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Abstract

We show that for any k there is a polynomial time algorithm to evaluate the
weighted graph polynomial U of any graph with tree-width at most k at any point.
For a graph with n vertices, the algorithm requires O(akn

2k+3) arithmetical opera-
tions, where ak depends only on k.

1 Introduction

Motivated by a series of papers [9, 10, 11], the weighted graph polynomial U was intro-
duced in [22]. Chmutov, Duzhin and Lando [9, 10, 11] introduce a graph polynomial
derived from Vassiliev invariants of knots and note that this polynomial does not include
the Tutte polynomial as a special case. With a slight generalisation of their definition we
obtain the weighted graph polynomial U that does include the Tutte polynomial.

The attraction of U is that it contains many other graph invariants as specialisations,
for instance the 2-polymatroid rank generating function of Oxley and Whittle [23], and as
a consequence the matching polynomial, the stable set polynomial [13] and the symmetric
function generalisation of the chromatic polynomial [27]. Note however that there are
non-isomorphic graphs with the same U polynomial. This is a corollary of a result of
Sarmiento [26], showing that the coefficients of U and the polychromate determine one
another. It remains an open problem to determine whether or not there are two non-
isomorphic trees with the same U polynomial. We introduce U in Section 2 and review
some of these results in more detail.
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The notion of tree-width was introduced by Robertson and Seymour as a key tool in
their work on the graph minors project [24, 25]. An equivalent notion, studied extensively
by Arnborg and Proskurowski, (see for instance [3, 4]), is that of a partial k-tree.

Many well-studied classes of graphs have bounded tree-width: for instance, series-
parallel networks are the graphs with tree-width at most two. A large class of graph
problems, which are thought to be intractable, can be solved when the input is restricted
to graphs with tree-width at most a fixed constant k. For example, the NP-complete
problems, 3-Colouring and Hamiltonian Circuit can be solved in linear time for graphs of
bounded tree-width [4]. For a good survey of tree-width see [5].

When the underlying graph is obvious, we let n be its number of vertices, m be its
number of edges and p be the largest size of a set of mutually parallel edges.

Theorem 1.1. For any k ∈ N, there exists an algorithm Ak with the following prop-

erties. The input is any graph G, with tree-width at most k, and rationals x1 =
p1/q1, . . . , xn = pn/qn and y = p0/q0 such that for all i, pi and qi are coprime. The

output is UG(x1, . . . , xn, y); the running time is

O(akn
2k+3(n2 + m)r log p log(r(n + m)) log(log(r(n + m)))),

where r = log(max{|p0|, . . . , |pn|, |q0|, . . . , |qn|}) and ak depends only on k.

The result extends that of [20] and independently [2] where an algorithm to evaluate
the Tutte polynomial of a graph having tree-width at most k is presented. In [20], the
algorithm given requires only a linear (in n) number of multiplications. Despite using the
same basic idea as in [20], we are unable to reduce the amount of computational effort
required to evaluate U down to O(nα) operations, where α is independent of k.

More recently Hliněný [15] has shown that the Tutte polynomial is computable in
polynomial time when the input is restricted to matroids with bounded branchwidth rep-
resentable over a finite field. Furthermore Makowsky [17] and Makowsky and Mariño [19]
have shown that there are polynomial time algorithms to evaluate a wide range of graph
polynomials that are definable in monadic second order logic when the input graph has
bounded tree-width. Examples include the Tutte polynomial for coloured graphs due to
Bollobás and Riordan [7] and certain instances of the very general graph polynomials
introduced by Farrell [14]. However it has been shown that U is not even definable in
second order logic [18], so none of these results applies. For a recent survey covering the
complexity of evaluating many of these polynomials, see [21].

2 A weighted graph polynomial

We begin with a few definitions and then define U , the weighted graph polynomial. We
then state some of the key results about U for which the proofs may be found in [22].
Most of our definitions are standard. Our graphs are allowed to have loops and multiple
edges. By a simple graph we mean one with no loops or multiple edges. If G is a graph
and A ⊆ E(G) then G|A is the graph with vertex set V (G) and edge set A. However,
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in general, our subgraphs do not have to be spanning, that is if H is a subgraph of G
then we do not require that V (H) = V (G). The number of connected components of a
graph G is denoted by k(G). The rank of a set A ⊆ E is denoted by r(A) and defined by
r(A) = |V (G)| − k(G|A).

