x ∈ Ω

c(y)u̇(y) −
∫

∂NΩ
u̇(x)[T (y)∗F (y)∗(·, y)](x)dΓ(x)

+
∫

∂DΩ
F (y)∗(x, y)[T (u̇)u̇](x)dΓ(x)

−
∫

Ω
[∇(x)F (y)∗(x, y)]ã(∇u̇;x, y)∇u̇(x)dΩ(x) = F(y), y ∈ Ω, (18)

F(y) :=
∫

∂DΩ
ǔ(x)[T (y)∗F (y)∗(·, y)](x)dΓ(x)

−
∫

∂NΩ
F (y)∗(x, y)ť(x)dΓ(x) +

∫

Ω
F (y)∗(x, y)f(x)dΩ(x).

Partly segregated nonlinear two-operator BDIDE. On the other hand, introducing a new

vector variable t̃(x) instead of the unknown traction vector rate [T (u̇)u̇](x) at x ∈ ∂DΩ and substituting
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ǔ(y) also for the out-of-integral term at y ∈ ∂DΩ, we may reduce the incremental plasticity problem

(10)-(12) to the following partly segregated BDIDE of the third kind for u̇(x) at x ∈ Ω ∪ ∂NΩ and

t̃(x) at x ∈ ∂DΩ,

c0(y)u̇(y) −
∫

∂NΩ
u̇(x)[T (y)∗F (y)∗(·, y)](x)dΓ(x)

+
∫

∂DΩ
F (y)∗(x, y)[T (u̇)u̇](x)dΓ(x)

−
∫

Ω
[∇(x)F (y)∗(x, y)]ã(∇u̇; x, y)∇u̇(x)dΩ(x) = F0(y), y ∈ Ω, (19)

F0(y) := [c0(y)− c(y)]ǔ(y) + F(y), y ∈ Ω ∪ ∂Ω, (20)

c0(y) = 0 if y ∈ ∂DΩ, c0(y) = c(y) if y ∈ Ω ∪ ∂NΩ. (21)

BDIDEs (18) and (19) include at most the first derivatives of the unknown solution u̇(x), both

directly in the domain integral term in the left hand side and through the coefficient a(∇u̇(x), x, y) in

the operator T (u̇) and in the function ã(∇u̇; x, y). The function [∇(x)F (y)∗(x, y)] is at most weakly

singular in Ω, and assuming that ã(∇u̇; x, y) is bounded as x → y, we obtain that the domain integral

is a smoothing operator for ∇u̇(y). The boundary integrals have at most the Cauchy-type singularity.

The right hand side of BDIDEs (18) and (19) are independent of ∇u̇ if the reference tensor a∗ is

chosen as the initial elastic tensor ae. Otherwise, when a∗ is chosen as the tangent stiffness tensor a,

the right hand side dependence on ∇u̇ will present.

Some other (e.g. segregated) BDIDEs can be obtained if one also considers the unknown boundary

displacement rate u̇ on ∂NΩ as a new vector variable formally segregated from u̇ in Ω, or applies the

boundary traction operator to (18) or (19).

Each of BDIDEs (18) and (19) can be reduced after some discretization to a system of nonlinear

algebraic equation and solved numerically. The system will include unknowns not only on the boundary

but also at internal points. Moreover, since the fundamental solutions, c.f. (15), (16), are highly non-

local, the matrix of the system will be fully populated and this makes its numerical solution more

expensive. To avoid this difficulty, we present below some ideas of constructing localized parametrices

and consequently Localized BDIDEs (LBDIDEs).

Localized Parametrix and LBDIDEs of Incremental Elasto-Plasticity

Let χ(x, y) be a cut-off function, such that χ(y, y) = 1 and χ(x, y) = 0 at x not belonging to closure of

an open localization domain ω(y) (a vicinity of y), see Fig.1, and let P
(y)∗
ω (x, y) = χ(x, y)F (y)∗(x, y).
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Figure 1: Body Ω with localization domains ω(yi)

The simplest example is

χ(x, y) =





1, x ∈ ω̄

0, x /∈ ω̄
⇒

P (y)∗
ω (x, y) =





F (y)∗(x, y), x ∈ ω̄(y)

0, x /∈ ω̄(y)
(22)

Other examples of the cut-off functions having different smoothness are presented in [6, 12] for some

shapes of the localization domains ω.

