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General Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that accounts for 50-70% of the 
worldwide dementia cases in elderly people1,2. Almost 47 million individuals are reported to 
suffer from dementia worldwide, and this number is expected to double every 20 years1,3. AD 
is characterized by progressive loss of memory, problems in executive functioning and daily life 
activities4. The prevalence of AD is rising sharply in aging populations5. The increasing disease 
burden is posing serious health and economic challenge in modern society.

Pathologically, AD is characterized by two hallmarks, amyloid-beta (Aβ) plaques and neurofibrillary 
tangles (NFTs). Plaques and tangles are primarily observed in brain regions involved in memory, 
learning and emotional behaviors, such as the hippocampus, entorhinal cortex, and amygdala6. 
Plaques are generated due to improper cleavage of amyloid precursor protein (APP), resulting 
in the formation of Aβ monomers. These monomeric peptides aggregate to form the amyloid 
plaques that may damage the synapses and neurites. The APP gene is implicated in the causal 
pathway of at least a subgroup of patients because mutation carriers of the APP gene develop 
early-onset AD. NFTs are formed as a result of hyperphosphorylation of the microtubule-
associated protein tau, leading to the disruption of axonal transport and neuronal damage7,8. 
Alongside the two hallmarks of AD pathology, it has been recognized for long that AD pathology 
is accompanied by neuro-inflammation9,10. Recent genetic studies have implicated the microglia 
and astrocytes as key players in the AD pathophysiology11. Despite extensive research about 
the role of these core pathologies, unraveling the underpinning mechanism of AD pathology 
which contributes to the onset and progression of AD remains a challenge in achieving a suitable 
treatment and prevention of AD.

For decades, the diagnosis of AD was based on the criteria of Diagnostic and Statistical Manual 
of Mental Disorders, fourth edition (DSM-IV-TR)12 and the National Institute of Neurological 
Disorders and Stroke–Alzheimer Disease and Related Disorders (NINCDS-ADRDA)13 working 
group, which were and are still commonly used in clinical research. These criteria rely on the 
initial identification of dementia symptoms followed by the assessment of clinical features of AD 
phenotype14. Clinically, these criteria support the diagnosis of a probable and possible AD, but 
definitive AD diagnosis relies on the histopathological confirmation of the clinical diagnosis15. 
However, advances in biomarker research have paved the way for a more accurate and reliable 
diagnosis of AD using structural magnetic resonance imaging (MRI) features, neuroimaging 
with positron emission topography (PET) and cerebrospinal fluid (CSF) pathology biomarkers 
and thus have forced a reconsideration of the established clinical diagnostic criteria14.

Recently, the National Institute on Aging and Alzheimer’s Association (NIA-AA) Research 
Framework proposed A/T/N biomarker criteria to identify high-risk AD subjects. Where “A” 
indicates the Aβ biomarker (CSF Aβ-42 or cortical amyloid positron emission tomography 
[PET]); “T” refers to tau biomarker (CSF levels of phosphorylated tau or tau PET); and “N” 
represents the biomarker values of neuronal injury or neurodegeneration (structural MRI, 
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[18F]-fluorodeoxyglucose–PET, or CSF total tau)16. Although A/T/N biomarkers may assist to 
identify the high-risk subjects during the prodromal stage or even the preclinical phase of AD, 
CSF and MRI biomarkers are costly and invasive, and therefore not suitable for screening large 
populations. Discovery of less invasive blood-based biomarkers is needed which would allow 
screening of high-risk populations. A/T/N biomarkers are also increasingly been used to evaluate 
the relevance of new molecular pathways in AD pathophysiology.

Technological advancement has fueled multi-omics research in AD to unravel the underlying 
etiology of AD to enable treatment and early diagnosis of disease. AD is determined by a 
complex interplay of genetic and environmental risk factors17. Mounting evidence suggests the 
co-occurrence of cardiovascular risk factors (e.g., diabetes, hypertension and obesity) and classic 
AD neuropathology18-20. Smoking, obesity, low education attainment, physical activity, and diet 
may contribute to an increased risk of AD21. A report from the Lancet commission acknowledged 
the epidemiological findings and suggested that 35% of the dementia risk can be reduced by 
modifying these cardiovascular and lifestyle-related risk factors22.

Preclinical and prodromal phase of  AD

The AD pathogenesis can be conceptualized as a trajectory including the preclinical stage 
(presymptomatic), mild cognitive impairment (MCI) (early symptomatic or predementia), 
and AD dementia 23. The early preclinical stage of AD starts decades before the symptomatic 
phase24 and it can be characterized by altered levels of biomarkers25,26 (Figure 1). Biomarkers may 
include both structural brain features at neuroimaging and biochemical changes in blood, and 
CSF27,28. With regard to neuroimaging, MRI is employed to detect volumetric and structural 
changes to brain morphology and vascular features29. MRI measures such as global cortical 
atrophy, hippocampal atrophy, and white matter hyperintensities are shown to be associated 
with cognitive measures and risk of dementia30 and have increasingly been applied in healthy 
populations as biomarkers of AD diagnosis and its progression31. A recent development in PET 
tracers has allowed in vivo detection of Aβ abnormalities (imaging radiotracer: [18F]-florbetaben) 
and tau accumulations (18F-THK5351 and 18F-AV-1451) with high accuracy32,33. Earlier studies 
have shown the association of tau PET binding with an increased amyloid pathology34, brain 
structural atrophy35, and glucose hypometabolism in preclinical AD individuals. Ongoing 
progress in tau PET scanning further holds the potential to monitor tau deposition during 
the early stages of neurodegeneration36,37. The preclinical stage is regarded as the best stage for 
evaluating the genetic and metabolic risk factors involved in disease progression to AD. Advances 
in CSF and blood-based biomarkers detection made it possible to monitor pathophysiological 
processes in the preclinical stage of AD (Figure 1) but higher costs of MRI or PET scanning and 
invasive nature of CSF based methods make them less attractive for high-throughput population 
screening. There have been recent developments in research of blood-based markers38. Future 
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research should focus blood-based methods to discover biomarkers of preclinical stage which are 
relatively less invasive and cost-effective.

The second stage of AD is described by MCI due to AD, which is an early symptomatic 
predementia phase23 (Figure 1). Although there is an ongoing discussion, it is of note that 
32% of the MCI patients progress into AD within five years; therefore, MCI is often viewed 
as a prodromal phase of AD dementia27,39. Due to the high prevalence of MCI in the general 
population and the higher risk of MCI patient progression into AD compared with cognitively 
normal people40,41, understanding the genetic and biochemical risk factors of MCI may unravel 
molecular pathways that are relevant for preventive intervention. MCI patients exhibit a 20% 
to 30% higher prevalence of cerebral amyloid pathology compared with cognitively normal 
subjects, which is two to three times higher in APOE ε4 carriers compared to the noncarriers42. 
Multiple evidence suggests that CSF levels of Aβ-42, p-tau and total tau can be used to identify 
MCI patients who are at higher risk of developing into AD43. Prediction sensitivity of CSF levels 
of Aβ-42 is 79% and specificity of 65%. P-tau has a sensitivity of 84% and specificity of 47%, 
while total-tau predicts AD conversion with a sensitivity of 86% and specificity of 56%43. A 
recent study has reiterated the generalizability and robustness of CSF biomarker-based models 
for prediction of dementia in MCI patients (Aβ-42, p-tau and hippocampal volume)44. The study 
basically constructed and tested various CSF biomarker-based models in multiple cohorts and 
shown the potential clinical implications of these models in predicting MCI to AD progression44.
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Figure 1: Biomarkers of  AD trajectory over time, presenting three stages of  AD, presymptomatic 
stage, MCI and eventually AD dementia. Reprinted from Leclerc et al.28 Abbreviations: MCI, mild 
cognitive	impairment;	MRI,	magnetic	resonance	imaging;	CSF,	cerebrospinal	fluid.
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Omics research of  Alzheimer’s disease

Omics approaches refer to high-throughput technologies aiming to assess the molecular 
components of biological systems45. Several layers of omics including genomics, epigenomics, 
proteomics, metabolomics, and microbiomics, are used to improve the understanding of etiology 
and pathophysiology of disease at the molecular level (Figure 2)46. The aim of this thesis is to use 
a multi-omics approach to decipher the molecular pathways of AD.

Genetics
In the last decade, substantial advances in the discovery of genetic determinants of AD have been 
made. The genetic component of AD constitutes a major driving force of AD pathophysiology, 
and genetic discoveries over the years played a pivotal role in our current understanding of disease 
molecular mechanism. Based on the age at onset, AD patients who develop dementia before 65 
years of age are classified as early-onset AD48, of which almost half is contributed by mutations 
in three genes i.e., PSEN149, PSEN250 and APP51. Early-onset AD accounts for only 1-5 % of the 
total AD cases, of which 10-15 % cases follow autosomal dominant inheritance52. Most of the 
AD cases are sporadic in nature and often develop dementia after 65 years of age48. The genetic 
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etiology of the late-onset AD patients is more complex and heritability is estimated to vary from 
60% to 80%53. To date, the ε4 allele of the APOE gene is the strongest common genetic risk 
variant for late-onset AD54 and it confers AD risk in a dose-dependent manner. The APOE gene 
has three allelic variants ε4, ε3, and ε2, of which homozygote carriers of APOE ε4 allele have 
50% higher lifetime risk of AD compared with 10% for non-carriers by age 85, while APOE 
ε2 allele is considered protective for AD55,56. Although APOE ε4 allele has a frequency of nearly 
25% in the general population57, it is neither necessary nor sufficient to develop AD therefore not 
used alone for AD diagnosis58,59. It is of note that at least one-third of the AD patients are APOE 
ε4 non-carriers, and nearly 50% homozygotes of APOE ε4 do not develop AD by age 8057. In 
the Rotterdam Study, van der Lee et al.,60 have shown that the other common genetic variants 
may also affect the risk of dementia, particularly in the APOE ε4 carriers. Despite the discovery 
of the APOE gene a two decades ago, its role in AD pathology remains unclear as there is a wide 
range of mechanisms of action of APOE in AD, and many questions remain to be answered. A 
recent study has suggested that APOE may contribute to the amyloid disposition in preclinical 
subjects whereas other common genetic factors may drive the progression of AD in amyloid 
positive individuals61. Disentangling the complex interaction of the APOE gene with lifestyle 
and systemic risk factors would provide new insights into the APOE molecular mechanism, and 
pathophysiology and risk of AD (see Chapter 3.2).

Technical and methodological advances in genotyping and genetic imputations have paved the 
way for genome-wide association studies (GWAS), which test the association of millions of 
single nucleotide polymorphism (SNPs) in the whole genome to disease status in individuals. 
In parallel, several international groups including the Alzheimer’s Disease Genetics Consortium 
(ADGC), Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE), and 
the Genetic and Environmental Risk in Alzheimer’s Disease (GERAD) have joined their efforts 
under the umbrella of the International Genomics of Alzheimer’s Project (IGAP) to push forward 
the growth in the genetics of AD. IGAP reported 11 novel loci in addition to replicating eight 
previously known genetic loci from earlier GWAS studies62-67. More recently, in January 2019, 
IGAP published the largest GWAS to date and reported five novel AD risk variants68 (Figure 3). 
Moreover, Jansen et al., conducted a GWAS largely based on the UK Biobank data (~635,000) 
using the family history of AD as ‘proxy AD’ and identified nine genetic variants, in addition to 
replicating few already existing risk loci69. Together, various meta-analyses of GWAS studies have 
identified more than 39 risk loci for late-onset AD70.

One of the major contributions of GWAS is providing insights into the biological pathways 
involved in AD. Pathway enrichment analysis based on data integration of ribonucleic acid 
(RNA) expression with AD GWAS meta-analysis results, identified eight gene pathways 
implicated in AD71 including immune response, endocytosis, cholesterol transport, hematopoietic cell 
lineage, protein ubiquitination, hemostasis, clathrin/AP2 adaptor complex and protein folding 72. 
These diverse biological pathways may be involved in the clinically heterogeneous manifestation 
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of MRI endophenotypes73-75, and may also modulate the prodromal stages of AD76-78. More 
recently Kunkle et al.,68 is the first one to report the enrichment of the tau binding proteins 
and APP metabolism-related pathways in late-onset AD using GWAS data. Disentangling the 
role of AD implicated biological pathways in early AD pathology may help to improve our 
understanding of the pathogenesis of AD during the predementia stage. In chapter 3.1 of this 
thesis, I have addressed several unanswered questions, including whether AD-related pathways 
are associated with brain structural and volumetric changes during the preclinical stage of AD, 
the incidence of MCI in the Rotterdam Study.

All known common SNPs explain only 16% of the variation in the clinical manifestation and 
31% of the genetic variance of AD68,70,79, leaving nearly 60% of the genetic risk uncharacterized80. 
It is likely that rare variants missed out in imputation based GWAS may explain the remaining 
clinical and genetic variance of AD81, which reiterates the need to detect these rare variants using 
advanced genome sequencing techniques. Recently reported rare variant discoveries in PLD3, 
APP, ABI3, PLCG2, and TREM2 genes82-85 strengthen the notion that rare variants may fill the 
space of missing heritability of late-onset AD86. Moreover, Alzheimer’s disease sequencing project 

ACE ADAMTS1

WWOX

PLCG2ABI3

IQCK

Figure 3: Alzheimer’s disease implicated genetic variants with respect to population frequency, effect 
size and implicated biological pathways. Modified	reprint	from	Scheltens et al3.
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(ADSP) has reported the association of three novel rare genetic variants in IGHG3, AC099552.4 
and in ZNF655 genes87. Advances in next-generation sequencing techniques made it possible to 
couple genetic linkage analysis with deep genetic information to identify rare genetic variants 
using family-based data81. Genetic linkage analysis is a classic approach to genetic discovery 
to identify genomic regions segregating with disease status in families with multiple affected 
individuals. Genetic linkage is based on the principle that genes that are located physically close 
to each other on the chromosome, also segregate together during meiosis88. The availability of 
suitable multigenerational families of AD cases is one of the major shortcomings in the discovery 
of rare variants using linkage analysis89. Extended pedigrees with multiple AD cases are expected 
to harbor highly penetrant variants, therefore they are ideally suited to identify disease loci90. In 
chapter 2 of this thesis, I have studied the genetics of AD in complex multi-generation families 
of the highly inbred Genetic Research in Isolated Population (GRIP).

Proteomics

Unlike genes, protein levels can be influenced by several factors such as environment, disease stage, 
medication use, diet patterns. Since disease-related molecular changes are reflected at transcriptome 
and proteome level, proteomics can be exploited to discover disease biomarkers, targets for 
treatment, and to understand the disease pathophysiology91. One of the major contributions 
of the genomic studies is to provide insight into the protein functions92. Evidence suggests that 
the majority of AD implicated genes are expressed in blood-derived macrophages68,93,94 and can 
modulate the protein expression levels in the blood circulation. Moreover, the interaction of 
APOE with common genetic pathways60 and its impact on blood-brain barrier integrity95 can 
lead to altered blood protein levels which may represent AD brain pathophysiology96. Large 
scale proteomic studies are now emerging in AD research97-102 and already have identified altered 
levels of proteins in the circulation, representing signaling, synaptic and oxidative stress-related 
pathophysiology103,104. There is an increasing interest in the relationship between altered levels 
of proteins and AD in the presymptomatic stage. Prospective studies targeting various protein 
pathways and their interaction with genetic risk factors such as APOE would provide new insight 
into biomarkers and pathways altered prior to the onset of AD. In this thesis (Chapter 4.1), I 
studied the association of plasma levels of proteins profiled during the predementia stage of AD 
and their interaction with APOE in the Rotterdam Study.

Metabolomics

Advances in high-throughput metabolomics allowed the detection of hundreds of biochemical 
compounds (metabolites) in blood, CSF, urine and brain tissues105. Metabolic imprints represent 
complex interactions of genes, proteins, and environmental factors, thus helping to provide deep 
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insight into disease pathophysiology105,106. Metabolomics may provide promising biomarkers for 
disease progression due to the complex and dynamic nature of the AD continuum, and because 
blood metabolic repertoire usually reflects CSF and brain biochemical changes107,108. Metabolomic 
studies on tissue samples of MCI and AD patients have suggested altered metabolic function 
in the preclinical109-111 and clinical stages of AD111-113. Increasing evidence suggests the role of 
altered levels of metabolites in several key AD related pathways including lipid metabolism, 
amino acid metabolism, energy metabolism oxidative stress, synaptic function, cell signaling, 
and inflammation114,115. Until now, among all pathways identified by metabolomic studies, lipid-
related metabolites provide the strongest and most consistent evidence of association with AD 
which is also supported by the role of APOE in lipid uptake and transport111. Several lipid classes 
have been linked to dementia so far, such as phospholipids, sphingolipids, sterols, sphingomyelins, 
and phosphatidylcholines4,108,111,115-117. Due to the huge risk attributed by APOE and its role in 
lipid transport, the interaction of APOE with lipid metabolites need special attention. Moreover, 
studies are needed that address the role of signaling lipids in AD pathophysiology and in AD 
progression. In chapter 4.2 of this thesis, I performed an investigation which evaluate the 
role of signaling lipids (lysophosphatidic acids) in AD. This study was conducted in cohorts 
participating in the Alzheimer’s Disease Apolipoprotein Pathology for Treatment Elucidation 
and Development (ADAPTED) consortium including the Barcelona-based memory clinic 
Fundació ACE and the Department of Geriatric Psychiatry at the Medical Faculty Mannheim, 
University of Heidelberg.

Gut-liver-brain axis
Evidence of metabolic dysfunction in AD trajectory118 and increased risk of AD contributed 
by metabolic disorders (diabetics, hypertension, and obesity), strengthen the notion that AD 
metabolic disorders play a key role in either etiology or progression of disease119-122. Disturbed 
energy metabolism123,124 and altered gut microbiota in AD animal models125-127, all point to the 
complex interplay of liver and gut in AD pathophysiology. Studies addressing the determinants 
of the liver, gut microbiome, and brain biochemical communication and their relationship 
to AD pathogenesis could help to understand the unknown role of the Gut-Liver-Brain axis 
in AD. The liver being a major metabolic organ can directly influence the metabolic milieu 
of circulation128,129 or indirectly via the production of bile acids which can modulate the gut 
microbiota composition130,131 (Figure 4). Although several studies suggest the association of liver 
disease with brain structural features, cognition and dementia132-134, there are many questions to 
answer on the role of liver function biomarkers in AD pathophysiology. In this thesis (chapter 5.1), 
I describe the association of liver function biomarkers with biomarkers of AD pathophysiology in 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort.

Another integral component of gut-liver brain axis is the gut microbiota, which makes up to 
95% of the total human microbiota135. The gut microbiota can regulate the levels of metabolites, 
cytokines, immunological and neuronal signals135-138, thus physiologically connecting the gut, the 



23

1

General Introduction

brain, and liver139 (Figure 4). Secondary bile acids represent an important microbial-derived class 
of metabolites140 which can cross blood-brain barrier141 and act as signaling molecules to regulate 
the molecular processes in the central nervous system including the energy homeostasis142. In 
Chapter 5.2 of this thesis, I have studied the role of bile acid metabolites in AD in the ADNI 
and the Rotterdam Study cohorts. Gut microbial diversity is also known to affect levels of short-
chain fatty acids such as butyrate, acetate, and propionate in circulation, which may affect 
inflammatory, immune response and the blood-brain barrier function143,144 (Figure 4). Moreover, 
increasing evidence from genetic studies implicate immune response and brain resident microglia 
in early phase of AD145,146. Function of microglial cells can also be modulated by signaling 
molecules originating from the gut microbiota, thus, microglia can act at the junction of the gut 
brain-axis in AD146,147. The complex relationship between AD genes, microglia, and microbiota 
poses another unanswered question i.e., whether, AD risk genes can modify human gut microbial 
abundance in a non-demented population. Answering this question would help to identify 
bacterial taxa involved in AD pathophysiology.

Secondary bile 
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Primary bile 
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Enzymes (VLDLS, 
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Neurotransmitters, 
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Figure 4: Gut-liver-brain axis. Abbreviations:	BBB,	blood-brain	barrier;	SCFA,	Short-chain	fatty	
acids; ASAT, Aspartate aminotransferase; ALAT, Alanine aminotransferase. Source: Adapted 
from Tripathi et al148.
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Scope of  this thesis

The aim of this thesis is to identify the genetic, metabolic and proteomic determinants of AD and 
to evaluate the interaction of lifestyle factors with the genetic risk of AD.

In chapter 2, I present a genetic linkage analysis to identify the genomic regions linked with AD 
in complex inbred Dutch families and subsequently used whole-genome sequencing to identify 
the rare genetic variants in the identified linkage region.

Chapter 3 explores the role of AD pathways in the predementia phase of AD and the interaction 
of lifestyle factors in AD genetic risk. In chapter 3.1, I study the association of AD implicated 
biological pathways with MCI and brain structural features in a healthy population. Chapter 
3.2 provides insight into the role of modifiable lifestyle factors in the genetic risk of dementia in 
the Rotterdam Study.

Chapter 4 studies the metabolic and proteomic determinants of AD. Chapter 4.1 explores the 
altered levels of brain-specific proteins in the blood prior to the onset of AD in a prospective 
manner and whether APOE can influence this association. I studied the role of lysophosphatidic 
acids in AD pathophysiology in the MCI population and their role in progression to AD in 
Chapter 4.2.

Chapter 5 studies the determinants of the liver-gut-brain axis in AD. Chapter 5.1 highlights 
the role of liver function in AD pathology and their relationship with various endophenotypes of 
AD. Chapter 5.2 focusses on the relationship of bile acids with AD, cognition and AD genetic 
variants. In chapter 5.3, I study the impact of AD genetic risk factors on the abundance of 
various gut microbiota in the healthy population.

The findings are integrated and discussed in general discussion (Chapter 6)
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Abstract

Introduction: Exploring the role of Alzheimer’s disease (AD) implicated pathways in predementia 
phase may provide new insight for preventive and clinical trials targeting disease specific pathways.

Methods: We constructed weighted Genetic risk scores, first based on 20 genome-wide 
significant AD risk variants and second clustering these variants within pathways. Risk scores 
were investigated for their association with AD, mild cognitive impairment and brain magnetic 
resonance imaging phenotypes including white matter lesions, hippocampal volume, and brain 
volume.

Results: The risk score capturing endocytosis pathway was significantly associated with mild 
cognitive impairment (P = 1.44x10-4). Immune response (P = 0.016) and clathrin/AP2 adaptor 
complex pathway (P = 3.55x10-3) excluding apolipoprotein E (APOE) also showed modest 
association with white matter lesions but did not sustain Bonferroni correction (P = 9.09x10-4).

Discussion: Our study suggests that the clinical spectrum of early AD pathology is explained 
by different biological pathways, in particular, the endocytosis, clathrin/AP2 adaptor complex and 
immune response pathways that are independent of APOE.
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Introduction

Alzheimer’s disease (AD) is a heterogeneous and genetically complex disease with high heritability 
(56-79 %)1. It has been known since the end of the previous century that a polymorphism in 
the apolipoprotein E (APOE) gene is the strongest common genetic risk factor2-4. This finding 
fueled speculations on the role of lipid metabolism and cholesterol transport pathway in AD in 
addition to the amyloid cascade and tau phosphorylation mechanism5,6. Furthermore, large-
scale genome-wide association studies (GWAS) have discovered more than 20 novel common 
genetic variants that influence the risk of late-onset AD7-13. These common genetic variants have 
been mapped to eight biological pathways including immune response, endocytosis, cholesterol 
transport, hematopoietic cell lineage, protein ubiquitination, hemostasis, clathrin/AP2 adaptor 
complex and protein folding, each having a distinct biological function14-16. These eight pathways 
are not independent in a way that genes may be part of more than one biological pathway. For 
instance, APOE is part of four of the eight pathways namely cholesterol transport, hematopoietic 
cell lineage, clathrin/AP2 adaptor complex and protein folding pathways; clusterin (CLU) encoding 
for apolipoprotein J is involved in six pathways; phosphatidylinositol binding clathrin assembly 
protein (PICALM) and complement factor 1 (CR1) are involved in two pathways14-16.

These diverse biological pathways may be responsible for the clinically heterogeneous 
manifestation of AD17-19, which include endophenotypes such as changes in structural and 
functional magnetic resonance imaging (MRI) phenotypes, most notably hippocampal volume, 
total brain volume, and white matter lesions20-23. Furthermore, these biological pathways may 
also modulate the prodromal stages of AD such as mild cognitive impairment (MCI)24-26. 
Owing to heterogeneity during the predementia phase, one important unanswered question is 
whether the different biological pathways that are implicated in AD relate to the pleiotropy of 
clinical endophenotypes. We hypothesized that some biological pathways are involved in distinct 
clinical endophenotypes whereas others may be involved in multiple or even all. Disentangling 
the connection of biological pathways to various aspects of AD-related early pathology may 
be a crucial step towards improving our understanding of the pathogenesis of AD during 
the predementia stage and the first step toward a more informative and powerful readout for 
preventive and therapeutic trials targeting specific pathways.

The present study aims to capture the different biological pathways involved in AD using genetic 
risk scores to evaluate their role in AD and predementia endophenotypes including MCI, white 
matter lesions, total brain, and hippocampal volume.
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Methodology

Study population
This study included samples from the Rotterdam Study (RS). The RS is a prospective population-
based study27 designed to investigate the etiology of age-related disorders. At the baseline 
examination in 1990-1993, study recruited 7983 subjects ≥ 55 years of age from the Ommoord 
district of Rotterdam (RS-I). At the baseline entry and after every 3 to 4 years, all the study 
participants were extensively interviewed and physically examined at the dedicated research 
center. During 2000 to 2001, the baseline cohort (RS-I) was expanded by adding 3011 subjects 
≥55 years of age, who were not yet part of RS-I (RS-II). Second expansion of RS was performed 
by recruiting 3932 persons having ≥45 years of age during 2006 to 2008 (RS-III). The study 
has been approved by the Medical Ethical Committee of Erasmus Medical Center and by the 
Ministry of Health, Welfare and Sport of the Netherlands. Written informed consent was also 
obtained from each study participant to participate and to collect information from their treating 
physicians. Details of AD, dementia and MCI diagnosis are provided in the supplementary 
information. In the present study for AD cross-sectional analysis, we included in total 1270 late-
onset AD cases and 7623 controls (age at last follow-up ≥ 65 years and dementia-free) whose 
follow-up information is complete until 2009-2013 in RS-I, RS-II and RS-III cohorts. This AD 
sample includes 1057 incident and 213 prevalent AD cases. For prospective AD analysis, 10370 
dementia-free (normal) participants were also included in the study from all three RS cohorts at 
their baseline and were subsequently followed until 2009-2013, to analyze their progression into 
AD (average 11 years of follow-up). In the MCI data set, we included 360 MCI cases and 3245 
cognitively normal controls from the first extensive cognitive assessment conducted between 
2002 and2005 in RS-I and RS-II cohorts. MRI was implemented in 2005 in RS cohorts and 
5899 persons came for MRI scanning until 2015. After excluding subjects with stroke and/or 
dementia (n = 251) at time of scanning, poor imaging quality (n = 313) and missing genotyping 
information (n = 814), we retained 4521 cognitively normal individuals in the MRI sample 
(Table 1).

Genotyping
Blood was drawn for genotyping from participants of RS cohorts during their first visit and DNA 
genotyping was performed at the internal genotyping facility of the Erasmus Medical Center, 
Rotterdam. All samples were genotyped with the 550K, 550K duo, or 610K Illumina arrays. 
Genotyping quality control criteria include, call rate < 95%, Hardy-Weinberg equilibrium P < 
1.0x10-6 and minor allele frequency (MAF) < 1%. Moreover, study samples with excess autosomal 
heterozygosity, call rate < 97.5%, ethnic outliers, and duplicate or family relationships were 
excluded during quality control analysis. Genetic variants were imputed from the Haplotype 
Reference Consortium reference panel (version 1.0)28, using the Michigan imputation server29. 
The server uses SHAPEIT2 (v2.r790)30 to phase the genotype data and performs imputation 
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with Minimac 3 software31. For this study, we used genetic variants that had imputation quality 
(R2) > 0.5.

MRI scanning
Image acquisition
MRI scanning is assessed on a 1.5-T MRI unit with a dedicated eight-channel head coil (Signa 
HD platform, GE Healthcare, Milwaukee, USA) since the induction of a dedicated MRI 
machine in the RS. The MRI protocol was based on several high-resolution axial sequences, 
including a T1-weighted (slice thickness 0.8 mm), T2-weighted (1.6 mm), and fluid-attenuated 
inversion recovery sequence (2.5 mm). A detailed description of the MRI protocol is described 
previously32.

Image processing
We excluded 251 persons with stroke and/or dementia from the total 5899 subjects, because 
this may affect image processing. All T1 images were segmented into the supratentorial gray 
matter, white matter and cerebrospinal fluid using a k-nearest neighbor algorithm33. White 
matter lesions were segmented based on T1 tissue maps and an automatically detected threshold 
for the intensity of fluid-attenuated inversion recovery scans34. The hippocampus was segmented 
using a fully automated method, as described previously35. Semiquantitative MRI postprocessing 
software was used to measure intracranial volume and brain volume which included Elastix 

Table 1: Cohort characteristics

Characteristics RS-I RS-II RS-III Total

AD data set (N) 5854 2062 977 8893

  Late-onset AD 1118 134 18 1270

  AD free controls 4736 1928 959 7623

  Age-at-onset (SD), years 84.58 (6.8) 82.75 (6.7) 78.54 (9.5) 84.30 (6.8)

  Age of controls (SD), years 82.87 (6.9) 76.52 (6.4) 69.15 (5.7) 79.53 (8.2)

  Female (%) 3526 (60%) 1133 (55%) 569 (58%) 5228 (59%)

MCI data set (N) 2178 1427 3605

  MCI cases 235 125 - 360

  Controls 1943 1302 - 3245

  Age (SD), years 74.79(5.7) 67.53(6.9) - 71.9 (7.2)

  Female (%) 1271(58.4) 786(55.1) - 2057 (57%)

MRI data set (N) 968 1068 2485 4521

  Age (SD), years 78.89 (4.9) 69.34 (5.9) 57.21 (6.4) 64.72 (10.8)

  Female (%) 556 (58%) 565 (53%) 1390 (56%) 2511 (56%)

Abbreviation: RS, Rotterdam Study (Cohort I, II, II); AD, Alzheimer’s disease;
MCI, Mild cognitive impairment; MRI, Magnetic resonance imaging; SD, Standard deviation.
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and custom-built software36. To calculate intracranial volume, non-brain tissues (skull, eyes and 
dura) were removed by nonlinearly registering all brain scans to a manually created template 
in which non-brain tissues were masked33,36,37. In all MRI scans, after visual inspection of all 
segmentations, additional 313 subjects were excluded because of poor quality.