The original definition of U involved a recurrence relation using deletion and contrac-
tion, but for the purposes of this paper it is more useful to define U using the “states
model expansion” from Proposition 5.1 in [22].

UG(x, y) =
∑

A⊆E

xn1xn2 · · ·xnk(G|A)
(y − 1)|A|−r(A), (2.1)

where n1, . . . , nk(G|A) are the numbers of vertices in the connected components of G|A.
For example, if G is a triangle then

UG(x, y) = x3
1 + 3x1x2 + 2x3 + yx3.

We now state some of the results from [22] concerning specialisations of U . The Tutte
polynomial TG(x, y) is an extremely well-studied two-variable graph polynomial which is
defined as follows:

TG(x, y) =
∑

A⊆E

(x − 1)r(E)−r(A)(y − 1)|A|−r(A).

Evaluations of T include the number of spanning trees, number of spanning forests, the
chromatic polynomial and the reliability polynomial as well as applications in statistical
mechanics and knot theory. See for instance [8, 29].

Proposition 2.1. For any graph G,

TG(x, y) = (x − 1)−k(G)UG(xi = x − 1, y).

Note that we have abused notation somewhat by writing UG(xi = x − 1, y) where we
mean for all i setting xi = x − 1. It is well-known that if the class of input graphs is not
restricted, then apart from along one specific curve and at a small number of other specific
points, it is #P -hard to evaluate the Tutte polynomial [16]. Except for the addition of one
extra exceptional curve this result may be extended to bipartite planar graphs [28]. These
results combined with Proposition 2.1 show that if we do not restrict the class of input
graphs then the problem of evaluating U at a point specified in the input is #P -hard.

The 2-polymatroid rank generating function SG(u, v) was introduced by Oxley and
Whittle in [23] and is defined as follows. Given a graph G = (V, E) and A ⊆ E let f(A)
denote the number of vertices of G that are an endpoint of an edge in A. Then

SG(u, v) =
∑

A⊆E

u|V (G)|−f(A)v2|A|−f(A).

S contains the matching polynomial as a specialisation.
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Proposition 2.2. Let G be a loopless graph with no isolated vertices. Then

SG(u, v) = UG(x1 = u, x2 = 1, xj = vj−2 for j > 2, y = v2 + 1).

A stable set in a graph G = (V, E) is a set S of vertices for which G has no edge with
both endpoints in S. The stability polynomial AG(p) was introduced by Farr in [13] and
is given by

AG(p) =
∑

U∈S(G)

p|U |(1 − p)|V \U |,

where S(G) is the set of all stable sets of G.

Proposition 2.3. If G is loopless then A(G; p) is given by

A(G; p) = UG(x1 = 1, xj = −(−p)j for j ≥ 2, y = 0).

The symmetric function generalisation of the chromatic polynomial was developed
by Stanley in [27]. Let G be a graph with vertex set V = {v1, . . . , vn}. Then XG is a
homogeneous symmetric function of degree n defined by

XG(x1, x2, . . .) =
∑

χ

xχ(v1)xχ(v2) · · ·xχ(vn)

where the sum ranges over all proper colourings χ : V → Z
+. Let p0 = 1 and for r ≥ 1

let

pr(x1, x2, . . .) =
∞

∑

i=1

xr
i .

Then we have the following.

Proposition 2.4. For any graph G,

XG(x1, x2, . . .) = (−1)|V |UG(xj = −pj , y = 0).

3 Preliminary results

We begin this section with a few definitions that are needed in the algorithm. Although
the ideas behind the algorithm are quite simple, they do involve introducing a lot of
notation. A weighted partition of a set A consists of a partition π of A into non-empty
blocks, together with the assignment to each block of a non-negative integer label. If B
is a block in a weighted partition π, we write B ∈ π and we denote the label of B by
wπ(B). The number of blocks in π is denoted by #π.