Then P
(y)∗
ω (x, y) is a localized parametrix (localized Levi’s function) of the linear operator L(y)∗,

i.e.,

L
(y)∗
ik P

(y)∗
kmω(x, y) = δimδ(x− y) + R

(y)∗
imω(x, y),

where the remainder

R
(y)∗
imω = −L

(y)∗
ik ((1− χ)F (y)∗

km ) = a∗ijkl(y)

[
F

(y)∗
km

∂2χ

∂xj∂xl
+

∂F
(y)∗
km

∂xj

∂χ

∂xl
+

∂F
(y)∗
km

∂xl

∂χ

∂xj

]

is at most weakly singular at x = y if χ is smooth enough on ω̄(y). The parametrix P
(y)∗
ω (x, y) has

the same singularity as F (y)∗(x, y) at x = y. Both P
(y)∗
ω (x, y) and R

(y)∗
ω (x, y) are localized (non-zero)

with respect to x only on ω(y).

Suppose χ(x, y) is smooth in x ∈ ω̄(y) but not necessarily zero at x ∈ ∂ω(y), c.f. (22). Then

P
(y)∗
ω (x, y) is a discontinuous localized parametrix at x ∈ IRn and P

(y)∗
ω (x, y) = R

(y)∗
ω (x, y) = 0

if x /∈ ω̄(y). Substituting P
(y)∗
ω (x, y) for v(x) in (13), replacing Ω by the intersection ω(y) ∩ Ω

and repeating the same arguments as for the fundamental solution above, we arrive at the localized
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parametrix-based two-operator third Green identity on ω̄(y) ∩ Ω̄,

c(y)u̇(y)−
∫

ω̄(y)∩∂Ω

{
u̇(x)[T (y)∗P (y)∗

ω (·, y)](x)− P (y)∗
ω (x, y)[T (u̇)u̇](x)

}
dΓ(x)−

∫

Ω∩∂ω(y)

{
u̇(x)[T (y)∗P (y)∗

ω (·, y)](x)− P (y)∗
ω (x, y)[T (u̇)u̇](x)

}
dΓ(x)−

∫

ω(y)∩Ω

{
[∇(x)P (y)∗

ω (x, y)]ã(∇u̇;x, y)∇u̇(x)−R(y)∗
ω (x, y)u̇(x)

}
dΩ(x) =

∫

ω(y)∩Ω
P (y)∗

ω (x, y)f(x)dΩ(x). (23)

The second term in the last integral in the left hand side of (23) disappears if χ(x, y) is given by (22).

United nonlinear two-operator LBDIDE. Substituting boundary conditions (11) and (12) into

the integral terms of (23) and employing it at y ∈ Ω, we arrive at the united formulation of nonlinear

two-operator Localized Boundary-Domain Integro-Differential Equation (LBDIDE) of the second kind,

for u̇(x), x ∈ Ω,

c(y)u̇(y)−
∫

ω̄(y)∩∂NΩ
u̇(x)[T (y)∗P (y)∗

ω (·, y)](x)dΓ(x) + (24)
∫

ω̄(y)∩∂DΩ
P (y)∗

ω (x, y)[T (u̇)u̇](x)dΓ(x) −
∫

Ω∩∂ω(y)

{
u̇(x)[T (y)∗P (y)∗

ω (·, y)](x)− P (y)∗
ω (x, y)[T (u̇)u̇](x)

}
dΓ(x) −

∫

ω(y)∩Ω
[∇(x)P (y)∗

ω (x, y)]ã(∇u̇; x, y)∇u̇(x)dΩ(x) +
∫

ω(y)∩Ω
R(y)∗

ω (x, y)u̇(x)dΩ(x) = Fω(y), y ∈ Ω, (25)

Fω(y) :=
∫

ω̄(y)∩∂DΩ
ǔ(x)[T (y)∗P (y)∗

ω (·, y)](x)dΓ(x)−
∫

ω̄(y)∩∂NΩ
P (y)∗

ω (x, y)ť(x)dΓ(x) +
∫

ω(y)∩Ω
P (y)∗

ω (x, y)f(x)dΩ(x). (26)