Statistical analysis
Genetic risk score computation
To construct the risk score, we selected late-onset AD-associated single nucleotide polymorphisms 
(SNPs) reaching genome-wide significance level (P < 5.0x10-8; Supplementary Table 1), including 
one rare TREM2 variant7,38. In common variants, we considered only variants identified by the 
International Genomics of Alzheimer’s Project (IGAP) meta-analyses. In addition, we considered 
APOE ε4 (rs429358) variant for risk score construction. From a total of 21 SNPs, the HLA-
DRB1-HLA-DRB5 (rs9271192) variant was excluded from risk score calculation because of its 
low imputation quality (R2 = 0.31) in the RS. This led to a final selection of 20 independent 
genome-wide significant AD-associated variants. Weighted genetic risk score was constructed 
using the effect sizes (log of odds ratio) of the genome-wide significant variants from the IGAP 
meta-analysis 7 as weights and their respective allele dosages from imputed genotype data of our 
study cohorts. Risk score was constructed as the sum of the products of SNP dosages and their 
corresponding weights in R software (https://www.R-project.org/). We constructed genetic risk 
score in two ways: (1) combining all 20 selected variants and (2) clustering the variants into their 
respective pathways.

Combined genetic risk score
Combined genetic risk score (GRS1) was constructed in two ways, that is, (1) using all the 20 
selected SNPs and (2) excluding the APOE ε4 variant to identify the joint independent effect of 
all other genome-wide significant SNPs.

Pathway-specific genetic risk score
For pathway-specific genetic risk score (GRS2), the genome-wide significant AD SNPs were 
divided into pathways (immune response, endocytosis, cholesterol transport, hematopoietic cell lineage, 
protein ubiquitination, hemostasis, clathrin/AP2 adaptor complex and protein folding pathway) 
identified by Jones et al.16 (Supplementary Table 2). Classifying genome-wide significant AD 
SNPs into pathways, we also used information from Guerreiro et al.,14 in which the authors 
reviewed the possible division of known AD-associated genes into biological pathways14. Further, 
the GeneNetwork database (http://genenetwork.nl/) was used to confirm the allocated pathways. 
Of the 20 SNPs, 14 could be clustered into seven nonmutually exclusive pathways (Supplementary 
Table 2). Similar to GRS1, we also constructed GRS2 with and without the APOE ε4 variant. 
APOE ε4 variant was grouped under four pathways including cholesterol transport14, hematopoietic 
cell lineage, clathrin/AP2 adaptor complex and protein folding16. GRS2 was constructed for only 
those pathways, which could be assigned at least two SNPs, therefore protein ubiquitination 
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pathway, which contained only one SNP, was excluded from all analyses, while hematopoietic cell 
lineage and protein folding pathways were also not considered in the analyses excluding the APOE 
ε4 variant.

Association analyses of  GRS1, and GRS2
To test the association of AD and MCI with the risk scores, we used logistic regression analysis 
in R software (www.R-project.org), using disease status as the outcome, risk scores as predictor 
and age and sex as covariates. To assess the possible inflation of association results between AD 
and risk scores, we repeated the association analysis excluding 625 AD cases who were part of the 
IGAP meta-analysis7 from total 1,270 AD cases of the RS cohort. Furthermore, we performed 
prospective analysis using the Cox-proportional hazards model (N=1057 incident AD cases) in 
R software using ‘survival’ package39 and reported results as hazard ratio (HR) per 1 standard 
deviation increase in risk score and 95% confidence interval. The association of single variants 
with AD and MCI was assessed using a logistic regression model adjusted for age and sex. Results 
of association analyses were reported as unstandardized regression coefficient and P values.

To test the association of MRI phenotypes including total brain volume, white matter lesions 
and hippocampal volume with the risk scores we used linear regression adjusted for age, sex, and 
intracranial volume in MRI scans. Single variant association analysis was also performed for MRI 
phenotypes. Bonferroni correction (0.05/(11 risk scores x 5 phenotypes); P = 9.09x10-4 was used 
to correct for multiple testing.

Results

Association of  the GRS1 with AD, MCI, and MRI endophenotypes
The risk score containing all SNPs, this is, GRS1 both including APOE ε4 (effect = 0.73, P = 
6.53x10-74) and excluding APOE ε4 (effect = 0.69, P = 1.12x10-11) was significantly associated 
with an increased risk of AD (Table 2). This association remained significant (APOE excluding; 
effect = 0.66, P = 8.47x10-7) after removing the patients who were included in the IGAP meta-
analysis7 (Supplementary Table 3). GRS1 was also significantly associated with progression from 
normal subjects into AD patients both including (HR = 1.69, P = 6.64x10-83) and excluding 
APOE ε4 (HR = 1.27, P = 4.88x10-15; Supplementary Table 4). GRS1 was associated with MCI 
when APOE ε4 was included (effect = 0.19, P = 0.012) but the association was stronger when 
APOE ε4 was excluded from the analysis (effect = 0.59, P = 9.51x10-4; Table 3) however, these 
associations did not pass multiple testing correction. No association of GRS1 was observed with 
any of the MRI phenotypes: white matter lesions, hippocampal volume, and total brain volume 
(Table 4).
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Association of  the GRS2 with AD
Among GRS2 of which APOE ε4 is a part, cholesterol transport, hematopoietic cell lineage, clathrin/
AP2 adaptor complex, and protein folding were significantly associated with AD (effect ≥ 0.71, 
P < 3.22x10-64) only when APOE ε4 was included in the risk scores. Among the non-APOE 
pathways, AD was significantly associated with GRS2 capturing immune response (effect = 0.69, 
P = 3.20x10-5) and endocytosis pathway (effect = 0.75, P = 1.28x10-5; Table 2) and association 
sustained (Immune response; effect = 0.68, P = 2.22x10-3 and endocytosis; effect = 0.79, P = 5.37x10-

4) even after removing the patients who were included in the IGAP meta-analysis7 (Supplementary 
Table 3). GRS2 capturing immune response (HR = 1.14, P = 1.19x10-5), endocytosis (HR = 1.19, 
P = 5.16x10-8) and APOE ε4 excluded clathrin/AP2 adaptor complex (HR = 1.09, P = 5.98x10-3) 
pathway showed association with progression from normal into AD. Both Immune response and 
endocytosis pathways were significant after correcting for multiple testing. GRS2 including APOE 
ε4 were also significantly associated with normal to AD progression (HR ≥ 1.60, P ≤ 1.44x10-69; 
Supplementary Table 4). Comparatively, except for APOE ε4, and the variants in CR1 and BIN1 
genes, no single variant showed significant evidence of association with AD (Supplementary 
Table 5). The variant rs6733839 in the BIN1 gene partially explains the association between the 
endocytosis pathway and AD, whereas APOE ε4 mainly explains the association of all pathways 
of which APOE ε4 is a part.

Association of  the GRS2 with MCI
In GRS2, only the endocytosis pathway showed significant evidence for association (effect = 1.16, 
P = 1.44x10-4; Table 3) with MCI. Although the significance of the association is similar to that of 

Table 2: Results of  association of  Alzheimer’s disease with risk scores

  Including APOE Excluding APOE

SNP Cluster* β SE P-value β SE P-value

GRS1 (Combined ) 0.73 0.040 6.53x10-74 0.69 0.101 1.12x10-11

Immune response - - - 0.69 0.166 3.20x10-5

Endocytosis - - - 0.75 0.171 1.28x10-5

Cholesterol Transport 0.71 0.042 3.22x10-64 0.39 0.219 0.077

Hematopoietic cell lineage† 0.73 0.042 5.16x10-66 - - -

Hemostasis - 0.50 0.292 0.090

Clathrin/AP2 Adaptor complex 0.72 0.042 4.68x10-65 0.50 0.236 0.036

Protein folding† 0.72 0.042 2.96x10-64 - - -

Abbreviations: GRS1, Combined genetic risk score; SNP, Single nucleotide polymorphism; β, Regression 
coefficient; SE, Standard error
Note: Multiple testing correction by Bonferroni 0.05/ (5 phenotypes x 11 risk scores); P < 9.09x10-4 was 
considered significant
* Logistic regression model adjusted for age and sex in RS (N=1270 cases)
†Only one SNP available in excluding APOE GRS2
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the overall risk score (GRS1), the effect estimate is considerably higher (1.16 vs. 0.59 overall). In 
the single variant analysis, the strongest association of MCI was observed with rs6733839 in the 
BIN1 gene (effect = 0.262, P = 1.12x10-3; Supplementary Table 5). Although this association was 
not significant after correcting for multiple testing, however, it partially explains the association 
between MCI and GRS2 capturing endocytosis.

Association of  the GRS2 with MRI phenotypes
White matter lesions were associated with GRS2 capturing immune response (effect = 0.15, P 
= 0.016) and clathrin/AP2 adaptor complex excluding APOE ε4 (effect = 0.26, P = 3.55x10-3). 
If we consider multiple testing, both these associations lose significance after accounting for all 
tested phenotypes and risk scores. Of note is that no association of white matter lesions with 
the GRS2 capturing the clathrin/AP2 adaptor complex is observed when APOE ε4 is included in 
the GRS2 (effect = 0.011, P = 0.507; Table 4). We did not observe association of GRS2 with 
hippocampal volume and total brain volume. In the single variant analysis association of white 
matter lesions are seen with variants in PICALM, CLU genes (P ≤ 0.05). Hippocampal volume 
shows association with variants in BIN1 and CELF1 genes (P < 0.05; Supplementary Table 6). 
None of the single variant association sustained Bonferroni correction for multiple testing.

Table 3: Results of  association of  mild cognitive impairement with risk scores

  Including APOE Excluding APOE

SNP Cluster* β SE P-value β SE P-value

GRS1 (combined) 0.19 0.075 0.012 0.59 0.179 9.51x10-4

Immune response - - - 0.46 0.295 0.116

Endocytosis - - - 1.16 0.305 1.44x10-4

Cholesterol Transport 0.11 0.082 0.164 0.39 0.392 0.322

Hematopoietic cell lineage† 0.09 0.084 0.269 - - -

Hemostasis - - - -0.08 0.524 0.872

Clathrin/AP2 Adaptor complex 0.12 0.082 0.128 0.72 0.423 0.089

Protein folding† 0.10 0.083 0.218 - - -

Abbreviations: GRS1, Combined genetic risk score; SNP, Single nucleotide polymorphism; β, Regression 
coefficient; SE, Standard error.
Note: Multiple testing correction by Bonferroni 0.05/ (5 phenotypes x 11 risk scores); P < 9.09x10-4 was 
considered significant
* Logistic regression model adjusted for age and sex in RS (N=360 cases)
† Only one SNP available in excluding APOE pathway-based GRS2
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Discussion

Combined risk score is significantly associated with AD and normal to AD progression but 
not with any of the early features of AD tested in our study including MCI and MRI markers. 
However, our pathway-based risk score analysis shows that the endocytosis pathway significantly 
associates with MCI in addition to AD and normal to AD progression (Supplementary Figure 1).

The association of GRS1 with AD is consistent with other similar studies on AD40-42. However, 
while others observed significant association of combined risk score with MCI43,44, in our study 
the association of GRS1 with MCI was not significant after correcting for multiple testing. We 
did not find association of GRS1 with any of the studied MRI endophenotypes. These findings 
are consistent with those of Mormino et al.,45 and Lupton et al.,46; both studies did not find 
association of hippocampal volume with combined GRS1 based on genome-wide significant 
AD variants, but Mormino et al.,45 observed this association only with risk score based on non-
genome wide significant AD variants. The largest study so far that included RS, however, reported 
significant evidence of association of risk score based on all genome-wide significant AD variants 
with hippocampal volume and total brain volume47.

This is the first study that addressed the role of specific pathways in AD and its early clinical 
manifestations, that is., MCI and MRI phenotypes. Our study shows that GRS2 based on the 
immune response pathway was significantly associated with AD and normal to AD progression. 
Furthermore, we observed association of immune response with white matter lesions at MRI 
but this association did not survive Bonferroni correction. The genes clustered in the immune 
response pathway (CLU, CRI, INPP5D, MS4A6A, TREM2, MEF2C, EPHA1) are mainly 
expressed in microglial cells and play a part in the innate immune response in central nervous 
system48-52. Microglial cells are also thought to play a role in amyloid plaque clearance53,54. It has 
been hypothesized that the activation of the immune system and the subsequent inflammatory 
response are involved in neuronal damage including axonal loss and white matter pathology due 
to demyelination55. White matter lesions are associated with increased risk of cognitive decline, 
developing dementia21 and AD22,56. White matter lesions are also more frequently observed in 
AD patients than controls57,58.

The most interesting finding of the present study is that the genes capturing the endocytosis 
pathway significantly associate with MCI, AD and with progression from normal (dementia-free) 
to AD. This pathway is independent of APOE and includes the BIN1, PICALM, CD2AP, and 
SORL1 genes. We show that the association of GRS1 with MCI status is mainly attributed to the 
genes involved in the endocytosis pathway. Omitting the AD genes not related to the endocytosis 
pathway makes the association of the pathway with MCI even stronger. This suggests that the 
endocytosis pathway plays a critical role in an early prodromal phase of AD. Our findings are in 
line with previous studies suggesting the activation of the endocytic pathway is the earliest reported 
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intracellular manifestation of AD59-61. Furthermore, the effect estimate of the endocytosis pathway 
was larger for MCI (1.16) compared with AD (0.75) suggesting a stronger association with 
MCI; however, this difference in effect estimates was not significant (P = 0.12). The endocytosis 
pathway is involved in neuronal uptake of macromolecules and secretory vesicles during synaptic 
transmission. As efficient uptake of extracellular cholesterol is critical for neuronal functions 
such as repair, synapse formation and exon elongation62, normal neuronal work needs smooth 
functioning of endocytosis pathway63. Postmortem studies have also demonstrated reduced 
brain cholesterol levels in the brain areas responsible for memory and learning, among late-
onset AD cases and age-matched controls64. These facts suggest that defects in endocytosis, which 
derive the cholesterol uptake, could lead to impaired neurotransmitter release and synaptic 
function65. Dysfunction in endocytosis can also contribute to the accumulation of abnormal 
Aβ peptide66. Based on this finding, we can suggest that the endocytosis pathway is a common 
molecular mechanism between MCI and AD that starts manifesting at early stages of disease. 
Risk contributed by variants clustered in this pathway at various stages of AD progression can 
possibly provide clue about disease trajectory.

Our study further shows association of the clathrin/AP2 adaptor complex pathway with white 
matter lesions. Although the association failed to pass the multiple testing, it is interesting to 
note that no association was detected with the combined risk score either in our study or a 
larger study performed earlier by Chauhan et al.,47 that included up to 11550 individuals. This 
suggests that pathway-based risk scores may be more sensitive in picking association signals that 
may be relevant for specific AD pathologies. Two variants tagging PICALM and CLU genes 
cluster in the clathrin/AP2 adaptor complex pathway. Each variant independently shows nominal 
association with white matter lesions in our analyses but combining their effects are additive 
and improve the strength of association. There is strong evidence that the two proteins encoded 
by the genes interact at molecular level67,68. PICALM is involved in VAMP2 trafficking that 
is a crucial process to maintain functional integrity of synapses which are crucial to cognitive 
function69,70. PICALM is also found to be expressed in the white matter and, immunolabeling of 
human brain tissue shows that PICALM is mainly found in blood vessel walls71. CLU clustered 
in the clathrin/AP2 adaptor is involved in efflux of free insoluble Aβ peptides through blood-
brain barrier72. Increased plasma levels of CLU were associated with increased burden of Aβ 
peptide in healthy elderly population and brain atrophy in AD73,74 and decreased integrity of 
white matter in young adults75. Demyelination of white matter is reported to occur even before 
the accumulation of Aβ plaques and neurofibrillary tangles76. The findings of the present study 
suggest that the increased genetic burden of risk variants in the clathrin/AP2 adaptor complex 
(clathrin-mediated endocytosis) and immune response pathway may play a role in early pathogenesis 
of AD through white matter pathology.
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Among pathways including APOE (Cholesterol transport, hematopoietic cell lineage, clathrin/
AP2 adaptor complex and protein folding), significant association with AD and normal to AD 
progression suggest that APOE ε4 appears to be the driving genetic factor for these associations.

Our study provides a readout of pathway-based risk score association with AD and its 
predementia endophenotypes. Our findings are important from a clinical perspective as these 
will aid in determining whether a certain biological pathway is involved in a patient. This will 
permit targeted interventions based on predicted pathological pathways. Similar to the case of 
cardiovascular diseases77, a heterogeneous disease treatment can be followed based on pathway 
biomarkers (e.g., glucose level, total cholesterol and high-density lipid levels, and liver enzymes 
in case of cardiovascular disease)78 but rather on genetic basis. This requires reference pathways 
and treatment portfolio. In the meantime, the pathway-based genetic risk score will allow 
stratification of patients in clinical trials based on causal pathways involved in patients. This may 
improve both the power and efficiency of future clinical and preventive trials.

Our study is a step forward to use known genetic and pathway information for disentangling the 
mechanisms of AD but it has one major limitation that pathway information is based on known 
AD variants identified so far. This will further improve in future with improved genetic risk 
information that can better capture the underlying pathways. Another possible limitation of our 
study is that 625 cases of RS-I were a part of the meta-analysis performed by the IGAP 7 which 
can contribute to possible inflation in our results of association of risk score with AD. However, 
excluding these patients, the results of this study largely remained unchanged.

To conclude, our study provides strong evidence that the endocytosis pathway is relevant in the 
prodromal phase of AD, that is., in subjects with MCI. Furthermore, the pathways including 
immune response and clathrin/AP2 adaptor complex pathways may be relevant for brain-related early 
endophenotypes of AD, such as white matter lesions; this, however, needs further investigation 
in larger samples. Interestingly, all the observed associations with early AD pathology are shown 
by APOE excluding pathways. Future findings from genomic research will improve the quality of 
the pathway-specific genetic scores.
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Abstract

The exact etiology of dementia is still unclear, but both genetic and lifestyle factors are thought 
to be key drivers of this complex disease. The recognition of familial patterns of dementia 
has led to the discovery of genetic factors that have a role in the pathogenesis of dementia, 
including the apolipoprotein E (APOE) genotype and a large and still growing number of genetic 
variants1,2. Beyond genetic architecture, several modifiable risk factors have been implicated in 
the development of dementia3. Prevention trials of measures to halt or delay cognitive decline are 
increasingly recruiting older individuals who are genetically predisposed to dementia. However, 
it remains unclear whether targeted health and lifestyle interventions can attenuate or even offset 
increased genetic risk. Here, we leverage long-term data on both genetic and modifiable risk 
factors from 6,352 individuals aged 55 years and older within the population-based Rotterdam 
Study. In this study, we demonstrate that in individuals at low- and intermediate genetic risk, 
favorable modifiable risk profiles are related to a lower risk of dementia compared to unfavorable 
profile. In contrast, these protective associations were not found in those at high genetic risk. 
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Main

Recent analyses have shown that if currently known modifiable risk factors were to be eliminated 
at a population level, over one-third of all dementia cases could be prevented3. In view of these 
findings, several dementia prevention trials have been conducted to investigate the efficacy of 
lifestyle interventions, but have yielded inconsistent results so far4-6. Such interventions have 
been proposed to be more effective when targeted at individuals who have an increased risk of 
dementia, as identified through their genetic or clinical profile, or a combination thereof7. 

The genetic risk of developing dementia or Alzheimer’s disease (AD) might be detrimental for 
some individuals8, yet this risk may be mitigated for most when adhering to a healthy lifestyle. 
A recent subgroup analysis from a 2-year multi-domain intervention trial found that healthy 
lifestyle changes had beneficial effects on cognitive performance, even in APOE ε4 carriers, 
which is the variant of the gene associated with the highest risk of dementia9. Evidence from 
randomized controlled trials is necessary to determine whether positive effects, including those 
beyond cognitive performance, also occur in dementia. However, since treatment effects from 
lifestyle interventions at an individual level are generally small, large trials with a long follow-up 
are needed. Such trials are expensive and prone to high attrition rates. Instead, data from long-
term prospective cohort studies can be leveraged to gain insights into the interplay between 
genetic and lifestyle factors, with the potential to inform the design of future clinical trials. 

Prior studies have mostly focused on the risk of dementia associated with an individual protective 
factor10,11, yet the combination of multiple factors may yield more beneficial effects than the 
individual parts12, Combining data about a number of factors is also important because it takes 
into account the multi-factorial nature of late life-dementia13. We used data from the Rotterdam 
Study to determine to what extent a favorable profile based on modifiable risk factors is associated 
with a lower risk of dementia among individuals at low, intermediate or high genetic risk.

In 6,352 participants, we determined genetic risk using two approaches: (1) APOE genotype 
and (2) a weighted polygenic risk score based on 27 genetic variants (excluding APOE) that 
showed genome-wide significant evidence for associations with AD (Supplementary Table 
1). For the first approach, we grouped participants into high APOE-risk (ε2ε4, ε3ε4 or ε4ε4 
genotypes), intermediate-risk (ε3ε3) or low risk (ε2ε2 or ε2ε3); for the second, the distribution 
of the polygenic risk scores was divided into tertiles, and individuals were grouped into these 
tertiles. In these participants, we also measured several health and/or lifestyle factors that have 
been implicated in lower the risk of dementia11,14. These include: (1) abstaining from smoking, 
(2) absence of depression, (3) absence of diabetes, (4) regular physical activity, (5) avoiding social 
isolation, and (6) adherence to a healthy diet, which included limited alcohol consumption 
(see Methods for additional information). Using these six factors, we computed an overall score 
based on modifiable risk factors, ranging from zero to six. A higher score reflects a more favorable 
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profile. Subsequently, we categorized participants into three groups: an unfavorable profile (a 
score of ≤2 protective factors); an intermediate profile (a score of 3 or 4 factors); and a favorable 
profile (a score of ≥5 factors). Alternatively, we determined modifiable risk on the basis of the 
Ideal Cardiovascular Health score defined using a seven-item tool from the American Heart 
Association comprising four lifestyle measures (abstaining from smoking and ideal body weight, 
regular physical activity and diet at optimal levels) and three health measures (optimal plasma 
cholesterol and glucose levels, and blood pressure at optimal levels—and the 10-year predicted 
risk of fatal cardiovascular diseases15. We subsequently stratified participants by both their genetic 
and modifiable risk. We calculated the risk of developing dementia for each stratum separately, 
on both a relative and absolute scale using Cox and competing risk models, respectively.

This study included more women (56.2%) than men. Baseline characteristics were roughly 
similar across categories of APOE-risk (Table 1). As expected, APOE ε4 carriers were generally 
diagnosed with dementia at a younger age (P = 1.38×10-12), more often had a parental history 
of dementia (P = 4.55×10-4), and had higher total cholesterol levels (P = 1.24×10-19), compared 
with non-carriers. The median follow-up was 14.1 years among the 6,352 participants; in this 
timeframe, 915 individuals were diagnosed with dementia, of whom 739 were diagnosed with 
AD, and 2,644 participants died free from dementia. 

Dementia risk was significantly higher among participants at a high or intermediate APOE risk 
compared with those at low APOE risk (Figure 1 and Table 2). The risk of dementia also increased 
in participants who had fewer protective factors (P for trend= 0.0044), such that those with an 
unfavorable profile (≤2 out of 6 factors) had a 32% higher risk of dementia than participants 
with a favorable one (≥5 out of 6 factors) (Figure 1 and Table 2). The strength of this association 

Figure 1: Cumulative incidence of  dementia during follow-up. a,	according	to	genetic	risk	based	
on APOE genotyping,	and	b,	according	to	modifiable	risk	factor	profiles.	For	a	and	b,	shaded	
areas	represent	95%	confidence	intervals.
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Table 1: Baseline characteristics per genetic risk category based on APOE carrier status

Low risk
(ε2ε2 or 
ε2ε3)
N = 887

Intermediate 
risk (ε3ε3)
N = 3,718

High risk
(ε2ε4, ε3ε4 or 
ε4ε4)
N = 1,747

P for 
difference

Age, years 69.4 (8.5) 69.2 (8.3) 68.7 (7.9) 0.042

Women 529 (59.6) 2072 (55.8) 971 (55.5) 0.102

Educational years, median (IQR) 10 (7-13) 10 (7-13) 10 (7-13) 0.325

Parental history of dementia 53 (8.1) 219 (7.8) 155 (11.6) 4.55×10-4

History of stroke 33 (3.7) 138 (3.7) 61 (3.5) 0.929

Body mass index, kg/m2 27.4 (4.0) 27.0 (4.0) 26.9 (3.9) 0.014

Systolic blood pressure, mmHg 145 (22) 143 (21) 143 (21) 0.045

Diastolic blood pressure, mmHg 77 (11) 77 (12) 77 (11) 0.239

Total cholesterol, mmol/L 5.6 (1.0) 5.8 (1.0) 5.9 (1.0) 1.24×10-19

High-density lipoprotein cholesterol, 
mmol/L

1.43 (0.4) 1.39 (0.4) 1.35 (0.4) 1.00×10-5

Fasting glucose, mmol/L 5.6 (1.5) 6.0 (1.6) 6.0 (1.6) 0.902

Baseline MMSE score, median (IQR) 28 (27-29) 28 (27-29) 28 (27-29) 0.049

Age of dementia diagnosis 85.5 (5.9) 84.1 (6.3) 81.3 (6.5) 1.38×10-12

Modifiable health and lifestyle factors

No current smoking 714 (81.0) 2961 (80.1) 1389 (79.9) 0.801

Absence of depression 799 (90.1) 3351 (90.1) 1567 (89.7) 0.881

Absence of diabetes 744 (88.3) 3096 (88.3) 1461 (89.0) 0.750

Regular physical activity 484 (56.0) 2109 (58.5) 1005 (59.4) 0.501

Absence of social isolation 588 (66.7) 2664 (72.4) 1256 (72.1) 0.005

Adherence to a healthy diet 141 (15.9) 559 (15.0) 252 (14.4) 0.649

Modifiable risk profile category

Favorable:
5-6 health and lifestyle factors

568 (64.0) 2453 (66.0) 1132 (64.8)

0.648Intermediate:
3-4 health and lifestyle factors

224 (25.2) 884 (23.8) 443 (25.4)

Unfavorable:
0-2 health and lifestyle factors

95 (10.7) 381 (10.2) 172 (9.8)

Abbreviations: N, number of individuals at risk; IQR, interquartile range; MMSE, Mini-Mental State 
Examination. 
Data are presented as the frequency in the stratum (percentage) for categorical values and as mean±the 
standard deviation for continuous variables unless indicated otherwise. We compared baseline characteristics 
across APOE strata using analysis of variance (ANOVA) tests. In the case of frequency distributions or 
when data were non-normally distributed, we compared variables between groups using non-parametric 
tests (chi-squared, Mann–Whitney or Kruskal–Wallis). Two-sided P values were uncorrected for multiple 
testing.
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remained nearly identical after adjusting for parental history of dementia and cardiovascular risk 
factors (hazard ratio (HR) = 1.29 (95% confidence interval (CI) = 1.05–1.59), P for trend = 
0.0087).

APOE genotype significantly modified the association between protective factors and dementia 
(P for interaction = 0.023). In those at low or intermediate APOE risk, the risk of dementia 
in participants with an unfavorable profile was higher than that for those with a favorable one 
(HR = 2.51, 95% CI = 1.40–4.48 and HR = 1.39, CI = 1.04–1.85, respectively; Table 3). In 
those at high APOE risk, we did not find differences in dementia risk between individuals with 
unfavorable or intermediate profiles compared with those who had a favorable profile (HR = 
1.00, 95% CI = 0.79–1.28 and HR = 1.05, 95% CI = 0.73–1.50, respectively). 

Among those at low APOE-risk, the mean anticipated absolute risk of developing dementia 
within 15-year ranged from 32.1% (95% CI = 0.0-59.9) for those with an unfavorable profile 
to 12.6% (95% CI = 4.5-26.8) for those with a favorable one (Supplementary Table 2). 
Individuals at intermediate APOE-risk with an unfavorable profile had a 22.0% (95% CI = 8.3-
39.2) anticipated risk, which was 13.5% (95% CI = 8.9-15.6) for those with a favorable profile. 
Among participants at high APOE risk, the anticipated 15-year risk of dementia remained largely 
unchanged across the different profiles (ranging from 18.2% for a favorable to 19.5% for an 
unfavorable profile). 

Table 2: Risk of  incident dementia according to APOE-related risk and lifestyle categories

APOE-related risk N/n Model 1 Model 2

HR (95% CI) HR (95% CI)

Low risk (ε2ε2/ ε2ε3) 887/85 Reference Reference

Intermediate risk (ε3ε3) 3718/456 1.45 (1.15;1.83) 1.45 (1.15;1.83)

High risk (ε2ε4/ε3ε4/ ε4ε4) 1747/374 3.02 (2.38;3.82) 3.02 (2.38;3.83)

P for trend 2.10×10-30 1.87×10-30

Lifestyle risk category

Favorable 4153/538 Reference Reference

Intermediate 1551/259 1.15 (0.98;1.34) 1.14 (0.98;1.33)

Unfavorable 648/118 1.32 (1.08;1.63) 1.29 (1.05;1.59)

P for trend 0.0044 0.0087

Abbreviations: N, number of individuals at risk; n, number of dementia cases during follow-up; HR, 
hazard ratio; CI, confidence interval
Model 1 - adjusted for: age, sex and education
Model 2 - additionally adjusted for: parental history of dementia, history of stroke, systolic blood pressure, 
total and high-density lipoprotein cholesterol
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Stratified analyses showed that protective associations of favorable risk profiles against dementia 
tended to be stronger in younger individuals than in older individuals, and were most 
pronounced for younger individuals at low APOE-risk (Supplementary Tables 3 and 4). In all 
of these analyses, no significant protective associations were found in APOE ε4 carriers. There 
was no effect modification of the association between risk profiles and dementia risk by sex 
(Supplementary Table 5).