Given two weighted partitions π1 and π2, of the same set, we define their join π =
π1 ∨ π2 as follows. The blocks are minimal sets such that if two elements are in the same
block of either π1 or π2 then they are in the same block of π. In other words, before
considering weights, the join operation corresponds to join in the partition lattice. If B
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is a block of π then for i = 1, 2, B is the disjoint union of a collection of blocks from πi.
We define wπ(B) by

wπ(B) =
∑

B′∈π1:
B′⊆B

wπ1(B
′) +

∑

B′∈π2:
B′⊆B

wπ2(B
′).

Let G = (V, E) be a graph and A ⊆ E. Let π(A) be the partition of V given by the
connected components of G|A. We use π(A) to make two definitions. The first definition
is the weighted partition induced by A on S and we denote it by πG(S, A), often omitting
G when it is obvious from the context. The weighted partition πG(S, A) is formed from
π(A) by labelling each block B with |B−S| and deleting all the elements of V −S together
with any empty blocks that are created in the deletion process.

Now let c(S, A, i) denote the number of blocks of π(A) contained entirely in S and
having i vertices. The component type of A on S is the monomial

x(S, A) =

∞
∏

i=1

x
c(S,A,i)
i .

Finally we let c(S, A) =
∑n

i=1 c(S, A, i).
Let G be the graph in Figure 1, let S = {v1, v2, v4, v8} and A = {e, f, g, h}. Then π(A)

has blocks {v1, v2, v4, v7}, {v3, v5}, {v6}, {v8}. So πG(S, A) has blocks {v1, v2, v4} and {v8}
with weights one and zero respectively. Furthermore x(V − S, A) = x1x2 corresponding
to the blocks {v3, v5} and {v6}.

v2 v3v1

v4 v5

v6 v7 v8

e

f

g

h

Figure 1: Weighted partition example

Note that
UG(x, y) =

∑

A⊆E

x(V, A)(y − 1)|A|−r(A)

and also for any S ⊆ V

UG(x, y) =
∑

A⊆E

x(V − S, A)
∏

B∈π(S,A)

xwπ(B)+|B|(y − 1)|A|−r(A). (3.1)

For G = (V, E) and S ⊆ V , let Π(S) be the set of all weighted partitions of S such
that the sum of the weights is at most n. Note that |Π(S)| ≤ n|S|B(|S|) where B(k)
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denotes the kth Bell Number. Let Π0(S) denote the set of all weighted partitions of S
with each block having weight zero.

In the algorithm we compute the evaluation of several polynomials which resemble the
states model expansion of U (2.1), except that we restrict the summation to those sets of
edges inducing a particular weighted partition.

Let G = (V, E) and S ⊆ V . Let π be a weighted partition of S. Then we define

US
G(π;x, y) =

∑

A⊆E:
πG(S,A)=π

x(V − S, A)(y − 1)|A|−r(A). (3.2)

In order to be completely clear, x and y will be specified in the input so we will think
of US

G as an evaluation of a polynomial rather than a polynomial.
In Section 5, we shall see that the algorithm works by building up the set of pairs

U(H, S) = {(π, US
H(π;x, y)) : π ∈ Π(S), US

H(π;x, y) 6= 0},

for successively larger subgraphs H of G and certain sets S ⊆ V (H). The key step occurs
when G is the union of two edge-disjoint graphs G1 and G2 such that V (G1)∩V (G2) = S.
Then the following lemma shows that U(G, S) may be computed from U(G1, S) and
U(G2, S).

Lemma 3.1. Let G1 = (V1, E1), G2 = (V2, E2) be graphs having disjoint edge sets. Let

S = V1 ∩ V2 and let G = G1 ∪ G2. Then for all π ∈ Π(S),

US
G(π;x, y) =

∑

US
G1

(π1;x, y)US
G2

(π2;x, y)(y − 1)(#π+|S|−#π1−#π2),

where the summation is over all π1, π2 ∈ Π(S) such that π1 ∨ π2 = π.

Proof. Let V = V1 ∪ V2 and E = E1 ∪ E2. Recall that the definition of US
G is as follows.

US
G(π;x, y) =

∑

A⊆E:
π(S,A)=π

x(V − S, A)(y − 1)|A|−r(A).