Partly segregated nonlinear two-operator LBDIDE. On the other hand, substituting ǔ(y)

also for the out-of-integral term u(y) at y ∈ ∂ΩD and introducing a new vector variable t̃(x) for the

unknown traction vector [T (u)u](x) at x ∈ ∂ΩD in (25), one can reduce BVP (10)-(12) to the following

partly segregated nonlinear two-operator direct LBDIDE of the third kind, for u(x) at x ∈ Ω ∪ ∂NΩ

and t̃(x) at x ∈ ∂DΩ,

9



c0(y)u̇(y)−
∫

ω̄(y)∩∂NΩ
u̇(x)[T (y)∗P (y)∗

ω (·, y)](x)dΓ(x) +
∫

ω̄(y)∩∂DΩ
P (y)∗

ω (x, y)t̃(x)dΓ(x) −
∫

Ω∩∂ω(y)

{
u̇(x)[T (y)∗P (y)∗

ω (·, y)](x)− P (y)∗
ω (x, y)[T (u̇)u̇](x)

}
dΓ(x) −

∫

ω(y)∩Ω
[∇(x)P (y)∗

ω (x, y)]ã(∇u̇;x, y)∇u̇(x)dΩ(x) +
∫

ω(y)∩Ω
R(y)∗

ω (x, y)u̇(x)dΩ(x) = F0
ω(y), y ∈ Ω, (27)

F0
ω(y) := [c0(y)− c(y)]ǔ(y) + Fω(y). (28)

The very last integrals in the left hand sides of (25) and (27) disappear if χ(x, y) is given by

(22). On the other hand, if a cut-off function χ(x, y) vanishes at x ∈ ∂ω(y) with vanishing normal

derivatives, then the integrals along Ω ∩ ∂ω(y) disappear in (25) and (27).

4 Discretization of Nonlinear Two-Operator LBDIEs of Incremental

Elasto-Plasticity

The discretization algorithms of LBDIDEs of the incremental elasto-plasticity described below follow

mainly the same scheme as in [6] - [15], although have some special features.

To reduce quasi-linear LBDIDE (25) or (27) to a sparsely populated system of quasi-linear algebraic

equations e.g. by the collocation method, one has to employ a local interpolation or approximation

formula for the unknown function u̇(x), for example associated with a mesh-based or mesh-less dis-

cretization.

4.1 Mesh-based discretization

Mesh-based interpolation. Suppose the domain Ω is covered by a mesh of closures of disjoint

domain elements ek with nodes set up at the corners, edges, faces, or inside the elements. Let J be

the total number of nodes xi (i = 1, 2, ..., J). One can use each node xi as a collocation point for

the LBDIDE with a localization domain ω(xi). Let the union of closures of the domain elements

that intersect with ω(xi) be called the total localization domain ω̃i, Fig. 2(a). Evidently the closure

ω̄(xi) ∩ Ω̄ belongs to ω̃i. If ω(xi) is sufficiently small, then ω̃i consists only of the elements adjacent

to the collocation point xi. If ω(xi) is ab initio chosen as consisting only of the elements adjacent to

the collocation point xi, then ω̃i = ω̄(xi). Let u̇{ω̃i} be the array of the function values u̇(xj) at the

node points xj ∈ ω̃i and Jω̃i be the number of those node points.
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Figure 2: Localization domain ω(xi) and a total localization domain ω̃i associated with a collocation

point xi of a body Ω for (a) mesh-based and (b) mesh-less discretizations

Let u̇(x) =
∑

j u̇(xj)φkj(x) be a continuous piece-wise smooth interpolation of u̇(x) at any point

x ∈ Ω along the values u̇(xj) at the node points xj belonging to the same element ēk ⊂ Ω as x, and

the shape functions φkj(x) be localized on ēk. Collecting the interpolation formulae, we have for any

x ∈ ω̃i,

u̇(x) =
∑

xj∈ω̃i

u̇(xj)Φj(x), Φj(x) =





φkj(x) if x, xj ∈ ēk

0 otherwise
(29)

∇u̇(x) =
∑

xj∈ω̃i

u̇(xj)∇Φj(x), ∇Φj(x) =




∇φkj(x) if x, xj ∈ ēk

0 otherwise
(30)

Consequently, Φj(x) = ∇Φj(x) = 0 if x ∈ ω̃i but xj /∈ ω̃i.