In sensitivity analyses, using a different approach, namely a polygenic risk score for AD (without 
APOE), we also found that associations between protective factors were modified (P for interaction 
= 0.0003); patterns across polygenic risk strata were attenuated yet largely comparable to those of 
the APOE (Supplementary Tables 6 and7).

These patterns also remained unchanged when we varied the composition of modifiable risk 
factors. For instance, similar results were found when we stratified participants on their Ideal 
Cardiovascular Health score (P for interaction = 0.026, Supplementary Table 8), and when we 
stratified participants on the basis of their predicted absolute 10-year risk of fatal cardiovascular 
diseases using the SCORE equation (European Coronary Risk Equation, including age, sex, 
current smoking, level of total cholesterol and systolic blood pressure) (P for interaction = 
7.82×10-5, Supplementary Table 9). All of the individual health and lifestyle factor-specific 
associations with dementia risk that were included in the different profiles are presented in 
Supplementary Tables 10-12, respectively.

Table 3: Risk of  incident dementia while stratifying participants on both their APOE-related risk 
and modifiable risk factor profile

APOE-related risk Risk factor profile N/n HR (95% CI)

Low (ε2ε2/ε2ε3)

Favorable 568/44 Reference

Intermediate 224/23 1.14 (0.66;1.96)

Unfavorable 95/18 2.51 (1.40;4.48)

P for trend 0.0059

Intermediate (ε3ε3)

Favorable 2453/253 Reference

Intermediate 884/139 1.27 (1.02;1.57)

Unfavorable 381/64 1.39 (1.04;1.85)

P for trend 0.0087

High (ε2ε4/ε3ε4/ ε4ε4)

Favorable 1132/241 Reference

Intermediate 443/97 1.00 (0.79;1.28)

Unfavorable 172/36 1.05 (0.73;1.50)

P for trend 0.8300

Abbreviations: n, number of cases; N, number of people at risk; HR, hazard ratio; CI, confidence interval
Adjusted for: age, sex and education
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Most evidence on the interaction between specific genetic and modifiable factors with dementia 
comes from observational studies. These studies primarily examined the associations and 
interactions of single health or lifestyle factors, such as diabetes, physical activity, alcohol use, 
smoking or diet, with different APOE alleles. Most of these studies reported a lower risk of 
dementia among individuals16-19, who had optimal levels of one of these single risk factors16-19 
compared with those who had more adverse ones. These effects were generally more pronounced 
in APOE ε4 carriers during midlife16-19. In contrast, studies conducted in older individuals (aged 
³60 years), primarily found beneficial effects of these factors on risk of dementia among non-
carriers20-26, or reported no interaction27,28.

More evidence comes from the Cardiovascular Risk Factors, Aging, and Incidence of Dementia 
(CAIDE) Study of middle-aged individuals that took multiple protective factors into 
consideration29. APOE genotype modified the association between several lifestyle factors and 
the risk of dementia. The results from CAIDE indicate that APOE ε4 carriers are particularly 
prone to developing dementia if they have hazardous health and lifestyle factors during midlife. 
The participants in CAIDE were younger (mean age 50.6 years) than the individuals in this study 
(mean age 69.1 years). This may have led to survival bias in the current study because dementia 
risk in older APOE ε4 carriers is potentially less affected by modifiable risk factors later in life.

To our knowledge, only the Prevention of Dementia by Intensive Vascular Care (preDIVA) trial 
has assessed the effects of health and lifestyle interventions on dementia16. This trial showed 
that intensive vascular care management in a primary-care setting had no overall benefit on 
dementia incidence. In a subgroup analysis in this trial, no significant differences were observed 
between APOE ε4 carriers and non-carriers. The Finnish Geriatric Intervention Study to Prevent 
Cognitive Impairment and Disability (FINGER) trial assessed the effects of multiple lifestyle 
interventions on cognitive performance in older individuals4. A pre-specified subgroup analysis 
in this trial uncovered similar beneficial effects on cognitive performance in both APOE ε4 
carriers and non-carriers after two years of follow-up9. 

In the current study, we aimed to complement evidence from these clinical trials with long-
term observational data. Such an approach has been previously undertaken to study potential 
interaction between genetic and modifiable factors and other chronic diseases, such as heart 
disease and stroke30,31. Our results confirm that individuals with a favorable profile have a lower 
risk of dementia than those with intermediate or unfavorable profiles based on modifiable risk 
factors. In contrast with the FINGER subgroup analysis, this study found that a favorable 
profile could not offset high APOE-risk. The FINGER trial intervened in multiple lifestyle 
factors simultaneously, whereas, in our observational study, data on health and lifestyle factors 
were used to establish risk factor profiles. Non-differential misclassification may, in part, have 
led to an underestimation of the benefits of a favorable risk factor profile in our study. This 
may, for instance, apply to physical activity and diet quality because we have chosen cut-off 
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points to depict ‘favorable’, ‘intermediate’ or ‘unfavorable’ for these variables on the basis of 
guideline recommendations32,33. Moreover, we lacked validated questionnaires to measure social 
engagement, so we may not have fully captured its beneficial effect on dementia. Misclassification 
may have occurred in genetic risk stratifications because we did not have enough participants to 
divide them into strata based on specific genotype. We therefore had to collate some categories 
of genetic risk to estimate meaningful effect sizes. As an example, we grouped individuals who 
are either heterozygous or homozygous for APOE ε4. This may have led to an underestimation 
of the benefits of a favorable profile for individuals who are heterozygous for APOE ε4, as this 
group resembles an intermediate risk group between those who are homozygous for APOE ε3 
and for APOE ε41.

Furthermore, we studied the interplay between genetic and lifestyle factors in the long-term risk 
of developing dementia, whereas the FINGER subgroup analysis assessed effects on cognitive 
performance after a 2-year follow-up. Although cognitive performance was improved in the group 
that received the multi-domain lifestyle intervention compared with that of the control group, 
which received standard health advice, in the short-term, it remains questionable whether such 
effects also occur in the longterm. For instance, participants in the FINGER trial may already 
have developed essential APOE-related brain changes earlier in life34, making them vulnerable to 
development of dementia later in life, irrespective of their modifiable risk factor profile. 

In this study, a high risk of developing dementia based on APOE carrier status was not offset 
by a favorable profile. These findings contrast with those from other large, observational 
population-based studies that examined the interaction between genetic and modifiable factors 
for other chronic diseases, including for instance heart disease and stroke30,31, These studies found 
protective associations of favorable modifiable profiles across levels of genetic risk, even for those 
at the highest genetic risk. Several reasons may underlie this discrepancy. 

First, the harmful effects of APOE ε4 on cholesterol metabolism are apparent throughout life, 
and there are cumulative effects on dementia risk as age advances1. Second, APOE ε4 alters 
neuronal functioning which may lead to irreversible neuronal cell loss35. With advancing age, 
these effects build up and may, in the absence of disease-modifying drugs and proven preventive 
strategies, ultimately have a more detrimental effect on the risk of dementia in older individuals. 
Third, the risk for competing diseases at older ages, such as coronary heart disease and stroke, 
may be mitigated or even reversed, by having a favorable risk profile through the reduction of 
atherosclerotic disease36,37. Fourth, potential epigenetic changes, such as methylation effects of 
APOE or additional variants, may be age-dependent and exert their effects in midlife or even 
earlier but this notion deserves further study. Finally, the APOE ε4 allele triggers cascades that 
may be more independent of the profiles that we studied, for example pathways in inflammatory 
response. Such a response may lead to blood-barrier breakdown, which in turn causes 
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neurovascular dysfunction38. In summary, the interaction between genetic and environmental 
factors plays an important role in the pathophysiology of dementia. 

Our findings provide a less optimistic outlook for individuals at high genetic risk of dementia, 
yet they may have important implications for the design of future clinical trials. Considering 
the earlier age at onset of dementia among APOE ε4 carriers compared with non-carriers, 
our results imply that these individuals need to be targeted earlier in the disease process (for 
example midlife or even earlier) to influence their risk1. Additionally, other interventions beyond 
lifestyle improvements warrant further study. For instance, drugs that lower lipid levels might 
be considered to lower dementia risk in these individuals, yet evidence for such interventions is 
still inconclusive39. On the positive side, results from this study show that avoiding an unhealthy 
lifestyle could potentially prevent or postpone the onset of dementia in most individuals in the 
population (73%), namely those at low and intermediate genetic risk. Among those, the majority 
were categorized as having a favorable profile (66%), yet room for improvement is still substantial 
because potential relative risk reductions of up to 30% can be achieved when individuals adhere 
to the lifestyle factors that confer a favorable risk profile. 

Several limitations of this study need to be addressed. First, we lacked data waves on hearing 
impairment, a potentially important modifiable risk factor for dementia, because assessments 
to measure hearing were implemented in the study protocol from 2011 onwards. Second, the 
components used to compute the modifiable risk factor profile were measured at baseline, which 
does not capture the possibility of shifting from a more adverse risk profile to a more optimal 
one during follow-up, or vice versa. Third, by stratifying participants using both genetic and 
environmental information, results are based on small samples in each stratum, resulting in 
wide confidence intervals around point estimates. Results of this single-cohort study therefore 
warrant replication in other population-based studies. Nevertheless, we were able to show the 
robustness of our findings in several sensitivity analyses; thus, it was less likely that our findings 
were a result of chance. Finally, members of this older population are predominantly of European 
descent (97%), limiting the generalizability of these findings to younger populations and to 
other ethnicities. Strengths of this study include the availability of genetic data in combination 
with the meticulous assessment of several health and lifestyle factors, along with long-term and 
consistent dementia follow-up. 

In conclusion, this large population-based study demonstrates that among those at low- and 
intermediate genetic risk, a favorable modifiable risk profile is related to a risk of dementia lower 
than that in individuals with an unfavorable one. In contrast, these protective associations were 
not found among those at high genetic risk. These results may inform clinical trial design, because 
dementia prevention trials increasingly recruit individuals genetically predisposed to dementia.
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Methods

Study population
We used data from participants of the Rotterdam Study, a prospective population-based cohort 
study. In 1990, all residents aged 55 and older living in Ommoord, a district of Rotterdam, 
the Netherlands, were invited. Of 10215 invited inhabitants, 7983 (78%) agreed to participate 
in the baseline examination. In 2000, the cohort was extended: all residents who turned 55 or 
moved into the research area. Of the 4472 invitees, 3011 (67%) agreed to participate. Follow-up 
examinations take place every 3 to 4 years40. 

Analyses of this study are based on data obtained from the third examination of the original 
cohort in 1997-1999 (N=4797) and the first examination of the extended cohort in 2000-2001 
(N=3011). These two cohorts were similar in design and examinations were identical. After 
excluding participants who did not complete the interview and research center visit in these 
rounds (N=873), had dementia or insufficient screening for dementia at baseline (N=170), did 
not undergo genotyping (N=365), did not provide informed consent to access medical records 
and hospital discharge letters (N=33), or if there was no follow-up due to logistic reasons 
(N=15), 6352 participants were included for analysis in this study (study flowchart displayed 
in Supplementary Figure 1. A comparison of baseline characteristics for in- and excluded 
participants is presented in Supplementary Table 13).

Ethics statement
The Rotterdam Study has medical ethics committee approval per the Population Study Act: 
Rotterdam Study, executed by the Ministry of Health, Welfare and Sport of the Netherlands. 
Written informed consent was obtained from all participants.

APOE genotyping
DNA was extracted from blood samples drawn at baseline. APOE genotype was determined 
using a polymerase chain reaction in the original cohort and was determined with a bi-allelic 
TaqMan assay (rs7412 and rs429358) in the extended cohort on coded DNA samples. APOE ε4 
carrier status was defined as carrier of one or two ε4 alleles. 

Calculation of  a polygenic risk score
The majority of samples (81.1%) were further genotyped with the Illumina 610K and 660K 
chips and imputed to the Haplotype Reference Consortium reference panel (version 1.0) with 
Minimac 3. We included 27 genetic variants that showed genome-wide significant evidence 
for associations with AD to calculate a weighted polygenic risk score. Supplementary Table 1 
provides an overview of the included variants. The polygenic risk score was calculated as the sum 
of the products of single nucleotide polymorphism dosages of the 27 genetic variants (excluding 
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APOE) and their respective reported effect estimates. All 27 variants selected for the calculation 
of the polygenic risk score were well imputed (imputation score R2 > 0.6, median 0.99).

Modifiable risk factor profile
We adapted six health and/or lifestyle factors shown to be important during later life to lower 
dementia risk, as set out by a recent meta-analysis and endorsed by the World Health Organization 
(WHO)11,14. Among these are: (1) abstaining from smoking, (2) absence of depression, (3) 
absence of diabetes, (4) regular physical activity, (5) avoiding social isolation, and (6) adherence 
to a healthy dietary pattern, which included limited alcohol consumption. Based on these six 
factors, we computed an overall profile of modifiable risk factors ranging from zero to six, and 
we subsequently grouped participants into three categories of modifiable risk (unfavorable-: ≤2, 
intermediate-: 3-4, and favorable profiles: ≥5 protective factors)

Assessment of  individual health and lifestyle factors
During a structured home interview, participants were enquired about their smoking habits. 
Participants were classified as never, former or, current smokers. In addition, the participants 
were screened with the Center for Epidemiologic Studies Depression Scale during the interview. 
Presence of depressive symptoms was defined as a score of >16 points on scale of 0 to 60. 
Diabetes was defined as fasting serum glucose levels ≥7.0 mmol/L, non-fasting serum glucose 
levels ≥11.0 mmol/L (if fasting samples were unavailable), and/or the use of blood glucose-
lowering medication. Physical activity levels were assessed using a validated adapted version of 
Zutphen Physical Activity Questionnaire and expressed in Metabolic Equivalent of Task hours 
(METhours) per week. The METhours/week are the product of MET-values of specific activities 
(walking, cycling, domestic work, sports, and gardening) with time in hours per week spent in 
that activity. Categories were calculated based on International Physical Activity Questionnaire 
and also expressed in METhours/week. We defined being physically active based on a minimum 
of ≥40 minutes of exercise per week with a MET intensity of ≥433. Social engagement was 
constructed using three domains based on various questionnaires. We included marital status, 
living arrangements (living alone, with spouse or with others) and asked if the participant felt 
lonely during the past week. If a participant lived alone and felt lonely during the past week – we 
considered them as being less socially engaged. A validated food frequency questionnaire was used 
to measure the dietary pattern of participants32. A healthy dietary pattern was ascertained on the 
basis of adherence to at least half of the following dietary guidelines: consumption of an sufficient 
amount of fruits, nuts, vegetables, whole grains, fish, and dairy products and a limited amount 
of refined grains, processed meats, unprocessed red meats, sugar-sweetened beverages, trans fats, 
sodium and alcohol, for which further details and cut-off values are described elsewhere32. 

Other covariates
Participants were questioned about parental history of dementia during the interview. During 
the center visit, blood pressure was assessed at the right upper arm with the participant in sitting 
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position. The mean of two measurements was used in the analyses. Serum total cholesterol, 
and high-density lipoprotein cholesterol were acquired by an automated enzymatic procedure 
(Boehringer Mannheim System). Glucose levels were measured after overnight fasting (8–14 
h). The history of clinical stroke was assessed by both self-report and continuous monitoring 
of medical records through digitized linkage of files from general practitioners with the study 
database. All strokes were adjudicated by a panel of study physicians.

Ascertainment of  dementia
Participants were screened for dementia at baseline and subsequent center visits with the Mini-
Mental State Examination and the Geriatric Mental Schedule organic level3. Those with a 
Mini-Mental State Examination score <26 or Geriatric Mental Schedule score >0 underwent 
further investigation and informant interview, including the Cambridge Examination for 
Mental Disorders of the Elderly. All participants also underwent routine cognitive assessment. In 
addition, the entire cohort was continuously under surveillance for dementia through electronic 
linkage of the study database with medical records from general practitioners and the regional 
institute for outpatient mental health care. Available information on cognitive testing and clinical 
neuroimaging was used when required for diagnosis of dementia subtype. An event adjudication 
panel led by a consultant neurologist established the final diagnosis according to standard criteria 
for dementia (DSM-III-R) and AD (NINCDS–ADRDA). Follow-up until 1st of January 2016 
was virtually complete (95.5% of potential person-years). Within this period, participants were 
followed until the date of dementia diagnosis, death, loss to follow-up, or 1st of January 2016, 
whichever came first.

Statistical analysis
We used Cox proportional hazard models to assess the association of APOE-risk and the health 
and lifestyle factors with incident dementia. We verified the proportionality assumption with use 
of Schoenfeld residuals. We tested for interaction between APOE carrier status and the level of 
the modifiable risk factor profiles on a multiplicative scale. We subsequently evaluated the hazard 
ratios (HRs) for participants with a high APOE risk status (ε2ε4, ε3ε4 or ε4ε4 genotypes), and 
compared those with hazard ratios from those with an intermediate risk (ε3ε3 genotype) or low 
risk status (ε2ε2 or ε2ε3 genotypes). Similarly, we calculated hazard ratios for participants with a 
favorable profile (which was defined as the presence of at least five of the six health and/or lifestyle 
factors) with an intermediate profile (three or four factors) or an unfavorable profile (two or less 
factors). Models were adjusted for age, sex and level of attained education. In extended models, 
we additionally adjusted for parental history of dementia and cardiovascular risk factors. Finally, 
we used a competing risk framework based on the Fine & Gray model to calculate the 15-year 
absolute dementia risk for participants within each category of genetic risk and modifiable risk 
profile separately. Confidence intervals were computed based on 1000 bootstrap samples.
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In stratified analyses, we explored whether associations differed among younger and older 
participants by stratifying on the median age of this study (68.2 years) and additionally on the 
age of 70 years as this age range is often used as an eligibility criterion to recruit individuals for 
preventative trials that assess multi-domain lifestyle interventions4-6. Finally, we stratified on sex.

In sensitivity analyses, we studied the robustness of our findings by varying the definitions and 
compositions of both modifiable risk factors and genetic risk factors that were used in the main 
analyses. This is in particular important since some of the included modifiable risk factors, such 
as depression and social isolation, may have been altered by pre-clinical dementia. Similar to 
the main analyses, we first explored statistical interaction on a multiplicative scale between the 
studied genetic component (APOE or the polygenic score), and the risk factor profile under 
study. We subsequently repeated the main analyses while categorizing participants on the Ideal 
Cardiovascular Health metric (favorable, intermediate and unfavorable), instead of the currently 
employed modifiable risk factors. Similarly, we replaced the current modifiable risk factors by 
the 10-year predicted absolute risk of fatal cardiovascular disease and subsequently categorized 
participants into low-to-moderate <5%, high risk 5-10%, and very high risk > 10%, based on 
the European Coronary Risk Equation (SCORE), that includes age, sex, and several adverse risk 
factors namely current smoking, level of cholesterol and systolic blood pressure15. 

Regarding genetic risk factors, we repeated the main analyses stratified for an AD polygenic 
risk score that included 27 genome-wide significant variants (excluding APOE), comparing 
participants at high genetic risk (i.e. highest tertile of the polygenic score) with those at 
intermediate risk (middle tertile), or low risk (lowest tertile).

We compared baseline characteristics across APOE strata using analysis of variance (anova) tests. 
In the case of frequency distributions or when data were non-normally distributed, we compared 
variables between groups using non-parametric tests (chi-square, Mann-Whitney or Kruskal 
Wallis).

Data were handled and analyzed with SPSS Statistics version 24.0.0.1 (IBM Corp., Armonk, 
NY) and R, CRAN version 3.5.1, with packages survival, rms and cmprsk. All analyses were 
performed at the significance level of 0.05 (2-tailed). P values were uncorrected for multiple 
testing.
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Abstract

Many Alzheimer’s disease (AD) genes including Apolipoprotein E (APOE) are found to be 
expressed in blood-derived macrophages and thus may alter blood protein levels. We measured 
91 neuro-proteins in plasma from 316 participants of the Rotterdam Study (incident AD = 
161) using Proximity Extension Ligation assay. We studied the association of plasma proteins 
with AD in the overall sample and stratified by APOE. Findings from the Rotterdam study were 
replicated in 186 AD patients of the BioFINDER study.  We further evaluated the correlation 
of these protein biomarkers with total tau (t-tau), phosphorylated tau (p-tau) and amyloid-beta 
(Aβ) 42 levels in cerebrospinal fluid (CSF) in the Amsterdam Dementia Cohort (N = 441). 
Finally, we conducted a genome-wide association study (GWAS) to identify the genetic variants 
determining the blood levels of AD-associated proteins. Plasma levels of the proteins, CDH6 
(β = 0.638, P = 3.33x10-4) and HAGH (β = 0.481, P = 7.20x10-4), were significantly elevated 
in APOE ε4 carrier AD patients. The findings in the Rotterdam Study were replicated in the 
BioFINDER study for both CDH6 (β = 1.365, P = 3.97x10-3) and HAGH proteins (β = 0.506, 
P = 9.31x10-7) when comparing cases and controls in APOE ε4 carriers. In the CSF, CDH6 levels 
were positively correlated with t-tau and p-tau in the total sample as well as in APOE ε4 stratum 
(P < 1x10-3). The HAGH protein was not detected in CSF. GWAS of plasma CDH6 protein 
levels showed significant association with a cis-regulatory locus (rs111283466, P = 1.92x10-9). 
CDH6 protein is implicated in cell adhesion and synaptogenesis while HAGH protein is related 
to the oxidative stress pathway. Our findings suggest that these pathways may be altered during 
presymptomatic AD and that CDH6 and HAGH may new blood-based biomarkers.
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Introduction

Apolipoprotein E (APOE) is the most common genetic risk factor for Alzheimer’s disease (AD)1,2 
and an important driver of the lifetime risk for AD3,4. APOE interacts with other common 
genetic determinants of AD2,5, suggesting an interaction with specific protein pathways. Despite 
two decades of research, the role of APOE in determining the risk of AD is far from being 
understood6. The IMI ADAPTED (The Alzheimer’s Disease Apolipoprotein Pathology for 
Treatment Elucidation and Development) is an Innovative Medicine Initiative (IMI) that aims 
to improve the understanding about the role of APOE gene in AD.

AD pathology is characterized by the extracellular deposition of amyloid-beta (Aβ)-42 and 
intracellular accumulation of phosphorylated tau in the brain. Cerebrospinal fluid (CSF) levels 
of Aβ-42, phosphorylated (p-tau) and total tau (t-tau) are well-established biomarkers of the 
central nervous system and brain AD pathology7. However, there is a growing evidence for a 
relation between other pathologies and AD, such as vascular pathology8. For example, studies 
integrating epidemiological and vascular research showed that vascular pathology may affect 
brain function and increase the risk of AD9. APOE and many of the novel genes implicated 
in AD are expressed in monocytes/macrophages10-12 in the blood, and thus these genes may 
alter the protein signatures in blood. There is also a growing body of evidence indicating that 
Aβ may disrupt the cerebral microcirculation regulation13-15, endothelial function16,17, and brain 
perivascular macrophages function18. Thus, protein and metabolite homeostasis in blood may also 
be altered as a consequence of (early) amyloid pathology. Indeed, there is an increasing interest 
in the relation between protein levels in plasma and AD during presymptomatic stages of AD19. 
Multiple studies have investigated the association of a range of proteins with AD in plasma, but 
few have addressed the effect of APOE19-25. Furthermore, there is lack of investigations connecting 
molecular signatures of AD in blood to neuropathological AD markers in CSF.

Advances in high-throughput omics technologies have allowed the detection and quantification 
of several classes of plasma-based biomolecular compounds including circulating metabolites and 
proteins26. In the present study, we aimed to identify altered levels of proteins in the circulation 
of presymptomatic AD patients in the overall population and among various genetic risk groups 
based on the APOE gene, with a view to obtaining insights into molecular signatures in the 
circulation. To this end, we have examined the association of neurology relevant proteins in a 
prospective population-based, the Rotterdam Study. Proteins associated with AD were further 
tested for replication in the BioFINDER study. Next, we conducted a genome-wide association 
study to find the genetic variants determining the blood levels of AD-associated proteins. Finally, 
we studied the association of the protein consistently associated with AD to amyloid and tau 
levels in CSF in the Amsterdam Dementia Cohort (ADC). 
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Results

Association of  plasma proteins with AD
Detailed results of overall and APOE stratified association analysis of proteins with AD are 
provided in Table 1 and Figure 1. No significantly associated protein to AD was identified in the 
overall analyses at an FDR < 0.05. Overall, there is a tendency that protein levels are more likely 
increased (positive effect size, β) than decreased (negative effect size, β) in AD patients that carry 
the APOE ε4 allele (Figure 1a) and those homozygous for APOE ε3 allele (Figure 1c) but not 
for APOE ε2 patients (Figure 1d). In APOE stratified discovery analysis, we observed that levels 
of CDH6 (β = 0.638, P = 3.33x10-4, FDR=0.030) and HAGH (β = 0.481, P = 7.20x10-4, FDR 
= 0.033) were significantly increased in AD patients who carry the APOE ε4 allele (see Table 1). 
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Figure 1: Volcano plots representing the association of  plasma protein levels with Alzheimer’s 
disease (AD) in (a) overall analysis; (b) APOE4 stratum; (c) APOE33 stratum and (d) APOE2 
stratum. Each	dot	represents	a	protein	with	regression	coefficient	(β) of  association plotted on 
x-axis	and	-log10	of 	P-values on	y-axis.	Proteins	showing	nominal	association	(P-value < 0.05) 
are	annotated	in	overall	and	stratified	analysis.	Light	blue	color	of 	dot	indicates	decreased	protein	
levels with β -0.0	to	-0.184	and	dark	blue	to	indicate	with β <	-0.184	while	pink	color	indicates	
increased protein levels with β ranging	from	0.0	to	0.184	and	red	color	shows	β >	0.184.	Black	dots	
are used for proteins which pass the multiple testing (false discovery rate <0.05).
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Table 1: Results of  plasma-based proteome association with Alzheimer’s disease

Uniprot id Annotation Effect size (β) OR SE P-value FDR-value

Overall population

P55285 CDH6 0.334 1.397 0.106 1.78x10-3 0.162

Q2VWP7 PRTG 0.286 1.331 0.100 4.62x10-3 0.210

O94779 CNTN5 0.155 1.168 0.061 1.24x10-2 0.377

P12544 GZMA 0.129 1.138 0.059 2.88x10-2 0.598

O14594 NCAN 0.183 1.201 0.088 3.93x10-2 0.598

O14793 GDF-8 0.095 1.100 0.047 4.42x10-2 0.598

Q16775 HAGH 0.147 1.158 0.074 4.60x10-2 0.598

APOE4 stratum

P55285 CDH6 0.638 1.893 0.171 3.33x10-4 0.030

Q16775 HAGH 0.481 1.618 0.138 7.20x10-4 0.033

Q92752 TN-R 0.280 1.323 0.094 3.72x10-3 0.113

P01138 Beta-NGF 0.431 1.539 0.182 2.00x10-2 0.340

Q8NFP4 MDGA1 0.164 1.178 0.070 2.22x10-2 0.340

P57087 JAM-B 0.318 1.374 0.137 2.24x10-2 0.340

P41217 CD200 0.335 1.398 0.155 3.31x10-2 0.394

Q9BS40 LXN 0.619 1.857 0.292 3.67x10-2 0.394

P16234 PDGF-R-alpha 0.324 1.383 0.159 4.42x10-2 0.394

Q6ISS4 LAIR-2 0.107 1.113 0.053 4.84x10-2 0.394

APOE33 stratum

Q2VWP7 PRTG 0.309 1.362 0.122 1.22x10-2 0.778

O94779 CNTN5 0.193 1.213 0.081 1.85x10-2 0.778

O14594 NCAN 0.248 1.281 0.110 2.57x10-2 0.778

P55285 CDH6 0.202 1.224 0.150 1.79x10-1 0.842

Q16775 HAGH -0.018 0.982 0.092 8.42x10-1 0.957

APOE2 stratum

P17405 SMPD1 -0.447 0.640 0.203 3.51x10-2 0.966

Q2TAL6 VWC2 -0.362 0.696 0.166 3.69x10-2 0.966

Q16775 HAGH 0.482 1.619 0.227 4.25x10-2 0.966

P55285 CDH6 0.498 1.645 0.324 1.35x10-1 0.966

Abbreviations: β, regression coefficient; OR, odds ratio; SE, standard error; APOE, apolipoprotein E; 
FDR, False discovery rate
Note: Multiple testing correction by false discovery rate (FDR) < 0.05 was considered significant
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Both CDH6 (β = 0.624, P = 5.52x10-4, FDR = 0.030) and HAGH (β = 0.491, P = 6.62x10-4, 
FDR = 0.030) proteins remained significantly associated with AD even after adjusting for other 
covariates in model 2 (Supplementary Table 1). 

In the replication analysis in the BioFINDER study (Table 2), plasma levels of CDH6 and 
HAGH were significantly associated with AD in the overall sample (CDH6: β = 1.212, P = 
5.18x10-4; HAGH: β = 0.631, P = 7.56x10-15) as well as in APOE ε4 carriers (CDH6: β = 1.365, 
P = 3.97x10-3; HAGH: β = 0.506, P = 9.31x10-7) but not in APOE ε2 carriers. Plasma levels of 
HAGH protein were also associated with AD in APOE ε33 carriers (β = 0.739, P = 3.76x10-7) 
but in this subgroup no association with CDH6 was seen. 