Now let A1 ⊆ E1, A2 ⊆ E2 and let A = A1 ∪ A2. We claim that πG(S, A) = πG1(S, A1) ∨
πG2(S, A2). Suppose the weighted partitions induced on S by A1, A2 and A are π1, π2

and π respectively. Two vertices in the same block of either π1 or π2 must be in the
same block of π. Hence the blocks of π are the blocks of π1 ∨ π2. Let B be a block of
π and for i = 1, 2 let wi(B) denote the number of vertices of Vi − S that lie on a path
beginning at a vertex in B and containing only edges of Ai. Then the label on B in π is
w1(B) + w2(B). Now B is the disjoint union of blocks of π1. It is not difficult to see that
the sum of the labels on these blocks is w1(B) and a similar result holds considering π2.
Hence π = π1 ∨ π2 as required. Now πG(S, A1) = πG1(S, A1) and πG(S, A2) = πG2(S, A2),
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so we have

∑

A⊆E:
πG(S,A)=π

x(V − S, A)(y − 1)|A|−r(A)

=
∑

π1,π2:
π1∨π2=π

∑

A1⊆E1:
πG1

(S,A1)=π1

∑

A2⊆E2:
πG2

(S,A2)=π2

x(V − S, A1 ∪ A2)(y − 1)|A1|+|A2|−r(A1∪A2).

Edges of G1 do not have either endpoint in V2 − S and similarly edges of G2 do not
have either endpoint in V1 − S. Consequently if A1 ⊆ E1 and A2 ⊆ E2 then for all i,
c(V − S, A1 ∪ A2, i) = c(V1 − S, A1, i) + c(V2 − S, A2, i) which implies that

x(V − S, A1 ∪ A2) = x(V1 − S, A1)x(V2 − S, A2).

Furthermore for i = 1, 2 we have

r(Ai) = |Vi| − c(Vi − S, Ai) − #π(S, Ai)

and similarly
r(A) = |V | − c(V − S, A) − #π(S, A).

So

r(A) = |V | − c(V − S, A) − #π(S, A)

= |V1| − c(V1 − S, A1) − #π(S, A1)

+ |V2| − c(V2 − S, A2) − #π(S, A2)

+ (#π(S, A1) + #π(S, A2) − #π(S, A) − |S|)

= r(A1) + r(A2) + #π(S, A1) + #π(S, A2) − #π(S, A) − |S|.

Finally we get

∑

π1,π2:
π1∨π2=π

∑

A1⊆E1:
πG1

(S,A1)=π1

∑

A2⊆E2:
πG2

(S,A2)=π2

x(V − S, A1 ∪ A2)(y − 1)|A1|+|A2|−r(A1∪A2)

=
∑

π1,π2:
π1∨π2=π

∑

A1⊆E1:
πG1

(S,A1)=π1

∑

A2⊆E2:
πG2

(S,A2)=π2

x(V1 − S, A1)(y − 1)|A1|−r(A1)

· x(V2 − S, A2)(y − 1)|A2|−r(A2)(y − 1)(#π+|S|−#π1−#π2)

=
∑

π1,π2:
π1∨π2=π

US
G1

(π1;x, y)US
G2

(π2;x, y)(y − 1)(#π+|S|−#π1−#π2),

as required.
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4 Tree-width

We begin with definitions of tree-decompositions and of tree-width. A tree-decomposition

of a graph G = (V, E) is a pair
(

S = {Si|i ∈ I}, T = (I, F )
)

where S is a family of subsets
of V , one for each vertex of T , and T is a tree such that

•
⋃

i∈I Si = V .

• for all edges {v, w} ∈ E, there exists i ∈ I such that {v, w} ⊆ Si.

• for all i, j, k ∈ I, if j is on the path from i to k in T , then Si ∩ Sk ⊆ Sj.

The width of a tree-decomposition is maxi∈I |Si| − 1. The tree-width of a graph G is
the minimum width of a tree-decomposition of G.

Given a simple graph with tree-width at most k, the algorithm given in [6] will, in
time O(g(k)n), produce a tree-decomposition of width at most k. Note however that

g(k) = k5(2k + 1)2k−1((4k + 5)4k+5(22k+5/3)4k+5)4k+1.