Since interpolation (29) is piece-wise smooth, expressions (30) deliver non-unique values for ∇u̇(x)

on the element interfaces and particularly at the apexes xi of different adjoint elements ek. This

brings no complications for the choice of the reference elastic moduli as a∗ijkl(y) = ae
ijkl(y) since they

and consequently all other asterisk variables and operators do not depend on ∇u̇(y), which then

appears either in the domain integrals or in the boundary integrals with the gradients taken from

the corresponding side of the boundary. On the other hand, for the reference elastic tensor chosen

as the current tangent tensor, a∗ijkl(y) = aijkl(∇u̇(y), y), one has to estimate ∇u(y) to calculate the

coefficient a(∇u̇(y), y) and, consequently ã(∇u̇; x, y), T (y)∗(u), P (y)∗(u; x, y) and R(y)∗(u; x, y) at the

collocation points y = xi. A possible way out is to assign

∇u(xi) :=
∑

ēk3xi

αk(xi)
α(xi)

∇uk(xi), ∇uk(xi) :=
∑

xj∈ēk

u(xj)∇φkj(xi), (31)

where αk(xi) is an interior space angle at the apex xi of the element ek and α(xi) =
∑

ēk3xi αk(xi).

For discretization of the partly segregated LBDIDE, we can also use a local interpolation of the

unknown flux variable t̃(x) along only boundary nodes belonging to ω̃i ∩ ∂DΩ,

t̃(x) =
∑

xj∈ω̃i∩∂DΩ

t̃(xj)Φ′j(x), x ∈ ω̃i ∩ ∂DΩ. (32)
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Here Φ′j(x) are the shape functions on the boundary obtained similar to Φj(x) in (29).

Mesh-based discretization of the partly segregated LBDIDE. After substituting the above

interpolations in LBDIDE (27) of the partly segregated formulation at the collocation points y =

xi ∈ Ω̄, and taking into account (11), we derive the following system of J × n quasi-linear algebraic

equations for J × n unknowns: u̇(xj), xj ∈ Ω ∪ ∂NΩ and t̃(xj), xj ∈ ∂DΩ,

c0(xi)u̇(xi) +
∑

xj∈ω̃i\∂DΩ

K0
ij(u̇{ω̃i})u̇(xj) +

∑

xj∈∂DΩ∩ω̃i

Qij(u̇{ω̃i})t̃(xj)

= F0
ω(xi)−

∑

xj∈∂DΩ∩ω̃i

K0
ij(u̇{ω̃i})ǔ(xj), xi ∈ Ω̄ (33)

(no sum in i). For fixed indices i, j, the n× n tensors K0
ij(u̇{ω̃i}) and Qij(u̇{ω̃i}) are

K0
ij(u̇{ω̃i}) = −

∫

ω̄(xi)∩∂NΩ
Φj(x)[T (xi)∗P (xi)∗

ω (·, xi)](x)dΓ(x)−
∫

Ω∩∂ω(xi)

{
Φj(x)[T (xi)∗P (xi)∗

ω (·, xi)](x)− P (xi)∗
ω (x, xi)[T (u̇{ω̃i})Φj ](x)

}
dΓ(x)−

∫

ω(xi)∩Ω

{
[∇(x)P (xi)∗

ω (x, xi)]ã(u̇{ω̃i}; x, xi)∇Φj(x)−R(xi)∗
ω (x, xi)Φj(x)

}
dΩ(x). (34)

Qij(u̇{ω̃i}) =
∫

ω̄(xi)∩∂DΩ
P (xi)∗

ω (x, xi)[T (u̇{ω̃i})Φj ](x)dΓ(x), (35)

(no sum in i).

Note that the term with R
(xi)∗
ω disappears in the last integral in the right hand side of (34) if

the parametrix P
(xi)∗
ω (x, xi) is given by (22). On the other hand, if the cut-off function χ(x, xi) and

its normal derivative are equal zero at x on the boundary ∂ω(xi), then the second integral (along

Ω ∩ ∂ω(xi)) disappears in the right hand side of (34).