Figure 2 shows that the APOE genotype modifies the association between proteins and AD 
based on nominal statistical significance. In discovery analysis, eight additional proteins (TN-R, 
Beta-NGF, MDGA1, JAM-B, CD200, LXN, PDGF-R-alpha, and LAIR-2) were also positively 
associated with AD APOE ε4 carriers (β > 0.107, P < 0.05), but they did not survive multiple 
testing. In the APOE2 stratum, the levels of two proteins including SMPD1 and VWC2 were 
reduced in AD cases compared to the APOE genotype matched controls (Supplementary Figure 
1). In APOE33 stratum, PRTG, CNTN5 and NCAN proteins, that do not emerge in the 
APOE4 or APOE2 stratum (see Figure 2), showed suggestive associations but did not survive 
multiple testing (β > 0.193, P < 2.57x10-2). Both CDH6 (β = 0.202, P = 1.79x10-1) and HAGH 
(β = -0.018, P = 8.42x10-1) did not show association with AD in APOE33 carriers while HAGH 
showed nominal association in APOE ε2 carriers (β = 0.482, P = 4.25x10-2) (See Table 1).

Sensitivity analyses 
Sensitivity analyses were performed in the Rotterdam Study to test the robustness of our findings. 
In the first sensitivity analysis (Supplementary Table 2), we adjusted for follow-up time, taking 
into account that some cases or controls may die of other diseases. This analysis showed that 
levels of both HAGH (β = 0.477, P = 6.47x10-4) and CDH6 (β = 0.661, P = 1.48x10-4) proteins 
were significantly increased in AD patients compared to controls in APOE ε4 carriers. In the 
second sensitivity analysis, we only analyzed protein that were assessed directly (non-imputed 
data). Similarly, the association of HAGH and CDH6 proteins with AD remained significant in 
APOE ε4 carriers when analyzing non-imputed proteomics data (Supplementary Table 3). Last 
but not least, we performed a formal interaction test to evaluate the interaction of APOE with 
each of the 91 proteins (Supplementary Table 4). Only three of 91 proteins showed interaction 
with APOE (P-value < 0.05) including HAGH (βinteraction = 0.414, Pinteraction = 1.70x10-2), G-CSF 
(βinteraction = 0.276, Pinteraction = 2.78x10-2) and CRTAM (βinteraction = -0.221, Pinteraction = 3.77x10-2). 
Except, HAGH other two proteins (G-CSF, CRTAM) did not show association with AD in 
any of the analyzed APOE stratum (P-value > 0.05). For CDH6, the test for was not significant 
(βinteraction = 0.078, Pinteraction = 7.23x10-1).
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Association of  CDH6 and HAGH protein levels with Aβ-42, p-tau, and t-tau in 
CSF
Among the two proteins that were associated to the future risk of AD, CDH6 and HAGH, 
the latter was not detected in the CSF in > 90% of the subjects in ADC cohort. CSF CDH6 
protein levels were not associated with AD (β = 0.329, SE = 0.220, P = 0.136) in the overall as 
well as in APOE stratified analysis (P > 0.114; see Supplementary Table 5). However, multiple 
regression analysis adjusted for age and sex revealed a significant association of CDH6 CSF 
levels with both p-tau (β = 23.2, SE = 3.4, P = 3.48x10-11) and t-tau (β = 207.4, SE = 36.4, P = 
2.40x10-8) when pooling AD patients and controls (Table 3 and Figure 3). In the APOE stratified 
analysis, levels of CDH6 were significantly associated with p-tau and t-tau levels but not with 
Aβ-42 levels in CSF in three APOE strata (see Table 3). When stratifying by case-control status 
(Supplementary Table 6), CDH6 levels were significantly associated with p-tau and t-tau levels in 
both cases and controls. In controls, also Aβ-42 was positively associated with CDH6 (P<1x10-3; 
see Supplementary Table 6).

Association of  proteins with APOE 
Next, we associated the APOE genotype to the protein levels significantly associated with AD 
(CDH6 and HAGH). Results of the association of protein levels with APOE genotypes are 
provided in Supplementary Table 7 and Figure 2. In the overall sample, CDH6 protein levels 
were increased in the APOE ε4 carriers compared to APOE ε2 carriers (β = 0.163, P = 3.79x10-3). 
In controls, levels of CDH6 protein were decreased (β= -0.131, P = 0.026) in APOE ε2 carriers 

Figure 2: Venn diagram showing the overlap of  proteins identified in the association analysis results 
of  overall and APOE stratified analysis.
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compared to APOE 33 carriers. In the controls, levels of HAGH were decreased in the APOE ε4 
(β = -0.192, P = 0.028) and APOE ε2 carriers (β = -0.214, P = 0.042) compared to APOE 33 
carriers.

Genome-Wide Association Study (GWAS)
The GWAS was conducted to determine the genetic drivers of the CDH6 and HAGH protein 
levels (Supplementary Figure 3:A and 4 respectively). We identified 13 genome-wide significant 
cis protein quantitative trait loci (pQTLs) located at 5p13.3 locus of chromosome 5 for CDH6 
protein levels. All genome-wide significant pQTLs are located in the intergenic region at 5’ 
UTR region of the CDH6 gene. Among the 13 identified pQTLs, rs111283466 was the lead 
pQTL with the effect estimate (β) of 1.068 and P-value 1.92x10-9 (Supplementary Table 8). 
Q-Q plot (Supplementary Figure 5:A) indicates that the results are well adjusted for population 
stratification (λ = 1.0056). Further lookups in the GTEx database showed that the lead pQTL 
(rs111283466) also affects the expression of CDH6 gene in various body tissues. GWAS analysis 
of HAGH protein levels did not identify any genome-wide significant pQTLs. Manhattan plot 
and Q-Q plot for GWAS results of HAGH protein levels are provided in the Supplementary 
materials (Supplementary Figure 4 and 5:B).

Discussion

In our study, plasma levels of CDH6 and HAGH proteins are significantly increased in 
presymptomatic AD patients compared to controls in the APOE4 stratum. In the replication 
analysis, both CDH6 and HAGH proteins showed significant association with AD in the 
BioFINDER study in APOE ε4 carriers.  CDH6 protein levels were significantly correlated with 

0 1 2 3 4
0

1 0 0

2 0 0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

C D H 6  (N P X  v a lu e s )

A
D

 C
S

F
 b

io
m

a
rk

e
rs

(p
g

/m
L

)

t-tau

Aβ-42 

p - tau

Figure 3: Correlation plot between cerebrospinal fluid (CSF) levels of  CDH6 with Aβ-42, p-tau and 
t-tau. 



111

4

Proteomics and metabolomics of Alzheimer’s disease

Ta
bl

e 
2:

 A
ss

oc
ia

ti
on

 o
f 

pl
as

m
a 

le
ve

ls
 o

f 
CD

H
6 

an
d 

H
A

G
H

 p
ro

te
in

s 
w

it
h 

A
lz

he
im

er
’s

 d
is

ea
se

 in
 th

e 
B

io
F

IN
D

E
R

 S
tu

dy

O
ve

ra
ll

AP
O

E4
 st

ra
tu

m
AP

O
E3

3 
st

ra
tu

m
AP

O
E2

 st
ra

tu
m

Bi
om

ar
ke

rs
β

SE
P-

va
lu

e
β

SE
P-

va
lu

e
β

SE
P-

va
lu

e
β

SE
P-

va
lu

e

C
D

H
6

1.
21

2
0.

34
9

5.
18

x1
0-4

1.
36

5
0.

47
4

3.
97

x1
0-3

0.
96

1
0.

58
5

1.
01

x1
0-1

2.
61

2
3.

21
0

4.
16

x1
0-1

H
AG

H
0.

63
1

0.
08

1
7.

56
x1

0-1
5

0.
50

6
0.

10
3

9.
31

x1
0-7

0.
73

9
0.

14
5

3.
76

x1
0-7

5.
56

5
3.

97
9

1.
62

x1
0-1

A
bb

re
vi

at
io

ns
: A

D
, A

lzh
ei

m
er

’s 
di

se
as

e;
 β

, r
eg

re
ss

io
n 

co
effi

ci
en

t; 
SE

, s
ta

nd
ar

d 
er

ro
r

*L
og

ist
ic

 re
gr

es
sio

n 
an

al
ys

is 
ad

ju
sti

ng
 fo

r a
ge

 a
nd

 se
x

Ta
bl

e 
3:

 A
ss

oc
ia

ti
on

 o
f 

CS
F

 b
as

ed
 C

D
H

6 
pr

ot
ei

n 
le

ve
ls

 w
it

h 
A

D
 b

io
m

ar
ke

rs
 in

 A
m

st
er

da
m

 D
em

en
ti

a 
Co

ho
rt

O
ve

ra
ll

AP
O

E4
 st

ra
tu

m
AP

O
E3

3 
st

ra
tu

m
AP

O
E2

 st
ra

tu
m

Bi
om

ar
ke

rs
β

SE
P-

va
lu

e
β

SE
P-

va
lu

e
β

SE
P-

va
lu

e
β

SE
P-

va
lu

e

Aβ
-4

2
16

.5
74

26
.8

27
5.

37
x1

0-1
33

.7
01

35
.0

01
3.

37
x1

0-1
14

.4
99

44
.9

66
7.

48
x1

0-1
-1

03
.7

67
69

.3
54

1.
45

x1
0-1

p-
ta

u
23

.1
89

3.
40

4
3.

48
x1

0-1
1

26
.6

74
5.

78
1

8.
36

x1
0-6

21
.9

81
5.

56
4

1.
17

x1
0-4

25
.6

63
7.

69
7

2.
29

x1
0-3

T-
ta

u
20

7.
39

6
36

.4
37

2.
40

x1
0-8

23
5.

00
9

59
.1

58
1.

10
x1

0-4
19

3.
85

9
64

.0
68

2.
90

x1
0-3

29
8.

43
7

86
.6

37
1.

66
x1

0-3

A
bb

re
vi

at
io

ns
: A

D
, A

lzh
ei

m
er

’s 
di

se
as

e;
 β

, r
eg

re
ss

io
n 

co
effi

ci
en

t; 
SE

, s
ta

nd
ar

d 
er

ro
r

*L
in

ea
r r

eg
re

ss
io

n 
an

al
ys

is 
ad

ju
sti

ng
 fo

r a
ge

 a
nd

 se
x



112

Chapter 4

p-tau and t-tau measurements in CSF of the ADC. In GWAS analysis, we have also identified a 
genome-wide significant pQTL for CDH6 protein levels in the blood (rs111283466), which also 
affects the expression levels of CDH6 transcripts in several tissues.

We observed a significant increase of CDH6 protein levels in the plasma of presymptomatic 
AD cases carrying the APOE ε4 allele which was also replicated in the BioFINDER study. 
When comparing our findings to the other studies19-22, we do not have an overlap in understudy 
proteins. However, like previous studies we do find an effect of the APOE gene on plasma level of 
prorteins21,22. In the APOE4 stratum, we see that the volcano plot (Figure 1) is clearly asymmetric 
suggesting increased levels of most neuronal proteins in AD patients carrying this allele before 
the clinical onset of disease. This might be explained by an increase in the blood-brain barrier 
permeability in APOE ε4 carriers27,  which may lead to increased levels of CDH6 in the blood 
as a result of higher levels of CDH6 in the brain. We found that CDH6 levels in the blood are 
driven by a genetic variant (rs111283466) in the cis-regulatory region. This may determine the 
CDH6 levels in both brain and blood cells, leaving the possibility open that elevated CDH6 
has a blood-derived origin. Yet, such a mechanism does not explain why elevated levels in the 
blood are only seen in patients carrying the APOE ε4 allele.  It is of note that the CDH6 coding 
gene is part of a larger cluster of cadherin (CDH) genes including CDH9, CDH10, CDH12 and 
CDH18. As all of the CDH genes are paralogues and share homology, it is crucial to exclude 
cross-reactions of the antibodies28 used by Olink across CDH proteins. Our GWAS benchmarks 
that the protein assessed in our plasma is indeed CDH6, as we found that the most important 
driver of the protein is in the promoter region of CDH6. None of the recently published 
GWAS of proteins reported significant pQTLs for CDH6 protein based on SomaLogic29,30. The 
aptomere based measurement of the SomaLogic yields a different protein spectrum than that of 
the antibody-based method of Olink31. Our identified pQTLs did not show any association with 
AD (P-value < 0.05) in the largest AD GWAS11. However, we find in our study that levels of 
CDH6 were increased in APOE ε4 carriers compared to APOE ε2 carriers. We do find that the 
region is associated to postcentral gyri in GWAS32 and a study has reported reduced volume of 
postcentral gyri in dementia patients33.

Interestingly, we found significant positive associations of CSF levels of CDH6 protein with 
p-tau and t-tau levels in overall as well as in AD and controls only analyses, which are considered 
as biomarkers of neuronal injury and tau pathology34,35. The upregulation of CDH6 protein in 
cerebral cortices of AD mice models (APP/PS1) compared to wild type has been reported by 
Lu et al.,36 which is in line with our observation of positive correlation between CDH6 levels 
and AD pathological markers in CSF. Yet, we did not observe an association of the CDH6 
protein with AD in CSF. We also observed positive association between CDH6 levels with 
amyloid-beta 42 in CSF of the controls, which might indicate disturbance in the amyloid-beta 
42 metabolism which precedes decades before the buildup of Aβ in the brain37. Alternatively, it 
may point towards a similar mechanism of production of the Aβ-42 and CDH6 proteins in a 
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healthy state38. Increased levels of phosphorylated CDH6 protein levels were reported upon the 
addition of amyloid-beta in cortical neuronal cells39, which adds evidence to the role of CDH6 
in AD pathology. Taken together, these findings suggest that CSF levels of CDH6 protein may 
be associated with neuronal and axonal cell injury and neurofibrillary tangles in AD.  

CDH6 is a cell surface glycoprotein that belongs to type II cadherin’s40. Cadherins are highly 
expressed in the brain and other tissues. They strongly interact with other molecules to perform 
molecular processes including synaptic functions41-43, synaptogenesis44, TGF-B signaling45, 
neural crest differentiation46, presenilin-mediated signaling and integrity of blood-brain barrier47. 
Although it is not possible to infer whether the correlation of AD pathology with CDH6 in 
plasma and CSF, are cause or consequence of the disease, several pieces of evidence favor the role of 
CDH6 in the pathogenesis of AD39,48. A recent study showed that the ADAM10 enzyme, whose 
coding gene is associated with AD11, is involved in proteolytic cleavage of the CDH6 protein, 
resulting in the formation of C-terminal fragment49, in a similar manner as it cleaves the amyloid 
precursor protein (APP)50,51. The transmembrane N-cadherin (CDH2), a paralogue of CDH6 
and functionally related to CDH643, is also known to be cleaved by ADAM10 into N-cadherin 
C-terminal fragment 1 (NcadCTF1).  Andreyeva et al.,52 have demonstrated that NcadCTF1 
leads to accelerated amyloid-β-induced synaptic impairment, a process that characterizes an early 
stage event in AD53,54. Increased levels of NcadCTF1 were also found in postmortem AD brain 
tissues compared with controls, suggesting that cadherins might induce synaptic dysfunction in 
a synergistic manner52. 

In addition to CDH6, increased plasma levels of HAGH (Hydroxyacylglutathione hydrolase, 
mitochondrial) protein also showed significant association with AD in those who carry the 
APOE ε4 variant and suggestive association in overall and in APOE ε2 carriers. This finding is 
in line with the recently published findings of the BioFINDER study25 and further supported 
by the APOE stratified analysis in the BioFINDER study that was  conducted for the present 
study. In the replication analysis, plasma levels of HAGH showed significant association in both 
APOE ε4 and APOE ε33 carriers while in the discovery analysis in Rotterdam Study HAGH 
only showed significant association in APOE ε4 carriers which may be due to the lack of 
power. The HAGH protein is also known as glyoxalase-2, an enzyme, which is involved in the 
glyoxalase system along with glyoxalase-1 and its cofactor glutathione, a key player is oxidative 
stress control55,56. Overall, the glyoxalase system is involved in the detoxification of glycolysis by-
products particularly cytotoxic metabolite methylglyoxal57. Levels of methylglyoxal in plasma are 
elevated during various disease conditions including hyperglycemia, which leads to the formation 
of reactive oxygen species (ROS) and causes oxidative stress. Moreover, methylglyoxal is also the 
precursor of glycation end products (AGEs) which are implicated in neurodegeneration and 
AD58,59. The most compelling evidence for the role of the glyoxalase-2 protein in AD is that the 
AGEs and glyoxalase system is implicated in the regulation of amyloid precursor protein (APP) 
expression60,61. Although glyoxalase system attributes protection against methylglyoxal mediated 
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oxidative stress, earlier studies have also observed increased levels of glyoxalase-1 enzyme  
(involved in the first step of methylglyoxal detoxification) in early AD stages62,63. Increased levels 
of glyoxalase-2 (involved in the second step of methylglyoxal detoxification) in plasma might be 
a compensatory mechanism to increased levels of methylglyoxal during the early phase of disease 
or a general stress response55. The growing number of studies have suggested the involvement 
of oxidative stress during the prodromal stage of AD64-66, which is in line with our finding of 
increased levels of glyoxalase-2 observed before the onset of AD. 

The strength of the current study includes that it is conducted in the prospective population-
based RS cohort, where samples were selected with mean 6.9 years of follow-up preceding the 
diagnosis of AD. It allowed us to study the plasma proteomics changes prior to the development 
of AD clinical symptoms. As AD is a disorder of the brain, we have validated that CSF levels of 
CDH6 are also associated with biomarkers of AD in CSF in an independent cohort. Further, we 
used the Olink neurology proteomic panel of 91 proteins for the quantification of proteins in the 
plasma, which estimates targeted proteins expressed in the brain from different pathways. One of 
the major limitations of our study is the limited sample size, including a small number of APOE 
ε4 carrier controls in the stratified analysis. 

In conclusion, we observed elevated protein levels of CDH6 in plasma of AD patients 
carrying APOE ε4 allele in the discovery and replication analysis, a protein that plays a role in 
synaptogenesis. Positive correlation of CSF CDH6 levels with p-tau and t-tau may also indicate 
the association of CDH6 with neurodegeneration. We further found the association of the 
plasma levels of HAGH protein to AD in those carrying the APOE ε4 allele. Association of 
HAGH with AD further suggest the involvement of the glyoxalase and oxidative stress pathways 
in the pathogenesis of AD.

Methods

Study populations
Rotterdam Study
The Rotterdam Study (RS) is a prospective population-based study comprising of 14,926 middle 
and older aged (≥ 45 years) individuals from the Ommoord district of Rotterdam. The RS 
consists of three cohorts including RS-I (started in 1990, N=7983 participants), RS-II (started 
in 2000, N=3011) and RS-III (started in 2006, N=3932)67. Study participants were extensively 
interviewed and physically examined at baseline and after every 3 to 4 years. For each participant 
fasting blood was collected at a dedicated center, centrifuged (Speed=3500g for 20 min at 4⁰C) 
within 4 hours of venipuncture to collect plasma and stored at -80⁰C. The study has been 
approved by the Medical Ethical Committee of Erasmus Medical Center and by the Ministry 
of Health, Welfare and Sport of the Netherlands. Written informed consent was obtained from 
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each study participant to participate and to collect information from their treating physicians. All 
methods were performed in accordance with the relevant guidelines and regulations. In current 
nested case-control proteomics analysis, we chose 161 incident AD cases and 155 controls match 
with respect to their age and sex, from the fifth visit of RS-I (RS-I-5) cohort. Table 4 shows the 
baseline characteristics of the selected sample. There were no significant differences in age, sex 
and body mass index (BMI). AD patients were more often carriers of the APOE ε4 variant and 
less often of the APOE ε2 variant. Blood for the proteome profiling was collected on average 6.9 
years (standard deviation [SD] = 1.7) before the onset of clinical dementia in patients and mean 
8.7 years (SD = 3.2) before the latest follow-up in controls.

Dementia diagnosis
Over time, all participants were screened for dementia using the Mini-Mental State Examination 
(MMSE)68 and Geriatric Mental Schedule (GMS)69 organic level for all participants. Screen-
positive subjects (MMSE<26 or GMS organic level > 0) underwent the Cambridge examination 
for mental disorders of the elderly (CAMDEX)70 and participants suspected of having dementia 
were extensively examined with neuropsychological testing and neuroimaging biomarkers when 
available. Patients were further ascertained by linking them with their medical records from 
general practitioners, the regional institute for outpatient mental health care and municipality. 
Dementia of all patients was diagnosed based on the internationally accepted Diagnostic 
and Statistical Manual of Mental Disorders (DSM-III-R) criteria and AD using the National 
Institute of Neurological Disorders and Stroke–Association Internationale pour la Recherche 
et l’Enseignement en Neurosciences (NINCDS-ADRDA)71 criteria for possible, probable and 
definite AD. NINCDS-ADRDA criteria were also used to diagnose vascular dementia. The final 
diagnosis was confirmed by a panel of neurologists, neurophysiologists, and research physicians72. 
AD diagnosis in RS is also provided in more detail in earlier publications72.

Table 4: Population descriptive 

Total participants Incident AD cases Controls

N 316 161 155

Age (SD) blood collection, years 77.16(5.39) 77.43(5.21) 76.89(5.59)

Age at onset/last follow up 84.99(5.33) 84.37(5.01) 85.63(5.56)

Female (%) 201(63%) 104 (65%) 97 (63%)

Body Mass index 27.32(4.10) 27.29(3.75) 27.37(4.46)

Follow-up (SD) years 7.82(2.71) 6.94(1.71) 8.74(3.22)

APOE genotype

            APOE 44/34/24 98 68 30

            APOE 33 171 76 95

            APOE 22/23 34 13 21

Abbreviations: AD, Alzheimer’s disease, SD, Standard deviation, APOE, apolipoprotein E gene
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Proteome profiling
Proteomics profiling of the 316 plasma samples was performed using neurology panel of OLINK’s 
Proximity Extension Assay (ProSeek, OLINK AB, Uppsala, Sweden), which includes 91 proteins 
involved in various pathways including axon development, axon guidance, cell adhesion, cell 
death, cell differentiation, cell growth, cellular metabolic process, immune response, MAPK 
cascade, neurogenesis, proteolysis, signal transduction and synapse assembly (https://www.
olink.com/products/neurology/). This method uses affinity-based assay, in which a pair of 
oligonucleotide-labeled antibody probes bind to a target protein. Proximity-dependent DNA 
polymerization event forms a polymerase chain reaction (PCR) target sequence between two 
probes bound in close proximity. The generated PCR target sequence is detected and quantified 
using real-time PCR method. The resultant protein abundance is provided as NPX (Normalized 
Protein Expression), which is an arbitrary unit on log2 scale. Lower limit of detection is estimated 
based on negative controls inserted in each run and measurements below this limited were treated 
as missing. None of the detected markers in our dataset reach missingness more than 10 percent. 
Protein markers with missing values less than 10% were imputed with the lowest detected limit 
for further analysis. More detailed information about detection limits, assay performance and 
validation methods are available from the service provider (www.olink.com)73. 

APOE genotyping 
In the RS APOE genotyping was performed using Polymerase chain reaction (PCR) and amplified 
PCR product was digested with HhaI enzyme. Restriction fragments of enzyme products were 
visualized by silver staining after getting them separated with precast ExcelGel gels (Pharmacia 
Biotech, Uppsala, Sweden). Genotype results were examined by three independent persons. In 
the case of non-agreement APOE genotype was repeated74,75.

Genotyping and imputations
In the RS participant’s blood was collected during baseline and follow-up visit. DNA genotyping 
was performed for all the participants with proper DNA quality with the 550K, 550K duo, or 
610K Illumina arrays. In genotyping quality control, genetic variants exclusion criteria include, 
call rate < 95%, Hardy-Weinberg equilibrium P < 1.0x10-6 and Minor Allele Frequency (MAF) < 
1%. Sample exclusion criteria include excess autosomal heterozygosity (0.336), call rate < 97.5%, 
duplicate or family relationships and ethnic outliers identified by the identity-by-state clustering 
analysis (having identity-by-state probability <97% or >3 standard deviation from population 
mean)76. Further, genetic variants were imputed with the Haplotype Reference Consortium 
(HRC) reference panel (version 1.0)77, using the Michigan imputation server 78. The server uses 
SHAPEIT2 (v2.r790)79 to phase the genotype data and performs imputation with Minimac 3 
software80. Genotyping information was available for 281 among 316 participants included in 
the current study.
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BioFINDER Study
In the current study, replication analysis was performed in 671 participants (AD patients = 186, 
Controls = 485) of the BioFINDER (Biomarkers For Identifying Neurodegenerative Disorders 
Early and Reliably) study. Characteristics of the BioFINDER study participants included in the 
replication analysis are provided in Supplementary Table 9. The BioFINDER study includes 
participants from southern Sweden recruited between 2009 and 2014 (www.biofinder.se). 
The study participants were assessed by experienced physicians including the neurological, 
psychiatric and cognitive assessments81. The NINCDS-ADRDA criteria were used to classify 
Alzheimer’s disease dementia patients for probable Alzheimer’s disease patients. All dementia due 
to Alzheimer’s disease patients had pathological CSF Aβ42/Aβ40 ratio of < 0.1. The inclusion 
criteria for the cognitively normal elderly participants included i) aged 60–80 years, ii) MMSE 
scores ranging between 28–30 at their baseline screening visit, iii) no cognitive impairment 
symptoms assessed by a physician, and iv) not fulfilling the criteria for mild cognitive impairment 
or dementia. Exclusion criteria included i) refused lumbar puncture, ii) significant neurological 
or psychiatric disease, iii) current alcohol or substance misuse, or iv) systematic illness preventing 
them from participating in the study25,81. Written Informed consents were collected from each 
study participant and the study has been approved by the Regional Ethics Committee in Lund, 
Sweden. 

Protein profiling
During the baseline visit of the BioFINDER study, plasma and lumbar CSF samples were 
collected from non-fasting participants. Standardized protocol was followed to analyze the plasma 
and CSF samples. All samples were centrifuged at 2000 g (+4 °C for 10 min), and aliquoted into 
1 ml polypropylene tubes (Sarstedt AG & Co., Nümbrecht, Germany), and stored at -80°C. 
Before the proteomics profiling, plasma and CSF samples underwent one cycle of freeze-thaw, 
and further aliquoted into 200L Lobind tubes (Eppendorf Nordic A/S, Denmark). Protein 
concentrations were quantified using the ProSeek multiplex immunoassay, developed by Olink 
Proteomics (Uppsala, Sweden)25.

Amsterdam Dementia Cohort (ADC)
In the validation analysis of most interesting proteins, we used 441 participants from the 
ADC cohort whose CSF samples were already profiled for neurology related proteins using the 
OLINK’s Proximity Extension Assay (ProSeek, OLINK AB, Uppsala, Sweden). Information 
about characteristics of patients included in current analysis as a part of the validation dataset is 
listed in Supplementary Table 9.

The ADC is a prospective memory-clinic cohort that was established in September 2000 at the 
Alzheimer Center Amsterdam of Amsterdam UMC. The cohort has included 6000 individuals 
until September 201782 83,84. All participants underwent standardized cognitive screening 
including neurological and cognitive examination, blood sampling, a lumbar puncture to collect 
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CSF and brain magnetic resonance imaging. All CSF samples were stored in agreement with the 
JPND-BIOMARKAPD guidelines85.  All subjects provided written informed consent for use 
of biomaterial and clinical data for research and the study was approved by the local medical 
ethical review board. All methods were performed in accordance with the relevant guidelines and 
regulations. A sample of 441 participants selected for our validation analysis consists of 242 AD 
and 199 cognitively normal controls who were presented at the memory clinic with subjective 
cognitive decline (i.e., Criteria for mild cognitive impairment and dementia not fulfilled)). 
As additional inclusion criteria, controls were required to have normal AD CSF biomarkers 
profile: low CSF β-amyloid 1–42 (Aβ42) and high p- or t-tau level (applying local laboratory 
cut-offs) and to remain cognitively stable for 2 years. All participants underwent standard 
neurological and cognitive assessments and the diagnosis was assigned according to consensus 
AD criteria86. Global Mini-Mental State Examination (MMSE) was used to examine global 
cognition. The levels of CSF AD-related biomarkers (Aβ42, total and phosphorylated tau  [t-Tau 
and p-Tau181]) were analyzed at Amsterdam UMC as part of the routine diagnostic procedure 
using commercially available kits (Innotest Aβ(1-42), total Tau, phospho-Tau(181P);  Fujirebio, 
Ghent, Belgium)10,24. 

Statistical analysis
Plasma protein association with AD
To identify AD-associated proteins, plasma levels of 91 proteins were compared between incident 
AD cases and non-demented controls using logistic regression, adjusted for age and sex in the 
first model. In the second model, we additionally adjusted for body mass index (BMI), smoking, 
educational status and medication use (lipid-lowering medications, antihypertensive and anti-
inflammatory medication). To identify APOE specific associations of proteins with AD, we 
performed stratified association analysis based on APOE genotype carrier status. All participants 
were divided into APOE4 stratum (APOE 44/34/24), APOE3 stratum (APOE 33) and APOE2 
stratum (APOE 22/23). Participants with APOE 24 genotypes were pooled within the APOE4 
stratum because an earlier study has demonstrated that the risk profiles of APOE 24 genotype to 
AD and dementia is similar to those with APOE 34 genotype carriers5. The association results 
were corrected for multiple testing using false discovery rate (FDR) by Benjamini and Hochberg 
method separately for the overall analysis, and in each APOE stratum 87 and association tests with 
FDR < 0.05 were considered significant. All analyses were performed using R software (https://
www.r-project.org).

Sensitivity analyses 
Moreover, we performed sensitivity analyses. In the first sensitivity analysis, we repeated the 
overall and APOE stratified regression analysis (Model 1: age and sex) additionally adjusting for 
the follow-up time (the time between blood collection and onset of AD or last follow-up for 
controls). In the second sensitivity analysis, to assess the differential bias due to missingness, we 
performed the overall and APOE stratified association analysis in the non-imputed proteomics 
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data adjusting for age and sex. We also tested the interaction of APOE genotype (ε4 carriers and 
non-carriers) and proteins levels using logistic regression model adjusting for age and sex.