Let T ′ = (S ′, T ′) be the output of the algorithm. Suppose we arbitrarily give T ′ a root
r. Then it is easy to modify T ′ to produce a tree-decomposition T =

(

{Si|i ∈ I}, T =
(I, F )

)

satisfying the following properties.

1. T is rooted.

2. For all i ∈ I, |Si| = k + 1.

3. If Si and Sj are joined by an edge of T then |Si ∩ Sj| ≥ k.

4. For all i ∈ I, there is a leaf l of T such that Sl = Si.

5. For all i ∈ I, either i is a leaf of T or i has two children.

6. |I| ≤ 2n.

This follows using an easy induction and the procedure may be carried out in time
O(g(k)n). We call such a tree-decomposition, a reduced rooted tree-decomposition.

5 The algorithm

We now describe how the algorithm works and discuss its complexity. Let k be a fixed
strictly positive integer. We assume that we are given a graph G with tree-width at most
k, and rationals x1, . . . , xn and y. Remove all but one edge from each parallel class to
give G′. Define m : E(G′) → Z

+ so that m(e) is the size of the parallel class (that is the
maximal set of mutually parallel edges) containing e in G. Compute a reduced rooted
tree-decomposition (S, T ) of G′ with width at most k.
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Using property (4) of a reduced rooted tree-decomposition, we see that we may arbi-
trarily associate each edge e = {u, v} of G′ with a leaf l of T such that {u, v} ⊆ Sl. Let El

denote the set of edges associated with leaf l. Then the collection {El : l is a leaf of T}
forms a partition of E(G′).

Removing multiple edges and loops from G and defining m(e) requires time O(m).
Computing a tree-decomposition using the algorithm in [6] requires time O(g(k)n) and
producing a reduced tree-decomposition from this requires time O(g(k)n). Finally com-
puting the partition {El : l is a leaf of T} needs time O(k2n).

For i, j ∈ I, we write i � j if i = j or i is a descendant of j in T . Now for each
i ∈ I, let Gi denote the subgraph of G for which the vertex set is

⋃

j�i Sj and the edge
set consists of all edges of G for which the corresponding edge of G′ is in El for some l
that is a descendant i in T . (It is not necessary for the algorithm to explicitly compute
or construct any of these subgraphs.)

Then for each i ∈ V (T ) the algorithm iteratively computes the set of pairs

U(Gi, Si) = {(π, USi

Gi
(π;x, y)) : π ∈ Π(Si), USi

Gi
(π;x, y) 6= 0},

by working upwards through the tree computing U(Gi, Si) only when the sets corre-
sponding to each of its descendants have been computed. Let β(n, m, k,x, y) denote
the maximum time needed for one multiplication or addition during the computation of
UG(x, y).

We first deal with the computation at leaves of T .

Lemma 5.1. If l is a leaf, then U(Gl, Sl) can be computed in time O(2(k+1)2k2 log(p)β).

Proof. Since V (Gl) = Sl, USl

Gl
(π;x) = 0 unless the weight of each block of π is zero. So

we may restrict our attention to weighted partitions where each block has weight zero. If
π ∈ Π0(Si) and y 6= 1 then

USl

Gl
(π;x) =

∑

A⊆El:π(Sl,A)=π

(y − 1)−r(A)
∏

e∈A

(ym(e) − 1).

If π ∈ Π0(Sl) and y = 1 then

USl

Gl
(π;x) =

∑

A⊆El:r(A)=|A|
π(Sl,A)=π

∏

e∈A

m(e).

We compute all these sums in parallel by making one pass through all A ⊆ El, determining
π(Sl, A) in time O(k2), computing (y − 1)−r(A)

∏

e∈A(ym(e) − 1) or
∏

e∈A m(e) in time
k2 log(p)β and adding the result on to the appropriate sum.