Mesh-based discretization of the united LBDIDE. Substituting interpolation formulae (29)-

(30) in LBDIDE (25), we arrive at the following system of J × n quasi-linear algebraic equations for

J × n unknowns u̇m(xj), xj ∈ Ω, m = 1, ..., n,

c(xi)u̇(xi) +
∑

xj∈ω̃i

Kij(u̇{ω̃i})u̇(xj) = Fω(xi), xi ∈ Ω, no sum in i. (36)

where

Kij(u̇{ω̃i}) = K0
ij(u̇{ω̃i}) +

∫

ω̄(xi)∩∂DΩ
P (xi)∗

ω (x, xi)[T (u̇{ω̃i})Φj ](x)dΓ(x), (37)

(no sum in i).

The approximate tangent stiffness tensor a(u̇{ω̃i}; x) and consequently ã(u̇{ω̃i};x, xi) and the

traction operator T (u̇{ω̃i}) in (34), (35) and (37) are expressed in terms of the set of unknowns
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u̇{ω̃i} := {u̇(xj), xj ∈ ω̃i}. The expressions are obtained after substituting interpolation formulae

(30) for ∇u̇(x) in the coefficient a(∇u̇(x), x) in the definitions for ã(∇u̇; x, y) and T (u̇). In fact, the

coefficients also depend on the strain-stress history (assumed to be already known) at each point. For

the choice a∗(y) = a(∇u̇(y), y), the asterisk functions and operators depend on a∗(∇u̇(xi), xi) and

thus on ∇u̇(xi), which is expressed by interpolation formula (31) in terms of u̇{ω̃i}.

4.2 Mesh–less discretization

Mesh-less approximation. For a mesh–less discretization, one needs a method of local interpo-

lation or approximation of a function along randomly distributed nodes xi. We will suppose all the

approximation nodes xi belong to Ω̄ and will use them also as collocation points for the LBDIDE

discretization. Let, as before, J be the total number of nodes xj (i = 1, 2, ..., J) in Ω̄, from which JD

nodes are posed on the boundary ∂DΩ. Let us consider a mesh–less method, for example, the moving

least squares (MLS) (see e.g. [25], [16–19]), that leads to the following approximation of a function

u̇(x)

u̇(x) =
∑

xj∈ω0(x)

û(xj)Φj(x), x ∈ Ω. (38)

Here Φj(x) are known smooth shape functions such that Φj(x) = 0 if xj /∈ ω0(x), ω0(x) is a localization

domain of the approximation formula, and û(xj) are unknown values of an auxiliary function û(x) at

the nodes xj , that is, the so-called δ−property is not assumed for approximation (38).

Let ω(xi) be a localization domain around a node xi. Then for any x ∈ ω̄(xi), the total approxi-

mation of u̇(x) can be written in the following local form,

u̇(x) =
∑

xj∈ω̃i

û(xj)Φj(x), ∇u̇(x) =
∑

xj∈ω̃i

û(xj)∇Φj(x), x ∈ ω̄(xi), (39)

where ω̃i := ∪x∈ω̄(xi)∩Ω̄ω0(x) is a total localization domain, Fig. 2(b). Consequently, Φj(x) =

∇Φj(x) = 0 if x ∈ ω̄(xi) and xj /∈ ω̃i. Let Jω̃i be the number of nodes xj ∈ ω̃i and û{ω̃i} be

the array of the function values û(xj) at the node points xj ∈ ω̃i. Since our approximation (39) for u̇

is smooth, its gradient approximation in (39) is continuous, and we do not need special formulae like

(31) for calculating gradients ∇u̇(x(i)) at the collocation points x(i) if the reference stiffness tensor is

chosen as a∗(y) = a(∇u̇(y), y).