Additional analysis of  proteins showing association with AD
A detailed flowchart of the analysis is provided in Figure 4 about the discovery, replication and 
validation analysis. Proteins that appeared significantly altered in overall or APOE stratified 
analysis were further tested for association with APOE genotypes; second GWAS was performed 
to identify pQTLs, regulating the levels of protein in blood. 

Replication analysis
Replication analysis of two proteins was performed in an independent BioFINDER study. We 
performed association of plasma levels of proteins with AD versus controls (AD cases = 186, 
controls = 485) in the overall sample and stratified by APOE genotype: APOE4 stratum (APOE 
44/34), APOE3 stratum (APOE 33) and APOE2 stratum (APOE 22/23). We used logistic 
regression analysis adjusted for age, sex and date of sample collection. 

Validation analysis: Association of  CSF protein levels with Aβ-42, p-tau, and 
t-tau
In the validation analysis of specific proteins in an independent ADC cohort (N = 441), we 
performed association of CSF protein levels with AD versus control group and with Aβ-42, 
p-tau and t-tau levels in CSF. All the validation analyses were performed in the overall sample 
and stratified by APOE genotype: APOE4 stratum (APOE 44/34), APOE3 stratum (APOE 33) 
and APOE2 stratum (APOE 22/23). We used linear regression analysis adjusted for age and sex 
to evaluate the association of proteins measured in CSF with AD brain pathology biomarkers in 
the overall sample and stratified by clinical diagnosis (AD and controls). 

Association of  plasma protein levels with APOE genotype
To further evaluate the association of proteins with APOE genotypes, we compared protein 
levels, among APOE genotype groups (APOE 44/34/24=1 versus APOE 33=0, APOE 44/34=1 
versus APOE 22/23=0 and APOE 22/23=1 versus APOE 33=0) in the overall study sample, in 
AD patients, and in control groups separately. Linear regression analysis was performed using 
protein levels as outcome and APOE status as predictor, adjusted for age and sex. 

Genome-wide association study 
Further, we performed the genome-wide association study (GWAS) to identify protein 
quantitative trait loci (pQTLs) for candidate proteins. We regressed out protein levels against 
age, sex and principal components to calculate residuals. To normalize the calculated residuals we 
applied Rank-inverse transformation on residuals. Principal components derived from genotypes 
were used in the association analysis to adjust for population stratification. GWAS of rank-inverse 
normalized residuals was performed using score test option in RVTEST software 88. Variants with 
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Additional analysis 

Proteins:   91 in plasma 
Platform:    Olink Neurology platform 
Cohort:        Rotterdam Study  
Sample:       316  
incident AD:    161 

Association analysis with incident AD 

(1) Overall analysis
(2) APOE stratified analysis

Validation (Amsterdam Dementia Cohort) 

Discovery (Rotterdam Study) 

Replication analysis (BioFINDER Study) 

Proteins of interest: CDH6 and HAGH 
Tissues:                       CSF 
Cohort: Amsterdam dementia cohort 
AD=242 and Controls = 199 

Overall and APOE stratified 
(1) Association of CDH6 with AD
(2) Association of CDH6 with Aβ-42,

p-tau and t-tau

HAGH not detected in CSF 
of > 90% participants 

Association of CDH6 and HAGH proteins 
with APOE 
Cohort: Rotterdam Study 

  

GWAS of CDH6 and HAGH proteins 
Cohort: Rotterdam Study (N = 281) 

CDH6 and HAGH associates with incident 
AD in APOE ε4 carriers at FDR<0.05 

Overall and APOE stratified analysis 
(1) AD=186 and Controls = 485

Proteins of interest: CDH6 and HAGH 
Tissues:                      Plasma 
Cohort:                       BioFINDER Study 

  

Figure 4: Flowchart of  the analyses. Rotterdam	Study	was	used	as	discovery	cohort	in	plasma-ba-
sed	proteomics	analysis.	Altered	proteins	in	plasma	analysis	were	replicated	in	the	BioFINDER	
study and further validated in Amsterdam Dementia Cohort participants. Abbreviations; AD: 
Alzheimer’s disease; APOE:	apolipoprotein	E;	GWAS:	genome-wide	association	study;	CSF:	cere-
brospinal	fluid.
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low imputation quality R-squared < 0.3 and minor allele count less than five were excluded from 
the results. Manhattan and quantile-quantile (Q-Q) plots for GWAS results were generated with 
web-based utility Functional mapping and annotation of genetic associations (FUMA)89 and 
regional association plots using LocusZoom (http://locuszoom.org). pQTLs with a P-value < 2.5 
x10-8 (5x10-8/2 tested proteins) were considered genome-wide significant. To check the overlap of 
identified pQTL with expression quantitative loci (eQTLs) we used GTEx data base90.

Data access and availability 
Current study used data from RS and ADC, where sharing of participants data is not allowed 
publicly due to legal and ethical permissions. Informed consents collected for both studies do 
not allow to share individual participants data in public repository. Data access can be made 
available for interested researchers upon request to corresponding author Cornelia M. van Duijn 
(Cornelia.vanDuijn@ndph.ox.ac.uk).  
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Abstract

Importance: Increasing evidence suggests an important role of liver function in the 
pathophysiology of Alzheimer’s disease (AD). The liver is a major metabolic hub; therefore, 
investigating the association of liver function with AD, cognition, neuroimaging, and CSF 
biomarkers would improve the understanding of the role of metabolic dysfunction in AD. 

Objective: To examine whether liver function markers are associated with cognitive dysfunction 
and the “A/T/N” (amyloid, tau, and neurodegeneration) biomarkers for AD. 

Design, Setting, and Participants: In this cohort study, serum-based liver function markers were 
measured from September 1, 2005, to August 31, 2013, in 1581 AD Neuroimaging Initiative 
participants along with cognitive measures, cerebrospinal fluid (CSF) biomarkers, brain atrophy, 
brain glucose metabolism, and amyloid-β accumulation. Associations of liver function markers 
with AD-associated clinical and A/T/N biomarkers were assessed using generalized linear models 
adjusted for confounding variables and multiple comparisons. Statistical analysis was performed 
from November 1, 2017, to February 28, 2019. 

Exposure: Five serum-based liver function markers (total bilirubin, albumin, alkaline 
phosphatase, alanine aminotransferase, and aspartate aminotransferase) from AD Neuroimaging 
Initiative participants were used as exposure variables. 

Main Outcomes and Measures: Primary outcomes included diagnosis of AD, composite 
scores for executive functioning and memory, CSF biomarkers, atrophy measured by magnetic 
resonance imaging, brain glucose metabolism measured by fludeoxyglucose F 18 (18F) positron 
emission tomography, and amyloid-β accumulation measured by [18F] florbetapir positron 
emission tomography. 

Results: Participants in the AD Neuroimaging Initiative (n = 1581; 697 women and 884 
men; mean [SD] age, 73.4 [7.2] years) included 407 cognitively normal older adults, 20 with 
significant memory concern, 298 with early mild cognitive impairment, 544 with late mild 
cognitive impairment, and 312 with AD. An elevated aspartate aminotransferase (AST) to 
alanine aminotransferase (ALT) ratio and lower levels of ALT were associated with AD diagnosis 
(AST to ALT ratio: odds ratio, 7.932 [95% CI, 1.673-37.617]; P = .03; ALT: odds ratio, 0.133 
[95% CI, 0.042-0.422]; P = .004) and poor cognitive performance (AST to ALT ratio: β [SE], 
−0.465 [0.180]; P = .02 for memory composite score; β [SE], −0.679 [0.215]; P = .006 for 
executive function composite score; ALT: β [SE], 0.397 [0.128]; P = .006 for memory composite 
score; β [SE], 0.637 [0.152]; P < .001 for executive function composite score). Increased AST to 
ALT ratio values were associated with lower CSF amyloid-β 1-42 levels (β [SE], −0.170 [0.061]; 
P = .04) and increased amyloid-β deposition (amyloid biomarkers), higher CSF phosphorylated 
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tau181 (β [SE], 0.175 [0.055]; P = .02) (tau biomarkers) and higher CSF total tau levels (β [SE], 
0.160 [0.049]; P = .02) and reduced brain glucose metabolism (β [SE], −0.123 [0.042]; P = .03) 
(neurodegeneration biomarkers). Lower levels of ALT were associated with increased amyloid-β 
deposition (amyloid biomarkers), and reduced brain glucose metabolism (β [SE], 0.096 [0.030]; 
P = .02) and greater atrophy (neurodegeneration biomarkers). 

Conclusion and Relevance: Consistent associations of serum-based liver function markers with 
cognitive performance and A/T/N biomarkers for AD highlight the involvement of metabolic 
disturbances in the pathophysiology of AD. Further studies are needed to determine if these 
associations represent a causative or secondary role. Liver enzyme involvement in AD opens 
avenues for novel diagnostics and therapeutics.
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Introduction

Metabolic activities in the liver determine the state of the metabolic readout of peripheral 
circulation. Mounting evidence suggests that patients with Alzheimer’s disease (AD) display 
metabolic dysfunction1. Clinical studies suggest that impaired signaling, energy metabolism, 
inflammation, and insulin resistance play a role in AD2,3. This observation is in line with the 
observation that many metabolic disorders (e.g., diabetes, hypertension, obesity, dyslipidemia) are 
risk factors for AD4. This evidence highlights the importance of the liver in the pathophysiological 
characteristics of AD. Focused investigation to assess the role of liver function in AD and its 
endophenotypes is required to bridge the gap between these observations.

Peripheral blood levels of biochemical markers including albumin, alkaline phosphatase, alanine 
aminotransaminase (ALT), aspartate aminotransferase (AST), and total bilirubin are used to 
assess liver function. ALT and AST are used in general clinical practice to measure liver injury5,6 
and are factors associated with cardiovascular and metabolic diseases7,8, known risk factors of AD 
and cognitive decline9,10. Given this fact, it is conceivable that aminotransferases are surrogate 
biomarkers of liver metabolic functioning. A systematic search yielded few reports related to 
research in humans linking peripheral biomarkers of liver functioning to central biomarkers 
related to AD including amyloid-β and tau accumulation, brain glucose metabolism, and 
structural atrophy. 

We investigated the association of peripheral liver function markers with AD diagnosis, cognition, 
and biomarkers of AD pathophysiological characteristics including neuroimaging (magnetic 
resonance imaging [MRI] and positron emission topography [PET]) and cerebrospinal fluid 
(CSF) from older adults in the AD Neuroimaging Initiative (ADNI) cohort. The AD biomarkers 
were selected and defined consistent with the National Institute on Aging-Alzheimer Association 
Research Framework (amyloid, tau and neurodegeneration[A/T/N] for AD biomarkers that 
defines three general groups of biomarkers based on the nature of pathologic process that each 
measures11.

Methods 

Study population
Individuals in this study were participants of ADNI. The initial phase (ADNI-1) was launched 
in 2003 to test whether serial MRI markers, PET markers, other biological markers, and clinical 
and neuropsychological assessment could be combined to measure the progression of mild 
cognitive impairment (MCI) and early AD. The initial phase was extended to subsequent phases 
(ADNI-GO, ADNI-2, and ADNI-3) for follow-up of existing participants and additional new 
enrollments. Inclusion and exclusion criteria, clinical and neuroimaging protocols, and other 
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information are reported elsewhere12,13 (http://adni.loni.usc.edu/). Demographic and clinical 
information, raw data from neuroimaging scans, CSF biomarkers, information on APOE status, 
and cognitive scores were downloaded from the ADNI data repository. Baseline data were 
collected from September 1, 2005, to August 31, 2013. Written informed consent was obtained 
at enrollment which included permission for analysis and data sharing. This study was approved 
by each participating site’s Institutional Review Board. This report followed the Strengthening 
the Reporting of Observational Studies in Epidemiology (STROBE) reporting guidelines for 
cohort studies.

Liver function markers 
Five laboratory tests were downloaded from the ADNI data repository and used in the study: total 
bilirubin, albumin, alkaline phosphatase, ALT, and AST. The liver function markers followed a 
normal distribution after log transformation. For each marker, participants with values greater 
or smaller than 4 SDs from its mean value were considered outliers and were removed. To 
determine if outliers had a significant effect on our findings, we performed a sensitivity analysis 
and observed few differences (or slightly more significant), if any, in results when including 
outliers (Supplementary Table 1).

Dementia diagnosis
Participants in ADNI were classified as cognitively normal controls (CN) or having significant 
memory concerns (SMC), MCI, or mild clinical AD. Criteria for classification were as follows:  
Mini-Mental State Examination score range (range, 0 [worst] to 30 [best]) for CN and MCI was 
24 to 30, and for AD was 20 to 26;  and overall Clinical Dementia Rating score (range for each, 
0 [best] to 3 [worst]) for CN was 0, for MCI was 0.5 with a mandatory requirement of memory 
box score of 0.5 or greater, and for AD 0.5 or 114. Cognitively normal controls did not have 
any significant impairment in cognition or activities of daily living. Participants with SMC had 
normal cognition and no significant impairment in activities of daily living, but had a score of 
16 or more on the first 12-items of the self-report version of the Cognitive Change Index (range, 
12 [no change] to 60 [severe change])15. Participants with MCI had cognitive impairments in 
memory and/or other domains but were able to perform activities of daily living and did not 
qualify for a diagnosis of dementia14. Participants with AD had to meet the National Institute of 
Neurological and Communicative Disorders and Stroke–AD and Related Disorders Association 
criteria for probable AD16. Participants from the ADNI-1 cohort with MCI were all classified as 
late MCI, with a memory impairment approximately 1.5 SD below education-adjusted norms. 
In the ADNI GO and ADNI-2 cohort, participants with MCI were classified as either early 
MCI, with a memory impairment approximately 1 SD below education-adjusted norms or late 
MCI (same criteria as in ADNI-1). All ADNI-1 and ADNI-GO and ADNI-2 met the criteria 
for amnestic MCI, but many in the ADNI GO and ADNI-2 cohort included the earlier stage 
MCI designation (i.e., early MCI)17.
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Cognition
Composite scores were used to measure memory and executive functioning. A memory composite 
score was created from the following: memory tasks from the Alzheimer Disease Assessment Scale-
cognitive subscale (ADAS-Cog), the Rey Auditory Verbal Learning Test, memory components 
of the Mini-Mental State Examination, and the Logical Memory task18. An executive function 
composite score included the following: Wechsler Adult Intelligence Scale-Revised Digit Symbol 
Substitution task and Digit Span backward task, Trail Making Test Parts A and B, category 
fluency (animals and vegetables), and 5 clock drawing items. Composite scores have a mean of 
0 and an SD of 119. 

Neuroimaging processing
MRI scans
Baseline T1-weighted brain MRI scans were acquired using a sagittal 3-dimensional magnetization 
prepared rapid gradient echo scans following the ADNI MRI protocol 20,21. As previously 
detailed, FreeSurfer, version 5.1, a widely used automated MRI analysis approach, was used to 
process MRI scans and extract whole-brain and region-of-interest (ROI) based neuroimaging 
endophenotypes including volumes and cortical thickness determined by automated segmentation 
and parcellation22-24. The cortical surface was reconstructed to measure thickness at each vertex. 
The cortical thickness was calculated by taking the Euclidean distance between gray and white 
boundary and the gray and CSF boundary at each vertex on the surface25-27.

PET scans
Preprocessed fludeoxyglucose (FDG) F 18 (18F) and [18F] Florbetapir PET scans (coregistered, 
averaged, standardized image and voxel size, and uniform resolution) were downloaded from 
the ADNI Laboratory of Neuro Imaging (LONI) site (http://adni.loni.usc.edu/) as described 
in previously reported methods for acquisition and processing of PET scans22,28. For [18F] FDG-
PET, scans were intensity-normalized using a pons ROI to create [18F] FDG standardized uptake 
value ratio (SUVR) images. For [18F] Florbetapir PET, scans were intensity-normalized using a 
whole cerebellum reference region to create SUVR images.

CSF biomarkers
The ADNI generated CSF biomarkers (amyloid-β 1-42, total tau [t-tau], and phosphorylated 
tau181 [p-tau181]) in pristine aliquots of 2401 ADNI CSF samples using the validated and highly 
automated Roche Elecsys electrochemiluminescence immunoassays29,30 and the same reagent lot 
for each of these 3 biomarkers. Cerebrospinal fluid biomarker data were downloaded from the 
ADNI LONI site (http://adni.loni.usc.edu).

Statistical analysis
Statistical analysis was conducted from November 1, 2017, to February 28, 2019. Logistic 
regression analysis was performed to explore the diagnostic group differences between AD 



161

5

Gut-Liver-Brain axis

diagnosis and each liver function marker separately. Age, sex, body mass index (BMI), and APOE 
ε4 status were used as covariates. We performed a linear regression analysis to assess the association 
of liver function markers with composite scores for memory and executive functioning using 
age, sex, years of education, BMI, and APOE ε4 status as covariates. We also performed a linear 
regression analysis using age, sex, BMI, and APOE ε4 status as covariates.

ROI-based analysis of  structural MRI and PET scans
Mean hippocampal volume was used as an MRI-related phenotype. For FDG-PET, a mean 
SUVR value was extracted from a global cortical ROI representing regions where patients with 
AD show decreased glucose metabolism relative to CN participants from the full ADNI-1 
cohort, normalized to pons28. For [18F] Florbetapir PET, a mean SUVR value was extracted 
using MarsBaR from a global cortical region generated from an independent comparison of 
ADNI-1 [11C] Pittsburgh Compound B SUVR scans (regions where AD > CN). We performed 
a linear regression analysis using age, sex, BMI, and APOE ε4 status as covariates to evaluate 
the association of liver function markers with AD-related endophenotypes from MRI and PET 
scans. For hippocampal volume, years of education, intracranial volume (ICV), and magnetic 
field strength were added as additional covariates31.

Whole-brain imaging analysis
The SurfStat software package (www.math.mcgill.ca/keith/surfstat/) was used to perform a 
multivariable analysis of cortical thickness to examine the association of liver function markers 
with brain structural changes on a vertex-by-vertex basis using a general linear model approach27. 
General linear models were developed using age, sex, years of education, intracranial volume, 
BMI, APOE ε4 status, and magnetic field strength as covariates. The processed FDG-PET and 
[18F] Florbetapir PET images were used to perform a voxelwise statistical analysis of the association 
of liver function markers with brain glucose metabolism and amyloid-β accumulation across the 
whole brain using SPM8 (www.fil.ion.ucl.ac.uk/spm/). We performed a multivariable regression 
analysis using age, sex, BMI, and APOE ε4 status as covariates. In the whole-brain surface-based 
analysis, the adjustment for multiple comparisons was performed using the random field theory 
correction method with P < 0.05 adjusted as the level for significance32-34. In the voxelwise whole-
brain analysis, the significant statistical parameters were selected to correspond to a threshold of 
P < 0.05 (false discovery rate [FDR]-corrected)35.

Multiple testing correction
Results of the analysis of liver function markers with AD diagnosis groups, cognitive composite 
measures, and A/T/N biomarkers for AD separately were corrected for multiple testing using the 
FDR with the Benjamini-Hochberg procedure (p.adjust command in R [R Project for Statistical 
Computing]).
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Results

Study sample
Our analyses included 1581 ADNI participants (407 CN, 20 with SMC, 298 with early MCI, 
544 with late MCI, and 312 with AD). Demographic information as well as mean and SD of 
liver function markers stratified by clinical diagnosis are presented in Supplementary Table 2 in 
the Supplement.

Diagnostic group difference of  liver function markers with AD diagnosis 
Levels of ALT were significantly decreased in AD compared with CN (odds ratio, 0.133; 95% 
CI,0.042-0.422; P = .004) (Table 1), while AST to ALT ratio values were significantly increased 
in AD (odds ratio, 7.932; 95% CI, 1.673-37.617; P = .03). There was a trend to suggest that 
ALT levels were increased and AST to ALT ratio values were decreased in MCI compared with 
CN, but these became nonsignificant after adjustment for multiple comparisons (Supplementary 
Table 3).

Cognition 
After adjusting for multiple comparison correction using FDR, we identified significant 
associations of liver function markers with cognition (Table 2). Higher levels of alkaline 
phosphatase and AST to ALT ratio were associated with lower memory scores (alkaline 
phosphatase: β [SE], –0.416 [0.162]; P = .02; AST to ALT ratio: β [SE], – 0.465 [0.180]; P = 
.02) and executive functioning scores (alkaline phosphatase: β [SE], –0.595 [0.193]; P = .006; 
AST to ALT ratio: β [SE], –0.679 [0.215]; P = .006). Higher ALT levels were associated with 
higher memory scores (β [SE], 0.397 [0.128]; P = .006) and executive functioning scores (β 
[SE], 0.637 [0.152]; P < .001), whereas higher AST levels were associated with higher executive 
functioning scores (β [SE], 0.607 [0.215]; P = .01).

Table 1: Results of  association of  liver function biomarkers with Alzheimer’s disease diagnosis*

Liver function marker Odds Ratio (95% CI) Corrected P-value

Albumin (g/dL) 5.789 (0.040-843.993) 4.90 x 10-1

Alkaline Phosphatase (U/L) 3.620 (0.844-15.529) 1.25 x 10-1

ALT (U/L) 0.133 (0.042-0.422) 3.63 x 10-3

AST (U/L) 0.229 (0.045-1.175) 1.25 x 10-1

AST to ALT ratio 7.932 (1.673-37.617) 2.73 x 10-2

Total Bilirubin (mg/dL) 1.405 (0.585-3.377) 4.90 x 10-1

Abbreviations: AST, Aspartate aminotransferase; ALT, alanine aminotransferase; CI, confidence interval. 
*Cognitively normal vs Alzheimer’s disease. Analyses were adjusted for age, sex, body mass index, and APOE 
ε4 status.
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Biomarkers of  amyloid-β 
We used CSF amyloid-β 1-42 levels and a global cortical amyloid deposition measured from 
amyloid PET scans as biomarkers of amyloid-β. The regression coefficient of the AST to ALT 
ratio showed a negative association with CSF amyloid-β 1-42 levels (β [SE], –0.170 [0.061]; 
P = .04), indicating that higher AST to ALT ratio values were associated with CSF amyloid-β 
1-42 positivity (Figure 1). However, there was no significant correlation between liver function 
markers and global cortical amyloid deposition.

In the whole-brain analysis using multivariable regression models to determine the association 
of liver function markers with amyloid-β load measured from amyloid PET scans on a voxelwise 
level. We identified significant associations for two liver function markers. Higher ALT levels 
were significantly associated with reduced amyloid-β deposition in the bilateral parietal lobes 
(Figure 2A). Increased AST to ALT ratio values were significantly associated with increased 
amyloid-β deposition in the bilateral parietal lobes and right temporal lobe (Figure 2C).

Biomarkers of  fibrillary tau 
We used CSF p-tau levels as a biomarker of fibrillary tau. We investigated the association of liver 
function markers with CSF p-tau, adjusting for APOE ε4 status as a covariate. Higher AST to 
ALT ratio values were associated with higher CSF p-tau values (β [SE], 0.175 [0.055]; P = .02) 
(Figure 1). 

Table 2: Results of  association of  liver function biomarkers with composite cognitive performance 
measures*

Liver function marker Memory composite score Executive function composite score

β (SE) Corrected 
P-value

β (SE) Corrected P-value

Albumin (g/dL) -0.872 (0.576) 1.73 x 10-1 -0.203 (0.689) 7.68 x 10-1

Alkaline Phosphatase 
(U/L)

-0.416 (0.162) 1.74 x 10-2 -0.595 (0.193) 6.33 x 10-3

ALT (U/L) 0.397 (0.128) 6.33 x 10-3 0.637 (0.152) 3.71 x 10-4

AST (U/L) 0.339 (0.180) 9.00 x 10-2 0.607 (0.215) 1.16 x 10-2

AST to ALT ratio -0.465 (0.180) 1.74 x 10-2 -0.679 (0.215) 6.33 x 10-3

Total Bilirubin (mg/
dL)

-0.068 (0.103) 6.07 x 10-1 -0.066 (0.123) 6.5 x 10-1

Abbreviations: AST, Aspartate aminotransferase; ALT, alanine aminotransferase; SE, standard error
*Analyses were adjusted for age, sex, education, body mass index, and APOE ε4 status.
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Biomarkers of  neurodegeneration or neuronal injury 
We used structural atrophy measured from MRI scans, brain glucose metabolism from FDG-
PET scans, and CSF total tau (t-tau) levels as biomarkers of neurodegeneration or neuronal 
injury.

Brain glucose metabolism
We performed an ROI-based association analysis of liver function markers with a global cortical 
glucose metabolism value measured from FDG-PET scans across 1167 ADNI participants with 
both FDG-PET scans and measurement of liver function markers. The association analysis 

Figure 1: Results of  association of  liver function biomarkers with A/T/N biomarkers for Alzhei-
mer’s disease. Heat	map	of 	q-values	of 	association	between	liver	function	markers	and	the	A/T/N	
biomarkers	for	AD.	P-values	estimated	from	linear	regression	analyses	were	corrected	for	multiple	
testing	using	FDR	(q-value).	Color	code:	white	indicates	q-value>0.05,	red	indicates	significant	
positive	association,	and	green	indicates	significant	negative	association.	Aβ indicates	amyloid-β; 
ALT,	alanine	aminotransferase;	AST,	aspartate	aminotransferase;	CSF,	cerebrospinal	fluid;	FDG,	
fludeoxyglucose	positron	emission	tomography;	MRI,	magnetic	resonance	imaging;	and	p-tau,	
phosphorylated tau.
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A. ALT: [18F]Florbetapir PET

B. Fluorodeoxyglucose PET

C. AST to ALT ratio [18F]Florbetapir PET

D. AST to ALT ratio Fluorodeoxyglucose PET

Figure 2: Detailed whole-brain voxel-based imaging analysis for alanine aminotransferase (ALT) 
and aspartate aminotransferase (AST) to ALT ratio levels using positron emission topography 
(PET) scans. Whole-brain	multivariable	analysis	was	performed	to	visualize	the	topography	
of 	the	association	of 	ALT	levels	and	AST	to	ALT	ratio	values	with	amyloid-β load and glucose 
metabolism on a voxelwise level (false discovery rate–corrected P < 0.05). A: Higher ALT levels 
were	significantly	associated	with	reduced	amyloid-β deposition in the bilateral parietal lobes. 
B:	Increased	ALT	levels	were	significantly	associated	with	increased	glucose	metabolism	in	a	
widespread manner, especially in the bilateral frontal, parietal, and temporal lobes. C: Increased 
AST	to	ALT	ratio	values	were	significantly	associated	with	increased	amyloid-β deposition in the 
bilateral parietal lobes and the right temporal lobe. D: Increased AST to ALT ratio values were 
significantly	associated	with	reduced	brain	glucose	metabolism	in	the	bilateral	frontal,	parietal,	
and temporal lobes. 
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including APOE ε4 status as a covariate identified 2 markers as significantly associated with brain 
glucose metabolism after controlling for multiple testing using FDR (Figure 1). For ALT, higher 
levels were associated with increased glucose metabolism (β [SE], 0.096 [0.030]; P = .02), while 
for the AST to ALT ratio, higher ratio values were associated with reduced glucose metabolism 
(β [SE], –0.123 [0.042]; P = .03).

In the detailed whole-brain analysis to determine the association of liver function markers 
with brain glucose metabolism on a voxelwise level. Increased ALT levels were associated with 
increased glucose metabolism in a widespread pattern, especially in the bilateral frontal, parietal, 
and temporal lobes (Figure 2B). However, higher AST to ALT ratio values were significantly 
associated with reduced glucose metabolism in the bilateral frontal, parietal, and temporal lobes 
(Figure 2D).

Structural MRI (atrophy)
In the investigation of the association of liver function markers with mean hippocampal 
volume with APOE ε4 status as a covariate. We did not identify any significant association with 
hippocampal volume after controlling for multiple testing using FDR (Figure 1). Following 
the detailed whole-brain surface-based analysis of liver function markers using multivariable 
regression models to assess associations with cortical thickness. Higher ALT levels were 
significantly associated with larger cortical thickness in the bilateral temporal lobes (Figure 3), 
which showed consistent patterns in the associations of brain glucose metabolism.

CSF t-tau
Higher AST to ALT ratio values were associated with higher CSF t-tau levels (β [SE], 0.160 
[0.049]; P = .02) (Figure 1), which showed consistent patterns in the associations of CSF 
amyloid-β1-42 or p-tau levels and brain glucose metabolism.

Discussion

We investigated the association between serum-based liver function markers and AD diagnosis, 
cognition, and AD pathophysiological characteristics based on the A/T/N framework for AD 
biomarkers in the ADNI cohort36. Our findings suggest that the decreased levels of ALT and 
elevated AST to ALT ratio that were observed in patients with AD were associated with poor 
cognition and reduced brain glucose metabolism. We also found that an increased AST to ALT 
ratio was associated with lower CSF amyloid-β1-42 levels, greater amyloid-β deposition, and 
higher CSF p-tau and t-tau levels. Furthermore, we observed that decreased levels of ALT were 
associated with greater amyloid-β deposition and structural atrophy.
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Decreased levels of ALT and increased AST to ALT ratio values were observed in patients with 
AD and were associated with lower scores on measures of memory and executive function. Our 
findings are comparable with those of an earlier study that reported increased AST to ALT ratio 
values and lower levels of ALT in patients with AD compared with controls, although in that 
study, the association between AD and  ALT levels did not reach statistical significance37. Altered 
liver enzymes lead to disturbances in liver associated metabolites including branched-chain amino 
acids, ether phosphatidylcholines, and lipids38, which we and others show are altered in AD1,39-41 
and may play a role in disease pathophysiological characteristics42. Disturbed energy metabolism 
is one of the processes that may explain the observed lower levels of ALT and increased enzyme 
ratio in individuals with AD and impaired cognition3,5. This finding is concordant with our 
observation that increased AST to ALT ratio values and lower levels of ALT showed a consistent 
significant association with reduced brain glucose metabolism particularly in the orbitofrontal 
cortex and temporal lobes, areas of the brain implicated in memory and executive function. 