The next two lemmas deal with the computation at vertices of T that are not leaves.
Suppose that j is the child of i in T . Recall that Si \ Sj contains at most one vertex.
Define G+

j as follows: if Si = Sj then let G+
j = Gj and otherwise form G+

j from Gj by
adding the unique vertex of Si \ Sj as an isolated vertex.
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First we show how to compute U(G+
j , Si) from U(Gj , Sj). This is really a bookkeeping

exercise but its description is slightly complicated. If Si = Sj then there is nothing
to be done. Otherwise let Sj \ Si = {s} and Si \ Sj = {t}. Let A ⊆ E(Gj) and let
π = πGj

(Sj, A). Suppose the block of π containing s is B. Now there are two cases to
consider. If B 6= {s} then πG+

j
(Si, A) is formed from πGj

(Sj , A) by adding {t} as a block

with weight zero, deleting s from B and incrementing the weight of B by one. Furthermore
x(V (G+

j ) \ Si, A) = x(V (Gj) \ Sj, A). On the other hand if B = {s} then πG+
j
(Si, A) is

formed from πGj
(Sj, A) by adding {t} as a block with weight zero and deleting B. Now

x(V (G+
j ) \ Si, A) = x(V (Gj) \ Sj , A)xw(B)+1. Notice that in either case πG+

j
(Si, A) and

x(V (G+
j )\Si, A) depend on A only via πGj

(Sj , A) and x(V (Gj)\Sj , A). Consequently for
any π ∈ Π(S) we define πt

s by adding {t} as a block with weight zero and then proceeding
as follows. If {s} is a block of π then delete it, otherwise increment the weight of the
block containing s by one and then delete s. If B is the block of π containing s then we
define

x(s, π) =

{

xw(B)+1 if B = {s},
1 otherwise.

Lemma 5.2. Let j be a child of i in T with Si 6= Sj and let π0 ∈ Π(Si). Then using the

notation above

USi

G+
j

(π0;x, y) =
∑

π∈Π(Sj):πt
s=π0

U
Sj

Gj
(π;x, y)x(s, π).

Furthermore U(G+
j , Si) can be computed from U(Gj , Sj) in time O(B(k)nk+1β).

Proof. First note that if {t} is not a block of π0 then USi

G+
j

(π0;x, y) = 0. Otherwise by (3.2)

we have
USi

G+
j

(π0;x, y) =
∑

A⊆E(G+
j ):

π(Si,A)=π0

x(V (G+
j ) \ Si, A)(y − 1)|A|−r(A). (5.1)

Furthermore we have

∑

π∈Π(Sj):πt
s=π0

U
Sj

Gj
(π;x, y)x(s, π)

=
∑

π∈Π(Sj):
πt

s=π0

∑

A⊆E(Gj):
π(Sj ,A)=π

x(V (Gj) \ Sj , A)(y − 1)|A|−r(A)x(s, π). (5.2)

From the discussion preceding the lemma and the fact that E(Gj) = E(G+
j ), a set

A contributes to the sum in (5.1) if and only if it contributes to the right-hand side
of (5.2). Furthermore for such a set A, the discussion preceding the lemma implies that
x(V (G+

j ) \ Si, A) = x(V (Gj) \ Sj, A)x(s, π). Hence the first part of the lemma follows.

To see that the complexity calculation is correct first recall that |Π(Si)| = nk+1B(k+1).
However if t does not occur as a singleton block of weight zero in π0 then USi

G+
j

(π0;x, y) = 0,

so we only have to compute USi

G+
j

(π0;x, y) for nkB(k) different weighted partitions π0.
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For such a weighted partition π0, we must determine which weighted partitions of Sj

appear in the sum in (5.1). There are two types, those in which s appears as a singleton
block and those in which s does not. In the former case we may add s to π0 as a singleton
block with any of the possible O(n) weights and in the latter case we may add s to any
of the at most k blocks of π0. In both cases we remove the singleton block containing t.
It remains to calculate x(s, π) for each of these O(n) partitions and finally compute the
sum. The total time required is O(B(k)nk+1β) as required.

The second lemma follows from Lemma 3.1.

Lemma 5.3. Let j and k be the children of i in T . Then U(Gi, Si) can be computed from

U(G+
j , Si) and U(G+

k , Si) in time O((B(k + 1))2kn2k+2(k + β)).