Mesh-less discretization of the partly segregated LBDIDE. After substitution of approxi-

mation (39) in LBDIDE (27) and in the Dirichlet boundary conditions (11), we arrive at the following

quasi-linear system of (J +JD)×n algebraic equations with respect to J×n unknowns ûm(xj), xj ∈ Ω̄,
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m = 1, ..., n, and JD × n unknowns t̃m(xj), xj ∈ Ω̄, m = 1, ..., n,

∑

xj∈ω̃i

[
c0(xi)Φj(xi) + K0

ij(û{ω̃i})] û(xj) +
∑

xj∈∂DΩ∩ω̃i

Qij(u̇{ω̃i})t̃(xj)

= F0
ω(xi), xi ∈ Ω̄, no sum in i. (40)

∑

xj∈ω̃i

û(xj)Φj(xi) = ǔ(xi), xi ∈ ∂DΩ. (41)

Mesh-less discretization of the united LBDIDE. Alternatively, one can substitute approxima-

tion (39) in LBDIDE (25) and arrive at the following system of quasi-linear system of J ×n algebraic

equations with respect to J × n unknowns ûm(xj), xj ∈ Ω̄, m = 1, ..., n,

∑

xj∈ω̃i

[
c(xi)Φj(xi) + Kij(û{ω̃i})] û(xj) = Fω(û{ω̃i}, xi), xi ∈ Ω̄, no sum in i. (42)

For any i, j, the n × n tensors K0
ij , Qij and Kij in (40) and (42) are given by expressions (34),

(35) and (37), respectively, with the shape functions Φj from (39), and u̇{ω̃i} replaced by û{ω̃i}.
Again, they also depend on the strain-stress history (assumed to be already known) at each point.

Expressions for a(u̇{ω̃i}; x) and consequently for ã(û{ω̃i};x, xi) and T (û{ω̃i}) in terms of the set of

unknowns û{ω̃i} := {û(xj), xj ∈ ω̃i} in (37) are obtained after substituting approximation formulae

(39) for ∇u̇ in the coefficient a(∇u̇(x), x) in the definitions for ã(∇u̇;x, y) and T (u̇). For the choice

a∗(y) = a(∇u̇(y), y), the asterisk functions and operators depend on a∗(∇u̇(xi), xi) and thus on∇u̇(xi),

which is expressed for the mesh-less approach by by the same smooth approximation formula (39) in

terms of û{ω̃i}.

5 Conclusion

Nonlinear BDIDEs (18) and (19) as well as LBDIDEs (25) and (27) are integro-differential reformu-

lations of elasto-plastic BVP (10)-(12). Depending on the choice of the reference elastic tensor a∗

as the initial elastic or currant tangent stiffness tensor, one can obtain two different versions of the

BDIDEs and LBDIDEs. Different strategies can be chosen for the numerical solution of the BDIDEs

or LBDIDEs to obtain the complete evolutionary solution of the problem. One of them is to split the

process into the time steps ti and solve either of the integral equations with respect to the displacement

rate u̇k(x, ti) employing the necessary stress and strain fields σ(x, ti), ε(x, ti) obtained at the previous

step. Then one find the stress rate from (6) and approximate the displacement increment during the

time step as ∆uk(x, ti) = u̇k(x, ti)(ti+1− ti) and strain and stress increments similarly. This allows to

calculate the stress an strain field at time ti+1.
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While discretizing LBDIDEs (25) and (27), we have from the definitions in both mesh-based and

mesh-less methods that Φj(x) = ∇Φj(x) = [T (u̇)Φj ](x) = [T (y)∗Φj ](x) = 0 if x ∈ ω̄(xi) but xj /∈ ω̃i.

Consequently Kij = 0, K0
ij = 0 and Qij = 0 if xj /∈ ω̃i, and moreover, Kij , K0

ij and Qij depend

only on u̇{ω̃i} or û{ω̃i}, respectively. Thus, each algebraic equation in (33), (36), (40) or (42) has

not more than Jω̃i × n ¿ J × n non-zero entries, i.e. the systems are sparse. The number of the

nodal points, Jω̃i in the total localization domain ω̃i depends on the type of the domain elements, the

choice of the localization domains and the local interpolation/approximation formulae. If during re-

meshing the element types are roughly the same, and the localization domains and the support of the

interpolation/approximation formulas are related with the domain elements near collocation points,

then the number of the nonzero entries of each equation, Jω̃i × n, will be practically independent of

re-meshing.

The second kind structure of the nonlinear united LBDIDEs and of the corresponding mesh-based

discrete systems look very promising for constructing simple and fast converging iteration algorithms

for their numerical solution without preconditioning, thus outperforming other available numerical

techniques.
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