Figure 3: Detailed whole-brain surface-based imaging analysis for alanine aminotransferase (ALT) 
levels using magnetic resonance imaging (MRI) scans. A	whole-brain	multivariable	analysis	of 	
cortical	thickness	across	the	brain	surface	was	performed	to	visualize	the	topography	of 	the	
association of  ALT levels with brain structure. Statistical maps were threshold using a random 
field	theory	for	a	multiple	testing	adjustment	to	a	corrected	significance	level	of 	0.05.	The	P-value	
for	clusters	indicates	significant	corrected	P values with the lightest blue color. Higher ALT levels 
were	significantly	associated	with	greater	cortical	thickness,	especially	in	bilateral	temporal	lobes.
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Brain glucose hypometabolism is an early feature of AD and cognitive impairment during the 
prodromal stage43,44. Moreover, ALT and AST are key enzymes in gluconeogenesis in the liver and 
production of neurotransmitters required in maintaining synapses45. Alanine aminotransferase 
catalyzes a reversible transamination reaction between alanine and α-ketoglutarate to form 
pyruvate and glutamate, while AST catalyzes a reversible reaction between aspartate and 
α-ketoglutarate to form oxaloacetate and glutamate46. Although exact mechanisms remain 
unclear, 2 possible mechanisms may explain altered levels of enzymes in AD. First, reduced ALT 
levels lead to reduced pyruvate, which is required for glucose production via gluconeogenesis in 
the liver and glucose is distributed in various body tissues as an energy source47, thus disturbing 
energy homeostasis. Second, altered levels of ALT and AST may affect levels of glutamate, an 
excitatory neurotransmitter of the central nervous system involved in synaptic transmission, 
which also plays an important role in memory48. 

In the case of low glucose metabolism in the brain, as observed in our current study, less 
α-ketoglutarate is available via the tricarboxylic acid cycle that favors glutamate catabolism vs 
glutamate synthesis in reversible reaction (catalyzed by AST and ALT) 49. Glutamate acts as a 
neurotransmitter in approximately two-thirds of the synapses in neocortical and hippocampal 
pyramidal neurons and thus is involved in memory and cognition via long-term potentiation 50. 
In a sample of healthy adults, plasma ALT and AST levels were significantly positively correlated 
with plasma glutamate levels5,51, which indicates that lower levels of ALT will decrease glutamate 
levels in plasma. Based on evidence from earlier studies that peripheral blood levels of glutamate 
are positively correlated with levels of glutamate in the CSF52 and studies that reported lower 
levels of glutamate in patients with AD compared with controls in both blood53 and brain 
tissues33,54-56, we can infer that lower levels of ALT or AST may affect glutamate levels in AD. 
In older adults, lower serum ALT levels are associated with mortality57,58 and are thought to be 
a biomarker for increased frailty, sarcopenia and/or reduced levels of pyridoxine levels (Vitamin 
B6)59. Pyridoxine phosphate is a coenzyme for the synthesis of amino acids, neurotransmitters 
(e.g., serotonin and norepinephrine) and sphingolipids. Alanine aminotransferase decreases with 
age60 and may be a sign of hepatic aging. Glutamate levels also decrease with increasing age61. 
Together with the fact that age is the strongest risk factor for AD62, decreasing levels of ALT with 
age may also indicate a possible biological link between aging and AD. Nevertheless, further 
research is needed to determine the exact cause of reducing ALT levels with age and the pathway 
through which it can influence neurologic disorders including AD.

Increased AST to ALT ratio values are observed in individuals with nonalcoholic fatty liver 
disease which is the hepatic manifestation of metabolic syndrome63. In the Framingham 
Heart Study, nonalcoholic fatty liver disease was associated with smaller total cerebral brain 
volume even after adjustment for multiple cardiovascular risk factors64. Liver dysfunction is 
also associated with the development of disease including cardiovascular disease and insulin-
resistance through disruptions in glucose and lipid metabolism, key physiological functions of 
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the liver65,66. Thus, using the AST to ALT ratio as a marker for overall metabolic disturbance5, our 
study provides evidence of an association between altered metabolic status and AD, cognition, 
and AD endophenotypes. 

In addition to ALT levels and the AST to ALT ratio, elevated levels of alkaline phosphatase 
were significantly associated with poor cognition. This is in line with results from the Oxford 
Project to Investigate Memory and Aging, which reported increased alkaline phosphatase levels 
in individuals with AD and an inverse association with cognition67. Alkaline phosphatase is an 
enzyme primarily expressed in the liver and kidneys as well as in endothelial cells in the brain68,69. 
The neuronal form of the alkaline phosphatase plays a role in developmental plasticity and 
activity-dependent cortical functions via contributing in γ-aminobutyric acid metabolism70-73. 
Changes in plasma levels of alkaline phosphatase may occur as a result of central nervous system 
injury74. 

Limitations
This study has several limitations. The observational design of this ADNI cohort study limits 
our ability to make assumptions about causality. There is need to evaluate the association of 
liver enzymes with AD in prospective manner. Another limitation of our study is that we did 
not adjust for alcohol consumption which was not available in ADNI. Alcohol consumption 
is associated with altered liver enzymes.  Instead, we used a well-established surrogate marker 
of alcohol consumption, γ-glutamyltransferase. Elevations in γ-glutamyltransferase generally 
indicate long-term heavy drinking rather than episodic heavy drinking75. Our key findings 
remained significant after adjustment for γ-glutamyltransferase and statin use (Supplementary 
Table 4, Table 5, and Figure in the Supplement). However, given the strong associations with 
liver function measures and A/T/N biomarkers for AD, it appears that liver function may play 
a role in the pathogenesis of AD, but limitations should be taken into account before further 
extrapolating our findings.

Conclusions

This study’s results suggest that altered liver function markers are associated with AD diagnosis 
and impaired memory and executive function as well as amyloid-β, tau and neurodegenerative 
biomarkers of AD pathophysiological characteristics. These results are, to our knowledge, the 
first to show an association of peripheral markers of liver functioning with central biomarkers 
associated with AD.  Although our results suggest an important role of liver functioning in 
AD pathophysiological characteristics, the causal pathways remain unknown. The liver-
brain biochemical axis of communication should be further evaluated in model systems and 
longitudinal studies to gain deeper knowledge of causal pathways. 
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Abstract 

Introduction: Increasing evidence suggests a role for the gut microbiome in central nervous 
system disorders and a specific role for the gut-brain axis in neurodegeneration. Bile acids (BAs), 
products of cholesterol metabolism and clearance, are produced in the liver and are further 
metabolized by gut bacteria. They have major regulatory and signaling functions and seem 
dysregulated in Alzheimer’s disease (AD).

Methods: Serum levels of 15 primary and secondary BAs and their conjugated forms were 
measured in 1464 subjects including 370 cognitively normal older adults (CN), 284 with early 
mild cognitive impairment (MCI), 505 with late MCI, and 305 AD cases enrolled in the AD 
Neuroimaging Initiative. We assessed associations of BA profiles including selected ratios with 
diagnosis, cognition, and AD-related genetic variants, adjusting for confounders and multiple 
testing. 

Results: In AD compared to CN, we observed significantly lower serum concentrations of a 
primary BA (cholic acid [CA]) and increased levels of the bacterially produced, secondary BA, 
deoxycholic acid (DCA), and its glycine and taurine conjugated forms. An increased ratio of 
DCA:CA, which reflects 7 α-dehydroxylation of CA by gut bacteria, strongly associated with 
cognitive decline, a finding replicated in serum and brain samples in the Rush Religious Orders 
and Memory and Aging Project. Several genetic variants in immune response-related genes 
implicated in AD showed associations with BA profiles.

Discussion: We report for the first time an association between altered BA profile, genetic 
variants implicated in AD and cognitive changes in disease using a large multicenter study.  These 
findings warrant further investigation of gut dysbiosis and possible role of gut-liver-brain axis in 
the pathogenesis of AD.



181

5

Gut-Liver-Brain axis

Introduction

Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is the leading cause of 
dementia in old age affecting over 40 million people worldwide1. There are currently no therapies 
to prevent or slow down AD progression, highlighting our incomplete knowledge of disease 
mechanisms and the need for new drug targets. A large number of biochemical processes are 
affected in AD and genes implicated in AD highlight the possible roles for lipid processing, 
immune function, phagocytosis, (innate) immunity and neurotransmitter function, and 
biological pathways that may affect metabolism2,3. Recent AD hypotheses implicate viral and 
bacterial contributions to disease pathogenesis4-6.

Bidirectional biochemical communication between the brain and the gut contribute to a variety 
of neurodegenerative and psychiatric diseases7-10. The gut microbiome and the host collaboratively 
produce a large array of small molecules that impacts human health11,12. Recently, a role for the 
gut microbiome in motor dysfunction in Parkinson’s disease has been highlighted13 and several 
animal models of AD showed a possible role of gut bacteria in amyloid-b pathology14,15. The APP 
transgenic mouse model of AD had a drastically altered gut microbiome composition compared 
to wild-type mice15. Other studies linked proinflammatory bacteria, such as gram-negative 
producers of neurotoxic lipopolysaccharides, to brain amyloidosis and systemic inflammation, a 
central feature of AD16,17. These studies suggest microbial dysbiosis or imbalance could potentially 
contribute to AD pathogenesis. 

Cholesterol metabolism in the liver is thought to play a key role in AD18. In fact, many cholesterol 
metabolism-related genes (e.g., BIN1, CLU, PICALM, ABCA7, ABCG1, and SORL1) are among 
the top AD susceptibility loci identified by genome-wide association studies2,19.  Cholesterol is 
cleared through production of bile acids (BAs). Primary BAs, chenodeoxycholic acid (CDCA) and 
cholic acid (CA), are synthesized from cholesterol in the liver, conjugated with glycine or taurine, 
secreted into the gallbladder via the bile salt export pump, and transported to the intestine to be 
metabolized by gut bacteria (Figure 1). Intestinal anaerobic bacteria deconjugate the liver-derived 
BAs through the action of bile salt hydrolases to their respective free BAs. Subsequently, anaerobe 
bacteria convert primary BAs to the secondary BAs. That is, CA is converted to deoxycholic acid 
(DCA). CDCA is converted to lithocholic acid (LCA) and ursodeoxycholic acid through 7α or 
7β –dehydroxylation, respectively20,21. In the terminal ileum and colon, BAs are reabsorbed by 
the enterocytes and released into the portal vein for return to the liver where they are conjugated 
to produce their glycine and taurine forms. 

Beyond BA’s role in cholesterol clearance, BAs are major regulators for maintaining energy 
homeostasis through binding to nuclear receptors, including FXR and LXR, among others and 
seem to be indicators of gut dysbiosis. BAs also modulate the gut microbiome22,23. Both primary 
and secondary BAs are present in the brains of mice and possibly humans with evidence that they 
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Figure 1: Bile acid synthesis and cholesterol clearance pathway. Regulation of  bile acid synthesis 
by	feedback	mechanism	and	bile	acid	transport	through	enterohepatic	circulation.	In	the	liver,	
the	bile	acids	(CDCA,	DCA,	LCA,	CA)	activate	FXR	that	inhibits	(via	a	repressor	SHP,	not	shown	
here)	the	rate-limiting	enzyme	CYP7A1.	The	bile	acids	via	FXR/SHP	also	inhibit	the	influx	
transporter	NTCP;	induce	BSEP	and	canalicular	bile	acid	secretion.	In	the	intestine,	bile	acids,	
via	FXR,	inhibit	the	uptake	transporter	ASBT,	decreasing	absorption	and	increasing	basolateral	
secretion into portal circulation by inducing OSTα & β. Bile	acid	activated	FXR	in	the	intestine	
also	exerts	inhibition	on	CYP7A1	in	the	liver	via	FGF19	pathway.	At	the	basolateral	membrane	
of  hepatocytes, transporters OSTα & β, and also MRP3 and MRP4, secrete bile acids into the 
systemic circulation.  
Abbreviations: ASBT:	Apical	sodium-dependent	Bile	acid	Transporters;	BSEP:	Bile	Salt	Export	
Pump;	FXR:	Farnesoid	X	Receptor;	NTCP:	Sodium/Taurocholate	Co-transporting	Polypeptide;	
SHP: Small heterodimer partner. 
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cross the blood-brain barrier24-29. Some BAs such ursodeoxycholic acid exert beneficial effects 
while others are known to be cytotoxic30-34. In particular, DCA’s toxicity has been associated with 
modulating apoptosis involving mitochondrial pathways in a variety of tissues and cell types35-38. 

In recent pilot human studies, BA profiles were shown to be affected in AD26,38-41.  Here, we used 
a targeted metabolomics approach to evaluate BA profiles in a large cohort of 1464 individuals 
enrolled in the AD Neuroimaging Initiative (ADNI) where rich clinical, imaging, and genetic 
data exist. A schematic representation of study design is shown in Figure 2. We used these data 
to address the following: 

1. Investigate if BA profiles are altered in mild cognitive impairment (MCI) and AD patients 
and if these differences are related to cognitive decline. 

2. Use ratios of BAs to pinpoint possible enzymatic alterations in the liver and in the gut 
microbiome that directly contribute to altered BA profile.

3. Investigate whether immune-related AD genome-wide significant genes affect levels of BAs 
in circulation as markers for altered gut microbiome function.

In a subsequent study, we evaluated correlations between BAs and ATN (amyloid, tau and 
neurodegenerative) biomarkers of AD including cerebrospinal (CSF) biomarkers, brain atrophy, 
and brain glucose metabolism. 

Figure 2: Schematic representation of  study design.
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Methods 

Study cohorts and samples
ADNI baseline samples
Data used in the preparation of this article were downloaded from the ADNI database (http://
adni.loni.usc.edu/). The ADNI studies have recruited over 1500 adults, ages 55 to 90, consisting 
of cognitively normal older individuals (CN), individuals with subjective memory concerns 
(SMC), subjects with early (EMCI) or late mild cognitive impairment (LMCI), and patients 
with early probable AD dementia. Subjects categorized as SMC were excluded in this study. For 
key clinical and demographic variables of ADNI participants included in this study, see Tables 
1 and 2. 

The Religious Orders Study and the Rush Memory and Aging Project (ROS/
MAP) for replication of  key finding
The ROS/MAP studies are both longitudinal cohort studies of aging and AD at Rush University 
and are designed to be used in joint analyses to maximize sample size. ROS enrolled individuals 
from religious orders (nuns, priests, brothers) across the United States42. MAP was designed 
to complement the ROS study by using a similar structure and design as ROS, but enrolling 
participants with a wider range of life experiences and socioeconomic status from the Chicago, IL 
metropolitan area43. The entire ROS/MAP cohort consists of approximately 3300 participants, 
more than 1500 of whom have come to autopsy (www.radc.rush.edu). We measured a subset 
of serum BAs in 566 subjects (446 CN, 109 MCI, and 11 AD), as well as a subset of BAs in 
postmortem brain samples from the dorsolateral prefrontal cortex of 111 subjects with brain 
pathology measured (51 CN, 31 MCI, and 27 AD at time of death), of whom 93 had serum 
measurements. Key demographic characteristics of the ROS/MAP cohort are in Supplementary 
Table 1.

Rotterdam Study (RS)
RS was used to examine the association of BAs with AD genetic variants. RS is a prospective 
population-based study44. At the baseline examination in 1990-1993, 7983 subjects≥ 55 years of 
age were recruited from the Ommoord district of Rotterdam (RS-I). All the study participants 
were extensively interviewed and physically examined at baseline and after every 3 to 4 years. 
During 2000 to 2001, the baseline cohort (RS-I) was expanded with 3011 subjects ≥55 years of 
age, who were not yet part of RS-I (RS-II). In this analysis, fasting serum BAs were measured 
for 488 dementia-free subjects with mean(SD) age of 73.1(6.3) from RS-I using Metabolon 
platform (Durham, North Carolina, USA) as described previously45 (see Supplementary Table 2 
for demographics).
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Sample collection and quantification of  BAs
Targeted metabolomics profiling was performed to measure concentrations of 20 BA metabolites 
in serum samples of the ADNI cohorts. Morning fasting serum samples from the baseline visit 
were collected and aliquoted as described in the ADNI standard operating procedures. BA 
quantification was performed by liquid chromatography tandem mass spectrometry using the 
Biocrates® Life Sciences Bile Acids Kit (BIOCRATES Life Science AG, Innsbruck, Austria) 
according to manufacturer’s instructions (see Table 3 for list of BAs, abbreviations and their 
levels across diagnosis groups).

Table 1: Demographics of  ADNI participants stratified by baseline diagnosis*

Variable N CN
(N=370)

EMCI
(N=284)

LMCI
(N=505)

AD
(N=305)

P-value†

Age 1464 74.58(5.71) 71.12(7.51) 73.95(7.59) 74.70(7.79) 0.001

Sex: Female, No. (%) 1464 190(51%) 130(46%) 197(39%) 139(46%) 0.004

Education, years 1464 16.28(2.92) 15.95(2.66) 15.87(2.90) 15.16(3.00) 0.001

BMI (Kg/M2) 1461 27.05(4.46) 28.06(5.41) 26.54(4.25) 25.83(4.69) 0.001

≥1 APOE ε4 allele, 
No. (%)

1464 104(28%) 121(43%) 273(54%) 202(66%) 0.001

ADAS-Cog13‡ 1455 9.19(4.17) 12.64(5.40) 18.67(6.62) 29.67(8.20) 0.001

Abbreviations: AD: Alzheimer’s disease; BMI: Body mass index; CN: Cognitively normal; EMCI: Early 
mild cognitive impairment; LMCI: Late mild cognitive impairment; ADAS-Cog13, Alzheimer Disease 
Assessment Scale 13-item cognitive subscale.
*Data are reported as mean (SD) unless otherwise indicated. Bolded values indicate statistical significance. 
SD: Standard deviation.
†Based on 2-sample t tests, or Pearson  tests.
‡Score explanations: ADAS-Cog13 range, 0 (best) to 85 (worst).

Table 2: Demographics of  ADNI participants stratified by MCI progression to AD*

Variable N MCI-nonconverter
(N=538)

MCI-converter
(N=251)

P-value†

Age 789 72.47(7.90) 73.91(7.08) 0.01
Sex: Female, No. (%) 789 41% (223) 41% (104) 1
Education, years 789 15.95 (2.85) 15.79 (2.76) 0.43
BMI (Kg/M2) 788 27.37 (4.80) 26.47(4.61) 0.005
≥1 APOE ε4 allele, No. (%) 789 41% (223) 68% (171) 0.001
ADAS-Cog13 786 14.26 (6.04) 21.31 (5.94) 0.29

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; ADAS-
Cog13, Alzheimer Disease Assessment Scale 13-item cognitive subscale; MCI, mild cognitive impairment.
*MCI subjects that converted to AD dementia in 4 years after baseline were labeled as MCI converter.
†Based on 2-sample t tests, or Pearson  tests.
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In the ROS/MAP, quantification of BA concentrations in 566 serum samples and 111 
postmortem brain samples was performed at the University of Hawaii cancer center using ultra-
performance liquid chromatography coupled to a tandem mass spectrometry (UPLC-MS/MS) 
system (ACQUITY UPLC-Xevo TQ-S, Waters Corp., Milford, MA)46. 

Table 3: Levels of  primary and secondary bile acids measured in the ADNI cohort stratified by 
clinical diagnosis*

Bile Acid Category N† CN
(N=370)

EMCI
(N=284)

LMCI
(N=505)

AD
(N=305)

CA Primary 1446 0.221(0.024) 0.155(0.021) 0.192(0.021) 0.135(0.025)

CDCA Primary 1357 0.285(0.042) 0.241(0.034) 0.288(0.033) 0.216(0.033)

GCA Primary 
Conjugated

1463 0.236(0.019) 0.234(0.021) 0.239(0.014) 0.297(0.037)

GCDCA Primary 
Conjugated

1464 0.658(0.035) 0.724(0.059) 0.710(0.037) 0.806(0.049)

TCA Primary 
Conjugated

1020 0.068(0.008) 0.057(0.006) 0.068(0.006) 0.066(0.009)

TCDCA Primary 
Conjugated

1426 0.090(0.006) 0.088(0.007) 0.091(0.006) 0.097(0.008)

TMCA Primary 
Conjugated

1146 0.012(0.001) 0.011(0.001) 0.014(0.002) 0.014(0.002)

DCA Secondary 1445 0.526(0.041) 0.574(0.043) 0.529(0.026) 0.627(0.045)

UDCA Secondary 1111 0.065(0.007) 0.072(0.011) 0.091(0.010) 0.087(0.012)

GDCA Secondary 
Conjugated

1439 0.440(0.034) 0.488(0.038) 0.502(0.031) 0.672(0.054)

TDCA Secondary 
Conjugated

1430 0.058(0.006) 0.059(0.005) 0.065(0.005) 0.077(0.006)

GLCA Secondary 
Conjugated

1037 0.027(0.002) 0.034(0.003) 0.030(0.002) 0.039(0.003)

TLCA Secondary 
Conjugated

1008 0.005(0.0002) 0.005(0.0003) 0.005(0.0003) 0.006(0.0005)

GUDCA Secondary 
Conjugated

1401 0.115(0.010) 0.114(0.012) 0.129(0.012) 0.136(0.015)

TUDCA Secondary 
Conjugated

1369 0.008(0.001) 0.008(0.001) 0.008(0.001) 0.008(0.001)

Abbreviations: AD,Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CN, 
cognitively normal; EMCI, early mild cognitive impairment;LMCI, late mild cognitive impairment; CA, 
cholic acid; CDCA, chenodeoxycholic acid; GCA, glycocholic acid; GCDCA, glycochenodeoxycholic 
acid; TCA, taurocholic acid; TCDCA, taurochenodeoxycholic acid; TMCA, tauromuricholic acid; DCA, 
deoxycholic acid; UDCA, ursodeoxycholic acid; GDCA, glycodeoxycholic acid; TDCA, taurodeoxycholic 
acid; GLCA, glycolithocholic acid; TLCA, taurolithocholic acid; GUDCA, glycoursodeoxycholic acid; 
TUDCA, tauroursodeoxycholic acid.
*Values represent mM in mean (standard error of the mean).
†Number of nonmissing measurements.
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In the RS study, serum BAs were measured in 488 serum samples using the non-targeted 
Metabolon platform (Durham, North Carolina, USA).

Quality control of  BA profiles
Metabolomics laboratory staff were blinded to diagnosis and pathological data in all the 
studies. In ADNI, after unblinding and data release, metabolite profiles went through quality-
control (QC) checks and data preprocessing including batch-effect adjustment, missing value 
imputation, and log-transformation (Supplementary Methods and Supplementary Table 3). 
After QC correction, the data set included 15 BAs (Five BAs did not pass QC criteria) for a 
total of 1,464 subjects (after excluding 99 SMC). The preprocessed BA values after QC were 
used for subsequent association analyses directly or were adjusted to take into account the effect 
of medications on BA levels47. The list of medications selected for adjustment for each BA is 
shown in Supplementary Table 7. We performed all analyses using both medication adjusted and 
unadjusted BA levels, results derived from medication-adjusted data and the adjustment process 
are described in Supplementary Methods and its accompanying tables.

In both RS and ROS/MAP, missing metabolite levels were imputed using half of the limit of 
detection. Log-transformed values were used in subsequent analyses.

Clinical Outcomes
For ADNI data, continuous response variables included the modified Alzheimer Disease 
Assessment Scale 13-item cognitive subscale (ADAS-Cog13; range, 0 [best] to 85 [worst] 
points), an index of general cognitive functioning. Categorical response variables included 
clinical diagnosis at baseline and MCI conversion (MCI-nonconverter, MCI-converter). For the 
ROS/MAP cohort, cognition was measured using a battery of tests (details are published48-51 
). A composite measure of global cognition was created by averaging the z-scores of all tests as 
previously described51. Mean and standard deviation at baseline were used to compute z-scores. A 
negative z-score means that an individual has an overall score that is lower than the average of the 
entire sample at baseline. Cognitive tests were used from the same cycle as serum, and proximate 
to death for brain.

Genotype and whole-genome sequencing data
Whole-genome sequencing: For 817 ADNI participants, whole-genome sequencing (WGS) 
was performed on blood-derived genomic DNA. Samples were sequenced on the Illumina 
HiSeq2000 using paired-end read chemistry and read-length of 100 bp at 30–40X coverage. 
For data processing and QC, an established analysis pipeline based on GATK was used. The QC 
steps included participant sex check, participant identity check, and variant quality check of the 
Illumina-generated VCF files (see Saykin et al., for details52).



188

Chapter 5

DNA genotyping in the participants of the RS cohort was performed using 550K, 550K duo, 
or 610K Illumina arrays at the internal genotyping facility of the Erasmus Medical Center, 
Rotterdam. Study samples with excess autosomal heterozygosity, call rate < 97.5%, ethnic 
outliers, and duplicate or family relationships were excluded during quality control analysis. 
Genotype exclusion criteria further included call rate < 95%, Hardy-Weinberg equilibrium p 
< 1.0x10-6 and Minor Allele Frequency (MAF) < 1%. Genetic variants were imputed to the 
Haplotype Reference Consortium (HRC) reference panel (version 1.0)53 using the Michigan 
imputation server54. 

Reference genetic associations with BA profiles in healthy individuals were obtained from 
supplementary data of the atlas of genetic influences on blood metabolites45.  To obtain genome-
wide genetic associations with DCA, we considered all suggestive significant results with P < 
1.0 x 10-5. Gene and complex trait annotations of the 13 resulting genetic loci were performed 
using the SNiPA tool v3.255 and the NHGRI-EBI Catalog of published genome-wide association 
studies (www.ebi.ac.uk/gwas; accessed 02/01/2018, version 1.0)56. Lookup of AD genetic 
associations for DCA candidate variants was performed using the IGAP repository2.

Statistical analysis
Differences of demographic, clinical, and cognitive measurements among the clinical diagnostic 
groups were evaluated using two-sample t-test (for continuous variables) and Pearson Chi-
squared test (for categorical variables). All analyses were performed in a metabolite-wise manner 
and Bonferroni-adjusted critical values were used to assess statistical significance. All models 
included age at baseline, sex, APOE ε4, and log10-transformed body mass index (BMI). For 
cognition, number of years of education was added as an additional covariate.

Separate binary logistic regression models were conducted to examine cross-sectional association 
of each metabolite with baseline diagnosis (six models per metabolite). We performed logistic 
regression models to compare BA levels between the MCI-nonconverter and MCI-converter 
groups. Cox proportional hazard models were used to evaluate the association of metabolite 
levels with progression from MCI (combined EMCI and LMCI subjects) to AD. The cross-
sectional association of ADAS-Cog13 with BAs was assessed using linear regression models with 
square root of ADAS-Cog13 as the dependent variable. 

In ROS/MAP, one sample per individual was used. Linear regression models with global 
cognition score as dependent variable and metabolites as independent variables were used to 
assess the association of serum BAs with cognition, while adjusting for sex, age, APOE ε4, and 
years of education. Similar analyses were conducted for brain BAs separately.

We restricted our genetic variant analysis to single nucleotide polymorphisms in genes involved 
in the immune response pathway that were significantly associated with AD genome-wide2,57-59. 
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Selected genetic variant included rs616338-T(ABI3), rs143332484-T(TREM2), rs72824905-
C(PLCG2), rs9331896-T(CLU), rs6656401-A(CR1), rs35349669-T(INPP5D), rs11771145-
G(EPHA1), rs983392-A(MS4A6A), and rs190982 -A(MEF2C). Associations of AD risk variants 
in immune-related genes with selected metabolic traits in ADNI and RS were computed using 
sex, age, and BMI as covariates.

Results

Characteristics of ADNI participants are depicted in Tables 1 and 2. Baseline cognitive 
measurements were significantly different among diagnostic groups, as expected. AD patients 
were more often carriers of at least one APOE ε4 allele. In addition, ADAS-Cog13 scores were 
not significantly different between the MCI-converter and nonconverter groups. However, the 
proportion of APOE ε4 carriers was higher in the MCI-converter group.

Serum BA profiles are significantly altered in AD
The Bonferroni-corrected threshold for statistical significance was determined as P < 4.76 x 
10-4 (0.05 divided by 15 metabolites times seven phenotypes including cognition). When we 
compared BA profile in AD to CN, we detected a significant decrease in levels of the primary 
BA, CA (P = 1.56 x 10-4). In contrast, a significant increase of bacterially produced secondary 
BA, DCA was noted (P = 1.61 x 10-4) along with several secondary conjugated BAs, GDCA, 
TDCA, and GLCA (Table 4). GDCA and GLCA were significantly associated with ADAS-
Cog13 where higher levels indicated worse cognition. Comparing BA levels between AD and 
both MCI groups yielded similar results, while the comparison of BA levels between the CN and 
MCI groups did not reach statistical significance (Supplementary Table 4).

Ratios reflective of  conversion of  BAs by gut microbiome are significantly associ-
ated with AD and cognitive performance
To determine which enzymatic processes in BA metabolism may underlie the differences noted 
in AD, we investigated eight selected ratios reflective of enzymatic activities in the liver and the 
gut microbiome. These ratios included the following:

1. The CA:CDCA ratio was selected to test if a possible shift in BA synthesis from the primary 
to the alternative BA pathway occurs in the liver.

2. Ratios of secondary to primary BAs (DCA:CA, GLCA:CDCA, and TLCA:CDCA) to 
investigate differences in gut microbiome enzymatic activity leading to altered production 
of secondary BAs. Because LCA was excluded in QC steps, the GLCA:CDCA and 
TLCA:CDCA ratios were used as proxies for the LCA:CDCA ratio.
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3. GDCA:DCA and TDCA:DCA ratios were used to test if the observed secondary BA 
dysregulation is related to enzymatic differences related to their taurine and glycine 
conjugation.