Proof. Applying Lemma 3.1 we see that For all π ∈ Π(Si),

USi

Gi
(π;x, y) =

∑

USi

G+
j

(π1;x, y)USi

G+
k

(π2;x, y)(y − 1)(#π+k+1−#π1−#π2),

where the summation is over all π1, π2 ∈ Π(S) such that π1 ∨ π2 = π.
We can compute U(Gi, Si) by making one pass through all pairs (π1, U

Si

G+
j

(π1;x, y))

and (π2, U
Si

G+
k

(π2;x, y)) of elements from U(G+
j , Si) and U(G+

k , Si) respectively, computing

π1 ∨ π2 and adding the contribution from this pair to the sum giving (π1 ∨ π2, U
Si

Gi
(π1 ∨

π2;x, y)). To find π1∨π2 requires time O(k2+kβ); to find (y−1)(#π+|S|−#π1−#π2) requires
time O(kβ). Consequently the complexity estimate follows.

Together, the preceding two lemmas show that for any i ∈ I with children j and k,
we can calculate U(Gi, Si) from U(Gj, Sj) and U(Gk, Sk). Finally we can recover UG(x, y)
given U(Gr, Sr), where r is the root of T .

Lemma 5.4. Let r be the root of T . Then

UG(x, y) =
∑

π∈Π(Sr)

USr

Gr
(π;x, y)

∏

B∈π

x(wπ(B)+|B|).

Furthermore UG(x, y) can be computed from U(Gr, Sr) in time O(B(k + 1)nk+1kβ).

Proof. By applying the definition of US
G and the fact that Gr = G, we have

∑

π∈Π(Sr)

USr

Gr
(π;x, y)

∏

B∈π

x(wπ(B)+|B|)

=
∑

A⊆E(G)

x(V − Sr, A)(y − 1)|A|−r(A)
∏

B∈π(Sr ,A)

x(wπ(Sr,A)(B)+|B|).

Comparing this expression with (3.1), we see that this is exactly UG. The sum contains
O(B(k+1)nk+1) terms and to compute each term requires time O(kβ), so the complexity
calculation is correct.
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By combining Lemmas 5.1–5.4 and the remarks at the beginning of this section, we
see that the overall running time of the algorithm is O(g(k)n2k+3 log(p)β). Finally we
compute bounds on the numbers involved in the computations. When y 6= 1 the numbers
involved other than the weights of the blocks of partitions may be written in the following
form:

∑

A∈A

xa1
1 · · ·xan

n (y − 1)|A|−r(A)

where A is a collection of subsets of E(G) and
∑n

i=1 ai ≤ n. Recall that for all i, xi = pi/qi

and y = p0/q0. Let

M = max{|p0|, |p1|, . . . , |pn|, |q0|, |q1|, . . . , |qn|}.

Then

∑

A∈A

xa1
1 · · ·xan

n (y − 1)|A|−r(A)

=
∑

A∈A

pa1
1 . . . pan

n (p0 − q0)
|A|−r(A)

qa1
1 . . . qan

n q
|A|−r(A)
0

=
∑

A∈A

pa1
1 qn−a1

1 . . . pan
n qn−an

n (p0 − q0)
|A|−r(A)q

m+r(A)−|A|
0

qn
1 . . . qn

nqm
0

.

Considering the denominator, we have |qn
1 . . . qn

nqm
0 | ≤ Mn2+m. For the numerator we have

∑

A⊆E(G)

pa1
1 qn−a1

1 . . . pan

n qn−an

n (p0 − q0)
|A|−r(A)q

m+r(A)−|A|
0 ≤ 2mMn2

(2M)m.

Similar bounds hold when y = 1. Hence a bound on the size of any of the numbers
occurring in the algorithm is Mn2+m4m. To add, subtract, multiply or divide two b-bit
integers takes at most O(b log(b) log(log(b))) time [1, 12]. So the overall running time of
the algorithm is

O(g(k)n2k+3(n2 + m) log(p)r log(r(n + m)) log(log(r(n + m)))),

where r = log(max{|p0|, . . . , |pn|, |q0|, . . . , |qn|}).
When the graph is simple, m ≤ kn and so the running time is at most

O(g(k)n2k+5r log(rn) log(log(rn))).
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