Here, we considered associations as significant at a Bonferroni-corrected P < 3.11 x 10-4 (0.05 
divided by all 23 metabolic traits times seven phenotypes, which include cognition). The ratio 
of the primary BAs (CA:CDCA) showed no significant association with AD. Yet, for the ratio 
of DCA:CA (i.e., the conversion of unconjugated primary to unconjugated secondary BA), we 

Table 4: Cross-sectional association of  bile acids with clinical diagnosis and cognition in the ADNI 
study*

Bile Acid CN vs. AD (n=673) OR (95% CI); 
P-value†

ADAS-Cog13 (n=1453)
β (95% CI); P-value ‡

CA 0.85(0.78,0.92);1.56E-04 -0.04(-0.07,-0.01);2.81E-03

CDCA 0.94(0.87,1.01);7.19E-02 -0.02(-0.04,0.00);1.07E-01

GCA 1.07(0.96,1.18);2.03E-01 0.01(-0.02,0.05);4.36E-01

GCDCA 1.15(1.02,1.29);2.07E-02 0.06(0.02,0.09);4.60E-03

TCA 1.03(0.94,1.12);5.32E-01 -0.01(-0.03,0.03);7.92E-01

TCDCA 1.04(0.94,1.15);4.29E-01 0.02(-0.02,0.05);3.39E-01

TMCA 1.09(1.00,1.18);4.46E-02 0.029(0.00,0.06);4.21E-02

DCA 1.24(1.11,1.39);1.61E-04 0.05(0.01,0.08);9.26E-03

UDCA 0.96(0.90,1.03);2.41E-01 -0.01(-0.03,0.01);2.44E-01

GDCA 1.30(1.17,1.43);4.20E-07 0.07(0.04,0.10);1.05E-05

TDCA 1.19(1.08,1.30);3.26E-04 0.05(0.02,0.08);2.39E-03

GLCA 1.33(1.20,1.48);9.21E-08 0.07(0.04,0.11);1.97E-05

TLCA 1.19(1.07,1.31);9.53E-04 0.06(0.03,0.1);3.18E-04

GUDCA 1.09(1.00,1.19);5.39E-02 0.03(-0.00,0.06);6.04E-02

TUDCA 1.08(0.96,1.20);1.86E-01 0.01(-0.02,0.05);4.85E-01

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CN, 
cognitively normal; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; CA, 
cholic acid; CDCA, chenodeoxycholic acid; GCA, glycocholic acid; GCDCA, glycochenodeoxycholic 
acid; TCA, taurocholic acid; TCDCA, taurochenodeoxycholic acid; TMCA, tauromuricholic acid; DCA, 
deoxycholic acid; UDCA, ursodeoxycholic acid; GDCA, glycodeoxycholic acid; TDCA, taurodeoxycholic 
acid; GLCA, glycolithocholic acid; TLCA, taurolithocholic acid; GUDCA, glycoursodeoxycholic acid; 
TUDCA, tauroursodeoxycholic acid.
*Statistically significant associations that passed Bonferroni correction are bolded.
†Odds ratios and p-values were obtained from logistic regressions. Models were corrected for age, sex, body 
mass index, and APOE ε4 status; Bonferroni-adjusted critical value was set to 5.76 x 10-4 (0.05 divided by 
15 metabolites times 7 phenotypes including cognition)
‡Outcome: Square root of ADASCog-13 (0 [best] to 85 [worst]); Models were corrected for age, sex, years 
of education, body mass index and APOE ε4 status; Bonferroni-adjusted critical value was set to 2.17E-03.



191

5

Gut-Liver-Brain axis

observed a highly significant association with AD diagnosis (P=1.53 x 10-8). Ratios between 
primary and secondary conjugated BAs showed the same effect and direction, including 
GDCA:CA (P=8.53 x 10-10), TDCA:CA (P=9.83 x 10-7), and GLCA:CDCA (P=3.61 x 10-6). 

Ratios modeling the glycine and taurine conjugation step of DCA, i.e. GDCA:DCA, 
TDCA:DCA, were not significantly associated with diagnosis (Figure 3 and Table 5). 

Figure 3: Ratios of  bile acids reflective of  liver and gut microbiome enzymatic activities in CN, Ear-
ly MCI, Late MCI, and AD patients. Three types of  ratios were calculated to inform about possible 
enzymatic	activity	changes	in	Alzheimer’s	patients.	These	ratios	reflect	one	of 	the	following:	(1)	
Shift in bile acid metabolism from primary to alternative pathway. (2) Changes in gut microbiome 
correlated with production of  secondary bile acids. (3) Changes in glycine and taurine conjugation 
of 	secondary	bile	acids.	Color	code:	Green:	cognitively	normal;	Yellow:	EMCI;	Blue:	LMCI;	Red:	
AD.	Composition	of 	selected	ratios	stratified	by	clinical	diagnosis.	Error	bars	indicate	standard	er-
ror	of 	the	means;	Asterisks	indicate	statistical	significance	(*P<10-03,	**	P< 10-04,	and	***P< 10-

05). P-values	were	estimated	from	logistic	regression	models	and	adjusted	for	age,	sex,	body	mass	
index, and APOE ε4	status.	The	significance	level	was	adjusted	for	multiple	testing	according	to	
the	Bonferroni	method	to	0.05/138	=	3.62x10-4; LCA was excluded in the quality control steps. 
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Four ratios (including DCA:CA and GLCA:CDCA) were significantly associated with ADAS-
Cog13. For the ratios we observed the same pattern as AD diagnosis, with higher ratios of 
secondary to primary BAs being highly significantly associated with worse cognitive performance, 
while neither conjugation, nor a shift between primary and alternative BA pathways in the liver 
was significantly linked to cognition (Table 5). 

Serum BA levels were associated with progression from MCI to AD in ADNI
The nine metabolites and ratios associated with diagnosis were further investigated to assess their 
relationship with progression from MCI to AD. Out of 789 MCI (EMCI and LMCI) patients 
with mean (SD) follow-up 3.94 (2.35), 32.2% progressed to AD dementia in 4 years (labeled as 
MCI-converter (n=251) vs. those who did not progress MCI-nonconverter [n=528]). BA profiles 
were compared between the two groups using logistic regression models with conversion status as 
the dependent variable and metabolite as an independent variable. Models were adjusted for age, 

Table 5: Ratios of  bile acids reflective of  gut microbiome and liver enzymatic activities and their 
correlation with disease status and cognitive function*

Ratios informative about 
metabolic processes

Ratios 
calculated

CN vs. AD (n=673) OR 
(95% CI); P-value†

ADAS-Cog13 (n=1453)
β (95% CI); P-value‡

Bile acid synthesis: primary 
vs. alternative pathway

CA:CDCA 0.87(0.77,0.97);1.67E-02 -0.03(-0.07,0.01);1.27E-01

Conversion from primary 
to secondary BA by the gut 
microbiome 

DCA:CA 1.25(1.16,1.35);1.53E-08 0.05(0.03,0.08);1.05E-05

GDCA:CA 1.24(1.16,1.33);8.53E-10 0.06(0.04,0.08);1.20E-07

TDCA:CA 1.16(1.10,1.24);9.83E-07 0.04(0.02,0.06);5.40E-05

GLCA:CDCA 1.16(1.09,1.23);3.61E-06 0.04(0.02,0.06);9.15E-05

TLCA:CDCA 1.09(1.03,1.16);1.60E-03 0.03(0.01,0.05);1.50E-03

Glycine or Taurine 
conjugation of secondary 
bile acids by liver enzymes

GDCA:DCA 1.16(1.02,1.31);2.41E-02 0.05(0.02,0.10);5.49E-03

TDCA:DCA 1.02(0.93,1.11);7.40E-01 0.01(-0.02,0.04);4.15E-01

Abbreviations: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CN, 
cognitively normal; EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; CA, 
cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; GDCA, glycodeoxycholic GCDCA; 
TDCA, taurodeoxycholic acid; GLCA, glycolithocholic acid; TLCA, taurolithocholic acid.
*Several ratios were calculated to inform about possible enzymatic activity changes in Alzheimer’s patients. 
These ratios reflect: (1) Shift in bile acid metabolism from primary to alternative pathway. (2) Changes in 
gut microbiome correlated with production of secondary bile acids. (3) Changes in glycine and taurine 
conjugation of secondary bile acids.
†Outcome: Baseline diagnosis; Odds ratios and p-values were obtained from logistics regressions. Models 
were corrected for age, sex, body mass index, and APOE ε4 status; Bonferroni-adjusted critical value was 
set to 1.04E-03 based on 6 possible pairwise comparison of diagnosis groups (CN, EMCI, LMCI, and AD) 
for 8 ratios.
‡Outcome: Square root of ADASCog-13 (0 [best] to 85 [worst]); Models were corrected for age, sex, years 
of education, body mass index, and APOE ε4 status; Bonferroni-adjusted critical value was set to .11 x 10-4 
(0.05 divided by all 23 metabolic traits times 7 phenotypes, which include cognitive function).
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sex, BMI, baseline ADAS-Cog13 score, and APOE ε4. The Bonferroni-corrected threshold for 
statistical significance was determined as P < 5.56 x 10-3 (0.05 divided by nine metabolites and 
ratios). We noted a decrease in CA levels (P=9.12 x 10-4) and an increase in ratios of GDCA:CA 
(P=1.63 x 10-3) and TDCA:CA (P=1.72 x 10-3) in MCI-converters (Figure 4 and Supplementary 
Table 5). Further survival analysis also revealed that levels of CA (hazard ratio [HR], 0.92;  

Figure 4: Comparison of  bile levels in MCI subjects who convert and those who did not convert to 
AD dementia. (A and B) Lower levels of  CA and higher levels of  two secondary to primary ratios 
were	significantly	associated	with	higher	odds	of 	converting	from	MCI	to	AD.	EMCI	and	LMCI	
patients	that	converted	to	AD	dementia	in	4	years	after	baseline	were	labeled	as	MCI-converter;	9	
bile	acids	and	ratios	that	were	significantly	dysregulated	between	CN	to	AD	were	assessed;	P-va-
lues were estimated from logistic regression models and adjusted for age, sex, body mass index, 
and APOE ε4	status;	the	significance	level	was	adjusted	for	multiple	testing	according	to	Bonfer-
roni	0.05/9	=	5.56	x	10-3. (C and D) Cox hazards model of  the association of  conversion from MCI 
to AD. Red line: 1st quantile, blue line: 3rd quantile. Analysis was conducted using quantitative 
values	and	stratification	by	quantiles	was	used	only	for	graphical	representation.



194

Chapter 5

P =3.79 x 10-3), GDCA:CA (HR, 1.07; P=2.81 x 10-3), and TDCA:CA (HR, 1.06; P=3.19 x 
10-3) ratios predicted MCI progression (Figure 4).

Replication of  association between cognition and DCA:CA ratio in serum and 
brain from ROS/MAP  
To confirm the associations observed in ADNI, we used an independent cohort of older adults 
(ROS/MAP) with measures of BAs in serum and brain to replicate our findings. Because the 
sample sizes in ROS/MAP were smaller than ADNI and AD cases were strongly underrepresented 
(566 serum samples 11 of which were AD and 111 brains 27 of which were AD), we focused 
on replicating our key findings related to the association between cognition and the DCA:CA 
ratio (as proxy for BA processing by the gut microbiome). Here, we had to use global cognition 
scores where higher values indicate better cognition. Separate linear regression models were used 
for brain and serum samples. Pearson’s correlation coefficient between serum DCA:CA and 
DCA:CA in 93 matching brain samples was 0.303 (P=0.003). In both serum and brain samples, 
higher levels of DCA:CA were associated with worse cognition (serum: β = -0.06; P = 0.011; 
brain:  β = -0.21; P = 0.032), confirming our ADNI finding.

Genetic risk variants for AD in genes related to immune function are associated 
with bile acid levels 
To further evaluate that altered BA profiles in AD are related to processes in the gut microbiome, 
we investigated if BA profiles were associated with immune-related AD risk genes which may 
contribute to differences in gut microbiome composition.  Using the ADNI (n=817 with WGS 
data) and RS (n=488) cohorts, association of selected BAs in the primary BA pathway (CA, 
DCA, GDCA, and TDCA) as well as the DCA:CA ratio with the selected genetic risk variants 
in 9 candidate genes with immune-related functions were assessed. In addition, we included 
associations from a published large cohort-based study45 to increase sample size. With the 
exception of rs983392 in MS4A6A, we found nominally significant associations for the candidate 
variants in all of these genes (Supplementary Table 10). Three associations were significant after 
Bonferroni-correction (P < 1.1 x 10-3) in at least one of the studies: rs616338 (ABI3) and rs190982 
(MEF2C) were significantly associated with the DCA:CA ratio, and rs11771145 (EPHA1) was 
significantly linked to both DCA and TDCA.

Genetic loci associated with DCA may influence susceptibility for AD
To follow up on the hypothesis that elevated DCA levels in AD that are linked to gut dysbiosis are 
relevant in the pathogenesis of AD, we collected (suggestive) significant genetic associations with 
DCA levels (P < 1.0 x 10-5) from a previous study of genetic influences on blood metabolite levels 
in large population-based cohorts (n~7,800)45. We then annotated the resulting 13 loci with 
genetic trait associations, including AD associations from the IGAP study2, and tried to replicate 
associations with DCA in ADNI (Supplementary Table 11). Two of the 13 genes, CYP7A1 and 
IMPA2, also showed association with DCA levels in ADNI subjects. Notably, six of the 13 genes 
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have been previously linked via genetic studies to AD (ABCA7) or AD phenotypes, including 
cognitive decline and CSF protein levels (LRRC7, CYCS, GPC6, FOXN3, and CNTNAP4). 

Discussion  

In this study, we interrogated a possible role for BA end products of cholesterol metabolism 
and clearance in cognitive changes in AD. Using stored blood samples from ADNI studies we 
established that BA profile is significantly altered in AD patients. We noted a significant decrease 
in serum levels of a liver-derived primary BA (CA) and an increase in levels of a bacterially 
produced secondary BAs and their conjugated forms (DCA, GDCA and TDCA, GLCA) in AD 
patients compared to CN subjects (Table 4, Figure 1). Higher levels of secondary conjugated 
BAs (GDCA, GLCA, and TLCA) were significantly associated with worse cognitive function 
(ADAS-Cog13; Table 4). In a follow-up study, we illustrate that these changes are also correlated 
with changes in CSF markers of disease and brain imaging changes. 

To inform about enzymatic activity changes in the liver and the gut, three types of metabolite 
ratios were evaluated to inform about mechanisms leading to the noted altered BA profile in AD. 
We found no shift in metabolism between primary and alternative pathways (Figure 3; no change 
in CA:CDCA); a significant change in production of secondary BAs via enzymatic activities in 
the gut microbiome (increased DCA:CA as well as GLCA:CDCA and TLCA:CDCA as proxies 
for LCA:CDCA) and no change in processes involved in glycine and taurine conjugation of 
secondary BAs in the liver (no change in GDCA:DCA or TDCA:DCA). The significant increase 
in ratios of secondary to primary BAs (e.g.,  DCA:CA; Figure 3), suggest altered activity of 
bacterial 7α-dehydroxylases leading to excess production of secondary BAs many of which are 
cytotoxic34,60-62. This indicates potential gut dysbiosis in AD patients possibly caused by enhanced 
colonization of the large and possibly the small intestine with anaerobic bacteria capable of 
CA and CDCA 7α-dehydroxylation. Increases in these ratios also significantly correlated with 
poorer cognition (Table 5). Together, these findings suggest that enzymatic steps in conversion of 
primary to secondary BAs in the gut might contribute to disease. 

We also evaluated effects of BA levels on risk of progression to AD among 789 MCI patients. 
Lower levels of CA and higher ratio of secondary to primary BAs, GDCA:CA, and TDCA:CA 
were significantly associated with risk of developing AD dementia (Figure 4, Supplementary 
Table 6). 

The increased production of bacterially produced DCA from CA modeled by ratio DCA:CA 
and its link to cognition was replicated in the independent ROS/MAP cohort. Association of 
the DCA:CA ratio with disease severity was evaluated separately in 566 serum and 111 brain 
samples. Because of the small number of AD patients (n=11, serum n = 27, brains), we used 
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global cognitive scores as an index of disease severity. Most of the BAs primary and bacterially 
produced secondary were found in the brain. Similar to ADNI findings, an increase in the 
DCA:CA ratio in both serum and brain were significantly associated with worse cognition. This 
finding suggests that downstream effects of the gut-directed dysregulation of primary versus 
secondary BAs are not limited to the periphery but also might affect metabolic homeostasis and/
or signaling functions in the human brain.

Earlier smaller studies suggested differences in BA levels in AD26,38-41. For example, in a study 
of 495 plasma metabolites comparing MCI (n=58) and AD (n = 100) with those of cognitively 
normal controls (n=93), levels of DCA, LCA, and GLCA were significantly elevated in the 
disease state41. Mapstone and colleagues39 identified increased levels of glycoursodeoxycholic acid 
(GUDCA) in subjects likely to develop amnestic MCI or AD within 2 to 3 years compared to 
control. In a small pilot study, Marksteiner and colleagues38 reported increased levels of LCA, 
GDCA, and GLCA in AD (n=30) relative to MCI (n=20). We replicated these findings with the 
exception of LCA (Excluded during QC) and glyxoursodeoxycholic acid, which showed only a 
nonsignificant trend of upregulation in the AD group (P = 0.054). Marksteiner38 did not report a 
significant increase in DCA or decrease in CA which we observed in the ADNI cohort. However, 
there is a trend in their data to suggest that DCA levels are increased in AD relative to CN.   Our 
analyses build upon these pilot studies to include a large well-characterized cohort with rich 
clinical, neuroimaging, and genetics data. Our analyses include links to innate immunity-related 
genes which was not possible in smaller studies. In addition, we controlled for medication use 
which is known to significantly affect the gut microbiome and BAs. In our follow-up study, we 
explore the association of serum BAs with CSF and neuroimaging biomarkers of AD.

Composition and functional changes of the gut microbiome have been implicated in several 
diseases. Microbiome GWAS revealed that variants in many human genes involved in immunity 
and gut architecture are associated with an altered gut microbiome composition63. Although 
many factors such as diet can affect the microbial organisms residing in the gut, emerging 
data support the hypothesis that certain host genetic variants predispose an individual toward 
microbiome dysbiosis and this can be linked to disorders of metabolism and immunity such as 
type 2 diabetes mellitus, obe sity, and autism63.

Accumulating evidence links dysregulation of the immune system to AD pathology. In particular, 
genetic association studies in AD have robustly identified several genetic risk variants in immune-
related genes2,59. Using the ADNI and RS cohorts, we investigated the association of BA profiles 
of CN subjects with genetic variants in nine AD-related and innate immunity genes. Eight 
genetic variants were associated with selected BA levels at nominal significance (Supplementary 
Table 10). Three of these associations were significant after Bonferroni-correction, with rs616338 
(ABI3) and rs190982 (MEF2C) associated with the DCA:CA ratio, and rs11771145 (EPHA1) 
linked to both DCA and TDCA. The association of the BAs to AD genes suggests that these 
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immune-related genes may influence the risk of AD through BA metabolism or changes in the 
gut microbiome. Interestingly, both ABI3 and MEF2C are thought to be involved in immune 
reactions to pro-inflammatory stimuli that are partially secreted by microbes64,65. The link to 
the DCA:CA ratio may thus mirror differences in gut microbiome composition due to altered 
immune response in AD, providing a mechanistic hypothesis for our findings. The function of 
EPHA1 is not well understood but, it has been hypothesized that when activated, this receptor 
may affect the integrity of the blood-brain barrier (BBB)66. Its association with levels of DCA is 
intriguing as DCA is known to be cytotoxic and can disrupt the BBB and then enter the brain28. 
rs11771145 is associated with gene expression levels of EPHA155, and as DCA is not known to 
be produced by human metabolism, changed expression and activity of EPHA1 may be related 
to DCA-mediated cytotoxic effects.

Using an established atlas of genetic influences on human blood metabolites45, we further 
investigated a potential cytotoxic role of DCA. For almost half of the 13 identified loci, we 
found genetic evidence for involvement in AD-linked complex traits (Supplementary Table 11). 
In particular, ABCA7 is an AD risk gene replicated in several genetic studies67,68. Five additional 
genes (LRRC7, CYCS, GPC6, FOXN3, and CNTNAP4) genetically influence AD phenotypes, 
including cognitive decline and CSF markers. While it remains speculative if and how these 
genes interact with DCA to contribute to AD risk, it is intriguing that we identified ABCA7 
by screening for associations with DCA levels. ABCA7 is highly expressed in the brain, and 
functions in the efflux of lipids, including cholesterol, from cells. Because of the structural 
similarity of DCA and cholesterol, we hypothesize that ABCA7 may be able to also transport 
this BA, reconciling metabolomics findings via a functional hypothesis to a risk gene for AD. 
The findings that BA levels are regulated by AD-related genes might provide new mechanistic 
insights.

There is growing support for strong connections between the intestinal environment, with its 
diverse microbial composition and activity, and the functions of the central nervous system. 
The “gut-brain metabolic axis” facilitates bidirectional chemical communication between the 
central and enteric nervous systems through mechanisms just starting to be defined7-9. Such a 
metabolic axis is thought to be involved in the regulation of multiple host metabolic pathways 
in which levels of hormones, neurotransmitters, amines, GABA, short-chain fatty acids (SCFA), 
lipid metabolites, and others are regulated by gut microbiome activity12. Changes in the 
composition of intestinal bacterial populations are associated with a wide array of neurological 
and neurodevelopmental disorders such as multiple sclerosis, autism, depression, schizophrenia, 
and Parkinson’s disease69-71. In addition, increasing evidence suggests that liver disease may 
impact cognitive functions and contribute to AD72.

Our findings suggest novel metabolic links in AD where BAs represent a component of the gut-
liver-brain axis that relates to cognition. We hypothesize that interconnected immune and gut 
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microbiome dysregulation leads to increase in production of cytotoxic secondary BAs like DCA 
and its derivatives and these can modulate the BBB and build up in the

brain leading to impaired metabolic functions mediated by their receptors and targets. Such 
dysregulation includes cholesterol and glucose homeostasis. 

It is of interest that BAs are ligands for nuclear receptors including FXR, LXRs among others 
and they act synergistically as metabolic sensors to regulate energy homeostasis 73,74 peripherally 
and might also propagate their effects to the brain. Interestingly, levels of four BAs produced 
by the gut microbiome and those we show to be significantly correlated with disease status and 
cognition (DCA, GLCA, TLCA, TDCA) are hydrophobic and cytotoxic34,35,75,76. Cell lines, 
animal models, and human studies suggest that levels of such BAs, particularly DCA, lead to a 
disruption of mitochondrial membranes resulting in increased reactive oxygen species, markers 
of inflammation, and apoptosis as well as decreases in cell viability and DNA synthesis34,35,77. 
Studies in rodents with deuterium-labeled DCA demonstrated that DCA crosses the BBB 
and increases its permeability27,29. Increased amounts of secondary BAs in blood may enter the 
brain through induced permeability of the BBB, affecting brain physiology and metabolism28. 
Several studies in human and animal brains also revealed that the full panel of BAs is found in 
the brain24-27, but it is unclear whether this is due to transport from the periphery, from local 
synthesis, or both. The function of these BAs in the brain remains poorly defined with some 
support for them acting as neurosteroids78. 

BA levels and the gut microbiome influence each other, where bile salt hydrolase–rich bacteria 
readily modify the BA profile while, on the other hand, intestinal BAs control the growth and 
maintenance of commensal bacteria, maintain barrier integrity, and modulate the immune 
system79-82. Such changes might impact brain functions. Significant data support a role for 
cholesterol metabolism in the pathogenesis of AD including large genetic studies. Cholesterol 
homeostasis is regulated in part by the gut microbiome suggesting that cholesterol intermediates 
including those produced by gut might present as one gut-brain axis of communication that 
needs to be further investigated in human and animal studies.

Limitations 
This is an observational study, the results of which may contain confounding biases. For example, 
diet, lifestyle, exposome, and other factors may contribute to changes in the gut. It remains 
unclear how these important factors are related to AD pathogenesis and whether the observed 
differences we note are causes or consequences of disease. Further studies of metabolic changes 
in normal aging are required to help define which aspects of BA metabolism might be related 
to disease versus normal aging. Fecal material was not collected in the ADNI cohorts or other 
large studies therefore precluding a direct analysis of microbiota changes across the trajectory of 
disease. Such studies have just been initiated. Use of medications was extensively evaluated as a 
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possible confound (Supplementary Methods and Tables 7–9), and our key findings remained 
after controlling for medication use but larger studies need to further evaluate the effect of these 
medications. Additional experimental studies are needed to more fully define the expression 
of BAs and their receptors in the brain and the mechanistic roles of BAs in the development 
of AD. The impact of BAs on FXR, TGR5, vitamin, and hormone receptors in the brain and 
the signaling pathways impacted are currently unclear. It is important to evaluate in other large 
community studies the generalizability of our findings. The genetic links need to be tested in 
large populations.

Longitudinal studies covering presymptomatic stages are needed to establish the influence of 
immune changes on gut microbiome composition and activity in AD patients and the impact of 
this on BAs and cholesterol homeostasis. Tracking earliest changes in BA and other gut-derived 
metabolites might provide insights into causality. Labeling studies are needed to evaluate if BAs 
cross the BBB and build up in brain with further elucidation of their signaling and regulatory 
functions centrally. However, we cannot exclude the possibility that changes in the brain during 
disease can also impact the gut and liver, and hence, some of our findings might be brain derived.

Conclusions 

In summary, there is evidence of a relationship among the intestinal BA profile, gut microbial 
composition and/or activity, innate immunity, and genetic variants implicated in AD. When 
disrupted, BAs may contribute to cognitive changes, highlighting the importance of cholesterol 
clearance and its regulation in AD. Disorders in BA metabolism cause cholestatic liver diseases, 
dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes, which are all associated 
with risk of cognitive decline, directly or indirectly. Our results lend support to this relationship 
in the context of AD and cohorts at risk for AD. Our evolving understanding of the gut 
microbiome’s role in aging and in central nervous system diseases and their progression could 
open potential new hypotheses in the field, regardless of whether the role is ultimately found 
to be causative, consequence, or contributory. The role of the gut microbiome in AD needs to 
be further investigated along with the emerging links between central and peripheral metabolic 
failures that might contribute to brain health and disease during aging.
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In this thesis, I aim to identify the genetic, metabolomic, and proteomic determinants 
of Alzheimer’s disease (AD) risk and pathophysiology using integrated multi-omics and 
epidemiological approaches. Furthermore, I investigate the interaction of lifestyle factors with 
genetic risk factors in AD. The general discussion that follows will highlight the main findings of 
this thesis, their possible implications in understanding the AD pathophysiology, challenges, and 
opportunities for future research.

Genetics of  Alzheimer’s disease

In Chapter 2 of this thesis, I performed linkage analysis coupled with whole-genome sequencing 
to identify rare genetic variants. Genetic linkage analysis is a powerful approach to identify rare 
genetic variants, particularly when coupled with deep genomic sequencing1. The study described 
in this chapter was performed as part of the Alzheimer’s disease Sequencing Project (ADSP) 
and is based on multi-generational families from the Genetic Research in Isolated Populations 
(GRIP), a highly inbred Dutch isolate2. Shared genetic and environmental factors in isolated 
family-based studies increase the power to detect rare variants3. I identified a genomic region, 
5p14.3 (logarithm of odds (LOD) score = 3.3) linked to late-onset AD, and a haplotype region 
spanning over 9.1 cM shared by ten individuals contributing to the linkage signal at 5p14.3 
region. With whole-genome sequencing of the affected family members, I identified a number 
of candidate single nucleotide polymorphisms (SNPs) in the CDH18 gene, which may explain 
the identified genetic linkage region. CDH18 encodes a type II cadherin protein, which is highly 
expressed in brain4 and is involved in neuronal development and synaptic function5.

In a separate study, A large GWAS of short-term verbal memory from The Cohorts for Heart and 
Aging Research in Genomic Epidemiology (CHARGE) has identified a genome-wide significant 
variant (P = 5x10-8) in the CDH18 gene (Jari et al. 2019 [unpublished]). It is of note that loss 
of short-term memory is considered one of the early clinical symptoms of AD6 and is associated 
with an increased risk of AD7,8, thus relevant to our finding. Further evidence from earlier studies 
have shown the association of various members of the cadherin gene family in neuropsychiatric 
disorders9,10, CSF levels of Aβ-4211, cognition, and education attainment12,13,14,15. Taken together, 
findings from our study and those of others highlight the importance of a genomic region, i.e., 
5p14.3, in the central nervous system, but its precise role in AD is yet to be explored. Due to the 
highly variable frequencies of rare variants, population specificity, and unstable genomic region, 
I did not find a specific variant associated with AD in our identified genomic region based on 
the statistical analysis. Future functional studies, in cellular models or transgenic animals, aims 
at deciphering the role of various cadherin genes in AD pathology are needed to validate our 
findings, and to identify the pathways contributing to our observation.
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Pathways implicated in Alzheimer’s disease and lifestyle factors

A primary goal of genetic knowledge of a disease is to gain insight into novel pathways implicated 
in the etiology. Integrating genome-wide association study (GWAS) findings in AD with 
differential gene expression showed the role of eight biological pathways in AD16 and, more 
recently also of Aβ processing17. In chapter 3.1, I showed that endocytosis pathway-based risk score 
associates to AD, mild cognitive impairment (MCI) and progression from normal (dementia-
free) to AD. This observation is in line with earlier studies reporting the endocytosis pathway as 
the earliest manifestation of AD18-20. The endocytosis pathway is involved in neuronal uptake of 
cholesterol as well as excretion of secretory vesicles, thus crucial for synaptic function and axonal 
elongation21. Evidence from other studies also suggests a role of endocytosis dysfunction in Aβ 
aggregation22, impaired synaptic function, and release of neurotransmitters23. Findings from this 
chapter indicate that the endocytosis pathway is shared between MCI and AD, thus may serve 
as a target for early AD risk assessment (Figure 1). I also showed that the increased genetic risk 
burden of risk variants in clathrin/AP2 adaptor complex pathways and immune response may play 
a role in early AD pathogenesis through white matter pathology. Among two genes clustered in 
clathrin/AP2 adaptor complex pathway (PICALM, CLU), PICALM is mainly expressed in the 
blood vessel walls and brain tissues24 and is also expressed in the white matter, whereas CLU plays 
a role in the efflux of free insoluble amyloid-beta (Aβ) peptide through blood-brain barrier25. 
Moreover, increased plasma levels of CLU were found to be associated with decreased integrity 
of white matter at a young age26. Thus, the combined genetic risk of these two genes (PICALM, 
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Figure 1: Biomarkers of  AD trajectory over time, presenting three stages of  AD, presymptomatic 
stage, MCI and eventually AD dementia. Reprinted from Leclerc et al.27 Abbreviations: MCI, mild 
cognitive	impairment;	MRI,	magnetic	resonance	imaging;	CSF,	cerebrospinal	fluid.
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CLU) may explain changes in white matter hyperintensities at MRI. Interestingly, a combined 
genetic risk score based on all genome-wide significant variants did not show association with 
any of the early features of AD pathophysiology, which suggest that aggregating multiple variants 
into a single score may dilute meaningful biological relevance of specific sets of genes belonging 
to a particular pathway. Findings from this study advances our understanding about the role of 
AD implicated pathways in early phase of AD and this also open evenues for research in pathway 
based genetic risk stratification of AD patients. Future studies are needed to explore the role 
of pathways in AD based on recent meta-analysis of AD GWAS17 which first time showed the 
enrichment of genetic variants related to the Aβ processing pathway.

Chapter 3.2 of this thesis addressed the question of whether adherence to a healthy lifestyle can 
attenuate or even offset the genetic risk of dementia contributed by APOE in the Rotterdam 
study, a prospective population-based study. To study the healthy lifestyle pattern, a composite 
profile was constructed based on six lifestyle factors including abstaining from smoking, avoiding 
social isolation, absence of depression, absence of diabetes, regular physical activity and healthy 
diet including limited alcohol consumption. Findings from this chapter showed that modifiable 
risk factors lower the risk of dementia in individuals with low (APOE ε2ε3, ε2ε2 genotypes) 
and intermediate (APOE ε3ε3) genetic risk of dementia but not in the high genetic risk group 
(APOE ε2ε4, ε3ε4 or ε4ε4 genotype carriers). If replicated in an independent cohort, the clinical 
implication of our findings may be that adopting a healthy lifestyle could potentially prevent or 
postpone the onset of dementia in individuals at low and intermediate genetic risk. However, in 
contrast to our findings, a recent study based on the UK Biobank data showed that the association 
of lifestyle and genetic risk factors with AD risk is independent and additive in nature28. There 
may be several explanations of why our findings did not replicate. Although the UK Biobank-
based study used a similar set of lifestyle factors, the study lacks deep dementia phenotyping in 
the cohort. Secondly, the use of polygenic risk score based on non-genome-wide significant loci 
by the UK Biobank study to account for the genetic component may explain the differences in 
both investigations. However, more extensive studies on the interaction of lifestyle factors with 
genetic factors in AD are needed to overcome the conflicting results.

Proteomics and Metabolomics of  Alzheimer’s disease

An increasing number of studies are focusing on identifying proteomic and metabolic determinants 
of AD during the preclinical and prodromal phase of the disease (Figure 1). In chapter 4.1, I 
studied the association of proteins profiled in blood with AD in the overall population and 
stratified by APOE. In this study, brain-related proteins were profiled in pre-symptomatic subjects 
from a prospective population-based study, the Rotterdam Study. In this chapter, I reported the 
association of CDH6 and HAGH protein levels in blood with AD in APOE ε4 carriers. The 
findings of this study were replicated in an independent Swedish BioFINDER cohort.
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Furthermore, a genome-wide association study of protein levels in blood identified a genetic 
variant (rs111283466) that is also associated with the expression levels of CDH6 transcripts. In an 
additional analysis, I showed a significant positive correlation of CDH6 levels in CSF with p-tau 
and total-tau in Amsterdam Dementia Cohort (ADC), which suggests that CDH6 levels in CSF 
may act as a biomarker of neurodegeneration. CDH6 is a cell surface glycoprotein that is highly 
expressed in blood and is involved in synaptic functions29-31, synaptogenesis32, TGF-B signaling33, 
neural crest differentiation34, presenilin-mediated signaling, and integrity of blood-brain barrier35. 
CDH6 protein-coding gene is part of a larger cadherin (CDH) gene cluster including CDH8, 
CDH9, CDH10, CDH12, CDH13, CDH15, and CDH18. It is of note that most of the cadherin 
genes including CDH6, CDH9, CDH10, CDH12, and CDH18 are located in chromosome 
5p14.3 region which I identified to be linked with AD in the genetic linkage analysis reported in 
Chapter 2. Positive associations of CSF levels of CDH6 protein with p-tau and total-tau levels 
in the ADC cohort suggest the role of CDH6 in the molecular process of neuronal and axonal 
cell injury, which begins years before the symptomatic phase of AD36,37. I also find elevated levels 
of HAGH protein in APOE ε4 carriers. The HAGH protein (glyoxalase-2) is involved in the 
glyoxalase system along with glyoxalase-1, a key player is oxidative stress control38,39. The glyoxalase 
system plays a role in detoxification of cytotoxic metabolite, methylglyoxal40. In plasma, higher 
levels of methylglyoxal are observed in hyperglycemia, which aids in the production of reactive 
oxygen species (ROS) and causes oxidative stress. Moreover, methylglyoxal is also a precursor of 
glycation end products (AGEs) and are implicated in neurodegeneration and AD41,42. Moreover, 
AGEs and glyoxalase system is involved in the regulation of amyloid precursor protein (APP) 
expression43,44. Findings from this chapter reiterate observations from earlier studies that suggest 
the role of oxidative stress during the prodromal stage of AD45-47. Additionally, findings from this 
study suggest that the oxidative stress-related protein marker (glyoxalase-2 or HAGH) can be 
observed in the blood of the presymptomatic phase of AD carrying APOE ε4 allele.

In chapter 4.2, I set out to investigate the role of signaling lipids in AD pathophysiology and 
MCI to AD progression. Among signaling lipids, I focused on lysophosphatidic acids (LPAs) 
which are bioactive phospholipids and known to regulate several key physiological processes 
including brain immune response48, myelination49, synaptic transmission50 as well as having a 
role in endothelial cells and neurovascular function51. In this study, I observed the significant 
positive association of five LPAs (C16:0, C16:1, C22:4, C22:6, and isomer-LPA C22:5) to all 
three AD biomarkers, i.e., Aβ-42, p-tau and total tau levels in CSF. LPA C14:0 and C20:1 
showed association to Aβ-42 and alkyl-LPA C18:1, LPA C20:1 to tau pathology biomarkers 
(p-tau and total tau) in CSF. The positive association between various LPA and Aβ-42 levels in 
CSF is concordant with an earlier finding, which suggested a role of LPAs in the upregulation 
of β-secretase (BACE1)52, a key enzyme involved in Aβ production. Accumulation of Aβ is 
an early event in the pathogenesis of AD53, which may lead to synaptic failure, tau pathology, 
and neuronal death (see Chapter 1)54. In the APOE stratified analysis, LPA C16:1 associated 
to Aβ-42 levels in both APOE ε4 and APOE ε33 carriers but LPA C16:0 showed significant 
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association only in the APOE ε3 stratum, which implies that the APOE genotype may influence 
the association of LPAs with Aβ-42 levels. I also found that decreased CSF levels of LPA C16:0 
and C16:1 were associated with MCI to AD progression. Inverse relation of LPA levels to MCI 
to AD conversion may be due to their correlation with CSF Aβ-42 levels, which is associated 
with a higher risk for MCI to AD progression55. In line with these findings, an earlier study also 
showed decreased levels of LPA C16:0 in frontal cortex tissue of Lewy body disease patients with 
AD compared to controls56. The fact that the association of LPAs to MCI to AD progression loses 
significance and the regression coefficient reducing to half after adjusting for Aβ-42 levels suggests 
the role of LPA 16:0 and 16:1 is dependent on Aβ-42. This study suggests a relationship between 
LPAs and Aβ metabolism; thus, future research should focus on investigating the nature of this 
relationship. Our study provides evidence for the role of an important class of signaling lipids in 
the pathophysiology of AD, but there is an open question whether these signalling lipids triggers 
the biological cascade of events leading to AD pathology or are products of neurodegeneration.

Gut-Liver-Brain axis

The study described in chapter 5.1 of this thesis presents the association of liver function 
biomarkers with AD, cognition, neuroimaging, and CSF biomarkers of AD in participants of the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. This study has provided evidence for 
the association between lower levels of alanine aminotransferase (ALT) enzyme and elevated liver 
enzyme ratio (aspartate aminotransferase [AST] to ALT ratio) with AD and reduced cognitive 
performance, which is concordant with findings in an earlier study57. Moreover, an increased 
AST to ALT ratio and lower levels of ALT were associated with increased Aβ deposition, and 
reduced brain glucose metabolism and atrophy. The observation that the increased AST to 
ALT ratio associated with reduced brain glucose metabolism may explain the disturbed energy 
metabolism in AD and cognition58,59 and brain hypometabolism during the prodromal phase of 
AD60,61. Findings from this chapter are concordant with a large number of studies that suggested 
the association of disturbed liver enzymes with altered levels of branched-chain amino acids, 
ether-linked phosphatidylcholines62, which relate to AD63-66 and its pathophysiology67. AST and 
ALT enzymes also play a crucial role in gluconeogenesis in liver and neurotransmitter (glutamate) 
production in brain68. In neuronal synapses, glutamate acts as a neurotransmitter and plays a role 
in long-term potentiation69. Earlier studies have shown a positive correlation between plasma 
levels of liver enzymes and glutamate in blood58,70, which indicates that reduced levels of ALT 
enzyme may downregulate glutamate levels. It is of note that plasma levels of glutamate correlate 
positively with CSF glutamate levels71, and lower levels of glutamate in plasma72 and brain 
tissues are reported in AD patients compared to controls73-76. This study relates liver function 
biomarkers in blood to various features of AD pathophysiology (Figure 2). One of the limitations 
of our study is that we cannot account for medication use in ADNI, which can potentially 
confound our results. Our study implicates the role of liver enzymes in the connection between 
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peripheral circulation and pathophysiological biomarkers of neurodegeneration. Our findings 
also raise questions about whether medications and lifestyle factors influence the link between 
peripheral circulation and brain. In future studies, other measures of liver function and non-
alcoholic fatty liver disease should be investigated in addition to the effects of medication. 
Furthermore, Mendelian randomization may help to determine the causal relationships between 
the associations of liver function biomarkers and AD.

Chapter 5.2 describes the results from an association study of plasma levels of bile acids with AD 
diagnosis, cognition, and AD-associated genetic variants. Bile acids are products of cholesterol 
metabolism in the liver and further metabolized by gut microbiota77,78. Bile acids play a role in 
various signaling and regulatory functions and may be relevant in the gut-liver-brain axis79 (Figure 
2). In AD patients, we observed significantly lower serum levels of primary bile acid (cholic acid 
CA) and increased levels of the microbial product, secondary bile acid, deoxycholic acid (DCA), 
and its glycine and taurine conjugated forms. Moreover, an increased ratio of DCA:CA was 
associated with cognitive decline which was replicated in serum and brain samples in the Rush 
Religious Orders and Memory and Aging Project. Analyzing the MCI to AD progression analysis 
showed that lower levels of CA and a higher ratio of secondary to primary BAs, GDCA:CA, 
and TDCA:CA were significantly associated with the risk of developing AD. Findings from 

Figure 2: Gut-Liver-Brain axis. Abbreviations:	BBB,	blood-brain	barrier;	SCFA,	Short-chain	fatty	
acids; ASAT, Aspartate aminotransferase; ALAT, Alanine aminotransferase. Source: Adapted 
from Tripathi et al96.
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this chapter suggest a unique metabolic link of the gut-liver-brain axis and AD. Bile acids can 
act as ligands for the nuclear transcription factor FXR, which is involved in energy homeostasis 
pathways80,81. It is of note that gut microbial derived bile acids (DCA, GLCA, TLCA, TDCA) 
which showed association with AD and cognition are hydrophobic and cytotoxic in nature82-85. 
DCA can disrupt mitochondrial membranes to produce reactive oxygen species and may 
thus influence cell viability via apoptotic and inflammatory pathways82,83,86. Moreover, studies 
have shown that DCA can cross the BBB, affecting brain physiology and metabolism87-89. As 
AD is a genetic disease, we studied the association of AD implicated immune-related genetic 
variants with bile acid levels. We found that ABI3 and MEF2C showed association with the 
DCA:CA ratio, and EPHA1 with DCA and TDCA levels. These findings are compatible with 
the hypothesis that immune-related genes may influence the risk of AD in part through the bile 
acid metabolism or changes in the gut microbiome. Additional lookups in the atlas of genetic 
influences on human blood metabolites90, showed that six genes (ABCA7, LRRC7, CYCS, GPC6, 
FOXN3, and CNTNAP4) are related to cognition and CSF AD biomarkers as well as levels 
of DCA levels in serum. Of the identified genes, ABCA7 is among highly replicated risk loci 
for AD91,92, which is highly expressed in the brain and plays a role in cholesterol transport93,94 
and amyloid-β clearance95. Overall, this study contributed to the understanding of the complex 
interconnection between gut microbiota, liver function, and genetics of AD, where bile acids 
as the product of liver and gut microbiota may act as a biochemical signal in the gut-brain 
metabolic axis. Furthermore, altered levels of bile acids highlight the importance of cholesterol 
clearance and its regulation in AD. Bile acids are the product of cholesterol metabolism, which 
highlights the need to investigate the relationship between bile acids and cholesterol sub-fractions 
in circulation. Future studies should focus on investigating the relationship between bile acids 
and gut microbiota and on identifying the microbial taxa whose abundance may derive the bile 
acids related to AD pathology.

In chapter 5.3, I further explored the connection between gut microbiota and genetics of AD 
and their relation with metabolites implicated in AD and cognition. I found an association of 
the risk (G) allele of ABCA7 genetic variant with a lower abundance of phylum Firmicutes, 
class Clostridia, order Clostridiales and, a higher abundance of order Enterobacteriales and 
family Enterobacteriaceae. The findings related to Firmicutes, Clostridia, and Clostridiales 
are in line with earlier studies, which showed the decreased abundance of Firmicutes in AD 
patients compared to controls97 and in APP transgenic mice98. Additionally, I found evidence 
of an association between the higher abundance of class Clostridia and order Clostridiales with 
higher cognition levels. I also observed an association of the ABCA7 genetic risk with higher 
abundance of order Enterobacteriales and family Enterobacteriaceae, which belong to phylum 
Proteobacteria (P = 2.30x10-3, FDR = 5.42x10-2). Although we did not find an association 
of these microbial taxa with cognitive function, an increased abundance of Proteobacteria is 
known earlier in AD patients99. An increased abundance of Enterobacteriaceae has also been 
found in Parkinson’s disease100. In our study, integration of findings with earlier studies on the 
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association of cholesterol sub-fractions and gut microbiota101, suggest that HDL sub-fractions 
may play a role in the cross-talk between the gut microbiome and the brain. Of the 28 tested AD 
genetic risk variants, only the variant in the ABCA7 gene showed association with gut microbial 
taxa. The ABCA7 gene is highly expressed in the brain and microglia102 and plays a role in 
cholesterol transport93,94 and amyloid-β clearance95. This gene is also implicated in microglial 
proinflammatory response in elderly individuals103. One possible mechanism of the ABCA7 gene 
association with gut microbial taxa may be the hyper-activated inflammatory response, which 
may result in an increased abundance of order Enterobacteriales and family Enterobacteriaceae. 
ABCA7 gene may also influence gut microbiota through bile acid metabolism (Chapter 5.2). The 
variants in the ABCA7 gene may alter blood levels of deoxycholic acid (DCA), a secondary bile 
acid. DCA is associated with gut microbiota77 as well as to AD and cognition104. It is also known 
that secondary bile acids may absorb into bloodstream and can modulate lipid metabolism 
through G-proteins coupled receptors such as FXR105. Functional studies are required to validate 
these findings. Transgenic animal studies, aiming to unravel the role of ABCA7 genetic variant 
in modulating gut microbiota, can also help to understand the mechanism. The integration of 
identified microbial taxa with measures of AD neuropathology and other endophenotypes of AD 
is of interest in future studies.

Future research

In this section, I describe the future directions of the AD research in multi-omics, which may 
open new avenues for understanding the risk and pathophysiology of AD. One of the large whole-
exome and whole-genome sequencing in AD gene discovery efforts, ADSP discovered few rare 
variants due to inadequate sample size (AD cases = 2,778 and control = 7,262), which warrants 
the need for exome sequencing studies in a larger sample such as in the UK Biobank106. Recent 
developments in the discovery of rare genetic variants of AD with large effect estimates107-109 may 
improve our understanding about the AD genetic risk. Rare genetic variants may also help to 
decipher functional pathways in disease pathophysiology. Future genetic research should utilize 
long read sequencing techniques to overcome the problems encountered in sequence depth, 
which are otherwise difficult to characterize using traditional next-generation sequencing110. At 
present, this is feasible at small scale studies. Moreover, research is needed to assess the functional 
aspects of genetic variants on AD pathology. Discovery of more disease-relevant genetic variants 
among known genetic loci of the disease may guide drug target studies111. A recent study showed 
that most of the pleiotropic SNPs are located in intergenic regions, while the majority of the 
lead or causal genetic variants are located in the coding or flanking region of genes112. Future 
genomic studies should also focus on even other types of genomic fingerprints (short repeats, 
other sequencing methods)113,114, which may explain unexplained linkage findings as in Chapter 
2 but also may elucidate causal variants in GWAS.
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One of the several challenges in AD research is to assess the functional impact of known genetic 
variants with small effect sizes on the molecular pathways implicated in AD pathophysiology115,116. 
Future research should expand beyond the highly researched amyloid hypothesis. Pathway-
specific genetic risk scores, as developed in Chapter 3.1, open opportunities to evaluate the 
pathway-specific genetic risk score interaction with lifestyle factors such as education, alcohol 
intake, physical activity in longitudinal cohorts, which would help to identify the relevant 
pathways interacting with lifestyle factors in AD risk. It is of note that prior biological pathway 
information, which was used in our study, was based on the integration of gene expression data 
with available AD GWAS information published in 201316,117. A new pathway enrichment 
analysis based on a larger GWAS has expanded pathways including amyloid precursor protein 
metabolism and tau binding protein pathways that were not included in the analysis of Chapter 
3.117, which warrants the need for a new evaluation. GWAS based on Haplotype Reference 
Consortium (HRC) and TOPMed imputation panels such as European Alzheimer’s Disease 
DNA BioBank (EADB) is uncovering more insight into biological pathways implicated in AD. 
Complex systems biology approaches to integrate multi-omics layers with genetic risk variants of 
AD would lead to more complex molecular pathways relevant to AD and may help to identify 
disease targets for drug research.

In this thesis, we identified the role of lysophosphatidic acids (LPAs) in AD pathophysiology. LPAs 
are bioactive signaling phospholipids whose receptors are highly expressed on astrocytes, and also 
on neurons118. LPAs are known to be involved in neuronal cell survival and outgrowth119,120, but 
there is a need to explore their precise molecular mechanism in AD pathophysiology. One way 
to unravel their mechanism of action is through using the multi-omics approach in neuronal and 
astrocyte cell cultures and their co-cultures to identify the influence of LPAs on cell metabolism, 
expression of the gene, and various proteins involved in AD pathogenesis.

Metabolomics and proteomics of preclinical and predementia stages of AD have provided 
useful insight into the molecular mechanism of AD and yielded biomarkers of disease risk and 
progression (Aβ42/40, p-tau, and total-tau). However, since metabolomics and proteomics are 
more sensitive to deviation in analysis approaches, there is a need to harmonize and standardize 
the global efforts to address study power issues121. Variability in study design, selection, storage and 
processing of samples, instrumental analysis, data analysis and most importantly, the inclusion of 
potential confounders such as medication use can lead to inconsistent and conflicting results122. 
Future research should focus on standardizing workflow in large metabolomics investigations in 
order to improve the generalizability of findings and their ultimate use in clinical diagnosis123. 
Moreover, metabolomics studies in AD and dementia should be extended and focus on the 
interactions between the metabolome and proteomics with sex, lifestyle, and genetic risk factors. 
Variation in AD risk across genetic risk strata124 may also be explained by variation in circulating 
metabolites. Thus, efforts should focus on integrated genetic and metabolomics information to 
identifying personalized signatures (unique metabolic fingerprint) of disease. There are growing 
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opportunities to incorporate advance machine learning and network analysis approach in 
large studies to address the challenges of data integration, which will improve the discovery of 
biomarkers of early disease assessment, allow patient stratification and lead to discovery of novel 
drug targets.

Conclusions

In the thesis, I study genetics, metabolomics, and proteomics to elucidate the pathophysiology 
of AD and the interaction of lifestyle factors with genetics, which determine the risk of AD. The 
research described in this thesis contributes to our understanding of the pathophysiology and 
molecular mechanism of AD in the prodromal and predementia phase of AD. In particular, the 
findings in the area of the gut-liver-brain axis may shed new light on potential new modifiable 
risk factors in AD.
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Summary

Alzheimer’s disease (AD) is a complex neurodegenerative disorder that accounts for more than 
70% of worldwide dementia cases. With no treatment available, the rising AD prevalence in 
aging populations is posing a serious economic and health challenge. Advances in multi-omics 
technology in recent decade enables us to disentangle the molecular mechanism underlying AD 
pathophysiology to guide drug and preventive treatment research. I used several layers of omics 
in highly characterized epidemiological cohorts to understand the pathophysiology, molecular 
mechanism and the risk of AD dementia.

Chapter 2 focused on identifying rare genetic variants in Erasmus Rucphen Family Study 
using linkage analysis and whole genome-sequencing approach under the Alzheimer’s disease 
sequencing project (ADSP). Our study identified a genomic region 5p14.3 linked with AD. 
Functional bioinformatics analysis of the genetic variants in the AD linked region identified few 
rare genetic variants in CDH18 and CDH12 genes shared by the individuals contributing to the 
linkage signal at 5p14.3 regions.

Chapter 3 studied the role of AD implicated biological pathways in the prodromal phase of AD 
and the interaction of genetic risk factors with modifiable risk factors in AD. In Chapter 3.1, 
I identified the association of endocytosis pathway-based genetic risk score with mild cognitive 
impairment (MCI). Further, this study identified a relevance between the immune response and 
clathrin/AP2 adaptor complex pathways with white matter lesions at magnetic resonance imaging 
in predementia individuals. In Chapter 3.2, we studied the interaction of lifestyle factors with 
APOE ε4 and polygenic risk score in the Rotterdam Study. We reported that the healthy lifestyle 
factors may lower the risk of dementia in individuals with low and intermediate genetic risk of 
dementia, while healthy lifestyle did not offset the dementia risk in high genetic risk group.

In Chapter 4, I studied the role of proteins and metabolites in AD risk and pathophysiology. 
Chapter 4.1, I studied the association of plasma levels of brain-related proteins with AD in overall 
sample and stratified by APOE genotype in the Rotterdam Study. I discovered the association of 
higher plasma levels of CDH6 and HAGH proteins with AD in APOE ε4 carriers. The findings 
of this study were also replicated in the BioFINDER study. We further showed significant 
positive correlation between CDH6 protein levels and both phosphorylated tau and total tau 
in cerebrospinal fluid (CSF) in the Amsterdam Dementia Cohort. In Chapter 4.2, I studied the 
association of CSF and plasma levels of signaling lipids (lysophosphatidic acids (LPAs)) with 
CSF biomarkers of AD pathology including amyloid-beta 42, phosphorylated tau and total tau.

In Chapter 5, I studied the genetic and metabolic determinants of gut-liver-brain axis. In Chapter 
5.1, we studied the association of liver function biomarkers with cognition, AD and imaging 
biomarkers of brain atrophy in The Alzheimer’s Disease Neuroimaging Initiative (ADNI). In 
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this chapter, we identified that lower levels of alanine aminotransferase (ALT) enzyme and 
elevated liver enzyme ratio (aspartate aminotransferase (AST):ALT) were associated with AD 
and lower cognitive measure. Moreover, lower levels of ALT and increased ratio (AST:ALT) were 
associated with increased Aβ deposition, and reduced brain glucose metabolism and atrophy. 
In the next Chapter 5.2, we showed significant association of lower levels of primary bile acids 
(cholic acid) and increased levels of secondary bile acids (deoxycholic acid and its glycine and 
taurine conjugates) with AD while lower levels of cholic acid also showed association with faster 
progression from MCI to AD. In the next step (Chapter 5.3), I further investigated the association 
of AD-associated genetic variants with the abundance of gut microbiota and integrated the 
identified microbiota with metabolomics. I identified association of risk allele of a genetic variant 
of ABCA7 gene with lower abundance of phylum Firmicutes, class Clostridia, order Clostridiales 
and, higher abundance of order Enterobacteriales and family Enterobacteriaceae.

Samenvatting

De ziekte van Alzheimer is een complexe neurodegeneratieve aandoening, meer dan 70% van alle 
wereldwijde gevallen van dementie betreft de ziekte van Alzheimer. Omdat er geen behandeling 
beschikbaar is, vormt de stijgende prevalentie van de ziekte van Alzheimer in de steeds ouder 
wordende populatie een ernstige economische- en gezondheidsuitdaging. Vooruitgang in 
multi-omics-technologie in het afgelopen decennium stelt ons in staat om het moleculaire 
mechanisme achter de pathofysiologie van de ziekte van Alzheimer te ontrafelen om onderzoek 
naar geneesmiddelen en preventieve behandelingen te begeleiden. Ik gebruikte verschillende 
lagen omics in zeer gekarakteriseerde epidemiologische cohorten om de pathofysiologie, het 
moleculaire mechanisme en het risico op ziekte van Alzheimer te begrijpen.

Hoofdstuk 2 richtte zich op het ontdekken van zeldzame genetische varianten in de Erasmus 
Rucphen Familie Studie met behulp van linkage-analyse en een whole genoom-sequencing-
aanpak in het kader van het Alzheimer’s disease sequencing project (ADSP). Onze studie 
ontdekte een genomisch gebied, 5p14.3, gekoppeld aan de ziekte van Alzheimer. Met functionele 
bioinformatica-analyse van de genetische varianten in het ziekte van Alzheimer gekoppelde 
gebied, ontdekte we enkele zeldzame genetische varianten in CDH18- en CDH12-genen die 
worden gedeeld door de individuen die bijdragen aan het linkage signaal op 5p14.3-regio’s.

Hoofdstuk 3 bestudeerde de rol van de bij de ziekte van Alzheimer betrokken biologische paden 
in de prodromale fase van de ziekte en de interactie van genetische risicofactoren met aanpasbare 
risicofactoren bij de ziekte van Alzheimer. In hoofdstuk 3.1 ontdekte ik de associatie van op 
endocytose pathway gebaseerde genetische risicoscore met milde cognitieve stoornis (MCI). 
Verder toonde deze studie een relevantie tussen de immuunrespons en clathrin/AP2-adapter 
complexe paden met witte stoflaesies bij MRI-beeldvorming bij pre-dementie individuen. In 
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hoofdstuk 3.2 hebben we de interactie van leefstijlfactoren met APOE ε4 en polygene risicoscore 
onderzocht in de Rotterdam Studie. We hebben gevonden dat gezonde levensstijlfactoren het 
risico op dementie kunnen verlagen bij personen met een laag en gemiddeld genetisch risico op 
dementie, terwijl een gezonde levensstijl het dementierisico in de hoge genetische risicogroep 
niet compenseerde.

In hoofdstuk 4 heb ik de rol van eiwitten en metabolieten op het risico op de ziekte van 
Alzheimer en pathofysiologie bestudeerd. In hoofdstuk 4.1 bestudeerde ik de associatie van 
plasmaconcentraties van hersen gerelateerde eiwitten met de ziekte van Alzheimer in het totale 
sample en gestratificeerd naar APOE-genotype in de Rotterdam Studie. Ik ontdekte de associatie 
van hogere plasmaspiegels van CDH6- en HAGH-eiwitten met de ziekte van Alzheimer in 
APOE ε4-dragers. De bevindingen van deze studie werden ook gerepliceerd in de BioFINDER-
studie. We toonden verder een significante positieve correlatie tussen CDH6-eiwitlevels en zowel 
gefosforyleerde tau als totale tau in hersenvocht (CSF) in het Amsterdam Dementia Cohort. 
In hoofdstuk 4.2 bestudeerde ik de associatie van CSF en plasmaspiegels van signaallipiden 
(lysofosfatidinezuren (LPA’s)) met CSF biomarkers van ziekte van Alzheimer pathologie 
waaronder amyloïde beta-42, gefosforyleerde tau en totale tau.

In hoofdstuk 5 heb ik de genetische en metabole determinanten van de darm-lever-hersenen 
as bestudeerd. In hoofdstuk 5.1 bestudeerden we de associatie van biomarkers van leverfunctie 
met cognitie, ziekte van Alzheimer en beeldvormende biomarkers van hersenatrofie in The 
Alzheimer’s Disease Neuroimaging Initiative (ADNI). In dit hoofdstuk hebben we een 
rol vastgesteld dat lagere levels van alanine aminotransferase (ALAT)-enzym en verhoogde 
leverenzymverhouding (aspartaataminotransferase (ASAT): ALAT) met ziekte van Alzheimer en 
lagere cognitie. Bovendien werden lagere ALAT-waarden en een verhoogde ratio (ASAT: ALAT) 
geassocieerd met verhoogde Aβ-afzetting en verminderd hersenglucosemetabolisme en atrofie. 
In de volgende studie, in hooftstuk 5.2, toonden we een significante associatie tussen lagere 
levels van primaire galzuren en verhoogde levels van secundaire galzuren (deoxycholzuur en de 
glycine- en taurine-conjugaten) en de ziekte van Alzheimer. Terwijl lagere levels van galzuur ook 
geassocieerd waren met snellere progressie van MCI naar ziekte van Alzheimer. In de volgende 
stap (hoofdstuk 5.3) heb ik de associatie onderzocht van de ziekte van Alzheimer geassocieerde 
genetische varianten met de overvloed aan darmmicrobiota en ik heb de ontdekte microbiota 
geïntegreerd met metabolomics. Ik ontdekte een associatie van het risico-allel van een genetische 
variant van het ABCA7-gen met een lagere overvloed aan phylum Firmicutes, klasse Clostridia, 
orde Clostridiales en hogere overvloed aan orde Enterobacteriales en familie Enterobacteriaceae.
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